Solderless connections - Part 9: Ultrasonically welded connections - General requirements, test methods and practical guidance

IEC 60352-9:2024 provides guidelines for welding and testing of ultrasonically welded connections and includes requirements, tests and practical guidance information. Ultrasonic welding is a form of cold friction welding that is becoming increasingly popular in many industries. This type of welding uses ultrasonic vibration to join materials together, creating a bond that is both strong and reliable. Ultrasonic welding has been identified as a process in ISO 4063-41 by the International Organization for Standardization (ISO). The process of ultrasonic welding relies on high frequency ultrasound waves being used to create frictional heat at the connection point. High temperature is not required for this special method of welding, making it one of the most cost-effective ways to join two materials together. It also requires fewer steps than traditional methods, meaning it can be completed quickly and with minimal resources. Ultrasonic welding has been around for decades but only recently has become more widely utilized due to advances in technology and its availability at lower cost. It can be used on many different materials including plastics, rubbers, metals, textiles, and composites. Due to its precision and strong bonds it creates, it has become extremely popular in manufacturing processes such as automotive industry, electronics industry, furniture production and even medical device production. This document covers ultrasonically welded connections made with stranded or flexible wires (class 2, 5 or 6 per IEC 60228) of copper or copper alloy, as well as of aluminium or aluminium alloy. These welded metal-to-metal connections shall employ wires with cross-sectional area of 0,08 mm2 to 160 mm2 and shall not exceed a total cross-sectional area, in case of wire bundle, of 200 mm2. For aluminium or aluminium alloy wires, the minimum required cross-sectional area is 2,5 mm2. Additionally, information on materials, data from industrial experience and test procedures are included to ensure electrically stable connections under prescribed environmental conditions. Lastly, this document aims to achieve comparable results when using ultrasonic welding equipment with similar performance and specifications as specified by the termination manufacturer.

Lötfreie Verbindungen - Teil 9: Ultraschallgeschweißte Verbindungen - Allgemeine Anforderungen, Prüfverfahren und praktische Hinweise

Connexions sans soudure - Partie 9: Connexions soudées par ultrasons - Exigences générales, méthodes d’essai et guide pratique

IEC 60352-9:2024 couvre les connexions soudées par ultrasons et inclut des informations sur les exigences, les essais et les recommandations pratiques. Le soudage par ultrasons est une forme de soudage par friction à froid qui est de plus en plus répandue dans de nombreux secteurs d’activité. Ce type de soudage utilise des vibrations ultrasoniques pour joindre les matériaux entre eux, en créant une liaison à la fois résistante et fiable. Le soudage par ultrasons a été identifié par l’Organisation internationale de normalisation (ISO) comme un procédé dans l’ISO 4063-41. Le procédé de soudage par ultrasons s’appuie sur les ondes ultrasoniques haute fréquence utilisées pour générer une chaleur de friction au point de connexion. Il n’est pas exigé de température élevée pour cette méthode de soudage particulière, ce qui en fait l’une des façons les plus économiques de solidariser deux matériaux. Ce procédé exige également moins d’étapes que les méthodes conventionnelles, ce qui signifie qu’il peut être achevé rapidement et en sollicitant un minimum de ressources. Le soudage par ultrasons existe depuis des décennies, mais ce n’est que récemment que son usage est devenu plus répandu, en raison des avancées technologiques du procédé et de sa disponibilité à moindre coût. Il peut être utilisé sur de nombreux matériaux, comprenant les plastiques, les caoutchoucs, les métaux, les textiles et les matériaux composites. En raison de sa précision et de la résistance des liaisons qu’il définit, il est devenu extrêmement répandu dans les procédés de fabrication tels que ceux de l’industrie automobile, de l’électronique, de la fabrication de mobilier et même de la fabrication de dispositifs médicaux. Le présent document couvre les connexions soudées par ultrasons effectuées avec des fils toronnés ou souples (de classe 2, 5 ou 6 conformément à l’IEC 60228) en cuivre ou en alliage de cuivre, ainsi qu’en aluminium ou en alliage d’aluminium. Ces connexions métal-métal soudées doivent utiliser des fils dont la section transversale est de 0,08 mm2 à 160 mm2 et ne doivent pas dépasser une section totale de 200 mm2 dans le cas d’un faisceau de fils. Pour les fils en aluminium ou en alliage d’aluminium, la section minimale exigée est de 2,5 mm2. En outre, des informations sur les matériaux, des données issues de l’expérience industrielle et des procédures d’essai sont incluses, afin d’assurer des connexions électriquement stables dans les conditions d’environnement prescrites. Enfin, le présent document vise à obtenir des résultats comparables lorsque des équipements de soudage par ultrasons offrant des performances et des spécifications similaires à celles spécifiées par le fabricant de sorties sont utilisés.

Spoji brez spajke - 9. del: Ultrazvočno varjeni priključki - Splošne zahteve, preskusne metode in praktični napotki (IEC 60352-9:2024)

