EN 1097-6:2022
(Main)Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption
Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption
This document specifies the reference methods used for type testing and in case of dispute, for the determination of particle density and water absorption of normal weight and lightweight aggregates. Other methods can be used for other purposes, such as factory production control, provided that an appropriate working relationship with the reference method has been established. For convenience, some of these other methods are also described in this document.
The reference methods for normal weight aggregates are:
- a wire basket method for aggregate particles retained on the 31,5 mm sieve (Clause 7, except for railway ballast which uses Annex B);
- a pyknometer method for aggregate particles passing the 31,5 mm sieve and retained on the 4 mm sieve (Clause 8);
- a pyknometer method for aggregate particles passing the 4 mm sieve and retained on the 0,063 mm sieve (Clause 9).
In Clauses 7, 8 and 9, three different particle densities (oven-dried particle density, saturated and surface-dried particle density and apparent particle density) and water absorption are determined after a soaking period of 24 h. In Annex B, the oven-dried particle density is determined after soaking in water to constant mass.
For aggregate particles passing the 31,5 mm sieve and retained on the 4 mm sieve, the wire basket method in Clause 7 can be used as an alternative to the pyknometer method in Clause 8.
NOTE 1 The wire basket method can also be used for single aggregate particles retained on the 63 mm sieve.
NOTE 2 The pyknometer method described in Clause 8 can be used as an alternative for aggregates passing the 4 mm sieve and retained on the 2 mm sieve.
The reference methods for lightweight aggregates are:
- a pyknometer method for aggregate particles passing the 31,5 mm sieve and retained on the 4 mm sieve (Annex C). Three different particle densities (oven-dried; saturated and surface-dried; apparent) and water absorption are determined after pre-drying and a soaking period of 24 h;
- a method, using a Büchner funnel, for aggregate particles passing the 4 mm sieve (Annex D). The three particle densities and water absorption are determined using a vacuum in the range of 50 mbar to 100 mbar for at least five minutes.
Three other methods for normal weight aggregates can be used to determine the pre-dried particle density, as specified in normative Annexes A and H:
- a wire basket method for aggregate particles passing the 63 mm sieve and retained on the 31,5 mm sieve (A.3);
- a pyknometer method for aggregate particles passing the 31,5 mm sieve and retained on the 0,063 mm sieve (A.4);
- a pyknometer method for aggregate particles passing the 31,5 mm sieve, including the 0/0,063 mm size fraction (Annex H).
NOTE 3 If water absorption is less than about 1,5 %, the apparent particle density can be assessed using the pre-dried particle density method as defined in Annex A.
The quick method in normative Annex E can be used in factory production control to determine the apparent particle density of lightweight aggregates.
The method in informative Annex F can be used to determine the particle density and water absorption of aggregate particles passing the 4 mm sieve.
Data on the density of water at various temperatures is specified in normative Annex G.
Guidance on the significance and use of the various density and water absorption parameters is given in informative Annex I.
Precision data are presented in informative Annex J.
Prüfverfahren für mechanische und physikalische Eigenschaften von Gesteinskörnungen - Teil 6: Bestimmung der Rohdichte und der Wasseraufnahme
Dieses Dokument legt das für die Erstprüfung und in Streitfällen anzuwendende Referenzverfahren für die Bestimmung der Rohdichte und der Wasseraufnahme von normalschweren und leichten Gesteinskörnungen fest. Für andere Zwecke, z. B. die werkseigene Produktionskontrolle, können andere Verfahren angewendet werden, sofern ein ausreichender Zusammenhang zum Referenzverfahren nachgewiesen wurde. Der Einfachheit halber sind einige dieser anderen Verfahren ebenfalls in diesem Dokument beschrieben.
Die Referenzverfahren für normalschwere Gesteinskörnungen sind:
— ein Drahtkorbverfahren für Gesteinskörnungen, die vom 31,5 mm Sieb zurückgehalten werden (Abschnitt 7, außer für Gleisschotter, hier Anhang B verwenden);
— ein Pyknometer-Verfahren für Gesteinskörnungen, die durch das 31,5 mm Sieb hindurchgehen und vom 4 mm Sieb zurückgehalten werden (Abschnitt 8); und
— ein Pyknometer-Verfahren für Gesteinskörnungen, die durch das 4 mm Sieb hindurchgehen und vom 0,063 mm Sieb zurückgehalten werden (Abschnitt 9).
In Abschnitt 7, Abschnitt 8 und Abschnitt 9 werden drei verschiedene Rohdichten (Rohdichte auf ofentrockener Basis, Rohdichte auf wassergesättigter und oberflächentrockener Basis und scheinbare Rohdichte) und die Wasseraufnahme nach einer Eintauchzeit von 24 h bestimmt. In Anhang B wird die Rohdichte auf ofentrockener Basis nach dem Eintauchen in Wasser bis zur Massenkonstanz bestimmt.
Für Gesteinskörnungen, die durch das 31,5 mm Sieb hindurchgehen und vom 4 mm Sieb zurückgehalten werden, kann das Drahtkorbverfahren aus Abschnitt 7 als Alternative zum Pyknometer-Verfahren aus Abschnitt 8 verwendet werden.
ANMERKUNG 1 Das Drahtkorbverfahren kann auch für einzelne Gesteinskörner angewendet werden, die von einem 63 mm-Sieb zurückgehalten werden.
