Cranes - General design - Part 3-8: Limit states and proof competence of machinery - Shafts

This document is to be used together with EN 13001-1 and EN 13001-2 and as such they specify general conditions, requirements and methods to prevent mechanical hazards of cranes by design and theoretical verification.
Specific requirements for particular types of cranes are given in the appropriate European standard for the particular crane type.
This document covers shafts (axles) in cranes that are not dealt with by other EN 13001 standards (e.g. pinned connections in EN 13001-3-1). It is not intended for axles being part of standard components, e.g. gearboxes, motors ... however those axles shall be designed using load actions from EN 13001-2 and classification parameters of EN 13001-1.
NOTE   EN 13001-3-7 is under preparation for gears and gearboxes and deals with load actions for axles in gear boxes.
The following is a list of significant hazardous situations and hazardous events that could result in risks to persons during intended use and reasonably foreseeable misuse. Clauses 4 to 7 of this document are necessary to reduce or eliminate risks associated with the following hazards:
-   exceeding the limits of strength (yield, ultimate, fatigue);
-   exceeding temperature limits of material or components.
This document is not applicable to cranes which are manufactured before the date of its publication as EN and serves as reference base for the European standards for particular crane types (see Annex C).
NOTE   prEN 13001-3-8 deals only with limit state method in accordance with EN 13001-1.

Krane - Konstruktion allgemein - Teil 3-8: Grenzzustände und Sicherheitsnachweise für Maschinenbauteile - Wellen

Dieses Dokument ist zusammen mit EN 13001-1 und EN 13001-2 anzuwenden und legt gemeinsam mit ihnen grundlegende Bedingungen, Anforderungen und Verfahren fest, um so anhand der Konstruktion und der theoretischen Überprüfung Gefährdungen für Krane zu verhindern.
Spezifische Anforderungen an bestimmte Kranarten sind in der entsprechenden Europäischen Norm für die jeweilige Kranart angegeben.
Dieses Dokument behandelt Wellen (Achsen) in Kranen, die nicht in den anderen Normen der Reihe EN 13001 behandelt werden (z. B. Steckbolzenverbindungen in EN 13001-3-1). Sie ist nicht für Achsen vorgesehen, die Teil von Standardbauteilen sind, z. B. Getriebe, Motoren, ...; dennoch müssen solche Achsen unter Beachtung der Lasteinwirkungen von EN 13001-2 und der Klassifizierungsparameter von EN 13001-1 konstruiert werden.
ANMERKUNG   EN 13001-3-7 ist in Vorbereitung für Getriebe und Getriebegehäuse und behandelt die Lasteinwirkungen auf Achsen in Getriebegehäusen.
Nachfolgend sind signifikante Gefährdungssituationen und Gefährdungsereignisse aufgelistet, die während der bestimmungsgemäßen Verwendung und der vernünftigerweise vorhersehbaren Fehlanwendung zu Risiken für Personen führen könnten. Die Anwendung der Abschnitte 4 bis 7 des vorliegenden Dokuments ist notwendig, um Risiken in Verbindung mit den folgenden Gefährdungen zu mindern oder zu beseitigen:
-   Überschreitung der Festigkeitsgrenzwerte (Fließgrenze, Bruch  und Ermüdungsfestigkeit);
-   Überschreitung von Temperaturgrenzwerten des Werkstoffs oder der Komponenten.
Dieses Dokument gilt nicht für Krane, die vor dem Datum der Veröffentlichung dieses Dokuments als Europäische Norm hergestellt wurden und dient als Bezugsbasis für die Europäischen Normen für bestimmte Kranarten (siehe Anhang C).
ANMERKUNG   prEN 13001-3-8 behandelt ausschließlich die Methode der Grenzzustände in Übereinstimmung mit EN 13001-1.

Appareils de levage à charge suspendue - Conception générale - Partie 3-8 : États limites et vérification d’aptitude des mécanismes des éléments de mécanismes - Arbres

Le présent document doit être utilisé conjointement avec l’EN 13001-1 et l’EN 13001-2 et dans ce cadre, elles spécifient les conditions générales, les prescriptions et les méthodes visant à prévenir les dangers mécaniques liés aux appareils de levage à charge suspendue par la conception et par la vérification théorique.
Les prescriptions spécifiques liées à des types particuliers d’appareil de levage à charge suspendue sont données dans la Norme européenne correspondant au type particulier d’appareil de levage à charge suspendue.
Le présent document couvre les arbres (axes) des appareils de levage à charge suspendue qui ne sont pas traités dans les autres normes EN 13001 (par exemple : assemblages articulés de l’EN 13001-3-1). Elle n’est pas destinée aux axes faisant partie de composants standards, tels que les réducteurs ou les moteurs. Néanmoins, ces axes doivent être conçus en appliquant les charges de l’EN 13001-2 et les paramètres de classification de l’EN 13001-1.
NOTE   L’EN 13001-3-7 relative aux engrenages et réducteurs est en cours d’élaboration et elle traite des charges concernant les axes de réducteurs.
Ce qui suit est une liste de situations et d’événements dangereux significatifs susceptibles d’entraîner des risques pour les personnes lors d’une utilisation normale et d’une mauvaise utilisation raisonnablement prévisible. Les Articles 4 à 7 du présent document sont nécessaires pour réduire ou éliminer les risques associés à ces phénomènes dangereux :
-   dépassement des limites de résistance (élasticité, rupture, fatigue) ;
-   dépassement des limites de température du matériau ou des composants.
Le présent document ne s’applique pas aux appareils de levage à charge suspendue fabriqués avant sa date de publication en norme EN, et fait office de référence pour les Normes européennes relatives aux types particuliers d’appareil de levage à charge suspendue (voir Annexe C).
NOTE   La norme prEN 13001-3-8 traite uniquement de la méthode des états limites conformément à l’EN 13001-1.

Žerjavi - Konstrukcija, splošno - Mejna stanja in dokaz varnosti mehanizma - 3-8. del: Gredi

General Information

Status
Not Published
Publication Date
31-Dec-2019
Current Stage
4098 - Decision to abandon - Enquiry
Start Date
20-Dec-2019
Completion Date
14-Apr-2025

Overview

prEN 13001-3-8 - "Cranes - General design - Part 3-8: Limit states and proof competence of machinery - Shafts" is a CEN draft standard intended to be used together with EN 13001-1 and EN 13001-2. It sets out methods and requirements to prevent mechanical hazards of crane shafts (axles) by design and theoretical verification using the limit state approach. The scope covers rotating and non‑rotating shafts that are part of cranes but not those inside standard off‑the‑shelf components (gearboxes, motors). Clauses 4–7 focus on reducing hazards such as exceeding strength limits (yield, ultimate, fatigue) and material temperature limits.