Standard IEC 60352-9:2024 podaja smernice za varjenje in preskušanje ultrazvočno varjenih priključkov ter vključuje informacije o zahtevah, preskusih in praktičnih napotkih.
Ultrazvočno varjenje je oblika hladnega varjenja s trenjem, ki postaja vse bolj priljubljeno v številnih panogah. Pri tej vrsti varjenja se za spajanje materialov uporabljajo ultrazvočne vibracije, s čimer se ustvari močen in zanesljiv spoj. Mednarodna organizacija za standardizacijo (ISO) je postopek ultrazvočnega varjenja opredelila v standardu ISO 4063-41.
Ta postopek temelji na uporabi visokofrekvenčnih ultrazvočnih valov za ustvarjanje torne toplote na stični točki. Pri tej posebni metodi varjenja visoka temperatura ni potrebna, zato je to eden stroškovno najučinkovitejših načinov spajanja dveh materialov.
Zajema tudi manj korakov kot tradicionalne metode, zaradi česar jo je mogoče izvesti hitro in z minimalno uporabo virov.
Ultrazvočno varjenje se uporablja že desetletja, vendar je zaradi napredka v tehnologiji in dostopnosti po nižji ceni v zadnjem času postalo bolj razširjeno. Uporabljati ga je mogoče za različne materiale, vključno s plastiko, gumo, kovino, tekstilom in kompoziti. Zaradi svoje natančnosti in močnih spojev, ki jih ustvarja, je postalo izjemno priljubljeno v proizvodnih procesih, kot so avtomobilska industrija, elektronska industrija, proizvodnja pohištva in celo proizvodnja medicinskih pripomočkov.
Ta dokument zajema ultrazvočno varjene priključke, izdelane iz pramenastih ali gibkih žic (razred 2, 5 ali 6 v skladu s standardom IEC 60228) iz bakra ali bakrove zlitine in iz aluminija ali aluminijeve zlitine. V teh varjenih kovinsko-kovinskih spojih je treba uporabiti žice s površino prečnega prereza od 0,08 m2 do 160 mm2, pri čemer ne smejo presegati skupne površine prečnega prereza 200 mm2 (v primeru snopa žic). Najmanjša določena površina prečnega prereza žic iz aluminija ali aluminijeve zlitine je 2,5 mm2.
Vključeni so tudi informacije o materialih, podatki o industrijskih izkušnjah in preskusni postopki, ki zagotavljajo električno stabilne spoje v predpisanih okoljskih pogojih.
Cilj tega dokumenta je doseči primerljive rezultate pri uporabi opreme za ultrazvočno varjenje s podobno zmogljivostjo in specifikacijami, kot jih je določil proizvajalec zaključkov.

General Information

Status
Published
Publication Date
28-Mar-2024
Technical Committee
CLC/SR 48B - Connectors
Drafting Committee
IEC/SC 48B - IEC_SC_48B
Current Stage
6060 - Document made available - Publishing
Start Date
29-Mar-2024
Due Date
18-May-2023
Completion Date
29-Mar-2024

Overview

EN IEC 60352-9:2024 (IEC 60352-9:2024) defines general requirements, test methods and practical guidance for ultrasonically welded (solderless) connections. It covers metal-to-metal ultrasonic welds made with stranded or flexible wires (class 2, 5 or 6 per IEC 60228) of copper/copper alloy and aluminium/aluminium alloy. The standard sets acceptance criteria, specimen types and qualification tests to ensure electrically stable, mechanically robust connections across expected environmental conditions.

Key topics and technical requirements

  • Scope of conductors: wire cross-sections from 0.08 mm² to 160 mm² (single or splice) and total wire-bundle area not exceeding 200 mm²; aluminium wires have a minimum of 2.5 mm².
  • Welding requirements: guidance on ultrasonic welding process control, termination design, compaction ratios and conductor combinations to achieve consistent joints.
  • Specimen definitions: Type A–D specimens for splice and wire-to-terminal testing to standardize qualification and routine tests.
  • Mechanical tests: bending, peel, pull-out, vibration and compaction-force tests to validate mechanical integrity of welds and welded packages.
  • Electrical tests: contact resistance/voltage-drop, current-carrying capacity, insulation resistance and voltage proof to verify electrical performance.
  • Microsection & visual inspection: visual optical inspection (VOI) and microsection imaging for internal weld quality assessment.
  • Climatic and environmental tests: rapid temperature change, dry heat, cold, damp heat (cyclic), climatic sequences and flowing mixed-gas corrosion to ensure performance under operational environments.
  • Classification and test schedules: product classes (A/B/C) and recommended test schedules for product qualification and production control.
  • Aim for reproducibility: guidance to obtain comparable results when using ultrasonic equipment with performance/specifications aligned to termination manufacturer recommendations.

Practical applications - who uses this standard

  • Connector and termination manufacturers - for design, process development and product qualification of ultrasonic terminations and splices.
  • Test laboratories and QA teams - to perform mechanical, electrical and climatic testing to harmonized procedures.
  • Design and reliability engineers - in automotive, electronics, aerospace, medical devices, rail and appliance industries choosing ultrasonic welding for cost-effective, low-heat joining.
  • Process engineers and production managers - to set welding parameters, inspect welds and establish acceptance criteria for series production.

Related standards (select)

  • IEC 60228 - conductor classes and properties
  • IEC 60068 series - environmental testing methods
  • IEC 60512 series - connector tests and measurements
  • ISO 4063 - welding process classification (ultrasonic welding)

Keywords: ultrasonic welding, solderless connections, ultrasonically welded connections, IEC 60352-9:2024, splice testing, contact resistance, compaction ratio, connector qualification.

Standard

EN IEC 60352-9:2024 - BARVE

English language
71 pages
Preview
Preview
e-Library read for
1 day

Frequently Asked Questions

EN IEC 60352-9:2024 is a standard published by CLC. Its full title is "Solderless connections - Part 9: Ultrasonically welded connections - General requirements, test methods and practical guidance". This standard covers: IEC 60352-9:2024 provides guidelines for welding and testing of ultrasonically welded connections and includes requirements, tests and practical guidance information. Ultrasonic welding is a form of cold friction welding that is becoming increasingly popular in many industries. This type of welding uses ultrasonic vibration to join materials together, creating a bond that is both strong and reliable. Ultrasonic welding has been identified as a process in ISO 4063-41 by the International Organization for Standardization (ISO). The process of ultrasonic welding relies on high frequency ultrasound waves being used to create frictional heat at the connection point. High temperature is not required for this special method of welding, making it one of the most cost-effective ways to join two materials together. It also requires fewer steps than traditional methods, meaning it can be completed quickly and with minimal resources. Ultrasonic welding has been around for decades but only recently has become more widely utilized due to advances in technology and its availability at lower cost. It can be used on many different materials including plastics, rubbers, metals, textiles, and composites. Due to its precision and strong bonds it creates, it has become extremely popular in manufacturing processes such as automotive industry, electronics industry, furniture production and even medical device production. This document covers ultrasonically welded connections made with stranded or flexible wires (class 2, 5 or 6 per IEC 60228) of copper or copper alloy, as well as of aluminium or aluminium alloy. These welded metal-to-metal connections shall employ wires with cross-sectional area of 0,08 mm2 to 160 mm2 and shall not exceed a total cross-sectional area, in case of wire bundle, of 200 mm2. For aluminium or aluminium alloy wires, the minimum required cross-sectional area is 2,5 mm2. Additionally, information on materials, data from industrial experience and test procedures are included to ensure electrically stable connections under prescribed environmental conditions. Lastly, this document aims to achieve comparable results when using ultrasonic welding equipment with similar performance and specifications as specified by the termination manufacturer.

