Non-destructive testing - Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays - Part 1: Tangential radiographic inspection

This European Standard specifies fundamental techniques of film and digital radiography with the object of enabling satisfactory and repeatable results to be obtained economically. The techniques are based on generally recognized practice and fundamental theory of the subject.
This European Standard applies to the radiographic examination of pipes in metallic materials for service induced flaws such as corrosion pitting, generalized corrosion and erosion. Besides its conventional meaning, “pipe” as used in this standard should be understood to cover other cylindrical bodies such as tubes, penstocks, boiler drums and pressure vessels.
Weld inspection for typical welding process induced flaws is not covered, but weld inspection is included for corrosion/erosion type flaws.
The pipes may be insulated or not, and can be assessed where loss of material due, for example, to corrosion or erosion is suspected either internally or externally.
This part of EN 16407 covers the tangential inspection technique for detection and through-wall sizing of wall loss, including:
a)   with the source on the pipe centre line, and
b)   with the source offset from it by the pipe radius.
Part 2 of EN 16407 covers double wall radiography, and note that the double wall double image technique is often combined with tangential radiography with the source on the pipe centre line.
This European Standard applies to tangential radiographic inspection using industrial radiographic film techniques, computed digital radiography (CR) and digital detector arrays (DDA).

Zerstörungsfreie Prüfung - Durchstrahlungsprüfung auf Korrosion und Ablagerungen in Rohren mit Röntgen- und Gammastrahlen - Teil 1: Tangentiale Durchstrahlungsprüfung

Diese Europäische Norm legt grundlegende Techniken für die Durchstrahlungsprüfung unter Anwendung von Filmen und der digitalen Radiographie mit dem Ziel fest, auf wirtschaftliche Art und Weise zuverlässige und wiederholbare Ergebnisse zu erreichen. Die Techniken basieren sowohl auf den allgemein anerkannten Verfahren als auch auf den theoretischen Grundlagen dieses Fachgebiets.
Diese Europäische Norm gilt für die Durchstrahlungsprüfung von Rohren aus metallischen Werkstoffen zum Nachweis von Werkstofffehlern, die beim Gebrauch auftreten, z. B. Korrosionsmulden oder Fehler durch allgemeine Korrosion und Erosion. Neben der konventionellen Bedeutung sollten in dieser Norm unter der Benennung „Rohr“ (en: pipe) auch andere zylindrische Gegenstände, z. B. Röhren/Schläuche, Druckrohrleitungen, Kesseltrommeln und Druckbehälter, verstanden werden.
In dieser Norm nicht behandelt wird die Überprüfung von Schweißnähten auf die Fehler, die durch die herkömmlichen Schweißverfahren eingebracht werden; behandelt wird dagegen die Prüfung von Schweiß-verbindungen zum Nachweis von Fehlern durch Korrosion/Erosion.
Die Prüfung kann an Rohren mit oder ohne Wärmedämmung durchgeführt werden, beispielsweise in den Fällen, in denen vermutet wird, dass durch Korrosion oder Erosion ein Materialverlust an der Innen  oder Mantelfläche des Rohrs entstanden ist.
Dieser Teil von EN 16407 behandelt das tangentiale Prüfverfahren zum Nachweis einer Verringerung der Dicke der Rohrwand und zur Bestimmung der Größenordnung dieser Dickenverringerung, die Anordnung der Strahlenquelle erfolgt
a)   in Höhe der Rohrachse, und
b)   versetzt zur Rohrachse, wobei der Abstand für die Versetzung gegenüber der Rohrachse dem Rohrradius entspricht.
Teil 2 von EN 16407 behandelt die Doppelwand Durchstrahlung; es ist zu beachten, dass die Doppelwand-Doppelbild Technik häufig mit einer tangentialen Durchstrahlung kombiniert wird, bei der die Strahlenquelle in Höhe der Rohrachse angeordnet ist.
Diese Norm gilt für die tangentiale Durchstrahlungsprüfung unter Anwendung industrieller Röntgenfilm-techniken, computerunterstützter digitaler Radiographie (CR) und digitaler Matrixdetektoren (DDA).