Key Topics and Requirements

  • Scope and applicability
    • Applies to shafts/axles integral to crane designs not covered by other EN 13001 parts.
    • Excludes shafts in standard components (gearboxes, motors) and does not deal with proofs of welded or cast shafts.
  • Materials and documentation
    • Requirements for material grades, impact toughness and referenced material standards (EN/ISO steel specifications).
    • Obligations for design documentation and traceability.
  • Static strength proof (Clauses 6)
    • Design stresses, limit design stresses and execution of static strength checks.
    • Consideration of deflections and serviceability.
  • Fatigue strength proof (Clause 7)
    • Fatigue verification using S‑N (stress‑life) method and guidance on ε‑N (strain‑life) in informative annex.
    • Notch factors, size/surface/finish factors, stress concentration and multiaxial loading considerations.
    • Simplified and individual proof routes, with requirements for spectrum and cycle counting.
  • Supporting guidance and annexes
    • Annex A: notch factor values; Annex B: strain‑life (ε‑N) method worked examples; Annex C: selection of crane standards; Annex D: hazard list; Annex ZA: relation to Directive 2006/42/EC.

Practical Applications and Users

This standard is intended for:

  • Crane designers and mechanical engineers performing shaft design and verification.
  • Manufacturers preparing technical design dossiers and safety documentation.
  • Notified bodies, conformity assessors and certification engineers evaluating compliance with EN 13001 series and Machinery Directive requirements.
  • Maintenance planners and safety assessors checking lifetime fatigue and replacement criteria.

Practical uses include selecting shaft material, performing static and fatigue calculations (S‑N and ε‑N), determining notch and surface factors, verifying deflections, and preparing design documentation for CE marking and conformity assessment.

Related Standards

  • EN 13001-1 (General principles and requirements)
  • EN 13001-2 (Load actions)
  • EN 13001-3-x (other machinery elements: bearings, gears, hooks)
  • Relevant EN/ISO material standards (EN ISO 683 series)
  • ISO 4306-1 (Crane vocabulary)

Keywords: prEN 13001-3-8, EN 13001, cranes, shafts, axles, limit states, proof of competence, fatigue design, static strength, CEN.

Draft
prEN 13001-3-8:2022
English language
78 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
01-februar-2022
Žerjavi - Konstrukcija, splošno - Mejna stanja in dokaz varnosti mehanizma - 3-8.
del: Gredi
Cranes - General design - Limit states and proof competence of machinery - Part 3-8:
Shafts
Krane - Konstruktion allgemein - Teil 3-8: Grenzzustände und Sicherheitsnachweise für
Maschinenbauteile - Wellen
Appareils de levage à charge suspendue - Conception générale - Partie 3-8 : États
limites et vérification d’aptitude des éléments de mécanismes - Arbres
Ta slovenski standard je istoveten z: prEN 13001-3-8
ICS:
21.120.10 Gredi Shafts
53.020.20 Dvigala Cranes
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

DRAFT
EUROPEAN STANDARD
NORME EUROPÉENNE
EUROPÄISCHE NORM
December 2021
ICS 21.120.10; 53.020.20
English Version
Cranes - General design - Limit states and proof
competence of machinery - Part 3-8: Shafts
Appareils de levage à charge suspendue - Conception Krane - Konstruktion allgemein - Teil 3-8:
générale - Partie 3-8 : États limites et vérification Grenzzustände und Sicherheitsnachweise für
d'aptitude des éléments de mécanismes - Arbres Maschinenbauteile - Wellen
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/TC 147.
If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations
which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2021 CEN All rights of exploitation in any form and by any means reserved Ref. No. prEN 13001-3-8:2021 E
worldwide for CEN national Members.

Contents Page
European foreword . 4
1 Scope . 5
2 Normative references . 5
3 Terms and definitions, symbols and abbreviations . 6
3.1 Terms and definitions . 6
3.2 Symbols and abbreviations . 6
4 General . 10
4.1 Documentation . 10
4.2 Materials . 10
4.2.1 Grades and qualities for shafts . 10
4.2.2 Impact toughness . 19
4.3 Mechanism components – Shafts . 19
4.3.1 General . 19
4.3.2 Shafts for plain bearings . 19
4.3.3 Welded shafts . 19
5 Proof of competence for shafts . 20
6 Proof of static strength . 21
6.1 General . 21
6.2 Design stresses . 21
6.3 Limit design stresses . 21
6.4 Execution of the proof . 22
6.5 Deflections . 23
7 Proof of fatigue strength . 23
7.1 General . 23
7.2 Stress life approach: S-N method . 25
7.2.1 Design stress . 25
7.2.2 Limit design fatigue stress σ . 36
Rd,f
7.3 Execution of the proof of fatigue strength . 42
7.3.1 Individual proof . 42
7.3.2 Simplified proof . 42
7.3.3 Proof for multiaxial loading . 43
Annex A (informative) Values for the notch factor f . 44
A.1 General . 44
A.2 Examples of notch factors . 45
Annex B (informative) ε-N method: the strain life approach . 55
B.1 Introduction . 55
B.2 Origin of the strain life approach resistance curve . 55
B.3 Determination of the strain life approach resistance curve for a steel grade . 57
B.4 Determination of the resistance curve for a machinery component . 59
B.5 Strain-life approach: ε-N method . 60
B.5.1 General . 60
B.5.2 Determination of strain history . 60
B.5.3 Determination of the design fatigue damage due to the strain history . 63
B.5.4 Determination of the total fatigue damage due to combined normal and/or shear
stresses . 64
B.6 Strain-life approach (ε-N method): proof of fatigue strength of a shaft (example) . 67
B.6.1 Introduction. 67
B.6.2 Proof of fatigue strength . 67
Annex C (informative) Selection of a suitable set of crane standards for a given application . 73
Annex D (informative) List of hazards . 75
Annex ZA (informative) Relationship between this European Standard and the essential
requirements of Directive 2006/42/EC aimed to be covered . 76
Bibliography . 77

