CEN/TS 17286:2019
(Main)Stationary source emissions - Mercury monitoring using sorbent traps
Stationary source emissions - Mercury monitoring using sorbent traps
The purpose of this document is to establish performance benchmarks for, and to evaluate the acceptability of, sorbent trap monitoring systems used to monitor total vapour- phase mercury (Hg) emissions in stationary source flue gas streams. These monitoring systems involve continuous repetitive in-flue sampling using paired sorbent traps with subsequent analysis of the time-integrated samples.
This document is suitable for both short-term (periodic) measurements and long-term (continuous) monitoring using sorbent traps.
NOTE When this Technical Specification has been validated, the sorbent trap method will be an Alternative Method subject to the restrictions on applicability defined below. Until that time, EN 13211 is the only accepted Reference Method for both short-term (periodic) measurements and for calibrating continuous monitoring systems, including those with long-term sampling systems. EN 13211 is a wet chemistry approach that relies on absorption of mercury into impinger solutions.
The substance measured according to this specification is the total vapour phase mercury in the flue gas, which represents the sum of the elemental mercury (Hg0) and gaseous forms of oxidized mercury (Hg2+), such as mercury (II) chloride, in mass concentration units of micrograms (μg) per dry meter cubed (m3). The analytical range is typically 0,1 to greater than 50 µg/m3.
The sorbent tube approach is intended for use under relatively low particulate conditions (typically less than 100 mg/m3) when monitoring downstream of all pollution control devices, e.g. at coal fired power plants and cement plants. In this case, the contribution of mercury in the particulate fraction is considered to be negligible (typically less than 5 % of total mercury). However, it shall be noted that the sorbent trap does take account of the finest particle fraction that is sampled with the flue gas, in addition to capturing the vapour phase mercury.
This specification also contains routine procedures and specifications that are designed to evaluate the ongoing performance of an installed sorbent trap monitoring system. The operator of the industrial installation is responsible for the correct calibration, maintenance and operation of this long-term sampling system. Additional requirements for calibration and quality assurance of the long-term sampling system are then defined in EN 14884 and EN 14181.
Emissionen aus stationären Quellen - Quecksilbermonitoring mit Sorptionsfallen
Dieses Dokument dient dazu, Leistungskenngrößen für die Beurteilung der Eignung von Messsystemen mit Sorptionsfallen (Sorbent Traps) zur Überwachung der gesamten gasförmigen Quecksilber (Hg)-Emissionen in Abgasströmen aus ortsfesten Quellen festzulegen. Diese Überwachungssysteme nutzen sich wiederholende, kontinuierliche Probenahmen aus dem Abgasstrom mit Anreicherung auf paarweise angeordneten Sorptionsfallen und anschließender Analyse der zeitintegrierten Proben.
Dieses Dokument eignet sich gleichermaßen für Kurzzeitmessungen (periodisch) und für Langzeitmessungen (kontinuierlich) unter Verwendung von Sorptionsfallen.
ANMERKUNG Nach der Validierung dieser Technischen Spezifikation wird das Sorptionsfallenverfahren ein alternatives Verfahren sein, das den nachfolgend festgelegten Anwendungsbeschränkungen unterliegt. Bis dahin ist EN 13211 das einzige akzeptierte Referenzverfahren für periodische Kurzzeitmessungen und für Vergleichsmessungen bei der Kalibrierung von kontinuierlich arbeitenden Messeinrichtungen einschließlich Systemen mit Langzeit-Probenahmeeinrichtungen. EN 13211 ist ein nasschemisches Verfahren auf der Grundlage der Absorption von Quecksilber in Absorptionslösungen.
Die nach dieser Spezifikation gemessene Substanz ist das gesamte gasförmige Quecksilber in dem Abgas und repräsentiert die Summe aus elementarem Quecksilbers (Hg0) und gasförmigem oxidierten Quecksilber (Hg2+), wie etwa Quecksilber-(II)-Chlorid, in Massenkonzentrationseinheiten von Mikrogramm (μg) je Kubikmeter/trocken (m3). Der Anwendungsbereich der Methode liegt üblicherweise zwischen 0,1 µg/m3 und 50 µg/m3 und darüber hinaus.