IEC 60352-9:2024 provides guidelines for welding and testing of ultrasonically welded connections and includes requirements, tests and practical guidance information. Ultrasonic welding is a form of cold friction welding that is becoming increasingly popular in many industries. This type of welding uses ultrasonic vibration to join materials together, creating a bond that is both strong and reliable. Ultrasonic welding has been identified as a process in ISO 4063-41 by the International Organization for Standardization (ISO). The process of ultrasonic welding relies on high frequency ultrasound waves being used to create frictional heat at the connection point. High temperature is not required for this special method of welding, making it one of the most cost-effective ways to join two materials together. It also requires fewer steps than traditional methods, meaning it can be completed quickly and with minimal resources. Ultrasonic welding has been around for decades but only recently has become more widely utilized due to advances in technology and its availability at lower cost. It can be used on many different materials including plastics, rubbers, metals, textiles, and composites. Due to its precision and strong bonds it creates, it has become extremely popular in manufacturing processes such as automotive industry, electronics industry, furniture production and even medical device production. This document covers ultrasonically welded connections made with stranded or flexible wires (class 2, 5 or 6 per IEC 60228) of copper or copper alloy, as well as of aluminium or aluminium alloy. These welded metal-to-metal connections shall employ wires with cross-sectional area of 0,08 mm2 to 160 mm2 and shall not exceed a total cross-sectional area, in case of wire bundle, of 200 mm2. For aluminium or aluminium alloy wires, the minimum required cross-sectional area is 2,5 mm2. Additionally, information on materials, data from industrial experience and test procedures are included to ensure electrically stable connections under prescribed environmental conditions. Lastly, this document aims to achieve comparable results when using ultrasonic welding equipment with similar performance and specifications as specified by the termination manufacturer.

EN IEC 60352-9:2024 is classified under the following ICS (International Classification for Standards) categories: 29.120.20 - Connecting devices; 31.220.10 - Plug-and-socket devices. Connectors. The ICS classification helps identify the subject area and facilitates finding related standards.

You can purchase EN IEC 60352-9:2024 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CLC standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-junij-2024
Spoji brez spajke - 9. del: Ultrazvočno varjeni priključki - Splošne zahteve,
preskusne metode in praktični napotki (IEC 60352-9:2024)
Solderless connections - Part 9: Ultrasonically welded connections - General
requirements, test methods and practical guidance (IEC 60352-9:2024)
Lötfreie Verbindungen - Teil 9: Ultraschallgeschweißte Verbindungen - Allgemeine
Anforderungen, Prüfverfahren und praktische Hinweise (IEC 60352-9:2024)
Connexions sans soudure - Partie 9: Connexions soudées par ultrasons - Exigences
générales, méthodes d’essai et guide pratique (IEC 60352-9:2024)
Ta slovenski standard je istoveten z: EN IEC 60352-9:2024
ICS:
29.120.20 Spojni elementi Connecting devices
31.220.10 Vtiči in vtičnice, konektorji Plug-and-socket devices.
Connectors
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EUROPEAN STANDARD EN IEC 60352-9

NORME EUROPÉENNE
EUROPÄISCHE NORM March 2024
ICS 31.220.10; 29.120.20
English Version
Solderless connections - Part 9: Ultrasonically welded
connections - General requirements, test methods and practical
guidance
(IEC 60352-9:2024)
Connexions sans soudure - Partie 9: Connexions soudées Lötfreie Verbindungen - Teil 9: Ultraschallgeschweißte
par ultrasons - Exigences générales, méthodes d'essai et Verbindungen - Allgemeine Anforderungen, Prüfverfahren
guide pratique und praktische Hinweise
(IEC 60352-9:2024) (IEC 60352-9:2024)
This European Standard was approved by CENELEC on 2024-03-28. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN IEC 60352-9:2024 E