European foreword
This document (prEN 13001-3-8:2021) has been prepared by Technical Committee CEN/TC 147 “Cranes
– Safety”, the secretariat of which is held by DIN.
This document is currently submitted to the CEN Enquiry.
This document has been prepared under a standardization request given to CEN by the European
Commission and the European Free Trade Association, and supports essential requirements of
EU Directive(s).
For relationship with EU Directive(s), see informative Annex ZA, which is an integral part of this
document.
This European Standard is one part of the EN 13001 series. The other parts are as follows:
— Part 1: General principles and requirements
— Part 2: Load actions
— Part 3-1: Limit states and proof of competence of steel structures
— Part 3-2: Limit states and proof of competence of wire ropes in reeving systems
— Part 3-3: Limit states and proof of competence of wheel/rail contacts
— Part 3-4: Limit states and proof of competence of machinery — Bearings
— Part 3-5: Limit states and proof of competence of forged hooks
— Part 3-6: Limit states and proof of competence of machinery — Hydraulic cylinders
— Part 3-7: Limit states and proof of competence of machinery — Gears
1 Scope
This document is intended to be used together with the other generic parts of the EN 13001 series of
standards, see Annex C, and as such, they specify general conditions, requirements and methods to
prevent mechanical hazards of cranes by design and theoretical verification.
Specific requirements for particular types of cranes are given in the appropriate European standard for
the particular crane type.
This document covers specific shafts and rotating or non-rotating axles as an integrated part of cranes,
that are not dealt with by other EN 13001 standards (e.g. pinned connections in EN 13001-3-1). It is not
applicable to shafts or axles being part of standard equipment (e.g. gearboxes, motors).
The significant hazardous situations and hazardous events that could result in risks to persons during
intended use and reasonably foreseeable misuse are identified by Annex D. Clauses 4 to 7 of this
document are necessary to reduce or eliminate these risks.
Clauses 4 to 7 of this document are necessary to reduce or eliminate these risks associated with the
following hazards:
— exceeding the limits of strength (yield, ultimate, fatigue);
— exceeding temperature limits of material or components.
This standard does not deal with the proofs of strength of welded and cast shafts.
This document is not applicable to cranes that are manufactured before the date of its publication as
EN and serves as reference base for the European standards for particular crane types (see Annex C).
NOTE prEN 13001-3-8:2021 deals only with limit state method in accordance with EN 13001-1:2015.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 10025-2:2019, Hot rolled products of structural steels - Part 2: Technical delivery conditions for non-
alloy structural steels
EN 10025-3:2019, Hot rolled products of structural steels - Part 3: Technical delivery conditions for
normalized/normalized rolled weldable fine grain structural steels
EN 10025-4:2019, Hot rolled products of structural steels - Part 4: Technical delivery conditions for
thermomechanical rolled weldable fine grain structural steels
EN 10088-3:2014, Stainless steels - Part 3: Technical delivery conditions for semi-finished products, bars,
rods, wire, sections and bright products of corrosion resisting steels for general purposes
EN 13001-1:2015, Cranes - General design - Part 1: General principles and requirements
EN 13001-2:2021, Crane safety - General design - Part 2: Load actions
EN 13001-3-1:2012+A2:2018, Cranes - General Design - Part 3-1: Limit States and proof competence of
steel structure
EN 13001-3-4:2018, Cranes - General design - Part 3-4: Limit states and proof of competence of machinery
- Bearings
EN ISO 683-1:2018, Heat-treatable steels, alloy steels and free-cutting steels - Part 1: Non-alloy steels for
quenching and tempering (ISO 683-1:2016)
EN ISO 683-2:2018, Heat-treatable steels, alloy steels and free-cutting steels - Part 2: Alloy steels for
quenching and tempering (ISO 683-2:2016)
EN ISO 683-3:2019, Heat-treatable steels, alloy steels and free-cutting steels - Part 3: Case-hardening steels
(ISO 683-3:2019)
EN ISO 683-5:2021, Heat treatable steels, alloy steels and free-cutting steels - Part 5: Nitriding steels (ISO
683-5:2017)
EN ISO 12100:2010, Safety of machinery - General principles for design - Risk assessment and risk reduction
(ISO 12100:2010)
ISO 4306-1:2007, Cranes — Vocabulary — Part 1: General
3 Terms and definitions, symbols and abbreviations
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in EN ISO 12100:2010 and the
following apply. For the definitions of loads, ISO 4306-1:2007, Clause 6 applies.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at https://www.electropedia.org/
— ISO Online browsing platform: available at https://www.iso.org/obp
3.1.1
shaft
cylindrical rotating rod for the transmission of motion or power and on which are fixed parts for the
transmission of motion or power