ANMERKUNG 2 Das in Abschnitt 8 beschriebene Pyknometer-Verfahren kann als eine Alternative für Gesteins-körnungen angewendet werden, die durch das 4 mm Sieb hindurchgehen und vom 2 mm Sieb zurückgehalten werden.
Die Referenzverfahren für leichte Gesteinskörnungen sind:
— ein Pyknometer-Verfahren für Gesteinskörnungen, die durch das 31,5 mm Sieb hindurchgehen und vom 4 mm Sieb zurückgehalten werden (Anhang C). Es werden drei verschiedene Rohdichten (auf ofentrockener Basis, auf wassergesättigter und oberflächentrockener Basis und scheinbare Rohdichte) und die Wasseraufnahme nach dem Vortrocknen und einer Eintauchzeit von 24 h bestimmt;
— ein Verfahren für Gesteinskörnungen, die durch das 4 mm Sieb hindurchgehen, unter Verwendung eines Büchner-Trichters (Anhang D). Die drei Rohdichten und die Wasseraufnahme werden unter einem Vakuum im Bereich von 50 mbar bis 100 mbar über mindestens fünf Minuten bestimmt.
Zur Bestimmung der Trockenrohdichte von normalschweren Gesteinskörnungen können auch drei andere Verfahren angewendet werden, die im normativen Anhang A und im normativen Anhang H festgelegt sind:
— ein Drahtkorbverfahren für Gesteinskörnungen, die durch das 63 mm Sieb hindurchgehen und vom 31,5 mm Sieb zurückgehalten werden (A.3);
— ein Pyknometer-Verfahren für Gesteinskörnungen, die durch das 31,5 mm Sieb hindurchgehen und vom 0,063 mm Sieb zurückgehalten werden (A.4);
— ein Pyknometer-Verfahren für Gesteinskörnungen, die durch das 31,5 mm Sieb hindurchgehen, einschließlich der Kornklasse 0/0,063 mm (Anhang H).
ANMERKUNG 3 Wenn die Wasseraufnahme geringer als etwa 1,5 % ist, kann die scheinbare Rohdichte durch Verwendung des Verfahrens der Trockenrohdichte, wie in Anhang A definiert, abgeschätzt werden.
Das Schnellverfahren im normativen Anhang E kann in der werkseigenen Produktionskontrolle zur Bestimmung der scheinbaren Rohdichte von leichten Gesteinskörnungen angewendet werden.
[...]
Essais pour déterminer les caractéristiques mécaniques et physiques des granulats - Partie 6 : Détermination de la masse volumique et du coefficient d'absorption d'eau
Le présent document spécifie les méthodes de référence utilisées pour les essais de type et en cas de contestation pour la détermination de la masse volumique et du coefficient d'absorption d'eau de granulats courants et légers. D'autres méthodes peuvent être utilisées à d'autres fins, telles que la maîtrise de la production des granulats, à condition que des corrélations appropriées avec la méthode de référence aient été établies. Certaines de ces autres méthodes sont également décrites dans le présent document à des fins pratiques.
Les méthodes de référence pour des granulats courants sont :
- la méthode du panier en treillis pour les granulats refusés au tamis de 31,5 mm (Article 7, excepté pour les ballasts de voies ferrées qui utilisent l’Annexe B) ;
- la méthode au pycnomètre pour les granulats passant au tamis de 31,5 mm et refusés au tamis de 4 mm (Article 8) ;
- la méthode au pycnomètre pour les granulats passant au tamis de 4 mm et refusés au tamis de 0,063 mm (Article 9).
Dans les Articles 7, 8 et 9, trois paramètres différents de masse volumique (masse volumique réelle après séchage à l’étuve, masse volumique réelle saturée surface sèche et masse volumique absolue) et le coefficient d’absorption d’eau sont déterminés après immersion pendant 24 heures. Dans l’Annexe B, le paramètre de masse volumique réelle après séchage à l’étuve est déterminé après immersion dans l’eau jusqu’à masse constante.
Pour les granulats passant au tamis de 31,5 mm et refusés au tamis de 4 mm, la méthode du panier en treillis de l’article 7 peut remplacer la méthode au pycnomètre dans l’article 8.
NOTE 1 La méthode du panier en treillis peut également être utilisée pour des particules isolées refusées au tamis de 63 mm.
NOTE 2 La méthode au pycnomètre décrite à l’Article 8 peut également être utilisée pour les granulats passant au tamis de 4 mm et refusés au tamis de 2 mm.
Les méthodes de référence pour les granulats légers sont :
- la méthode au pycnomètre pour des granulats passant au tamis de 31,5 mm et refusés au tamis de 4 mm (Annexe C). Trois types de masses volumiques (masse volumique réelle séchée à l’étuve, masse volumique réelle saturée surface sèche et masse volumique absolue) et le coefficient d’absorption d’eau sont déterminés après pré-séchage puis immersion dans l’eau pendant 24 h ;
- la méthode pour les granulats passant le tamis d'essai de 4 mm, mélangées à de l'eau et filtrées dans un entonnoir Büchner (annexe D). Les trois densités de particules et le coefficient d'absorption d'eau sont déterminés en utilisant un vide dans la gamme de 50 mbar à 100 mbar pendant au moins cinq minutes.