European foreword
The text of document 48B/3080/FDIS, future edition 1 of IEC 60352-9, prepared by SC 48B "Electrical
connectors" of IEC/TC 48 "Electrical connectors and mechanical structures for electrical and electronic
equipment" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2024-12-28
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2027-03-28
document have to be withdrawn
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Standard IEC 60352-9:2024 was approved by CENELEC as a European
Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standard indicated:
IEC 60721-3-1 NOTE Approved as EN IEC 60721-3-1
ISO 1463 NOTE Approved as EN ISO 1463
ISO 4063:2023 NOTE Approved as EN ISO 4063:2023 (not modified)
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the
relevant EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cencenelec.eu.
Publication Year Title EN/HD Year
IEC 60050-581 - International Electrotechnical Vocabulary - - -
Part 581: Electromechanical components
for electronic equipment
IEC 60068-1 2013 Environmental testing - Part 1: General EN 60068-1 2014
and guidance
IEC 60068-2-1 - Environmental testing - Part 2-1: Tests - EN 60068-2-1 -
Test A: Cold
IEC 60068-2-2 - Environmental testing - Part 2-2: Tests - EN 60068-2-2 -
Test B: Dry heat
IEC 60068-2-6 - Environmental testing - Part 2-6: Tests - EN 60068-2-6 -
Test Fc: Vibration (sinusoidal)
IEC 60068-2-14 - Environmental testing - Part 2-14: Tests - EN IEC 60068-2-14 -
Test N: Change of temperature
IEC 60068-2-30 - Environmental testing - Part 2-30: Tests - EN 60068-2-30 -
Test Db: Damp heat, cyclic (12 h + 12 h
cycle)
IEC 60068-2-60 - Environmental testing - Part 2-60: Tests - EN 60068-2-60 -
Test Ke: Flowing mixed gas corrosion test
IEC 60228 - Conductors of insulated cables - -
IEC 60512-1 - Connectors for electrical and electronic EN IEC 60512-1 -
equipment - Tests and measurements -
Part 1: Generic specification
IEC 60512-1-1 - Connectors for electronic equipment - EN 60512-1-1 -
Tests and measurements - Part 1-1:
General examination - Test 1a: Visual
examination
IEC 60512-1-2 - Connectors for electronic equipment - EN 60512-1-2 -
Tests and measurements - Part 1-2:
General examination - Test 1b:
Examination of dimension and mass
IEC 60512-2-1 - Connectors for electronic equipment - EN 60512-2-1 -
Tests and measurements - Part 2-1:
Electrical continuity and contact resistance
tests - Test 2a: Contact resistance -
Millivolt level method
IEC 60512-2-2 - Connectors for electronic equipment - EN 60512-2-2 -
Tests and measurements - Part 2-2:
Electrical continuity and contact resistance
tests - Test 2b: Contact resistance -
Specified test current method
IEC 60512-2-5 - Connectors for electronic equipment - EN 60512-2-5 -
Tests and measurements - Part 2-5:
Electrical continuity and contact resistance
tests - Test 2e: Contact disturbance
IEC 60512-3-1 - Connectors for electronic equipment - EN 60512-3-1 -
Tests and measurements - Part 3-1:
Insulation tests - Test 3a: Insulation
resistance
IEC 60512-4-1 - Connectors for electronic equipment - EN 60512-4-1 -
Tests and measurements - Part 4-1:
Voltage stress tests - Test 4a: Voltage
proof
IEC 60512-5-2 - Connectors for electronic equipment - EN 60512-5-2 -
Tests and measurements - Part 5-2:
Current-carrying capacity tests - Test 5b:
Current-temperature derating
IEC 60512-6-4 - Connectors for electronic equipment - EN 60512-6-4 -
Tests and measurements - Part 6-4:
Dynamic stress tests - Test 6d: Vibration
(sinusoidal)
IEC 60512-11-1 - Connectors for electrical and electronic EN IEC 60512-11-1 -
equipment - Tests and measurements -
Part 11-1: Climatic tests - Test 11a -
Climatic sequence
IEC 60512-11-4 - Connectors for electronic equipment - EN 60512-11-4 -
Tests and measurements - Part 11-4:
Climatic tests - Test 11d: Rapid change of
temperature
IEC 60512-11-7 - Connectors for electronic equipment - EN 60512-11-7 -
Tests and measurements - Part 11-7:
Climatic tests - Test 11g: Flowing mixed
gas corrosion test
IEC 60512-11-9 - Connectors for electronic equipment - EN 60512-11-9 -
Tests and measurements - Part 11-9:
Climatic tests - Test 11i: Dry heat
IEC 60512-11-10 - Connectors for electronic equipment - EN 60512-11-10 -
Tests and measurements - Part 11-10:
Climatic tests - Test 11j: Cold
IEC 60512-11-12 - Connectors for electronic equipment - EN 60512-11-12 -
Tests and measurements - Part 11-12:
Climatic tests - Test 11m: Damp heat,
cyclic
IEC 60512-16-4 - Connectors for electronic equipment - EN 60512-16-4 -
Tests and measurements - Part 16-4:
Mechanical tests on contacts and
terminations - Test 16d: Tensile strength
(crimped connections)
IEC 60512-16-7 - Connectors for electronic equipment - EN 60512-16-7 -
Tests and measurements - Part 16-7:
Mechanical tests on contacts and
terminations - Test 16g: Measurement of
contact deformation after crimping
IEC 60947-1 2020 Low-voltage switchgear and controlgear - EN IEC 60947-1 2021
Part 1: General rules
IEC 60999-1 - Connecting devices - Electrical copper EN 60999-1 -
conductors - Safety requirements for
screw-type and screwless-type clamping
units - Part 1: General requirements and
particular requirements for clamping units
for conductors from 0,2 mm2 up to 35 mm2
(included)
IEC 61191-1 2018 Printed board assemblies - Part 1: Generic EN IEC 61191-1 2018
specification - Requirements for soldered
electrical and electronic assemblies using
surface mount and related assembly
technologies
ISO 1463 2021 Metallic and oxide coatings - Measurement EN ISO 1463 2021
of coating thickness - Microscopial method
ISO 6722-1 - Road vehicles - 60 V and 600 V single- - -
core cables - Part 1: Dimensions, test
methods and requirements for copper
conductor cables
ISO 6722-2 - Road vehicles - 60 V and 600 V single- - -
core cables - Part 2: Dimensions, test
methods and requirements for aluminium
conductor cables
ISO 10447 - Resistance welding - Test of welds - Peel EN ISO 10447 -
and chisel testing of resistance spot and
projection welds
ISO 21747 2006 Statistical methods - Process performance - -
and capability statistics for measured
quality characteristics
IEC 60352-9 ®
Edition 1.0 2024-02
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Solderless connections –
Part 9: Ultrasonically welded connections – General requirements, test methods

and practical guidance
Connexions sans soudure –
Partie 9: Connexions soudées par ultrasons – Exigences générales, méthodes

d’essai et guide pratique
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 31.220.10, 29.120.20 ISBN 978-2-8322-8216-8