3.1.2
axle
spindle on which a component (e.g. wheel, sheave) revolves or which rotates with a component (or
components) attached to it
3.2 Symbols and abbreviations
The symbols and abbreviations used in this document are given in Table 1.
Table 1 — Symbols and abbreviations
Symbols, abbreviations Description
A
Minimum impact toughness
v
b Fatigue strength exponent, for a material (ε-N method)
bp Fatigue strength exponent, for a component (ε-N method)
c Fatigue ductility exponent, for a material (ε-N method)
C Total number of working cycles (see EN 13001-1:2015)
cp Fatigue ductility exponent, for a component (ε-N method)
D
Design fatigue damage
Sd
D
Limit design fatigue damage
Rd
d Diameter
d
Equivalent diameter
equ
E Modulus of elasticity
f
Limit design normal stress
Rd,σ
f
Limit design shear stress
Rd,τ
f
Ultimate strength of material
u
f
Yield strength of material
y
f
Notch factor
f
Size factor
f
Surface roughness factor
f
Surface treatment factor
′ Factor of cyclic resistance (ε-N method)
K
K
Stress concentration factor
t
k
Stress spectrum factor (see EN 13001-1:2015)
m
k
Shaft stress spectrum factor
s
l
Design number of shaft sets
s
m
Inverse slope of σ/N-curve (or S-N curve) for normal stresses
σ
m
Inverse slope of σ/N-curve (or S-N curve) for shear stresses
τ
′ Second inverse slope of σ/N-curve
m
n
Number of stress cycles, of range i
i
′ Cyclic strain-hardening exponent (ε-N method)
n
ˆ
Total number of stress cycles (see EN 13001-1:2015)
n
N
Number of stress cycles to failure, for stress of range i
fi
Symbols, abbreviations Description
N; N
Number of stress cycles to failure
f
N
Reference number of stress cycles
Ref
r Notch radius
R Stress ratio
R
Design resistance
d
R
Average depth of surface profile according to EN ISO 4287:1998
a
S
Design stress or design force
d
s
Shaft stress history parameter
s
T Operation temperature
z Adaptation factor
'
Fatigue ductility factor (ε-N method)
ε
f
ε
Total strain amplitude (ε-N method)
a
ε
Elastic strain amplitude (ε-N method)
ae
ε
Plastic strain amplitude (ε-N method)
ap
ε
Amplitude of elastic strain (ε-N method)
e,a
ε
Elastic local strain value (ε-N method)
e,loc
ε
Real strain value (ε-N method)
r
ε
Amplitude of strain value (ε-N method)
r,a
ε
Amplitude of strain value, of range i (ε-N method)
r,i
ε
Real local strain value (ε-N method)
r,loc
γ
Safety factor for fatigue
ff
γ
General resistance factor
m
γ
Fatigue strength specific resistance factor
Mf
γ
Partial safety factor (see EN 13001-2:2021)
p
γ
Resulting resistance factor
Rm
γ
Specific resistance factor
sm
υ
Relative total number of stress cycles
s
σ
Design stress amplitude
a,i
ˆ
σ
Maximal design stress amplitude
ai,
σ
Material fatigue strength (normal stress)
d,ref
σ
Component fatigue strength (normal stress)
d
Symbols, abbreviations Description
σ
Alternating fatigue strength (normal stress)
dtr
σ
Elastic local stress (ε-N method)
e,loc
σ
Nominal elastic stress (ε-N method)
e,nom
σ
Mean equivalent elastic local stress (ε-N method)
eq,e,loc,m
σ
Amplitude of equivalent elastic local stress (ε-N method)
eq,e,loc,a
σ
Maximal equivalent elastic local stress (ε-N method)
eq,e,loc,max
σ
Minimal equivalent elastic local stress (ε-N method)
eq,e,loc,min
σ
Equivalent normal stress
eq
σ
Amplitude of equivalent normal stress
eq,a
'
Fatigue resistance factor (ε-N method)
σ
f
σ
Mean stress
m
σ
Amplitude of real local stress (ε-N method)
r,a
σ
Real local stress (ε-N method)
r,loc
σ
Mean real local stress (ε-N method)
r,m
σ
Limit design normal stress for fatigue
Rd,f
σ
Design normal stress
Sd
σ
Design normal stress for fatigue
Sd,f
σ
Equivalent design normal stress
Sd,eq
τ
Limit design shear stress for fatigue
Rd,f
τ
Design shear stress
Sd
4 General
4.1 Documentation
The documentation of the proof of competence shall include:
— design assumptions;
— applicable loads and load combinations;
— material grades and qualities;
— relevant limit states;
— results of the proof of competence calculations and, when applicable, tests.
4.2 Materials
4.2.1 Grades and qualities for shafts
European and International Standards specify materials and specific values. This document gives a
preferred selection of materials with their mechanical properties.
For shafts, steel in accordance with following European Standards shall be used, alternatively grades and
qualities other than those mentioned in the above standards may be used if the mechanical properties
and the chemical composition are specified in a manner corresponding to relevant European standards:
— steels for quenching and tempering (see Table 2):
— non alloy steels: EN ISO 683-1:2018;
— alloy steels: EN ISO 683-2:2018;
— structural steels (see Table 2);
— non-alloy structural steels: EN 10025-2:2019;
— weldable fine grain structural steels in conditions:
1) normalized (N) EN 10025-3:2019;
2) thermomechanical (M) EN 10025-4:2019;
— stainless steels (see Table 2);
— semi-finished (bars, rods …): EN 10088-3:2014;
— steels with heat treatment;
— case hardening: EN ISO 683-3:2019;
— nitriding (see Table 2): EN ISO 683-5:2021.
Table 2 shows specific values for the nominal value of strength f , f . For more information see the specific