Essais non destructifs - Examen radiographique de la corrosion et des dépôts dans les canalisations, par rayons X et rayons gamma - Partie 1: Examen radiographique tangentiel

La présente Norme européenne spécifie les techniques fondamentales de radiographie sur film et de radiographie numérique permettant d'obtenir des résultats satisfaisants et reproductibles de manière économique. Les techniques reposent sur une pratique généralement reconnue et sur la théorie fondamentale en la matière.
La présente Norme européenne s'applique à l'examen radiographique des canalisations en matériaux métalliques afin de détecter des défauts induits par le service tels que piqûres de corrosion, corrosion généralisée et érosion. Outre sa signification conventionnelle, il convient de comprendre que le terme « canalisation », tel qu'il est utilisé dans la présente norme, couvre d'autres corps cylindriques tels que les tubes, les conduites forcées, les corps de chaudière et les récipients sous pression.
Le contrôle des soudures pour détecter les défauts types induits par le procédé de soudage n'est pas traité, mais un contrôle des soudures est inclus pour rechercher les défauts de type corrosion/érosion.
Les canalisations peuvent être isolées ou non et peuvent être évaluées lorsqu'une perte de matériau due, par exemple, à la corrosion ou à l'érosion, interne ou externe, est suspectée.
La présente partie de l'EN 16407 traite de la technique d'examen tangentiel permettant la détection et le dimensionnement d'une perte de paroi dans le sens de l’épaisseur, y compris :
a)   à l'aide d'une source située sur la ligne médiane de la canalisation, et
b)   à l'aide d'une source décalée par rapport à cette ligne d’une distance égale au rayon de la canalisation.
La Partie 2 de l'EN 16407 traite de l'examen radiographique double paroi et il convient de noter que la technique de double paroi double image est souvent combinée à une radiographie tangentielle avec la source située sur la ligne médiane de la canalisation.
La présente Norme européenne s'applique à l'examen radiographique tangentiel en utilisant des techniques industrielles sur film radiographique, la radiographie numérisée (CR) et des mosaïques de détecteurs numériques (DDA).

Neporušitvene preiskave - Radiografski pregled korozije in nanosov v ceveh z rentgenskimi in gama žarki - 1. del: Tangencialni radiografski pregled

Ta evropski standard določa temeljne tehnike filmske in digitalne radiografije z namenom omogočanja zadovoljivih in ponovljivih rezultatov, ki so stroškovno ugodni. Tehnike so osnovane na splošno priznani praksi in temeljnem poznavanju subjekta. Ta evropski standard velja za radiografski pregled cevi in kovinskih materialov za poškodbe, ki so posledica uporabe, kot na primer jamičasta korozija, splošna korozija in erozija. Poleg svojega klasičnega pomena izraz »cev«, kot je uporabljen v tem standardu, zajema tudi druga cilindrična telesa, kot so dovodni kanali, bobni kotlov in tlačne posode. Standard ne zajema pregleda zvarov za običajne napake, ki so posledica varilnega postopka, vključuje pa pregled zvarov za napake, ki so posledica korozije/erozije. Cevi so lahko izolirane ali ne in se jih lahko pregleda, če se sumi na notranjo ali zunanjo poškodbo materiala, ki je posledica korozije ali erozije. Ta del standarda EN 16407 zajema tehniko tangencialnega pregleda za odkrivanje in ugotavljanje obsega poškodbe sten, ki se izvede skozi steno, vključno z:
a) virom na središčnici cevi in
b) virom, odmaknjenim od središčnice za polmer cevi.
2. del standarda EN 16407 zajema radiografijo prek dveh sten. Dvoslikovna tehnika prek dveh sten se pogosto uporablja skupaj s tangencialno radiografijo z virom na središčnici cevi. Ta evropski standard velja za tangencialni radiografski pregled, ki uporablja tehnike industrijskega radiografskega filma, računalniško digitalno radiografijo (CR) ali radiografijo z digitalnimi detektorskimi nizi (DDA).

General Information

Status
Withdrawn
Publication Date
14-Jan-2014
Withdrawal Date
20-Jan-2026
Current Stage
9960 - Withdrawal effective - Withdrawal
Start Date
31-Oct-2018
Completion Date
28-Jan-2026

Relations

Effective Date
30-Sep-2016
Effective Date
28-Jan-2026
Effective Date
28-Jan-2026
Effective Date
28-Jan-2026
Effective Date
28-Jan-2026
Effective Date
28-Jan-2026
Standard