Trois autres méthodes peuvent être utilisées avec des granulats courants en vue de déterminer la masse volumique réelle pré-séchée, comme spécifié dans les annexes normatives A et H :
- la méthode du panier en treillis pour des granulats passant au tamis de 63 mm et refusés au tamis de 31,5 mm (Article A.3) ;
- la méthode au pycnomètre pour des granulats passant au tamis de 31,5 mm et refusés au tamis de 0,063 mm (Article A.4) ;
- la méthode au pycnomètre pour des granulats passant au tamis de 31,5 mm, y compris la classe granulaire 0/0,063 mm (Annexe H).
NOTE 3 Si le coefficient d’absorption d’eau est inférieur à environ 1,5 %, la masse volumique absolue peut être déterminée en utilisant la méthode pour la masse volumique réelle pré-séchée définie à l’Annexe A.
La méthode rapide décrite dans l’Annexe normative E peut être utilisée pour la maîtrise de la production des granulats afin de déterminer la masse volumique absolue des granulats légers.
La méthode décrite à l'annexe informative F peut être utilisée pour déterminer la masse volumique et le coefficient d'absorption d'eau des granulats qui passent le tamis de 4 mm.
Les données
Preskusi mehanskih in fizikalnih lastnosti agregatov - 6. del: Določevanje prostorninske mase zrn in vpijanja vode
Ta dokument določa referenčne metode, ki se uporabljajo za tipsko preskušanje in v primeru spora za določevanje prostorninske mase zrn in vpijanja vode agregatov z običajno težo in lahkih agregatov. Za druge namene, na primer za kontrolo proizvodnje v obratu, je mogoče uporabiti druge metode, če obstaja primerna delovna povezava z referenčno metodo. Za lažjo uporabo so v tem dokumentu opisane tudi nekatere druge metode.
Referenčne metode za agregate z običajno težo so:
– metoda z žično košaro za zrna agregatov, ki ostanejo na situ 31,5 mm (točka 7, razen za grede železniških prog, za katere se uporablja dodatek B);
– metoda s piknometrom za zrna agregatov, ki gredo skozi preskusno sito 31,5 mm in ostanejo na preskusnem situ 4 mm (točka 8);
– metoda s piknometrom za zrna agregatov, ki gredo skozi preskusno sito 4 mm in ostanejo na preskusnem situ 0,063 mm (točka 9).
V točkah 7, 8 in 9 so določeni trije različni parametri prostorninske mase zrn (prostorninska masa sušenih zrn, prostorninska masa zrn z nasičeno suho površino in dejanska prostorninska masa zrn) in vpijanje vode po 24-urnem namakanju. V dodatku B je določen parameter prostorninske mase sušenih zrn po namakanju v vodi do stalne mase.
Za zrna agregatov, ki gredo skozi preskusno sito 31,5 mm in ostanejo na preskusnem situ 4 mm, je mogoče namesto metode s piknometrom iz točke 8 uporabiti metodo z žično košaro iz točke 7.
OPOMBA 1: Metodo z žično košaro je mogoče uporabiti tudi za posamezna zrna agregatov, ki ostanejo na situ 63 mm.
OPOMBA 2: Metodo s piknometrom, ki je opisana v točki 8, je mogoče uporabiti kot alternativo za agregate, ki gredo skozi sito 4 mm in ostanejo na situ 2 mm.
Referenčne metode za lahke agregate so:
– metoda s piknometrom za zrna agregatov, ki gredo skozi preskusno sito 31,5 mm in ostanejo na preskusnem situ 4 mm (dodatek C). Trije različni parametri prostorninske mase zrn (prostorninska masa sušenih zrn, prostorninska masa zrn z nasičeno suho površino in dejanska prostorninska masa zrn) in vpijanje vode se določijo po predhodnem sušenju in 24-urnem namakanju;
– metoda za zrna agregatov, ki gredo skozi preskusno sito 4 mm, pri čemer se zmešajo z vodo in filtrirajo skozi Büchnerjev lijak (dodatek D). Tri prostorninske mase zrn in vpijanje vode se določijo z uporabo vakuuma v razponu od 50 do 100 mbar za najmanj pet minut.
Za določanje prostorninske mase predhodno sušenih zrn agregatov z običajno težo se lahko uporabijo tri druge metode, ki so določene v normativnih dodatkih A in H:
– metoda z žično košaro za zrna agregatov, ki gredo skozi preskusno sito 63 mm in ostanejo na preskusnem situ 31,5 mm (A.3);
– metoda s piknometrom za zrna agregatov, ki gredo skozi preskusno sito 31,5 mm in ostanejo na preskusnem situ 0,063 mm (A.4);
– metoda s piknometrom za zrna agregatov, ki gredo skozi preskusno sito 31,5 mm, vključno z deležem velikosti 0/0,063 (dodatek H).
OPOMBA 3: Če je vpijanje vode manjše od 1,5 %, je mogoče dejansko prostorninsko maso zrn oceniti z uporabo metode za prostorninsko maso predhodno sušenih zrn, kot je določeno v dodatku A.
Hitra metoda v normativnem dodatku E se lahko uporabi pri kontroli proizvodnje v obratu za določevanje dejanske prostorninske mase zrn lahkih agregatov.