Das Messverfahren ist für Anwendungen mit relativ geringen Partikelkonzentrationen (üblicherweise weniger als 100 mg/m3) bei Messungen hinter allen Abgasreinigungseinrichtungen beispielsweise in Kohlekraftwerken oder Zementwerken vorgesehen. Unter diesen Bedingungen gilt der Anteil an partikelgebundenem Quecksilber als vernachlässigbar (üblicherweise weniger als 5 % des Gesamtquecksilbers). Es ist zu beachten, dass neben den gasförmigen Quecksilberverbindungen auch die feinste Staubfraktion, die bei der Probenahme mit dem Messgut aus dem Abgas entnommen wird, berücksichtigt wird.
Diese Spezifikation enthält darüber hinaus Routineverfahren und Anforderungen für die fortlaufende Beurteilung der Funktionsfähigkeit einer installierten Sorptionsfallen-Probenahmeeinrichtung. Der Betreiber der Industrieanlage ist für die korrekte Kalibrierung, Instandhaltung und den korrekten Betrieb dieser Langzeit-Probenahmeeinrichtung zuständig. Zusätzliche Anforderungen an die Kalibrierung und Qualitätssicherung der Langzeit-Probenahmeeinrichtung sind in EN 14884 und EN 14181 festgelegt.
Émissions de sources fixes - Surveillance du mercure à l'aide de pièges adsorbants
L’objectif du présent document est d’établir des références de performance et d’évaluer l’acceptabilité des systèmes de surveillance à piège adsorbant employés pour surveiller les émissions de mercure (Hg) dans la phase vapeur totale dans les courants d’effluents gazeux de sources fixes. Ces systèmes de surveillance impliquent des échantillonnages répétitifs continus dans le conduit à l’aide de pièges adsorbants appariés, suivis d’une analyse des échantillons intégrés dans le temps.
Le présent document est adapté à la fois aux mesurages à court terme (périodiques) et à la surveillance à long terme (continue) à l’aide de pièges adsorbants.
NOTE Lors de la validation de la présente Spécification technique, la méthode du piège adsorbant constituera une Méthode alternative soumise aux restrictions d’applicabilité définies ci-dessous. Jusqu’à l’heure actuelle, l’EN 13211 est la seule Méthode de référence acceptée à la fois pour les mesurages à court terme (périodiques) et pour l’étalonnage des systèmes de surveillance continue, y compris ceux avec systèmes d’échantillonnage en continu. L’EN 13211 est une approche chimique par voie humide qui repose sur l’absorption du mercure dans des solutions pour impingers.
La substance mesurée conformément à la présente spécification est le mercure total de la phase vapeur dans les effluents gazeux ; il représente la somme du mercure élément (Hg0) et des formes gazeuses de mercure oxydé (Hg2+), comme le chlorure de mercure (II), exprimée en concentration massique sous la forme de microgrammes (μg) par mètre cube sec (m3). La plage analytique est typiquement comprise entre 0,1 µg/m3 et plus de 50 µg/m3.
L’approche par tube adsorbant est destinée à être utilisée dans des conditions de relativement faible teneur en particules (typiquement moins de 100 mg/m3) lors de la surveillance en aval de tous les dispositifs de contrôle de la pollution, par exemple dans les centrales à charbon et les cimenteries. Dans ce cas, la contribution du mercure à la fraction particulaire est considérée comme négligeable (typiquement moins de 5 % du mercure total). Toutefois, il doit être noté que le piège adsorbant tient compte de la fraction particulaire la plus fine qui est échantillonnée avec l’effluent gazeux, en plus de capturer le mercure de la phase vapeur.
La présente spécification contient également des modes opératoires de routine et des spécifications conçus pour évaluer les performances continues d’un système de surveillance à piège adsorbant installé. L’opérateur de l’installation industrielle est responsable de l’étalonnage, de la maintenance et de l’exploitation corrects de ce système d’échantillonnage en continu. Des exigences supplémentaires concernant l’étalonnage et l’assurance qualité du système d’échantillonnage en continu sont définies dans l’EN 14884 et dans l’EN 14181.
Emisije nepremičnih virov - Monitoring živega srebra z adsorpcijsko cevko
Namen te tehnične specifikacije je vzpostaviti merila uspešnosti in oceniti sprejemljivost nadzornih sistemov adsorpcijskih cevk, ki se uporabljajo za monitoring skupnih emisij živega srebra (Hg) v parni fazi pri tokih odpadnih plinov iz nepremičnih virov. Ti nadzorni sistemi vključujejo neprekinjeno ponavljajoče se dimno vzorčenje z uporabo parov adsorpcijskih cevk z naknadno analizo časovno integriranih vzorcev.