u y
European standards listed above.
Table 2 — Specific values of a selection of steels
Steels for quenching and tempering, in the quenched and tempered condition (+QT)
Nominal strength
Steel Standard Diameter d/Thickness t f f
y u
Yield Ultimate
2 2
mm N/mm N/mm
C22E d ≤ 16 or t ≤ 8 340 500
C22R 16 < d ≤ 40 or 8 < t ≤ 20 290 470
C35E d ≤ 16 or t ≤ 8 430 630
C35R 16 < d ≤ 40 or 8 < t ≤ 20 380 600
C35 40 < d ≤ 100 or 20 < t ≤ 60 320 550
C40E d ≤ 16 or t ≤ 8 460 650
C40R 16 < d ≤ 40 or 8 < t ≤ 20 400 630
C40 40 < d ≤ 100 or 20 < t ≤ 60 350 600
C45E d ≤ 16 or t ≤ 8 490 700
C45R 16 < d ≤ 40 or 8 < t ≤ 20 430 650
C45 40 < d ≤ 100 or 20 < t ≤ 60 370 630
EN ISO 683-1:2018
d ≤ 16 ou t ≤ 8 520 750
C50E
16 < d ≤ 40 or 8 < t ≤ 20 460 700
C50R
40 < d ≤ 100 or 20 < t ≤ 60 400 650
C55E d ≤ 16 or t ≤ 8 550 800
C55R 16 < d ≤ 40 or 8 < t ≤ 20 490 750
C55 40 < d ≤ 100 or 20 < t ≤ 60 420 700
C60E d ≤ 16 or t ≤ 8 580 850
C60R 16 < d ≤ 40 or 8 < t ≤ 20 520 800
C60 40 < d ≤ 100 or 20 < t ≤ 60 450 750
d ≤ 16 or t ≤ 8 590 800
28Mn6 16 < d ≤ 40 or 8 < t ≤ 20 490 700
40 < d ≤ 100 or 20 < t ≤ 60 440 650
Steels for quenching and tempering, in the quenched and tempered condition (+QT)
Nominal strength
Steel Standard Diameter d/Thickness t f f
y u
Yield Ultimate
2 2
mm N/mm N/mm
d ≤ 16 or t ≤ 8 550 800
38Cr2 16 < d ≤ 40 or 8 < t ≤ 20 450 700
40 < d ≤ 100 or 20 < t ≤ 60 350 600
d ≤ 16 or t ≤ 8 650 900
46Cr2 16 < d ≤ 40 or 8 < t ≤ 20 550 800
40 < d ≤ 100 or 20 < t ≤ 60 400 650
d ≤ 16 or t ≤ 8 700 900
34Cr4
16 < d ≤ 40 or 8 < t ≤ 20 590 800
34CrS4
40 < d ≤ 100 or 20 < t ≤ 60 460 700
d ≤ 16 or t ≤ 8 750 950
37Cr4
16 < d ≤ 40 or 8 < t ≤ 20 630 850
37CrS4
40 < d ≤ 100 or 20 < t ≤ 60 510 750
EN ISO 683-2:2018
d ≤ 16 or t ≤ 8 800 1000
41Cr4
16 < d ≤ 40 or 8 < t ≤ 20 660 900
41CrS4
40 < d ≤ 100 or 20 < t ≤ 60 560 800
d ≤ 16 or t ≤ 8 700 900
25CrMo4 16 < d ≤ 40 or 8 < t ≤ 20 600 800
25CrMoS4 40 < d ≤ 100 or 20 < t ≤ 60 450 700
100 < d ≤ 160 or 60 < t ≤ 100 400 650
d ≤ 16 or t ≤ 8 800 1000
16 < d ≤ 40 or 8 < t ≤ 20 650 900
34CrMo4
40 < d ≤ 100 or 20 < t ≤ 60 550 800
34CrMoS4
100 < d ≤ 160 or 60 < t ≤ 100 500 750
160 < d ≤ 250 or 100 < t ≤ 160 450 700
d ≤ 16 or t ≤ 8 900 1100
16 < d ≤ 40 or 8 < t ≤ 20 750 1000
42CrMo4
EN ISO 683-2:2018 40 < d ≤ 100 or 20 < t ≤ 60 650 900
42CrMoS4
100 < d ≤ 160 or 60 < t ≤ 100 550 800
160 < d ≤ 250 or 100 < t ≤ 160 500 750
Steels for quenching and tempering, in the quenched and tempered condition (+QT)
Nominal strength
Steel Standard Diameter d/Thickness t f f
y u
Yield Ultimate
2 2
mm N/mm N/mm
d ≤ 16 or t ≤ 8 900 1100
16 < d ≤ 40 or 8 < t ≤ 20 780 1000
50CrMo4 40 < d ≤ 100 or 20 < t ≤ 60 700 900
100 < d ≤ 160 or 60 < t ≤ 100 650 850
160 < d ≤ 250 or 100 < t ≤ 160 550 800
d ≤ 16 or t ≤ 8 1000 1200
16 < d ≤ 40 or 8 < t ≤ 20 900 1100
34CrNiMo6 40 < d ≤ 100 or 20 < t ≤ 60 800 1000
100 < d ≤ 160 or 60 < t ≤ 100 700 900
160 < d ≤ 250 or 100 < t ≤ 160 600 800
d ≤ 16 or t ≤ 8 1050 1250
EN ISO 683-2:2018 16 < d ≤ 40 or 8 < t ≤ 20 1050 1250
30CrNiMo8 40 < d ≤ 100 or 20 < t ≤ 60 900 1000
100 < d ≤ 160 or 60 < t ≤ 100 800 1000
160 < d ≤ 250 or 100 < t ≤ 160 700 900
d ≤ 16 or t ≤ 8 740 880
35NiCr6 16 < d ≤ 40 or 8 < t ≤ 20 740 880
40 < d ≤ 100 or 20 < t ≤ 60 640 780
d ≤ 16 or t ≤ 8 1050 1250
16 < d ≤ 40 or 8 < t ≤ 20 1050 1250
36NiCrMo16 40 < d ≤ 100 or 20 < t ≤ 60 900 1100
100 < d ≤ 160 or 60 < t ≤ 100 800 1000
160 < d ≤ 250 or 100 < t ≤ 160 800 1000
Steels for quenching and tempering, in the quenched and tempered condition (+QT)
Nominal strength
Steel Standard Diameter d/Thickness t f f
y u
Yield Ultimate
2 2
mm N/mm N/mm
d ≤ 16 or t ≤ 8 785 980
16 < d ≤ 40 or 8 < t ≤ 20 735 930
39NiCrMo3 40 < d ≤ 100 or 20 < t ≤ 60 685 880
100 < d ≤ 160 or 60 < t ≤ 100 635 830
160 < d ≤ 250 or 100 < t ≤ 160 540 740
d ≤ 16 or t ≤ 8 880 1080
16 < d ≤ 40 or 8 < t ≤ 20 880 1080
30NiCrMo16-6 40 < d ≤ 100 or 20 < t ≤ 60 880 1080
100 < d ≤ 160 or 60 < t ≤ 100 790 900
160 < d ≤ 250 or 100 < t ≤ 160 880 900
d ≤ 16 or t ≤ 8 900 1100
16 < d ≤ 40 or 8 < t ≤ 20 800 1000
51CrV4 40 < d ≤ 100 or 20 < t ≤ 60 700 900
100 < d ≤ 160 or 60 < t ≤ 100 650 850
160 < d ≤ 250 or 100 < t ≤ 160 600 800
d ≤ 16 or t ≤ 8 700 900
20MnB5
16 < d ≤ 40 or 8 < t ≤ 20 600 750
d ≤ 16 or t ≤ 8 800 950
EN ISO 683-2:2018
30MnB5
16 < d ≤ 40 or 8 < t ≤ 20 650 800
d ≤ 16 or t ≤ 8 900 1050
38MnB5
16 < d ≤ 40 or 8 < t ≤ 20 700 850
d ≤ 16 or t ≤ 8 800 1000
27MnCrB5-2 16 < d ≤ 40 or 8 < t ≤ 20 750 900
40 < d ≤ 100 or 20 < t ≤ 60 700 800
d ≤ 16 or t ≤ 8 850 1050
33MnCrB5-2 16 < d ≤ 40 or 8 < t ≤ 20 800 950
40 < d ≤ 100 or 20 < t ≤ 60 750 900
d ≤ 16 or t ≤ 8 900 1100
39MnCrB6-2 16 < d ≤ 40 or 8 < t ≤ 20 850 1050
40 < d ≤ 100 or 20 < t ≤ 60 800 1000
Steels for quenching and tempering, in the normalized condition (+N)
Nominal strength
Steel Standard Diameter d/Thickness t f f
y u
Yield Ultimate
2 2
mm N/mm N/mm
C22E d ≤ 16 or t ≤ 16 240 430
C22R 16 < d ≤ 100 or 16 < t ≤ 100 210 410
C35E d ≤ 16 or t ≤ 16 300 550
C35R 16 < d ≤ 100 or 16 < t ≤ 100 270 520
C35 100 < d ≤ 250 or 100 < t ≤ 250 245 500
C40E d ≤ 16 or t ≤ 16 320 580
C40R 16 < d ≤ 100 or 16 < t ≤ 100 290 550
C40 100 < d ≤ 250 or 100 < t ≤ 250 260 530
C45E d ≤ 16 or t ≤ 16 340 620