Metoda v informativnem dodatku F se lahko uporabi za določevanje prostorninske mase in vpijanja vode pri zrnih agregatov, ki gredo skozi preskusno sito 4 mm.
Podatki o gostoti vode pri različnih temperaturah so navedeni v normativnem dodatku G.
Napotki o pomembnosti in uporabi različnih parametrov prostorninske mase in vpijanja vode so podani v informativnem dodatku I.
Dodatek J (informativni) vsebuje podatke o natančnosti.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-julij-2022
Nadomešča:
SIST EN 1097-6:2013
Preskusi mehanskih in fizikalnih lastnosti agregatov - 6. del: Določevanje
prostorninske mase zrn in vpijanja vode
Tests for mechanical and physical properties of aggregates - Part 6: Determination of
particle density and water absorption
Prüfverfahren für mechanische und physikalische Eigenschaften von Gesteinskörnungen
- Teil 6: Bestimmung der Rohdichte und der Wasseraufnahme
Essais pour déterminer les caractéristiques mécaniques et physiques des granulats -
Partie 6 : Détermination de la masse volumique et du coefficient d'absorption d'eau
Ta slovenski standard je istoveten z: EN 1097-6:2022
ICS:
91.100.15 Mineralni materiali in izdelki Mineral materials and
products
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN 1097-6
EUROPEAN STANDARD
NORME EUROPÉENNE
February 2022
EUROPÄISCHE NORM
ICS 91.100.15 Supersedes EN 1097-6:2013
English Version
Tests for mechanical and physical properties of aggregates
- Part 6: Determination of particle density and water
absorption
Essais pour déterminer les caractéristiques Prüfverfahren für mechanische und physikalische
mécaniques et physiques des granulats - Partie 6 : Eigenschaften von Gesteinskörnungen - Teil 6:
Détermination de la masse volumique et du coefficient Bestimmung der Korndichte und der Wasseraufnahme
d'absorption d'eau
This European Standard was approved by CEN on 12 December 2021.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 1097-6:2022 E
worldwide for CEN national Members.
Contents Page
European foreword . 6
1 Scope . 8
2 Normative references . 9
3 Terms and definitions . 9
4 Principle .11
5 Materials .11
6 Apparatus .11
7 Wire basket method for aggregate particles passing the 63 mm sieve and
retained on the 31,5 mm sieve .15
7.1 General .15
7.2 Preparation of test portion .15
7.3 Test procedure .15
7.4 Calculation and expression of results .16
8 Pyknometer method for aggregate particles passing the 31,5 mm sieve and
retained on the 4 mm sieve .17
8.1 General .17
8.2 Preparation of test portion .17
8.3 Test procedure .18
8.4 Calculation and expression of results .18
9 Pyknometer method for aggregate particles passing the 4 mm sieve and retained
on the 0,063 mm sieve .19
9.1 General .19
9.2 Preparation of test portion .19
9.3 Test procedure .19
9.4 Calculation and expression of results .20
10 Test report .21
10.1 Required data .21
10.2 Optional data.22
Annex A (normative) Determination of pre-dried particle density of aggregates passing
the 63 mm sieve (excluding the 0/0,063 mm size fraction) .23
A.1 General .23
A.2 Principle .23
A.3 Wire basket method for aggregate particles passing the 63 mm sieve and
retained on the 31,5 mm sieve .23
A.3.1 Preparation of test portion .23
A.3.2 Test procedure .23
A.3.3 Calculation and expression of results .24
A.4 Pyknometer method for aggregate particles passing the 31,5 mm sieve and
retained on the 0,063 mm sieve . 24
A.4.1 Preparation of test specimens . 24
A.4.2 Determination of the pyknometer volume . 25
A.4.3 Test procedure . 25
A.4.4 Calculation and expression of results . 26
A.5 Test report . 26
A.5.1 Required data . 26
A.5.2 Optional data . 27
Annex B (normative) Determination of particle density and water absorption of coarse
aggregates saturated to constant mass . 28
B.1 General . 28
B.2 Preparation of test portion . 28
B.2.1 Sample reduction . 28
B.2.2 Single particles of aggregate . 28
B.2.3 Railway ballast. 28
B.3 Test procedure . 28
B.4 Calculation and expression of results . 29
B.5 Test report . 29
B.5.1 Required data . 29
B.5.2 Optional data . 30
Annex C (normative) Determination of particle density and water absorption of coarse
lightweight aggregates . 31
C.1 General . 31
C.2 Preparation of test specimens . 31
C.3 Determination of the pyknometer volume . 31
C.4 Test procedure . 32
C.5 Calculation and expression of results . 32
C.6 Test report . 34
C.6.1 Required data . 34
C.6.2 Optional data . 34
Annex D (normative) Determination of particle density and water absorption of fine
lightweight aggregates . 35
D.1 General . 35
D.2 Principle . 35
D.3 Preparation of test specimens . 35
D.4 Test procedure . 35
D.4.1 Water absorption . 35
D.4.2 Particle density .36
D.5 Calculation and expression of results .36
D.5.1 Water absorption .36
D.5.2 Particle density .37
D.6 Test report .38
D.6.1 Required data .38
D.6.2 Optional data.38
Annex E (normative) Quick method for determination of apparent particle density of
coarse lightweight aggregates .39
E.1 General .39
E.2 Preparation of test specimens .39
E.3 Procedure .39
E.4 Calculation and expression of results .40
E.5 Test report .40
E.5.1 Required data .40
E.5.2 Optional data.40
Annex F (informative) Determination of the particle density and water absorption of
aggregates passing the 4 mm sieve .42
F.1 General .42
F.2 Preparation of test portion .42
F.3 Procedure .43
F.4 Calculation and expression of results .44
F.5 Test report .45
F.5.1 Required data .45
F.5.2 Optional data.45
Annex G (normative) Density of water .46
Annex H (normative) Determination of the pre-dried particle density of aggregates
passing the 31,5 mm sieve .47
H.1 General .47
H.2 Principle .47
H.3 Preparation of test specimens .47
H.4 Test procedure .48
H.5 Determination of the pyknometer volume .48
H.6 Calculation and expression of results .49
H.7 Test report .49