Ta tehnična specifikacija je primerna za kratkotrajne (občasne) meritve in za dolgoročen (neprekinjen) monitoring z uporabo adsorpcijskih cevk.
Snov, ki je merjena skladno s to specifikacijo, je skupna emisija živega srebra v odpadnem plinu, ki predstavlja vsoto elementarnega živega srebra in plinastih oblik oksidiranega živega srebra, kot je živosrebrov (II) klorid, ter kubične enote masne koncentracije mikrogramov na suh meter. Obseg analize je običajno od 0,1 do več kot 50 µg/m3.
Pristop cevi s sorbentom je predviden za uporabo pri razmeroma nizkem stanju delcev (običajno manj kot 100 mg/m3) pri monitoringu vseh naprav za uravnavanje onesnaževanja v smeri toka, npr. v elektrarnah na premog in cementarnah. V tem primeru se prispevek živega srebra v frakciji trdnih delcev šteje kot zanemarljiv (običajno manj kot 5 % vsega živega srebra). Opozoriti pa je treba, da je pri adsorpcijski cevki poleg zajetja emisij živega srebra upoštevana tudi najmanjša frakcija delcev, vzorčena z odpadnim plinom.
Ta specifikacija vsebuje tudi rutinske postopke in specifikacije, ki so zasnovani za redno vrednotenje učinkovitosti nameščenega nadzornega sistema adsorpcijskih cevk. Upravljavec industrijske inštalacije je odgovoren za pravilno umerjanje, vzdrževanje in delovanje tega sistema dolgoročnega vzorčenja. Dodatne zahteve za umerjanje in zagotavljanje kakovosti sistema dolgoročnega vzorčenja so nato opredeljene v standardih EN 14884 in EN 14181.
General Information
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2019
Emisije nepremičnih virov - Monitoring živega srebra z adsorpcijsko cevko
Stationary source emissions - Mercury monitoring using sorbent traps
Emissionen aus stationären Quellen - Quecksilbermonitoring mit Sorptionsfallen
Émissions de sources fixes - Surveillance du mercure à l'aide de pièges adsorbants
Ta slovenski standard je istoveten z: CEN/TS 17286:2019
ICS:
13.040.40 Emisije nepremičnih virov Stationary source emissions
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
CEN/TS 17286
TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
March 2019
TECHNISCHE SPEZIFIKATION
ICS 13.040.40
English Version
Stationary source emissions - Mercury monitoring using
sorbent traps
Émissions de sources fixes - Surveillance du mercure à Emissionen aus stationären Quellen -
l'aide de pièges adsorbants Quecksilbermonitoring mit Sorptionsfallen
This Technical Specification (CEN/TS) was approved by CEN on 9 December 2018 for provisional application.
This Technical Specification (CEN/TS) was corrected and reissued by the CEN-CENELEC Management Centre on 27 March 2019.
The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to
submit their comments, particularly on the question whether the CEN/TS can be converted into a European Standard.
CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS
available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in
parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATIO N
EUROPÄISCHES KOMITEE FÜR NORMUN G
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. CEN/TS 17286:2019 E
worldwide for CEN national Members.