– 2 – IEC 60352-9:2024 © IEC 2024
CONTENTS
FOREWORD . 7
INTRODUCTION . 9
1 Scope . 10
2 Normative references . 10
3 Terms and definitions . 12
4 Wire and terminal information . 16
4.1 Conductor materials . 16
4.2 Conductor surface coating . 16
5 Requirements for ultrasonic welding . 16
5.1 Examples of ultrasonically welded connections . 16
5.2 General requirements . 19
5.3 Influence of wire length for welds at the other end of terminal connections . 20
5.4 Design requirements . 20
5.5 Mechanical and electrical protection of the weld package . 22
5.6 Conductor combinations – requirements . 23
5.7 Compaction ratio of ultrasonically welded connections . 23
6 Specimens . 25
6.1 General . 25
6.2 Type A1 or A2 specimen . 25
6.3 Type B1 or B2 specimen . 25
6.4 Type C specimen . 26
6.5 Type D specimen . 27
7 Tests . 27
7.1 General information about tests . 27
7.1.1 General conditions for product qualification tests . 27
7.1.2 Pre-conditioning . 27
7.1.3 Recovery . 27
7.2 Visual optical inspection (VOI) with dimensional checks . 27
7.2.1 General . 27
7.2.2 Magnification aids (visual optical inspection, VOI) . 28
7.2.3 Visual inspection of the ultrasonic splice welding . 28
7.2.4 Visual inspection of ultrasonically welded wire to terminal . 29
7.3 Mechanical tests . 31
7.3.1 Bending test inline splice . 31
7.3.2 Bending test on ultrasonically welded wire to terminal . 32
7.3.3 Peel test of the splice . 32
7.3.4 Peel tests of the terminal-welded package . 35
7.3.5 Pull-out force tests on ultrasonic splice-welded connections . 36
7.3.6 Pull-out force tests of ultrasonically welded wire-to-terminal connections . 38
7.3.7 Vibration test of ultrasonically welded splice connections . 41
7.3.8 Vibration test of ultrasonically welded wire-to-terminal connections . 42
7.3.9 Compaction force test of end splices . 43
7.4 Microsection image inspections. 44
7.5 Electrical tests . 45
7.5.1 Voltage drop of the through or end splice (resistance) . 45
7.5.2 Voltage drop of the wire-to-terminal connection (resistance) . 46

IEC 60352-9:2024 © IEC 2024 – 3 –
7.5.3 Current-carrying capacity . 47
7.5.4 Insulation resistance . 49
7.5.5 Voltage proof . 49
8 Climatic tests . 50
8.1 General information on climatic tests . 50
8.2 Rapid change of temperature . 50
8.3 Dry heat . 51
8.4 Cold . 51
8.5 Damp heat . 51
8.6 Climatic sequence. 52
8.7 Flowing mixed gas corrosion . 52
9 Classification into product classes . 53
9.1 General . 53
9.2 Class A product . 53
9.3 Class B product . 53
9.4 Class C product . 53
10 Test schedules . 53
10.1 Test schedule A (class A products, see 9.2) . 53
10.2 Test schedule B (class B product, see 9.3) . 54
10.2.1 General . 54
10.2.2 Mechanical tests of test schedule B . 54
10.2.3 Electrical tests of test schedule B . 55
10.2.4 Microsection tests of test schedule B . 56
10.3 Test schedule C (class C products, see 9.4) . 56
10.3.1 General . 56
10.3.2 Mechanical tests according to test schedule C . 57
10.3.3 Electrical tests according to test schedule C . 57
10.3.4 Microsection of test schedule C . 58
10.3.5 Climatic test for test schedule C . 58
11 Additional applicable test groups (if required) . 59
11.1 Dry heat test and voltage proof . 59
11.2 Corrosion . 59
12 Flow charts . 60
Annex A (informative) Practical guidance . 64
A.1 Ultrasonic welding system . 64
A.2 Storage conditions and processing conditions . 64
A.3 Processing technique . 65
A.3.1 General tooling technology requirements . 65
A.3.2 Monitoring . 65
Bibliography . 66

Figure 1 – Ultrasonic welding machine designed to make splices between at least two
wires . 13
Figure 2 – Ultrasonically welded splice of two wires protected by a shrinking tube . 14
Figure 3 – Top view of an ultrasonically welded wire on a terminal . 14
Figure 4 – Side view of an ultrasonically welded wire on a terminal. 15
Figure 5 – Ultrasonically welded end compaction . 15

– 4 – IEC 60352-9:2024 © IEC 2024
Figure 6 – Ultrasonically welded end splice connection . 16
Figure 7 – Welding zone (1) for two stripped wires with heat shrink tubing (2) for
insulation . 17
Figure 8 – Ultrasonically welded end compaction . 17
Figure 9 – Ultrasonically welded end splice . 17
Figure 10 – Ultrasonically welded inline splice Cu-Al . 17
Figure 11 – Ultrasonically welded inline splice Cu-Cu . 17
Figure 12 – Example 1 of ultrasonic welding on terminals . 18
Figure 13 – Example 2 of ultrasonic welding on terminals . 18
Figure 14 – Example 3 of ultrasonic welding on terminals . 18
Figure 15 – Example 4 of ultrasonic welding on terminals . 18
Figure 16 – Example of multiple wires welded to one terminals . 18
Figure 17 – Illustration of the conductor length (3) between terminal (2) and welded

package (1) . 20
Figure 18 – Cross-sectional view of ultrasonic propagation through the sonotrode in
the welding room, against passive surfaces with and without gap between the tools . 20
Figure 19 – Cross-sectional view of recommended asymmetrical insertion for the
individual conductors above the sonotrode in the welding room . 21
Figure 20 – Cross-sectional alternative view of the recommended asymmetrical

insertion for the individual conductors above the sonotrode . 21
Figure 21 – Insulation measures at the inline splice from one conductor to several
conductors . 22
Figure 22 – Insulation measures at the feed-inline splice with several conductors on
both sides . 22
Figure 23 – Insulation measures at the end splice with several conductors (end sealed) . 23
Figure 24 – Cu-wire compaction ratio from strong to weak layout . 24
Figure 25 – Conductor before and after welding . 24
Figure 26 – Type A1 specimen . 25
Figure 27 – Type A2 specimen . 25
Figure 28 – Type B1 specimen, inline splice with two wires type 1 and type 2 . 26
Figure 29 – Type B2 specimen . 26
Figure 30 – Type C specimen, end-splice connection with type 3 and type 4 wires . 26
Figure 31 – Type D specimen at the wire to terminal connection . 27
Figure 32 – Measurement of the ultrasonic weld height . 30
Figure 33 – Measurement of the ultrasonic weld width (2) . 30
Figure 34 – Bending test setup schematic illustration . 32
Figure 35 – Terminal bending test setup schematic illustration . 32
Figure 36 – Test setup for peel tests . 33
Figure 37 – Test setup for the peel test, fixation (4), side fixations with a protrusion of