H.7.1 Required data .49
H.7.2 Optional data.50
Annex I (informative) Guidance on the significance and use of various particle density
parameters and water absorption . 51
I.1 General . 51
I.2 Characteristics of the reference methods for normal weight aggregates
according to Clauses 7, 8 and 9 and Annex B . 52
I.3 Characteristics of the reference method for coarse lightweight aggregates,
specified in Annex C . 53
I.4 Characteristics of the methods for determination of the pre-dried particle
density of normal weight aggregates, specified in Annex A and Annex H . 54
I.5 Selection of the appropriate particle density parameter . 55
I.6 Applicability of and test conditions for the various test methods in EN 1097-6 . 55
I.7 Relationships between different particle density parameters (notations
according to the main methods, specified in Clauses 7, 8 and 9) . 57
Annex J (informative) Precision . 58
J.1 Data from National Standards . 58
J.2 Data from cross testing experiments . 59
Bibliography . 61
European foreword
This document (EN 1097-6:2022) has been prepared by Technical Committee CEN/TC 154
“Aggregates”, the secretariat of which is held by BSI.
This document shall be given the status of a national standard, either by publication of an identical
text or by endorsement, at the latest by August 2022, and conflicting national standards shall be
withdrawn at the latest by August 2022.
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN 1097-6:2013.
In comparison with the previous edition, the following technical modifications have been made:
a) Normative references has been extended with EN 1097-5 (used in Annex D). EN 932-1 has been
deleted from the clause since sampling is out of the scope, as for other standards;
b) the definitions of laboratory sample and subsample have been added in Clause 3;
c) the glass funnel in 6.4.4 has been deleted since it is part of the pyknometer in 6.5.1. The minimum
volume of the pyknometer in 6.5.1 has been changed from 250 ml to 500 ml. New 6.8 and 6.10
have been added and describe special apparatus referenced in new Annexes D and F;
d) Clause 9 has been extended with an illustration of the surface-dry state assessment using the
cone test;
e) the possibility to remove air from the pyknometer by applying a vacuum has been added in A.4.3;
f) in Annex B, the test portion mass for single aggregates (B.2.2) and the temperature requirement
in B.3 have been clarified. In addition, the time needed for achieving constant mass during
suction has been clarified;
g) the Note in C.1 has been revised to say that the method can also be used for aggregate particles
passing the 4 mm sieve and retained on the 1 mm sieve. Soaking times for the water absorption
determination have been added in C.1. A new paragraph has been added in C.1, saying that for
concrete applications the water absorption of coarse lightweight aggregate shall be determined
in the as-used moisture state instead of the oven-dry state. In C.4, a Note about using vibrating
table as a vibration means has been added. Precision of individual values has been defined in C.5;
h) a new normative Annex D has been designed to determine the particle density and water
absorption of fine lightweight aggregates. Consequently, Annex C has been retitled to only apply
to coarse lightweight aggregates;
i) the title of Annex E has been shorted. The Note in E.1 has been revised to say that the method
can also be used for aggregate particles passing the 2 mm sieve and retained on the 1 mm sieve.
Precision of individual values has been defined in E.4;
j) Annex F has been replaced by a new informative annex designed to determine the particle
density and water absorption of aggregates passing the 4 mm sieve;
k) the procedure in Annex H has been extended to specify double determination. In addition, the
recommended volume which the test portion should occupy to enable the release of entrapped
air, has been changed from one third to one half of the pyknometer volume, in consistency with
other clauses;
l) all annexes have been reordered to collect the annexes about lightweight aggregates. Annex D
Density of water has been moved to Annex G and Annex J List of main changes has been deleted.
Furthermore, the whole standard has been updated according to the current rules and to reflect the
changes. The text has been clarified and the Bibliography has been supplemented.
This document forms a part of a series of tests for mechanical and physical properties of aggregates.
Test methods for other properties of aggregates are covered by the following European standards:
— EN 932 (all parts), Tests for general properties of aggregates
— EN 933 (all parts), Tests for geometrical properties of aggregates
— EN 1367 (all parts), Tests for thermal and weathering properties of aggregates
— EN 1744 (all parts), Tests for chemical properties of aggregates
— EN 13179 (all parts), Tests for filler aggregate used in bituminous mixtures
The other parts of EN 1097 include:
— Part 1: Determination of the resistance to wear (micro-Deval)
— Part 2: Methods for the determination of resistance to fragmentation
— Part 3: Determination of loose bulk density and voids
— Part 4: Determination of the voids of dry compacted filler
— Part 5: Determination of the water content by drying in a ventilated oven
— Part 7: Determination of the particle density of filler — Pyknometer method
— Part 8: Determination of the polished stone value
— Part 9: Determination of the resistance to wear by abrasion from studded tyres — Nordic test
— Part 10: Determination of water suction height
Any feedback and questions on this document should be directed to the users’ national standards
body. A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary,
Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.