EN 16407-1:2014 - BARVE

English language
36 pages
Preview
Preview
e-Library read for
1 day

Frequently Asked Questions

EN 16407-1:2014 is a standard published by the European Committee for Standardization (CEN). Its full title is "Non-destructive testing - Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays - Part 1: Tangential radiographic inspection". This standard covers: This European Standard specifies fundamental techniques of film and digital radiography with the object of enabling satisfactory and repeatable results to be obtained economically. The techniques are based on generally recognized practice and fundamental theory of the subject. This European Standard applies to the radiographic examination of pipes in metallic materials for service induced flaws such as corrosion pitting, generalized corrosion and erosion. Besides its conventional meaning, “pipe” as used in this standard should be understood to cover other cylindrical bodies such as tubes, penstocks, boiler drums and pressure vessels. Weld inspection for typical welding process induced flaws is not covered, but weld inspection is included for corrosion/erosion type flaws. The pipes may be insulated or not, and can be assessed where loss of material due, for example, to corrosion or erosion is suspected either internally or externally. This part of EN 16407 covers the tangential inspection technique for detection and through-wall sizing of wall loss, including: a) with the source on the pipe centre line, and b) with the source offset from it by the pipe radius. Part 2 of EN 16407 covers double wall radiography, and note that the double wall double image technique is often combined with tangential radiography with the source on the pipe centre line. This European Standard applies to tangential radiographic inspection using industrial radiographic film techniques, computed digital radiography (CR) and digital detector arrays (DDA).

This European Standard specifies fundamental techniques of film and digital radiography with the object of enabling satisfactory and repeatable results to be obtained economically. The techniques are based on generally recognized practice and fundamental theory of the subject. This European Standard applies to the radiographic examination of pipes in metallic materials for service induced flaws such as corrosion pitting, generalized corrosion and erosion. Besides its conventional meaning, “pipe” as used in this standard should be understood to cover other cylindrical bodies such as tubes, penstocks, boiler drums and pressure vessels. Weld inspection for typical welding process induced flaws is not covered, but weld inspection is included for corrosion/erosion type flaws. The pipes may be insulated or not, and can be assessed where loss of material due, for example, to corrosion or erosion is suspected either internally or externally. This part of EN 16407 covers the tangential inspection technique for detection and through-wall sizing of wall loss, including: a) with the source on the pipe centre line, and b) with the source offset from it by the pipe radius. Part 2 of EN 16407 covers double wall radiography, and note that the double wall double image technique is often combined with tangential radiography with the source on the pipe centre line. This European Standard applies to tangential radiographic inspection using industrial radiographic film techniques, computed digital radiography (CR) and digital detector arrays (DDA).

EN 16407-1:2014 is classified under the following ICS (International Classification for Standards) categories: 19.100 - Non-destructive testing; 23.040.01 - Pipeline components and pipelines in general. The ICS classification helps identify the subject area and facilitates finding related standards.

EN 16407-1:2014 has the following relationships with other standards: It is inter standard links to EN ISO 20769-1:2018, EN ISO 17636-1:2013, EN ISO 11699-2:2018, EN ISO 11699-1:2011, EN 14784-1:2005, EN ISO 19232-5:2018. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

EN 16407-1:2014 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.

Standards Content (Sample)


2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Neporušitvene preiskave - Radiografski pregled korozije in nanosov v ceveh z rentgenskimi in gama žarki - 1. del: Tangencialni radiografski pregledZerstörungsfreie Prüfung - Durchstrahlungsprüfung auf Korrosion und Ablagerungen in Rohren mit Röntgen- und Gammastrahlen - Teil 1: Tangentielle DurchstrahlungsprüfungEssais non destructifs - Examen radiographique de la corrosion et des dépôts dans les canalisations, par rayons X et rayons gamma - Partie 1: Examen radiographique tangentielNon-destructive testing - Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays - Part 1: Tangential radiographic inspection23.040.01Deli cevovodov in cevovodi na splošnoPipeline components and pipelines in general19.100Neporušitveno preskušanjeNon-destructive testingICS:Ta slovenski standard je istoveten z:EN 16407-1:2014SIST EN 16407-1:2014en,fr,de01-julij-2014SIST EN 16407-1:2014SLOVENSKI
STANDARD
EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 16407-1
January 2014 ICS 19.100; 23.040.01 English Version
Non-destructive testing - Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays - Part 1: Tangential radiographic inspection
Essais non destructifs - Examen radiographique de la corrosion et des dépôts dans les canalisations, par rayons X et rayons gamma - Partie 1: Examen radiographique tangentiel
Zerstörungsfreie Prüfung - Durchstrahlungsprüfung auf Korrosion und Ablagerungen in Rohren mit Röntgen- und Gammastrahlen - Teil 1: Tangentiale Durchstrahlungsprüfung This European Standard was approved by CEN on 26 October 2013.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre:
Avenue Marnix 17,
B-1000 Brussels © 2014 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 16407-1:2014 ESIST EN 16407-1:2014