1,0 mm each on the terminal surface, ultrasonically welded package (1), terminal (3) . 35
Figure 38 – Test setup for pull-out force test . 36
Figure 39 – Test setup for the pull-out force test on welds with electrical conductors on
terminal . 39
Figure 40 – Test setup for vibration test of the splice . 41
Figure 41 – Setup for vibration test of the ultrasonically welded package (1), vibration
table (5), fixtures (2), terminal (4), reference wire with counter-contact connector (7) . 42

IEC 60352-9:2024 © IEC 2024 – 5 –
Figure 42 – Aluminium single wire end splice (wire end compacted) . 43
Figure 44 – Medium copper single wire end splice (wire end compacted) . 43
Figure 45 – Large copper single wire end splice (wire end compacted) . 43
Figure 46 – Examples of test clamps of different sizes . 43
Figure 47 – Example 1 of a valid microsection image of ultrasonically welded copper
strands . 44
Figure 48 – Example 2 of a valid microsection image of ultrasonically welded copper

strands . 45
Figure 49 – Example 3 of a valid microsection image of ultrasonically welded copper
strands . 45
Figure 50 – Set-up for measurement at the splice (from 2 to 20 wires) . 45
Figure 51 – Measurements of reference wires type 1 and type 2 . 45
Figure 52 – Setup for voltage drop measurement (U1), at the terminal weld
connections . 46
Figure 53 – Voltage drop measurement (U2) with the same reference wire (1) . 47
Figure 54 – Setup for temperature rise measurements at current load . 48
Figure 55 – Temperature chamber with valve opening for current-load measurements . 49
Figure 56 – Diagram of dielectric voltage withstanding (voltage proof) test . 50
Figure 57 – Test schedule A . 60
Figure 58 – Test Schedule B . 61
Figure 59 – Test schedule C part 1 . 62
Figure 60 – Test schedule C part 2 . 63
Figure A.1 – Ultrasonic welding process: 1) longitudinal, 2) torsional . 64

Table 1 – Ultrasonically welded packages suggested values . 22
Table 2 – Conductor combinations . 23
Table 3 – Magnification suggestions for visual inspection . 28
Table 4 – Example of good welds for end splices and inline splices . 28
Table 5 – Representation of error characteristics for end splices and inline splices . 29
Table 6 – Valid features of ultrasonically welded wire on terminal . 30
Table 7 – Non-valid features of ultrasonically welded wire on terminal . 31
Table 8 – Peel force values for ultrasonically welded splices of copper wires . 33
Table 9 – Peel force values for ultrasonically welded splices of aluminium wires. 34
Table 10 – Peel force values for ultrasonically welded copper wires on terminals . 35
Table 11 – Peel force values for ultrasonically welded aluminium wires on terminals . 36
Table 12 – Pull-out force values for ultrasonically welded splices of copper wires . 37
Table 13 – Pull-out force values for ultrasonically welded splices of aluminium wires . 38
Table 14 – Pull-out force values for ultrasonically welded copper wires on terminals . 39
Table 15 – Dependence of package width on conductor cross-sectional area for copper

wires (recommended) . 40
Table 16 – Pull-out force values for ultrasonically welded aluminium wires on terminals . 40
Table 17 – Dependence of package width on conductor cross-sectional area for
aluminium wires (recommended) . 41
Table 18 – Vibration test (sinusoidal) parameters of ultrasonically welded splice
connections . 42

– 6 – IEC 60352-9:2024 © IEC 2024
Table 19 – Requirements for single end compaction test . 44
Table 20 – Test voltages for voltage proof test . 50
Table 21 – Test group P0 – Initial inspection. 53
Table 22 – Test group P1 – Bending test . 54
Table 23 – Test group P2 – Peel test according to ISO 10447. 55
Table 24 – Test group P3 – Pull-out force test . 55
Table 25 – Test group P4 – Compaction-force for single wire end-splices . 55
Table 26 – Test group P6 – Voltage drop (resistance) . 55
Table 27 – Test group P7 – Insulation resistance . 55
Table 28 – Test group P10 – Microsection . 56
Table 29 – Test group P0 – Initial inspection. 56
Table 30 – Test group P2 – Peel tests . 57
Table 31 – Test group P3 – Pull-out force tests . 57
Table 32 – Test group P4 – Compaction-force test for single wire end-splices . 57
Table 33 – Test group P5 – Vibration test (sinusoidal) . 57
Table 34 – Test group P6 – Voltage drop (resistance) . 57
Table 35 – Test group P7 – Insulation resistance . 58
Table 36 – Test group P8 – Current-carrying capacity . 58
Table 37 – Test group P10 – Microsection . 58
Table 38 – Test group P11 – Climatic tests . 58
Table 39 – Test group P9 – Voltage proof . 59
Table 40 – Test group P12 – Corrosion . 59

IEC 60352-9:2024 © IEC 2024 – 7 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
SOLDERLESS CONNECTIONS –
Part 9: Ultrasonically welded connections –
General requirements, test methods and practical guidance

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 60352-9 has been prepared by subcommittee 48B: Electrical connectors, of IEC technical
committee 48: Electrical connectors and mechanical structures for electrical and electronic
equipment. It is an International Standard.
The text of this International Standard is based on the following documents:
Draft Report on voting
48B/3080/FDIS 48B/3084/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.

– 8 – IEC 60352-9:2024 © IEC 2024
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts in the IEC 60352 series, published under the general title Solderless
connections , can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
IMPORTANT – The "colour inside" logo on the cover page of this document indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this document using a colour printer.