Contents Page
European foreword . 6
1 Scope . 7
2 Normative references . 7
3 Terms and definitions . 8
4 Symbols and abbreviations . 9
5 Principle . 11
6 Measuring equipment . 11
6.1 Sorbent trap monitoring system equipment specifications . 11
6.1.1 Monitoring system . 11
6.1.2 Moisture removal device . 13
6.1.3 Vacuum pump . 13
6.1.4 Total sample volume measurement . 13
6.1.5 Sample flow rate meter and controller . 13
6.1.6 Temperature sensor . 13
6.1.7 Absolute pressure sensor . 14
6.1.8 Automatic controller . 14
6.1.9 Sample preparation . 14
6.1.10 Sample analysis equipment . 14
6.1.11 Sorbent trap spiking system . 14
7 Reagents and standards . 15
8 Performance specification test procedure . 15
8.1 Selection of monitoring site and initial sampling conditions . 15
8.2 Pre-sampling spiking of sorbent traps . 15
8.3 Field blanks . 15
8.4 Pre-monitoring leak check . 16
8.5 Determination of flue gas characteristics . 16
8.6 Monitoring . 16
8.6.1 System preparation and initial data recording . 16
8.6.2 Flow rate control . 16
8.6.3 Flue gas moisture determination . 17
8.6.4 Essential operating data . 17
8.6.5 Post-monitoring leak check. 17
8.6.6 Sample recovery . 18
8.6.7 Sample handling, storage, and transport . 18
8.6.8 Sample custody . 18
9 Quality assurance/quality control (QA/QC) . 18
10 Calibration and standardization. 21
10.1 Gaseous and liquid standards . 21
10.2 Gas flow meter calibration . 21
10.2.1 General . 21
10.2.2 Initial calibration . 21
10.2.3 Initial calibration procedures . 21
10.2.4 Initial calibration factor . 22
10.2.5 Optional on-site calibration audit for mass flow meters . 22
10.2.6 Ongoing quality control . 22
11 Analytical performance criteria . 22
11.1 General . 22
11.2 Analytical matrix interference test . 23
11.2.1 General . 23
11.2.2 Analytical matrix interference test procedures . 23
11.2.3 Analytical matrix interference test acceptance criteria . 23
11.3 Determination of minimum sample mass . 24
11.3.1 General . 24
11.3.2 Determination of minimum calibration concentration or mass . 24
11.3.3 Determination of minimum sample mass . 24
11.3.4 Example determination of minimum sample mass for thermal desorption analysis . 24
11.3.5 Example determination of Minimum Sample Mass for Acid Leachate/Digest Analysis . 24
11.4 Hg and HgCl analytical bias test (ABT) . 25
11.4.1 General . 25
11.4.2 Hg and HgCl ABT procedures . 25
11.4.3 Hg ABT . 25
11.4.4 HgCl ABT . 25
11.5 Field recovery test . 25
11.6 Accuracy test using certified reference material . 26
11.6.1 General . 26
11.6.2 Gaseous Hg sorbent trap spiking system . 26
12 Calculations, data reduction, data analysis and reporting . 26
12.1 Calculation of pre-sampling spiking level . 26
12.2 Calculations of the flow reference ratio for flow-proportional sampling . 27
12.3 Calculation of spike recovery . 27
12.4 Calculation of breakthrough . 28
12.5 Calculation of mercury concentration . 28
12.6 Calculation of paired trap agreement . 29
12.7 Calculation of FRT parameters . 29
12.8 Data reduction and method uncertainty . 30
Annex A (informative) Gaseous Hg0 sorbent trap spiking system . 31
Annex B (informative) Calculation of flue gas moisture content . 35
B.1 Plants with wet abatement systems. 35
B.2 Plants without wet abatement systems . 35
B.2.1 General . 35
B.2.2 Calculating moisture content from a stoichiometric fuel factor. 35
B.2.3 Calculating moisture content from flue gas properties . 36
Annex C (normative) Performance criteria and test procedures for certification of long-
term sampling systems . 38
C.1 General requirements . 38
C.2 Validation of the installation/functioning on each plant . 39
C.2.1 Preparation . 39
C.2.1.1 General . 39
C.2.1.2 Minimum requirements for set-up . 39
C.2.1.3 Minimum requirements for selecting the sampling point . 39
C.3 Performance criteria and test procedure for certification . 39
C.3.1 General relation to other standards . 39
C.3.2 General requirements . 39
C.3.2.1 Application of the minimum requirements . 39
C.3.2.2 Certification ranges . 39
C.3.3 Performance criteria common to all long-term sampling systems for laboratory
testing . 40
C.3.3.1 Performance criteria for the automatic volume proportional flow control . 40
C.3.3.2 Requirements of EN 15267-3 . 40
C.3.4 Performance criteria common to all long-term sampling systems for field testing . 40
C.3.4.1 For the automatic volume proportional flow control . 40
C.3.4.2 Status information . 40
C.3.4.3 Availability . 40
C.3.4.4 Reproducibility . 41
C.3.4.5 Automatic post-adjustment unit . 42
C.3.4.6 Breakthrough criteria of used traps . 42
C.3.4.7 Paired trap agreement . 42
C.3.4.8 Number of values to be determined . 42
C.3.4.9 Labelling . 42
C.3.4.10 Relation to the plant conditions . 42
C.3.4.11 Volume proportional control . 42
C.3.4.12 Essential characteristic data . 42
Annex D (informative) Sorbent traps configurations . 43
D.1 Sorbent trap dimensions . 43
D.2 Sorbent trap configurations . 43
Annex E (normative) Reporting of sampling information . 45
E.1 Reporting . 45
E.1.1 Short-term sampling . 45