1 Scope
This document specifies the reference methods used for type testing and in case of dispute, for the
determination of particle density and water absorption of normal weight and lightweight aggregates.
Other methods can be used for other purposes, such as factory production control, provided that an
appropriate working relationship with the reference method has been established. For convenience,
some of these other methods are also described in this document.
The reference methods for normal weight aggregates are:
— a wire basket method for aggregate particles retained on the 31,5 mm sieve (Clause 7, except for
railway ballast which uses Annex B);
— a pyknometer method for aggregate particles passing the 31,5 mm sieve and retained on the
4 mm sieve (Clause 8);
— a pyknometer method for aggregate particles passing the 4 mm sieve and retained on the
0,063 mm sieve (Clause 9).
In Clauses 7, 8 and 9, three different particle densities (oven-dried particle density, saturated and
surface-dried particle density and apparent particle density) and water absorption are determined
after a soaking period of 24 h. In Annex B, the oven-dried particle density is determined after soaking
in water to constant mass.
For aggregate particles passing the 31,5 mm sieve and retained on the 4 mm sieve, the wire basket
method in Clause 7 can be used as an alternative to the pyknometer method in Clause 8.
NOTE 1 The wire basket method can also be used for single aggregate particles retained on the 63 mm sieve.
NOTE 2 The pyknometer method described in Clause 8 can be used as an alternative for aggregates passing
the 4 mm sieve and retained on the 2 mm sieve.
The reference methods for lightweight aggregates are:
— a pyknometer method for aggregate particles passing the 31,5 mm sieve and retained on the
4 mm sieve (Annex C). Three different particle densities (oven-dried; saturated and surface-
dried; apparent) and water absorption are determined after pre-drying and a soaking period of
24 h;
— a method, using a Büchner funnel, for aggregate particles passing the 4 mm sieve (Annex D). The
three particle densities and water absorption are determined using a vacuum in the range of 50
mbar to 100 mbar for at least five minutes.
Three other methods for normal weight aggregates can be used to determine the pre-dried
particle density, as specified in normative Annexes A and H:
— a wire basket method for aggregate particles passing the 63 mm sieve and retained on the
31,5 mm sieve (A.3);
— a pyknometer method for aggregate particles passing the 31,5 mm sieve and retained on the
0,063 mm sieve (A.4);
— a pyknometer method for aggregate particles passing the 31,5 mm sieve, including the
0/0,063 mm size fraction (Annex H).
NOTE 3 If water absorption is less than about 1,5 %, the apparent particle density can be assessed using the
pre-dried particle density method as defined in Annex A.
The quick method in normative Annex E can be used in factory production control to determine the
apparent particle density of lightweight aggregates.
The method in informative Annex F can be used to determine the particle density and water
absorption of aggregate particles passing the 4 mm sieve.
Data on the density of water at various temperatures is specified in normative Annex G.
Guidance on the significance and use of the various density and water absorption parameters is given
in informative Annex I.
Precision data are presented in informative Annex J.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
EN 932-2, Tests for general properties of aggregates — Part 2: Methods for reducing laboratory
samples
EN 932-5, Tests for general properties of aggregates — Part 5: Common equipment and calibration
EN 933-2, Tests for geometrical properties of aggregates — Part 2: Determination of particle size
distribution — Test sieves, nominal size of apertures
EN 1097-5, Tests for mechanical and physical properties of aggregates — Part 5: Determination of the
water content by drying in a ventilated oven
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/
3.1
apparent particle density
ρ
a
ratio obtained by dividing the oven-dried mass of an aggregate sample by the volume it occupies in
water, including the volume of any internal sealed voids but excluding the volume of water in any
water accessible voids
Note 1 to entry: For lightweight aggregates the symbol ρ is used.
La
3.2
constant mass
mass determined after successive weighings at least 1 h apart not differing by more than 0,1 %
Note 1 to entry: In many cases, constant mass can be achieved after a test portion has been dried for a pre-
determined period in a specified oven at (110 ± 5) °C. Test laboratories can determine the time necessary to
achieve constant mass for specific types and sizes of sample dependent upon the drying capacity of the oven
used.
3.3
oven-dried particle density
ρ
rd
ratio obtained by dividing the oven-dried mass of an aggregate sample by the volume it occupies in
water, including the volumes of any internal sealed voids and water accessible voids
Note 1 to entry: For lightweight aggregates, the symbol ρ is used.
Lrd
3.4
pre-dried particle density
ρ
p
ratio obtained by dividing the pre-dried mass of an aggregate sample by the volume it occupies in
water, including the volumes of any internal sealed voids but excluding the volume of water in any
water accessible voids
Note 1 to entry: Test conditions in terms of pre-drying of the test sample and the shorter immersion period
differ from the ones for apparent particle density.
Note 2 to entry: Pre-dried particle density is a rapid test.