IEC 60352-9:2024 © IEC 2024 – 9 –
INTRODUCTION
This part of IEC 60352 covers ultrasonically welded connections and includes requirements,
tests and practical guidance information.
Ultrasonic welding is a form of cold friction welding that is becoming increasingly popular in
many industries. This type of welding uses ultrasonic vibration to join materials together,
creating a bond that is both strong and reliable. Ultrasonic welding has been identified as a
process in ISO 4063-41 by the International Organization for Standardization (ISO).
The process of ultrasonic welding relies on high frequency ultrasound waves being used to
create frictional heat at the connection point. High temperature is not required for this special
method of welding, making it one of the most cost-effective ways to join two materials together.
It also requires fewer steps than traditional methods, meaning it can be completed quickly and
with minimal resources.
Ultrasonic welding has been around for decades but only recently has become more widely
utilized due to advances in technology and its availability at lower cost. It can be used on many
different materials including plastics, rubbers, metals, textiles, and composites. Due to its
precision and strong bonds it creates, it has become extremely popular in manufacturing
processes such as automotive industry, electronics industry, furniture production and even
medical device production.
This document outlines a system of product classification according to the intended use of the
end-product. Three general end-product levels, known as class A, B, and C products, are
identified. Class A products are for general use and include consumer products, computers,
and computer peripherals for applications where the major requirement is function of the
assembly. Class B products are dedicated service electronic items providing high performance
and extended life. Finally, Class C products are for high performance with zero tolerance for
equipment downtime; this includes life support systems and other critical systems. The
developer or user of ultrasonically welded connections should determine the class to which their
end-product belongs.
This document outlines the test requirements for ultrasonically welded connections deemed to
be used in class A, B and C products. Test groups P0-P11 are specified, with additional optional
test groups P9 and P12 available if required by the manufacturer and user.
Three test schedules – A (basic), B (intermediate) and C (full) - are provided, based on a specific
selection of test groups, each representing the minimum requirements for each correspondingly
identified end-product class.
– 10 – IEC 60352-9:2024 © IEC 2024
SOLDERLESS CONNECTIONS –
Part 9: Ultra
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

SIST EN IEC 60352-9:2024は、超音波溶接接続のための一般的な要件、試験方法、実践ガイダンスを提供する規格です。このドキュメントは、特に銅または銅合金、アルミニウムまたはアルミニウム合金からなる撚り線または柔軟なワイヤを使用した超音波溶接接続に焦点を当てています。 この規格の強みは、超音波溶接のプロセスを詳細に説明し、その要求事項、試験方法、および実用的なガイダンスを包括的に提供している点です。超音波溶接は冷間摩擦溶接の一形態であり、高周波の超音波波を用いて接続点に摩擦熱を生成することで材料を結合します。この手法は、高温を必要とせず、コスト効率が高く、迅速に接合を行うことができるため、多くの産業において重要な接続方法とされています。 さらに、SIST EN IEC 60352-9:2024は、汎用性が高く、プラスチック、ゴム、金属、繊維、複合材料など、さまざまな材料に利用できることを示しています。この規格に基づく接続は、自動車産業、電子機器製造、家具生産、医療機器製造など、多くの製造プロセスでの利用が進んでいます。 標準的な接続を保証するために、接続に必要な最小断面積(2.5 mm²および0.08 mm²から160 mm²までの範囲)を明確に定義し、ワイヤバンドルの合計断面積が200 mm²を超えないことも stipulate されています。これにより、規格は電気的に安定した接続を実現するための情報を提供し、所定の環境条件下での動作を確保します。 この標準は、超音波溶接装置を使用する際に、性能と技術仕様が類似している場合に比較可能な結果を達成することを目指しています。この取り組みは、さまざまな工業用アプリケーションでの超音波溶接による接続の信頼性と強度を高めるためのものであり、その重要性は今後も増していくでしょう。

La norme SIST EN IEC 60352-9:2024 fournit des lignes directrices complètes pour les connexions soudées par ultrasons, avec un accent particulier sur les exigences générales, les méthodes d'essai et les recommandations pratiques. Le champ d'application de cette norme est particulièrement pertinent dans un contexte industriel en constante évolution, où des méthodes de soudage efficaces et fiables sont essentielles. L'un des principaux atouts de cette norme est son adaptation à une variété de matériaux, y compris plastiques, métaux, textiles et composites. Cela témoigne de la polyvalence du soudage ultrasonique, qui s'est largement répandu dans des secteurs comme l'électronique, l'automobile, la production de mobilier et même la fabrication de dispositifs médicaux. De plus, la norme précise que les connexions doivent être réalisées avec des fils flexibles ou toronnés en cuivre, en alliage de cuivre, en aluminium ou en alliage d'aluminium, ce qui élargit encore son applicabilité. Le processus de soudage ultrasonique, reconnu comme l'une des méthodes de soudage à froid les plus économiques, est spécialement conçu pour créer des liens résilients sans nécessiter de températures élevées. Cela permet non seulement une réduction des coûts, mais également une réduction des étapes nécessaires par rapport aux méthodes traditionnelles, augmentant ainsi l'efficacité de production. La norme précise également les dimensions des fils à utiliser, stipulant des sections transversales allant de 0,08 mm² à 160 mm², ce qui garantit que les connexions répondent à des critères de performances optimales. Pour les fils en aluminium, une section minimale de 2,5 mm² est requise, ce qui assure la robustesse nécessaire dans diverses applications. En outre, SIST EN IEC 60352-9:2024 inclut des informations sur les matériaux, des données tirées de l'expérience industrielle et les procédures de test afin de garantir des connexions électriquement stables dans les conditions environnementales prescrites. Cela renforce la crédibilité de la norme et sa capacité à produire des résultats comparables, tout en utilisant des équipements de soudage ultrasonique ayant des performances et des spécifications similaires à celles du fabricant de terminaison. En somme, cette norme joue un rôle essentiel en fournissant un cadre de référence solide et pertinent pour le soudage ultrasonique, répondant aux exigences croissantes de l'industrie moderne tout en assurant la qualité et la fiabilité des connexions établies.