C45R 16 < d ≤ 100 or 16 < t ≤ 100 305 580
C45 100 < d ≤ 250 or 100 < t ≤ 250 275 560
EN ISO 683-1:2018
d ≤ 16 or t ≤ 16 355 650
C50E
16 < d ≤ 100 or 16 < t ≤ 100 320 610
C50R
100 < d ≤ 250 or 100 < t ≤ 250 290 590
C55E d ≤ 16 or t ≤ 16 370 680
C55R 16 < d ≤ 100 or 16 < t ≤ 100 330 640
C55 100 < d ≤ 250 or 100 < t ≤ 250 300 620
C60E d ≤ 16 or t ≤ 16 380 710
C60R 16 < d ≤ 100 or 16 < t ≤ 100 340 670
C60 100 < d ≤ 250 or 100 < t ≤ 250 310 650
d ≤ 16 or t ≤ 16 345 630
28Mn6 16 < d ≤ 100 or 16 < t ≤ 100 310 600
100 < d ≤ 250 or 100 < t ≤ 250 290 590
Structural steels and stainless steels
Nominal strength
Steel Standard Diameter d/Thickness t f f
y u
Yield Ultimate
2 2
mm N/mm N/mm
t ≤ 16 235
16 < t ≤ 40 225
S235 340
40 < t ≤ 100 215
100 < t ≤ 150 195
t ≤ 16 275
16 < t ≤ 40 265
40 < t ≤ 63 255
S275 430
63 < t ≤ 80 245
EN 10025-2:2019
80 < t ≤ 100 235
100 < t ≤ 150 225
t ≤ 16 355
16 < t ≤ 40 345
40 < t ≤ 63 335
S355 490
63 < t ≤ 80 325
80 < t ≤ 100 315
100 < t ≤ 150 295
t ≤ 16 355
16 < t ≤ 40 345
40 < t ≤ 63 335
S355 450
63 < t ≤ 80 (N) 325
80 < t ≤ 100 (N) 315
100 < t ≤ 150 (N) 295
EN 10025-3:2019 (N)
EN 10025-4:2019 (M)
t ≤ 16 420
16 < t ≤ 40 400
40 < t ≤ 63 390
S420 500
63 < t ≤ 80 (N) 370
80 < t ≤ 100 (N) 360
100 < t ≤ 150 (N) 340
Structural steels and stainless steels
Nominal strength
Steel Standard Diameter d/Thickness t f f
y u
Yield Ultimate
2 2
mm N/mm N/mm
t ≤ 16 460
16 < t ≤ 40 440
EN 10025-3:2019 (N)
S460 40 < t ≤ 63 430 530
EN 10025-4:2019 (M)
63 < t ≤ 80 (N) 410
80 < t ≤ 100 (N) 400
a a
X12Cr13 450 650
d ≤ 160
a a
X30Cr13 EN 10088-3:2014
650 850
a a
X5CrNiCuNb16-4 d ≤ 100 720 930
a
0,2 % – proof strength and tensile strength for the following heat treatment condition: QT650 for X12Cr13, QT850 for
X30Cr13 and +P930 for X5CrNiCuNb16-4
Nitriding steels, in the quenched and tempered condition (+QT)
Nominal strength
Steel Standard Diameter d/Thickness t f f
y u
Yield Ultimate
2 2
mm
N/mm N/mm
16 ≤ d ≤ 40 800 1000
40 < d ≤ 100 750 950
24CrMo13-6
100 < d ≤ 160 700 900
160 < d ≤ 250 650 850
16 ≤ d ≤ 40 835 1030
40 < d ≤ 100 785 980
31CrMo12
100 < d ≤ 160 735 930
160 < d ≤ 250 675 880
16 ≤ d ≤ 40 835 1030
40 < d ≤ 100 835 980
32CrAlMo7-10
100 < d ≤ 160 735 930
160 < d ≤ 250 675 880
16 ≤ d ≤ 40 900 1100
40 < d ≤ 100 800 1000
31CrMoV9
100 < d ≤ 160 700 900
160 < d ≤ 250 650 850
EN ISO 683-5:2021 16 ≤ d ≤ 40 950 1150
40 < d ≤ 100 850 1050
33CrMoV12-9
100 < d ≤ 160 750 950
160 < d ≤ 250 700 900
16 ≤ d ≤ 40 680 900
40 < t ≤ 100 650 850
34CrAlNi7-10
100 < d ≤ 160 600 800
160 < d ≤ 250 600 800
16 ≤ d ≤ 40 750 950
40 < d ≤ 100 720 900
41CrAlMo7-10
100 < d ≤ 160 670 850
160 < d ≤ 250 625 800
16 ≤ d ≤ 40 750 950
40 < d ≤ 100 720 900
40CrMoV13-9
100 < d ≤ 160 700 870
160 < d ≤ 250 625 800
34CrAlMo5-10 16 ≤ d ≤ 100 600 800
4.2.2 Impact toughness
The shafts shall have sufficient ductility to prevent brittle fracture.
The shaft material, after heat treatment, shall have minimum Charpy-V impact energy in accordance with
Table 3, for structural steels and quenched and tempered steels.
Table 3 — Impact test requirement for shaft made of structural steel or quenched and tempered
steel
a
Impact test temperature Minimum impact energy KV
Operating temperature
T ≥ 0 °C +20 °C 27 J
T ≥ −20 °C −0 °C 27 J
b
T ≥ −40 °C −20 °C
27/35 J
b
T ≥ −60 °C −40 °C 35/42 J
a
Operating temperature is the minimum specified temperature in operating condition of the room, enclosure
or the outdoor space, where the shaft is located. Benefit of any external heating system provided may be taken
into account (e.g. machinery house). The out-of-service temperature needs not to be considered for the choice
of steel.
b 2
For steels with f > 500 N/mm
y
4.3 Mechanism components – Shafts
4.3.1 General
This European Standard deals with machinery components usually subjected to bending, shear and/or
torsion, characterized by presence of notches, shafts being the most common.
The dimensions, tolerances and surface roughness of press-on or shrink-on fits should comply with the
references given in the Bibliography.
The design of the shrink-on components should conform to the references given in the Bibliography.
Splines conforming to following standards should preferably be used:
— straight sided splines: ISO 14;
— straight cylindrical involute splines: ISO 4156 (all parts).
For the splines mentioned above as well as for involute splines, other references are given in the
Bibliography.
The notch effect of keyways is taken into account by this European Standard (see Figure A.9) but does
not specify their dimensions.
4.3.2 Shafts for plain bearings
EN 13001-3-4:2018 4.3.4.4 and 4.3.4.5 shall apply.
4.3.3 Welded shafts
Welded connections including components made of steel for quenching and tempering are not
recommended (e.g. rope drum shaft made of steel for quenching and tempering, welded on a drum flange
made with structural steel). For such connections, special attention shall be given to the welding process
in order to prevent hot or cold cracking.
5 Proof of competence for shafts
The objective of the proof of competence for shafts is to demonstrate that the design stresses or forces S
d
do not exceed the design resistances R :