E.1.1.1 General . 45
E.1.1.2 Basic information . 45
E.1.1.3 Sampling data for each trap . 45
E.1.2 Long-term sampling . 46
E.1.3 Interruption of data recording . 46
E.1.4 Reporting the validation of a long-term sampling system (from the manufacturer
and the test laboratory) . 47
Annex F (informative) Example uncertainty budget for mercury measurement using
sorbent traps . 48
F.1 Introduction. 48
F.2 Elements required for the uncertainty determinations . 48
F.2.1 Model equation . 48
F.3 Example of an uncertainty calculation. 48
F.3.1 Specific conditions in the field . 48
F.3.2 Performance characteristics . 50
F.4 Model equation and application of rule of uncertainty propagation . 51
F.4.1 Concentration of Hg . 51
F.4.1.1 General . 51
F.4.1.2 Calculation of the combined uncertainty of V and C . 52
m m
F.4.1.3 Based on Formula (F.1) the combined uncertainty of C can be expressed by
m
Formula (F.6): . 52
F.4.1.4 Calculation of sensitivity coefficients . 53
F.4.1.5 Results of the standard uncertainties calculations . 53
F.4.1.6 Estimation of the combined uncertainty . 55
Annex G (informative) Calculation of the uncertainty associated with correcting to dry gas
conditions at an oxygen reference concentration . 58
G.1 Uncertainty associated with a concentration expressed on dry gas . 58
G.2 Uncertainty associated with a concentration expressed at an oxygen reference
concentration . 60
Bibliography . 62
European foreword
This document (CEN/TS 17286:2019) has been prepared by Technical Committee CEN/TC 264 “Air
quality”, the secretariat of which is held by DIN.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
According to the CEN/CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta,
Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.
1 Scope
The purpose of this document is to establish performance benchmarks for, and to evaluate the
acceptability of, sorbent trap monitoring systems used to monitor total vapour- phase mercury (Hg)
emissions in stationary source flue gas streams. These monitoring systems involve continuous
repetitive in-flue sampling using paired sorbent traps with subsequent analysis of the time-integrated
samples.
This document is suitable for both short-term (periodic) measurements and long-term (continuous)
monitoring using sorbent traps.
NOTE When this Technical Specification has been validated, the sorbent trap method will be an Alternative
Method subject to the restrictions on applicability defined below. Until that time, EN 13211 is the only accepted
Reference Method for both short-term (periodic) measurements and for calibrating continuous monitoring
systems, including those with long-term sampling systems. EN 13211 is a wet chemistry approach that relies on
absorption of mercury into impinger solutions.
The substance measured according to this specification is the total vapour phase mercury in the flue
gas, which represents the sum of the elemental mercury (Hg ) and gaseous forms of oxidized mercury
2+
(Hg ), such as mercury (II) chloride, in mass concentration units of micrograms (μg) per dry meter
3 3
cubed (m ). The analytical range is typically 0,1 to greater than 50 µg/m .
The sorbent tube approach is intended for use under relatively low particulate conditions (typically less
than 100 mg/m ) when monitoring downstream of all pollution control devices, e.g. at coal fired power
plants and cement plants. In this case, the contribution of mercury in the particulate fraction is
considered to be negligible (typically less than 5 % of total mercury). However, it shall be noted that the
sorbent trap does take account of the finest particle fraction that is sampled with the flue gas, in
addition to capturing the vapour phase mercury.
This specification also contains routine procedures and specifications that are designed to evaluate the
ongoing performance of an installed sorbent trap monitoring system. The operator of the industrial
installation is responsible for the correct calibration, maintenance and operation of this long-term
sampling system. Additional requirements for calibration and quality assurance of the long-term
sampling system are then defined in EN 14884 and EN 14181.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 14181, Stationary source emissions — Quality assurance of automated measuring systems
EN 14790 (series), Stationary source emissions — Determination of the water vapour in ducts — Standard
reference method
EN 15259:2007, Air quality — Measurement of stationary source emissions — Requirements for
measurement sections and sites and for the measurement objective, plan and report
EN 15267 (series), Air quality — Certification of automated measuring systems
EN 15853, Ambient air quality — Standard method for the determination of mercury deposition
EN ISO 16911-1:2013, Stationary source emissions — Manual and automatic determination of velocity
and volume flow rate in ducts — Part 1: Manual reference method (ISO 16911-1:2013)
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp.