Determination of basic spatial resolution . 31 Annex B (informative)
Choice of radiation source for different pipes . 35 Bibliography . 36
a) non insulated pipe SIST EN 16407-1:2014

b) insulated pipe Key 1 detector D Figure 1 — Test arrangement and distances for tangential radiography with the source on the pipe centre line Note that the wall loss can be located on either the inner diameter, outer diameter or both surfaces of the pipe. 6.1.3 Radiation source located offset from the pipe centre line For this arrangement, the radiation source is located in front of the pipe and with the film/detector at the opposite side, as shown in Figure 2 a) (non insulated pipe) and Figure 2 b) (insulated pipe). SIST EN 16407-1:2014

a) non insulated pipe
b) insulated pipe Key 1 detector D Figure 2 — Test arrangement and distances for tangential radiography with the source offset from the pipe centre line SIST EN 16407-1:2014

Key 1 detector D Figure 3 — Maximum penetrated thickness, wmax, for the tangential technique The maximum penetrated thickness, wmax, is given by: maxe2()=−wDtt (1) where t is the nominal thickness of the pipe; De is the outside diameter of the pipe. SIST EN 16407-1:2014

Class TA Class TB
X-ray potentials ≤ 150 kV C 6 C 5 None or up to 0,03 mm front and up to 0,15 mm back screens of lead X-ray potentials > 150 kV to 500 kV 0,02 mm to 0,2 mm front and back screens of lead b Se 75 Ir 192 0,02 mm to 0,2 mm front and back screens of lead b a Better film system classes may also be used. b Instead of one 0,2 mm lead screen, two 0,1 mm lead screens may be used. Different film systems may be used by agreement of the contracting parties, provided the required optical densities defined in 7.2 are achieved. 6.4 Screens and shielding for imaging plates (computed radiography only) When using metal front screens, good contact between the sensitive detector layer and screens is required. This may be achieved either by using vacuum-packed IPs or by applying pressure. Lead screens not in intimate contact with the IPs may contribute to image unsharpness. The intensification obtained by use of lead screens in contact with imaging plates is significantly smaller than in film radiography. Many IPs are very sensitive to low energy backscatter and X-ray fluorescence of back-shielding from lead. This effect contributes significantly to edge unsharpness and reduced SNR, and should be minimized. It is recommended that steel or copper shielding be used directly behind the IPs. Also a steel or copper shielding between a backscatter lead plate and the IP may improve the image quality. Modern cassette and detector designs may consider this effect and can be constructed in a way such that additional steel or copper shielding outside the cassette is not required. NOTE Due to the protection layer between the lead and the sensitive layer of an IP, the effect of intensification by electrons is considerably reduced and appears at higher energies. Depending on the radiation energy and protection layer design, the effect of intensification amounts to between 20 % and 100 % only (compared to no screen). The small intensification effect generated by a lead screen in contact with an IP can be compensated for by increased exposure time or milliampere.minutes, if no lead screens are used. Since lead screens in contact with IPs may generate scratches on IPs, if not carefully separated for the scan process, lead screens should be used for intermediate filtering of scattered radiation outside of cassettes. Table 4 and Table 5 show the recommended screen materials and thicknesses for different radiation sources. Other screen thicknesses may be also agreed between the contracting parties. The usage of metal screens is recommended in front of IPs, and they may also reduce the influence of scattered radiation when used with DDAs. SIST EN 16407-1:2014