d
S ≤ R
(1)
d d
The design stresses or forces S shall be determined by applying the relevant loads, load combinations
d
and partial safety factors in accordance with EN 13001-2:2021.
In the following clauses, the design resistances R are represented as:
d
— limit static design stresses f or limit design stress for fatigue σ ;
Rd Rd,f
— limit design fatigue damage D .
Rd
The following proofs shall be demonstrated for shafts:
— proof of static strength;
— proof of fatigue strength.
Methods for the proofs of static strength and fatigue strength are respectively given in 6.4 and 7.3. Those
proofs are based on nominal stresses, i.e. stresses calculated using traditional elastic theory of the
strength of materials. The effect of localized stress non-uniformities is taken into account by specific
notch factor for the proof of fatigue strength.
As mentioned in EN 13001-1:2015, alternatively, advanced and recognized analytical or experimental
methods may be used in general, provided that they conform to the principles of this series of standards.
Those methods can be sophisticated programs (e.g. methods of gearboxes manufacturers, or Finite
Element Analysis). Conformity to the principles of EN 13001 means notably that:
— the stress history of the shaft under consideration shall be based on the principles from
EN 13001-1:2015;
— the most unfavourable load effects (proof of static strength) and the load history (proof of fatigue
strength) shall be issued from the load combinations in accordance with EN 13001-2:2021;
— separate proofs shall be executed for both static and fatigue strengths;
— the proofs shall be based on recognized literature or standards dealing specifically with shafts,
supported by fatigue tests database: see Bibliography (e.g. [11] or [25]);
— in addition to the Proofs of Competence addressed in detail in Clauses 6 and 7, the possibility of
dynamic instabilities (e.g. such as shaft whirling) not within the scope of this standard, should be
borne in mind and addressed as part of the design process.
6 Proof of static strength
6.1 General
A proof of static strength by calculation is intended to prevent excessive deformations due to yielding of
the material and fracture of shafts. Dynamic factors given in EN 13001-2:2021 are to be used to produce
equivalent static loads to simulate dynamic effects.
NOTE prEN 13001-3-7 is under preparation for gears and gearboxes and deals with load actions for shafts in
gearboxes.
The proof shall be carried out for the relevant machinery components, with the most unfavourable load
effects from load combinations A, B or C in EN 13001-2:2021 taken into account and with the resistances
calculated in accordance with 6.3.
For the list of specific crane shafts and axles below, some load combinations from EN 13001-2:2021 have
been selected as relevant in the present standard:
— Rope drum shafts and sheave axles:
— Load combinations A1, A3, B1, B3, C1, C3, C6, C7, C9, C10
— Travel and traverse wheel shafts:
— Load combinations A1, A3, B1, B3, B5, C3, C5, C6, C10
— Guide roller axles:
— Load combinations A1,B5, C10.
6.2 Design stresses
σ is the normal design stress, τ is the shear design stress, due to shear force and torsion and the von
Sd Sd
Mises equivalent stress may be used instead.
σ and τ are nominal stresses, i.e. stresses calculated using traditional elastic strength of materials
Sd Sd
theory which in general neglect localized non-uniform stress distributions. When more accurate
alternative methods of stress calculation are used, such as finite element analysis, using those stresses
for the proof given in this standard may yield overly conservative results.
6.3 Limit design stresses
The limit design stresses f shall be calculated from:
Rd
f
y
f =  for normal stresses (2)
Rdσ
γ
Rm
f
y
(3)
f =  for shear stresses
Rdτ
γ ⋅ 3
Rm
with
γ γγ⋅
Rm m sm
=
where
is the value of the yield strength of the material, at the calculation point (see
f
y
Table 2);
γ γ = 1,;1
is the general resistance factor, with
m m
is the specific resistance factor, defined by:
γ
sm
for structural steels and stainless steels from Table 2;
γ = 0, 95
sm
for steels for quenching and tempering, in the quenched and tempered condition
f
y
γ =
sm
γ ≥ 10,
from Table 2, with ;
0,7⋅ f
sm
u
where
f is the value of the ultimate strength of the material (see Table 2);
u
for steels which are case hardened and nitrided from Table 2, and all other
f
y
γ =
sm
γ ≥ 10,
steels not included in Table 2, with .
0,65⋅ f
sm
u
6.4 Execution of the proof
For machinery components, the proof shall be executed for the most critical point with respect to design
stress and material properties. For hardened shafts for example, two proofs shall be executed, inside and
outside the hardened layer.
It shall be proven that:
σ ≤≤f and τ f
(4)
Sd RdστSd Rd
where
are the design stresses, in accordance with 6.2;
στ,
Sd Sd
are the corresponding limit design stresses, in accordance with 6.3. In case von
f , f
RdστRd
f
Mises is used, is the limit design stress.
Rdσ
In case of plane states of stresses when von Mises stresses are not used it shall additionally be proven
that:
2 2