3.1
mercury
mercury and mercury compounds
3.2
total mercury
sum of the mercury in the exhaust gas independent from the state (gaseous, dissolved in droplets, solid,
adsorbed or absorbed on and within particles)
3.3
sorbent trap
tube filled with a collection material on which gaseous mercury is collected
3.4
sorbent trap spiking
technique(s) used to spike mercury onto sorbent traps prior to sampling
3.5
sample probe
part of the apparatus that is placed in the flue for the purpose of sampling the gas and measuring the
temperature
3.6
moisture removal device
part of the apparatus that is placed before the sample flow measuring device for the purpose of
removing water vapour from the sampled gas stream
3.7
gas flow meter
device of any type that allows the total dry sample gas volume to be determined, e.g., a volumetric flow
meter or a mass flow meter
4 Symbols and abbreviations
AFR ratio of dry combustion air to fuel (m /kg)
AFR ratio of dry combustion air to fuel at stoichiometric conditions (m /kg)
s
3 3
B flue gas moisture content by volume (m /m )
w
3 3
B concentration of water vapour in ambient air by volume (m /m )
wa
3 3
B concentration of water vapour in stoichiometric flue gas by volume (m /m )
ws
%B percent breakthrough
C concentration of mercury in the dry flue gas for the sample collection period (µg/m )
C concentration of mercury in the dry flue gas for the sample collection period, for
a
sorbent trap “a” (µg/m )
C concentration of mercury in the dry flue gas for the sample collection period, for
b
sorbent trap “b” (µg/m )
C estimated mercury concentration in flue gas (µg/m )
est
C the concentration of spiked compound measured (μg/m )
rec
CFR ratio of dry flue gas to fuel at stoichiometric conditions (m /kg)
s
F dry flue gas volume emitted during the sampling period (m )
d
F wet flue gas volume emitted during the sampling period (m )
w
F average sample flow rate for the hour, in appropriate units (e.g. L/min, mL/min,
h
m /min)
F average sample flow rate for first hour of the collection period, in appropriate units
ref
(e.g. L/min, mL/min, m /min)
Hg elemental mercury
2+
Hg oxidized mercury
K power of ten multiplier, to keep the value of R between 1 and 100. The appropriate
ref
K value will depend on the selected units of measurement for the sample flow rate
and the range of expected flue gas flow rates
m the total mass of mercury measured on the spiked trap in the FRT (μg)
s
M expected sample mass (µg)
exp
M calculated mercury mass of the pre-sampling spike, from 8.2 of this Technical
spiked
Specification, (µg)
m the total mass of mercury spiked prior to the FRT (μg)
spiked
m the total mass of mercury measured on the unspiked trap in the FRT (μg)
u
M* total mass of mercury recovered from sections 1 and 2 of the sorbent trap, (µg)
M mass of mercury recovered from section 1 of the sorbent trap, (µg)
M mass of mercury recovered from section 2 of the sorbent trap, (µg)
M mass of mercury recovered from section 3 of the sorbent trap, (µg)
3 3
O2a concentration of oxygen in ambient air by volume (m /m )
3 3
O concentration of oxygen in flue gas by volume, on a wet basis (m /m )
2,wet
3 3
O concentration of oxygen in flue gas by volume, on a dry basis (m /m )
2,dry
P absolute pressure of ambient air (mbar)
a
P absolute pressure of saturated flue gas (Pa)
T
P vapour pressure of water (Pa)
v
Q average flue gas volumetric flow rate for the hour (m /h)
h
Q average flue gas volumetric flow rate for first hour of collection period at reference
ref
conditions (m /h)
Q the sample flow rate (L/min)
s
R the percentage of spiked mass recovered from the FRT (%)
RD relative deviation between the mercury concentrations from traps “a” and “b” (%)
R ratio of hourly flue gas flow rate to hourly sample flow rate
h
RH relative humidity (-)
R reference ratio of hourly flue gas flow rate to hourly sample flow rate
ref
%R percentage recovery of the pre-sampling spike
t temperature of ambient air (°C)
t expected monitoring period (min)
s
T temperature of saturated flue gas (K)
v the volume of gas sampled through the spiked trap in the FRT at standard conditions
s
(m )
v the volume of gas sampled through the un-spiked trap in the FRT at standard
u
conditions (m )
V total volume of volume measurement during the collection period (m ). For the
t
purposes of this Technical Specification, standard temperature and pressure are
defined as 0°C and 101.325 kPa, respectively.