SIST EN IEC 60352-9:2024 표준은 비접합 연결의 일환으로 초음파 용접 연결에 대한 종합적인 요구사항, 시험 방법 및 실제 안내를 제공합니다. 이 표준은 초음파 용접의 원리와 적용 가능한 산업을 철저히 다루며, 초음파 진동을 이용하여 재료를 결합함으로써 강하고 신뢰성 있는 접합을 생성하는 방법을 제시합니다. 초음파 용접은 기존의 차가운 마찰 용접의 한 형태로, 여러 산업 분야에서 점점 더 인기를 얻고 있습니다. 이 표준은 ISO 4063-41에 의해 정의된 바와 같이, 고주파 초음파를 이용해 접합 지점에서 마찰 열을 발생시키는 과정을 기반으로 하고 있습니다. 높은 온도를 요구하지 않기 때문에 이 방법은 비용 효율적인 자재 결합 방식으로 주목받고 있으며, 전통적인 방법에 비해 적은 단계로 신속하게 완료될 수 있는 장점이 있습니다. SIST EN IEC 60352-9:2024는 구리 및 구리 합금, 알루미늄 또는 알루미늄 합금의 유연한 전선(IEC 60228에 따른 클래스 2, 5 또는 6)에 대해 초음파 용접된 연결을 다루고 있습니다. 특정한 압축 면적 범위(0.08 mm²에서 160 mm²)와 함께, 전선 묶음의 총 단면적도 200 mm²를 초과하지 않아야 합니다. 특히 알루미늄 또는 알루미늄 합금 전선의 경우 최소 단면적 요구사항이 2.5 mm²로 설정되어 있어, 다양한 자재에 대한 적용성을 배가시키고 있습니다. 또한 본 표준은 전기적으로 안정적인 접속을 보장하기 위해, 산업 경험에 대한 데이터와 시험 절차에 대한 정보를 포함하고 있으며, 이를 통해 환경적 조건 하에서도 안정적인 연결을 도모할 수 있습니다. 마지막으로, 이 문서의 목적은 접합 제조업체가 지정한 성능 및 사양에 따라 유사한 성능을 갖춘 초음파 용접 장비를 사용하여 비교 가능한 결과를 달성하는 데 기여하는 것입니다. 따라서 SIST EN IEC 60352-9:2024는 초음파 용접 기술이 고도화된 현대의 다양한 산업 환경에서 필수적인 기준을 제시하며, 안전하고 비용 효율적인 접합 기술을 구현할 수 있도록 돕는 매우 중요한 표준입니다.

The EN IEC 60352-9:2024 standard provides comprehensive guidelines for solderless connections through ultrasonically welded connections, establishing a pivotal framework for industries that increasingly rely on this advanced technique. The scope of this standard is particularly relevant as it encompasses the welding and testing of connections made with stranded or flexible wires, specifically targeting materials such as copper, copper alloy, aluminium, and aluminium alloy. With an emphasis on wires of varying cross-sectional areas, this document underscores the versatility of ultrasonic welding in accommodating a wide range of applications, reinforcing its significance in modern manufacturing. One notable strength of the EN IEC 60352-9:2024 standard is its clear delineation of requirements and test methods which enhance the reliability and consistency of ultrasonically welded connections. The inclusion of practical guidance enables manufacturers to implement the standards effectively, ensuring that the resulting connections withstand prescribed environmental conditions and maintain electrical stability-critical factors in industries such as automotive, electronics, and medical devices. Furthermore, the focus on producing strong and reliable bonds with lower energy consumption adds an eco-friendly aspect to the process, aligning with current sustainability trends within production sectors. The relevance of this standard cannot be overstated, as ultrasonic welding continues to gain traction due to its cost-effectiveness, speed, and precision. By documenting materials and providing insights from industrial experiences, EN IEC 60352-9:2024 equips stakeholders with essential knowledge to adopt ultrasonic welding technology confidently. This standard recognizes the evolution of welding technologies and the necessity for industries to maintain competitive advantages through innovative practices. As such, it serves as an invaluable resource for any organization aiming to leverage ultrasonically welded connections in their production processes.

Die Norm EN IEC 60352-9:2024 stellt einen bedeutenden Beitrag zur Standardisierung von lötfreien Verbindungen dar, insbesondere im Hinblick auf ultrasonisch geschweißte Verbindungen. Der Umfang dieser Norm umfasst klare Richtlinien für das Schweißen und Testen von ultrasonisch geschweißten Verbindungen und beinhaltet Anforderungen sowie praktische Anleitung hin zu bewährten Verfahren. Ein wesentlicher Vorteil dieser Norm ist die Betonung der Effizienz des ultraschallbasierten Schweißverfahrens, das sich durch niedrige Kosten und minimalen Ressourcenaufwand auszeichnet. Da das Verfahren auf hochfrequenten Ultraschallwellen beruht, die Reibungswärme am Verbindungs punkt erzeugen, benötigt es keine hohen Temperaturen. Dies macht es zu einer kostengünstigen Alternative zu herkömmlichen Schweißmethoden. Die Norm behandelt speziell die Verwendung von flexiblen oder litzenartigen Drähten (Klasse 2, 5 oder 6 gemäß IEC 60228) aus Kupfer oder Aluminiumlegierungen. Die Spezifikationen für den Querschnitt der verwendeten Drähte variieren von 0,08 mm² bis 160 mm², was die Flexibilität des Verfahrens unterstreicht. Darüber hinaus wird für Aluminiumdrähte eine Mindestquerschnittsfläche von 2,5 mm² gefordert, was die Norm auch für unterschiedliche industrielle Anwendungen relevant macht. Ein weiterer hervorzuhebender Punkt ist die Berücksichtigung der industriellen Erfahrungen und Testverfahren, die dazu dienen, elektrisch stabile Verbindungen unter festgelegten Umweltbedingungen sicherzustellen. Durch die Angabe von Materialien und Testmethoden wird die Nutzerfreundlichkeit der Norm erhöht, was zu vergleichbaren Ergebnissen bei der Verwendung von Ultraschall-Schweißgeräten führt, die ähnliche Leistungen und Spezifikationen aufweisen. Insgesamt ist die EN IEC 60352-9:2024 äußerst relevant für Branchen wie die Automobil-, Elektro- und Möbelindustrie sowie die Herstellung von medizinischen Geräten, in denen die Notwendigkeit für präzise und zuverlässige Verbindungen von hoher Bedeutung ist. Die fortschreitenden technologischen Entwicklungen und die zunehmende Verfügbarkeit des ultrasonischen Schweißverfahrens zeugen von der zeitgemäßen Relevanz dieser Norm.