  
σ σσ⋅
σ
τ
Sd,y Sd,x Sd,y
Sd,x
Sd
  
+ − + ≤ 1
(5)

  
f f ff⋅ f

Rdσ,x Rdσ,y Rdσσ,x Rd ,y Rdτ
  

where
x, y indicate the orthogonal directions of stress components.
6.5 Deflections
The deflections of the shaft shall be taken into account.
It shall be ensured for any component that its deflection does not compromise its correct functioning (e.g.
giving excessive rise to an edge effect in a plain bearing or perturbation of an ideal gear tooth contact).
7 Proof of fatigue strength
7.1 General
A proof of fatigue strength is intended to prevent risk of failure due to formation of critical cracks in
machinery components under cyclic loading.
In general, the proof shall be executed by applying the load combinations A in accordance with
γ = 1
EN 13001-2:2021, setting all partial safety factors .
p
In a stress history, only a portion of the total number of stress cycles is affected by dynamic factors 𝜑𝜑 .
i
For example, in the case of shafts subjected to rotating bending during working cycle, only a portion of
the stress cycles is multiplied by 𝜑𝜑 due to the effect of damping and motor characteristics. These cycles
may be determined using experience or by measurements.
As mentioned in EN 13001-1:2015, advanced and recognized numerical or experimental methods may
be used as an alternative for the determination of the dynamic factors 𝜑𝜑 .
i
The characteristic fatigue strength values of a machinery component include the effects of:
— material;
— type of load actions;
— local stress concentrations due to the shape of the component;
— size;
— surface condition.
The proof of fatigue strength in accordance with 7.2 is a standard method for the proof of fatigue strength,
based on a stress life approach, usually called S-N method.
Informative Annex B presents another method, usually called ε-N method, based on a strain life approach;
it can be applied for any local strain value and is recommended if the stress history parameter is lower
than 0,01.
The stress history and the number of stress cycles are included in the stress history parameter s
s
(see EN 13001-1:2015) which can be determined by calculation or testing. The effect of mean-stress is
dealt with EN 13001-1:2015 and is not negligible for shafts. Therefore the stress history parameter s is
s
dependent of the mean-stress.
The uncertainty of fatigue strength values and the possible consequences of fatigue damage are taken
into account by the fatigue strength specific resistance factor γ , given in Table 9.
Mf
For the purpose of this standard, the fatigue strength of a shaft will be represented by a two-slope Wöhler
curve with a cut-off limit: see Figure 1 below.
In the case of components of which one of the number n of stress cycles with stress amplitude of range i
i
is greater than 2 · 10 cycles (see EN 13001-1:2015), the procedure below shall be applied:
σ σ
a) For any stress amplitude lower than (intermediate alternating fatigue strength, see
ai, d,s
7.2.2.3.6), the corresponding real number n will be replaced by n resulting in the equivalent fatigue
i i,1
damage cycles related to the first slope m only:
m′−m

σ
ai,

nn= ⋅ (6)
i1, i
σ
d,s

with
n number of stress cycles with stress amplitude of class i (see Figure 5),
i
m inverse slope of σ/N-curve (see 7.2.2.5),
transformed stress amplitude (see 7.2.2.1),
σ
ai,
intermediate alternating fatigue strength (see 7.2.2.3.6),
σ
d,s
inverse second slope of σ/N-curve (see Figure 1), calculated with:
m'

m=m++m 1 (7)
b) The stress amplitudes σ lower than 0,7 · σ will not be taken into account (see principle in
ai, d,s
Figure 1 below where the neglected cycles of the stress history are grey hatched).

Key
1 cycles not taken into account
Figure 1 — Illustration of σ-N curve
7.2 Stress life approach: S-N method
7.2.1 Design stress
7.2.1.1 Transformation of the identified stress cycles into cycles with constant mean stress or
constant stress ratio
By applying EN 13001-1:2015 requirements, the two-param
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

Frequently Asked Questions

prEN 13001-3-8 is a draft published by the European Committee for Standardization (CEN). Its full title is "Cranes - General design - Part 3-8: Limit states and proof competence of machinery - Shafts". This standard covers: This document is to be used together with EN 13001-1 and EN 13001-2 and as such they specify general conditions, requirements and methods to prevent mechanical hazards of cranes by design and theoretical verification. Specific requirements for particular types of cranes are given in the appropriate European standard for the particular crane type. This document covers shafts (axles) in cranes that are not dealt with by other EN 13001 standards (e.g. pinned connections in EN 13001-3-1). It is not intended for axles being part of standard components, e.g. gearboxes, motors ... however those axles shall be designed using load actions from EN 13001-2 and classification parameters of EN 13001-1. NOTE EN 13001-3-7 is under preparation for gears and gearboxes and deals with load actions for axles in gear boxes. The following is a list of significant hazardous situations and hazardous events that could result in risks to persons during intended use and reasonably foreseeable misuse. Clauses 4 to 7 of this document are necessary to reduce or eliminate risks associated with the following hazards: - exceeding the limits of strength (yield, ultimate, fatigue); - exceeding temperature limits of material or components. This document is not applicable to cranes which are manufactured before the date of its publication as EN and serves as reference base for the European standards for particular crane types (see Annex C). NOTE prEN 13001-3-8 deals only with limit state method in accordance with EN 13001-1.

This document is to be used together with EN 13001-1 and EN 13001-2 and as such they specify general conditions, requirements and methods to prevent mechanical hazards of cranes by design and theoretical verification. Specific requirements for particular types of cranes are given in the appropriate European standard for the particular crane type. This document covers shafts (axles) in cranes that are not dealt with by other EN 13001 standards (e.g. pinned connections in EN 13001-3-1). It is not intended for axles being part of standard components, e.g. gearboxes, motors ... however those axles shall be designed using load actions from EN 13001-2 and classification parameters of EN 13001-1. NOTE EN 13001-3-7 is under preparation for gears and gearboxes and deals with load actions for axles in gear boxes. The following is a list of significant hazardous situations and hazardous events that could result in risks to persons during intended use and reasonably foreseeable misuse. Clauses 4 to 7 of this document are necessary to reduce or eliminate risks associated with the following hazards: - exceeding the limits of strength (yield, ultimate, fatigue); - exceeding temperature limits of material or components. This document is not applicable to cranes which are manufactured before the date of its publication as EN and serves as reference base for the European standards for particular crane types (see Annex C). NOTE prEN 13001-3-8 deals only with limit state method in accordance with EN 13001-1.

prEN 13001-3-8 is classified under the following ICS (International Classification for Standards) categories: 21.120.10 - Shafts; 53.020.20 - Cranes. The ICS classification helps identify the subject area and facilitates finding related standards.

prEN 13001-3-8 is associated with the following European legislation: EU Directives/Regulations: 2006/42/EC; Standardization Mandates: M/396. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.

You can purchase prEN 13001-3-8 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.