W FR ratio of ambient water vapour to fuel (m /kg)
a
W FR ratio of injected water vapour to fuel (m /kg)
i
WFR ratio of combustion water vapour to fuel at stoichiometric conditions (m /kg)
s
λ excess air factor (-)
−3 3
10 conversion factor (m /L)
ABT Analytical Bias Test
CRM Certified Reference Material
CV AAS Cold Vapour Atomic Absorption Spectrometry
CV AFS Cold Vapour Atomic Fluorescence Spectrometry
FRT Field Recovery Test
LOD Limit of Detection
QA/QC Quality Assurance/Quality Control
SRM Standard Reference Method
5 Principle
Known volumes of flue gas are continuously extracted from a flue or duct through paired, in-flue, pre-
spiked three-section sorbent traps at appropriate nominal flow rates. The sorbent traps in the sampling
system are periodically exchanged with new ones, prepared for analysis as needed, and analysed by any
technique that can meet the analytical performance criteria. Mercury is collected on section 1 of the
trap. For quality assurance purposes, section 2 is also analysed to quantify mercury breakthrough from
the first section. For quality assurance purposes, the third section of each sorbent trap is spiked with
Hg prior to sampling. Following sampling, the third section is analysed separately and a specified
minimum percentage of the spike shall be recovered. The paired sampling train is required to
determine method precision. An Analaytical Bias Test (ABT) is required to demonstrate that the
laboratory has the ability to recover and accurately quantify mercury from the chosen sorbent traps
A Field Recovery Test (FRT) is also required when the sorbent trap method is used for regulatory
monitoring purposes, either for short-term, periodic, sampling (for each test campaign), or for long-
term sampling (prior to initial operation and when the sorbent material is changed). For a limited
number of FRTs, the spike is added to the first section of a two or three section trap, noting that only
one of the paired traps is spiked on the first section. The average recovery of these spiked samples is
then used to verify the performance of the measurement system under field conditions since section 1
is exposed to the full flue gas matrix.
Short-term sampling (for periodic monitoring) is typically from one hour to six hours sampling duration
and long-term sampling (for semi-continuous monitoring) is typically from one day to two weeks
sampling duration.
6 Measuring equipment
6.1 Sorbent trap monitoring system equipment specifications
6.1.1 Monitoring system
A typical sorbent trap monitoring system is shown in Figure 1.
Key
1 gas inlet 10 desiccant
2 sorbent trap 11 vacuum gauge
3 duct wall 12 isolation valve
4 port/probe flanges 13 flow control valve
5 temperature sensor 14 gas pump
6 probe 15 alternative locations for temperature and pressure sensors (for volumetric
dry gas flow meter)
7 isolation valve
16 dry gas flow meter
8 sample line
17 discharge
9 water knockout
18 sampling console
Figure 1 — Sorbent trap monitoring system (only one trap and associated sampling system is
shown)
Key
S1 MAIN: Standard collection section P1 entry plug
S2 BACKUP: Break-through detection P2 separation plug
S3 SPIKE: Pre-Injected mercury vapour P3 separation plug
(±50 % of expected mass to be collected)
P4 exit plug
Figure 2— Three section sorbent trap
The sorbent used to collect mercury shall be configured in traps with three distinct segments or
sections, connected in series, to be separately analysed, as shown schematically in Figure 2. Section 1 is
designated for primary capture of gaseous mercury. Section 2 is a backup section for the determination
of vapour-phase mercury breakthrough. Section 3 is specified for quality assurance/quality control
(QA/QC) purposes. Section 3 shall be spiked with a known amount of gaseous Hg prior to sampling and
later analysed to determine the spike (and hence sample) recovery efficiency.
The spike is applied to the first section of the trap for the FRT and the ABT as described in Clause 11.
These traps c therefore consist of two, rather than three, sections.