≤ 250 kV 0 to 0,1 (lead) X-ray potentialsb > 250 kV to 1 000 kV 0 to 0,3 (lead) Ir 192, Se 75 b Class TA: 0 to 0,3 (lead) Class TB: 0,3 to 0,8 (steel or copper) Co 60 a 0,3 to 0,8 (steel or copper) + 0,6 to 2,0 (lead) X-ray potentialsa > 1 MV 0,3 to 0,8 (steel or copper) + 0,6 to 2,0 (lead) a In the case of multiple screens (steel+lead), the steel screen shall be located between the IP and the lead screen. Instead of steel or steel and lead screens, those composed of copper, tantalum or tungsten may be used if the image quality can be proven. b Pb screens may be replaced completely or partially by Fe or Cu screens. The equivalent thickness for Fe or Cu is three times the Pb thickness. Table 5 — Metal front screens for CR for the digital tangential radiography of aluminium and titanium Radiation source Type and thickness of metal front screens mm X-ray potentials < 500 kV ≤ 0,2 (lead)a, b Se 75 Ir 192 ≤ 0,3 (lead)a, b a e.g. instead of 0,2 mm lead, a 0,1 mm screen with an additional filter of 0,1 mm may be used outside of the cassette. b Pb screens may be replaced completely or partially by Fe or Cu screens. The equivalent thickness for Fe or Cu is three times the Pb thickness. 6.5 Reduction of scattered radiation 6.5.1 Filters and collimators In order to reduce the effect of back scattered radiation, direct radiation shall be collimated as much as possible to the section under examination. For computed radiography and radiography with DDAs, with Ir 192, Co 60 and other MeV radiation sources, or in the case of edge scatter, an additional sheet of lead can be used as a filter of low energy scattered radiation between the pipe and the DDA or CR cassette. The thickness of this sheet is 0,5 mm to 2,0 mm in accordance with the penetrated thickness. SIST EN 16407-1:2014

Key 1 detector D Figure 4 — Axial cross section showing the maximum permissible axial length of the evaluated area for a single source position, on the detector, Ld, and along the pipe, Lp, at the tangent position The total axial extent of the evaluated area on the detector, Ld, should be no greater than Ld ≤ 1,32 SDD (5) The total axial extent of the evaluated area on the pipe, Lp, should be no greater than Lp ≤ 1,32 SPD (6) The formula for Lp should be used for determining the interval between exposures along a pipe. If the collimator of gamma sources or the window collimation of X-ray sources are smaller than ± 35°, Lp and Ld have to be reduced corresponding to the maximum available opening angle of the radiation cone beam. The separate films or digital images shall overlap sufficiently to ensure that no portion of the component remains un-examined. Unless otherwise specified, the minimum overlap shall be 25 mm axially either side of the diagnostic area, measured on the source side. SIST EN 16407-1:2014

Key 1 detector 2 projected dimension c' of comparator C Figure 5 — Tangential radiography showing use of comparators for dimensional calibration (second comparator is optional) Comparator(s) shall be placed in the tangent position, as close to the pipe wall as possible, without overlapping it. Measurements of the imaged size of the comparator then allow the pipe wall thickness measurement to be calibrated (see 7.5). Note that if the comparator cannot be placed adjacent to the pipe tangent position, due for example to the presence of external insulation, it is recommended that the source is offset from the pipe centre line to be aligned with the pipe wall as shown in Figure 6. SIST EN 16407-1:2014

Key 1 detector Figure 6 — Tangential radiography showing use of offset source position with comparator for dimensional calibration, for insulated pipes, where the comparator shall be placed as close to the outside of the insulation as possible Normally the dimensional comparator shall not be wrapped in lead or similar material. However, if the pipe is insulated, and the free beam is saturated (see 6.9), then the comparator shall be wrapped in lead to avoid inaccurate calibration due to burn-off of the edges of the comparator. 6.9 Image saturation and use of lead strips to avoid burn-off For digital radiography (CR or DDA), lead strips close to, or coincident with the edge of the pipe to avoid image burn-off effects at the pipe outer diameter should not be used. Burn-off should instead be minimized by ensuring the exposure time is adjusted according to 7.1.1. In addition the intensity range between the free beam and the radiograph of the pipe should be reduced by prefilters (close to the source) or intermediate filters (between the pipe and the imaging plate, see 6.4). For insulated pipes, it may be permissible for the free beam beyond the insulation to be saturated, provided the grey levels adjacent to the pipe wall being measured are not greater than 90 % of the dynamic range of the digital system. In this case, if dimensional comparators are used, they shall be wrapped in lead or similar to avoid saturation of the image around the comparator. 6.10 Selection of digital radiographic equipment 6.10.1 General The basic spatial resolution of the detector divided by magnification (M = SDD/SPD) shall not exceed 200 µm for class TA and 130 µm for class TB and shall not exceed 5 % of the nominal wall thickness t. Different values can be agreed by contracting parties. If the tangential technique (TA or TB) is being used in conjunction with the double wall double image techniques described in Part 2 of EN 16407 (DWA or DWB), then the magnification, M, above shall be set to one when finding the basic spatial resolution of the detector. SIST EN 16407-1:2014
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...