3.5
saturated and surface-dried particle density
ρ
ssd
ratio obtained by dividing the sum of the oven-dried mass of an aggregate sample and the mass of
water in any water accessible voids by the volume it occupies in water, including the volumes of any
internal sealed voids and water accessible voids
Note 1 to entry: For lightweight aggregates, the symbol ρLssd is used.
3.6
laboratory sample
sample intended for laboratory testing
3.7
subsample
sample obtained by means of a sample reduction procedure
3.8
test portion
sample used as a whole in a single test
3.9
test specimen
sample used in a single determination when a test method requires more than one determination of
a property
3.10
water absorption
mass of absorbed water, expressed as a percentage of the oven-dried mass of the aggregate sample
4 Principle
Particle density is calculated from the ratio of mass to volume. The mass is determined by weighing
the test portion in the saturated and surface-dry condition and again in the oven-dry condition.
Volume is determined from the mass of the water displaced, either by mass reduction in the wire
basket method or by weighings in the pyknometer method.
Due to the influence on the absorption, no artificial heating of the test portion should be applied
before testing. However, if such material is used, this fact shall be stated in the test report.
If the aggregate consists of a number of different size fractions, it can be necessary to separate the
various fractions before preparing the test portion. The percentage of each size fraction shall be
stated in the test report.
5 Materials
5.1 Water, which shall be free from any impurity (e.g. dissolved air or soluble substances) that
could significantly affect its density. Dissolved air can be removed by applying a vacuum.
Distilled water which is boiled and cooled before use, or demineralized water, are preferred.
Fresh tap water is also suitable.
6 Apparatus
All apparatus, unless otherwise stated, shall conform to the general requirements of EN 932-5.
6.1 Apparatus for general purposes
6.1.1 Ventilated oven, capable of maintaining a temperature of (110 ± 5) °C.
6.1.2 Balance, accurate to 0,1 % of the mass of the test portion and capable of weighing the wire
basket containing the sample while immersed in water.
6.1.3 Water bath, capable of maintaining a temperature of (22 ± 3) °C.
6.1.4 Thermometer, accurate to 0,1 °C.
6.1.5 Test sieves, 0,063 mm, 4 mm, 31,5 mm and 63 mm, with apertures as specified in EN 933-2.
6.1.6 Trays, which can be heated in a ventilated oven without change in mass.
6.1.7 Soft absorbent cloths.
6.1.8 Washing equipment.
6.1.9 Timer.
6.2 Special apparatus for the wire basket method (Clauses 7 and A.3 and Annex B)
6.2.1 Wire basket or perforated container of sufficient capacity for samples according to the
clause, and equipped to enable suspension from the balance. The basket or container shall be
resistant to corrosion.
6.2.2 Watertight tank, containing water at (22 ± 3) °C, in which the basket may be completely
immersed and freely suspended with a minimum clearance of 50 mm between the basket and the
sides of the tank.
NOTE A watertight tank can be used instead of the water bath specified in 6.1.3.
6.3 Special apparatus for pyknometer method for aggregate particles passing the 31,5 mm
sieve and retained on the 4 mm sieve (Clause 8)
6.3.1 Pyknometer, consisting of a glass flask or other suitable vessel with volume between
1 000 ml and 5 000 ml, constant to 0,5 ml for the duration of the test.
It is recommended that the test portion occupies about half of the pyknometer volume. Two smaller
pyknometers can be used instead of one large, by summing the weighings before calculating the
density of the aggregate.
NOTE An example of a suitable pyknometer is shown in Figure 1.
6.4 Special apparatus for pyknometer method for aggregate particles passing the 4 mm
sieve and retained on the 0,063 mm sieve (Clause 9 and Annex F)
6.4.1 Pyknometer, consisting of a glass flask or other suitable vessel with volume between 500 ml
and 2 000 ml, constant to 0,5 ml for the duration of the test.
It is recommended that the test portion occupies about half of the pyknometer volume. Two smaller
pyknometers can be used instead of one large, by summing the weighings before calculating the
density of the aggregate.
NOTE An example of a suitable pyknometer is shown in Figure 1.
6.4.2 Metal mould, in the form of a frustum of a cone (40 ± 3) mm at the top, (90 ± 3) mm at the
bottom and (75 ± 3) mm high. The metal shall have a minimum thickness of 0,8 mm.
6.4.3 Metal tamper, of mass (340 ± 15) g and having a flat circular tamping face of diameter
(25 ± 3) mm, for use with the metal mould.
6.4.4 Tray, of non-water absorbing material having a plane bottom of area not less than 0,1 m and
an edge of not less than 50 mm in height.
6.4.5 Warm air supply, such as a hair dryer.
6.5 Special apparatus for the pyknometer method for aggregate particles passing the
31,5 mm sieve and retained on the 0,063 mm sieve (A.4)
6.5.1 Pyknometer, consisting of a glass flask with a volume between 500 ml and 5 000 ml,
constant to 0,5 ml for the duration of the test, and a corresponding glass funnel.
It is recommended that the test specimen occupies about half of the pyknometer volume.
NOTE An example of a suitable pyknometer is shown in Figure 1.
Key
1 glass funnel
2 mark
3 ground section to fit the wide-neck flat bottom flask
4 wide-neck flat bottom flask
Figure 1 — Example of pyknometer
6.6 Special apparatus for the determination of particle density and water absorption of
coarse aggregates saturated to constant mass (Annex B)
6.6.1 Container, of similar capacity to the wire basket specified in 6.2.1 for storage of the sample
in water.