Each sorbent trap shall be inscribed or otherwise permanently marked with a unique identification
number, for tracking purposes. The sorbent media may be any collection material (e.g. activated carbon,
a chemically-treated filter, etc.) capable of quantitatively capturing and recovering, for subsequent
analysis, all gaseous forms of mercury in the emissions from the intended application. Selection of the
sorbent media shall be based on the material’s ability to achieve the performance criteria contained in
this Technical Specification, especially the requirement to have a suitably high collection efficiency
within the given flue gas matrix. The sorbent traps shall be obtained from a source that can
demonstrate their quality assurance and quality control.
The paired sorbent traps are supported on a probe (or probes) and inserted directly into the flue gas
stream, noting that the traps may be protected by a shield or baffle to prevent the ingress of droplets
when present. Fine particles, associated with the gas sample, are drawn into the trap and are captured
either within a pre-filter, or the plug of glass wool that separates each section, or within the sorbent
itself. Mercury extracted from pre-filter(s) and plugs upstream of Section 1 is added to the Section 1
result. Mercury extracted from plugs immediately upstream and downstream of Section 2 are added to
the Section 2 result. Mercury extracted from plugs downstream of Section 3 are added to the Section 3
result.
Further information on typical sorbent trap configurations is given in Annex D.
6.1.2 Moisture removal device
A moisture removal device or system shall be used to remove water vapour from the gas stream prior
to entering the dry gas flow metering devices.
6.1.3 Vacuum pump
Use a leak-tight, vacuum pump capable of operating within the system’s flow range. If the vacuum pump
is the last element in the sampling train, located downstream of the sample to gas flow meter
measurement device, it does not need to be leak-tight.
6.1.4 Total sample volume measurement
A dry gas flow meter (e.g. a volumetric flow meter, thermal mass flow meter, or other suitable
measurement device) shall be used to determine the total sample volume on a dry basis, in units of
standard cubic meters. The gas flow meter, with a maximum expanded uncertainty of 5,0 % at the
anticipated flow rate, incorporating any associated uncertainties including the absolute pressure and
absolute temperature measurement uncertainties (maximum expanded uncertainty of 2,0 % each),
shall be calibrated at selected flow rates across the range of sample flow rates at which the sampling
train will be operated, typically 0 to 2 L/min.
6.1.5 Sample flow rate meter and controller
Use an automated flow rate indicator and controller for maintaining the required sampling flow rate.
Any additional standard uncertainty associated with a separate display device shall be less than 0,5 %.
NOTE Manual flow control and data recording can be employed for short-term sampling.
6.1.6 Temperature sensor
Temperature sensor with a standard uncertainty of less than 2,5 K (less than 1 % relative to the
absolute temperature).
6.1.7 Absolute pressure sensor
Absolute pressure sensor with a standard uncertainty of less than 1 kPa (10 mbar) (less than 1 %
relative to the absolute pressure).
6.1.8 Automatic controller
An automatic controller when employed for either long-term or short-term sampling shall have the
following automatic functions:
a) maintenance of the volume proportional sampling condition;
b) leak test at the start and end of the sampling period (or this can be performed manually as an
option);
c) restart after power loss (after start-up procedures are completed);
d) automatic start and stop of sampling to capture normal operation of the plant; this is achieved
using external control signals that define start-up and shut-down, e.g. plant output load or flue gas
oxygen content (a manual over-ride shall be provided in case of malfunction of the automated
system).
The console for an automated sampling system used for long-term sampling shall be password
protected to prevent unauthorised access.
6.1.9 Sample preparation
Remove the end cap of a sorbent trap. Carefully separate the three sections (P1 + S1; P2 + S2; P3 + S3)
of each trap. The materials (plug and sorbent) associated with each section shall be analysed jointly or
individually. The exit plug P4 is discarded. If the sorbent mass is large enough (usually > 1,0 g), it can be
mixed well, split into 2 parts, and analysed. If traps are equipped with an acid gas scrubber (see ANNEX
D) or any other auxiliary section, these sections are analysed separately from the sorbent sections. The
mercury adsorbed on them is reported separately.
6.1.10 Sample analysis equipment
Any analytical system capable of quantitatively recovering and quantifying total gaseous mercury from
sorbent traps is acceptable provided that the analysis can meet the performance criteria in Table 2 in
Clause 9 of this Technical Specification. Candidate recovery techniques include leaching, digestion and
thermal desorption. Candidate analytical techniques include but are
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...