6.7 Special apparatus for the determination of particle density and water absorption of
coarse lightweight aggregates (Annex C)
6.7.1 Pyknometer, consisting of a glass flask with a volume of 1 000 ml, constant to 0,5 ml for the
duration of the test, and a corresponding funnel (Figure 1). If appropriate, the pyknometer shall
contain a flexible grid to prevent aggregates from floating.
The size of the funnel shall enable the release of any air bubbles.
It is recommended that the test portion occupies about half of the pyknometer volume.
6.8 Special apparatus for the determination of particle density and water absorption of fine
lightweight aggregates (Annex D)
6.8.1 Balance, accurate to 0,1 g.
6.8.2 Glass graduated measuring cylinder, with a measuring volume of 1 000 ml, accurate to 5
ml.
6.8.3 Funnel, of suitable size to transfer the test specimen into the glass measuring cylinder.
6.8.4 Cylinder, for transferring surface-dried material from the Büchner funnel to the glass
measuring cylinder.
6.8.5 Büchner funnel, with a diameter of 150 mm and minimum 60 mm height.
6.8.6 Erlenmeyer flask, with tap for the Büchner funnel.
6.8.7 Filter paper, of type Ø 150 mm-range for filtration speed from 10 s to 25 s (e.g. Herzberg).
6.8.8 Glass rod or spatula, for stirring in the Büchner funnel. The length shall be greater than the
depth of the Büchner funnel.
6.8.9 Vacuum system, with a manometer or vacuum gauge, capable of maintaining a vacuum of
50 mbar to 100 mbar with wet filter only (without sample) and the same range of vacuum at the end
of the test (with wet sample).
6.9 Special apparatus for the determination of the apparent particle density of coarse
lightweight aggregates with cylinder method (Annex E)
6.9.1 Glass graduated measuring cylinders, with a measuring volume of 1 000 ml, accurate to 5
ml.
6.9.2 Steel plunger (Figure 2), with a perforated base and vertical rod, to prevent aggregate
particles from floating to the surface of the water. The difference between the internal diameter of
the measuring cylinder and the diameter of the steel plunger base shall be less than the smallest
aggregate particles to be tested. The vertical rod of the plunger shall be marked so that the volume it
occupies in water is constant.
The dimensions of the holes in the perforated base shall be less than the smallest aggregate particles
to be tested, but large enough to enable the release of entrapped air.
Figure 2 — Example of steel plunger with perforated base
6.10 Special apparatus for the determination of the particle density and water absorption for
aggregate particles passing the 4 mm sieve (including the 0/0,063 mm size fraction)
(Annex F)
6.10.1 Warm air supply with two speeds, such as a two-speed hair dryer.
NOTE A hair dryer with a power of 1 700 W to 2 200 W, fixed on a bracket with a height of 60 cm to 80 cm
is a possible solution.
6.11 Special apparatus for the determination of the pre-dried particle density of aggregate
particles passing the 31,5 mm sieve (including the 0/0,063 mm size fraction) (Annex H)
6.11.1 Vacuum system, with a manometer or vacuum gauge, capable of evacuating air from the
pyknometer to give a residual pressure of 40 mbar or less.
7 Wire basket method for aggregate particles passing the 63 mm sieve and
retained on the 31,5 mm sieve
7.1 General
The wire basket method shall be used on aggregate particles passing the 63 mm sieve and retained
on the 31,5 mm sieve. In the case of larger particles, reduce the particle size to pass the 63 mm sieve
and to be retained on the 31,5 mm sieve.
NOTE A modified version of this method for determining the particle density and water absorption of
coarse aggregates saturated to constant mass is specified in Annex B.
7.2 Preparation of test portion
Reduce the laboratory sample according to EN 932-2.
Wash the subsample on the 63 mm sieve and the 31,5 mm sieve to remove finer particles. Discard
any particles retained on the 63 mm sieve and let the sample drain.
The mass of the test portion shall be not less than the mass specified in Table 1.
Table 1 — Minimum mass of test portions (wire basket method)
Upper aggregate size (D) Minimum mass of test portion
mm kg
63 15
≤ 45 7
For other D values, the minimum mass of the test portion may be
interpolated from the masses specified.
7.3 Test procedure
Place the prepared test portion d /D in the wire basket and immerse it in the tank containing water
0 0
at a temperature of (22 ± 3) °C, with a cover of at least 50 mm of water above the top of the basket.
Immediately after immersion, remove the entrapped air from the prepared test portion by lifting the
basket about 25 mm above the base of the tank and letting it drop 25 times at about once per second.
Leave the basket and aggregate to remain completely immersed in the water at (22 ± 3) °C for a
period of (24 ± 0,5) h.
Shake the basket and test portion vigorously, until no air bubble is visible, and weigh them in water
at a temperature of (22 ± 3) °C, M . Record the temperature of the water.
If it is necessary for the test portion to be transferred to a different tank for weighing, shake the
basket and test portion 25 times as before in the new tank before weighing, M .
Remove the basket and aggregate from the water and leave them to drain for a few minutes. Gently
empty the aggregate from the basket onto one of the absorbent cloths. Return the empty basket to
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...