Cranes - General design - Part 3-1: Limit states and proof competence of steel structure

This document specifies limit states, requirements and methods to prevent mechanical hazards in steel structures of cranes by design and theoretical proof of competence.
The significant hazardous situations and hazardous events that could result in risks to persons during intended use are identified in Annex L. Clauses 4 to 8 of this document provide requirements and methods to reduce or eliminate these risks:
a)   exceeding the limits of strength (yield, ultimate, fatigue);
b)   exceeding temperature limits of material or components;
c)   elastic instability of the crane or its parts (buckling, bulging).
This document is not applicable to cranes which are designed before the date of its publication as EN and serves as reference base for the European Standards for particular crane types (see Annex K).
NOTE   This document deals only with the limit state method in accordance with EN 13001-1:2015.

Krane - Konstruktion allgemein - Teil 3-1: Grenzzustände und Sicherheitsnachweis von Stahltragwerken

Dieses Dokument legt Grenzzustände, Anforderungen und Verfahren zur Vermeidung mechanischer Gefährdungen in Stahlkonstruktionen von Kranen durch Konstruktion und theoretischen Sicherheitsnachweis fest.
Die signifikanten Gefährdungssituationen und Gefährdungsereignisse, die bei bestimmungsgemäßer Verwendung zu Gefährdungen von Personen führen können, sind in Anhang L. aufgeführt. Abschnitt 4 bis Abschnitt 8 dieses Dokuments enthalten Anforderungen und Verfahren zur Verringerung oder Beseitigung dieser Risiken:
a)   Überschreiten der Festigkeitsgrenzwerte (Fließen, Bruch, Ermüdung);
b)   Überschreiten der Temperaturgrenzwerte des Werkstoffs oder der Komponenten;
c)   elastische Instabilität des Krans oder seiner Teile (Knicken, Beulen).
Dieses Dokument gilt nicht für Krane, die vor dem Datum der Veröffentlichung dieser Norm als EN konstruiert werden, und dient als Referenzgrundlage für Europäische Normen für spezielle Krantypen (siehe Anhang K).
ANMERKUNG   Dieses Dokument behandelt nur die Methode der Grenzzustände entsprechend EN 13001-1:2015.

Appareils de levage à charge suspendue - Conception générale - Partie 3-1 : Etats limites et vérification d'aptitude des charpentes en acier

Le présent document spécifie les états limites, les prescriptions et les méthodes pour prévenir les phénomènes dangereux mécaniques dans les structures en acier des appareils de levage à charge suspendue par la conception et la vérification d'aptitude théorique.
Les situations et phénomènes dangereux significatifs qui pourraient entraîner des risques pour les personnes lors de l'usage prévu sont identifiés à l'Annexe L. Les Articles 4 à 8 du présent document fournissent des prescriptions et des méthodes visant à réduire ou éliminer ces risques :
a)   dépassement des limites de résistance (élasticité, rupture, fatigue) ;
b)   dépassement des limites de température du matériau ou des composants ;
c)   instabilité élastique de l’appareil de levage à charge suspendue ou de ses parties (flambage, voilement).
Le présent document ne s’applique pas aux appareils de levage à charge suspendue conçus avant sa date de publication en EN, et fait office de référence pour les Normes européennes relatives aux types particuliers d’appareils de levage à charge suspendue (voir Annexe K).
NOTE   Le présent document traite uniquement de la méthode des États Limites conformément à
l’EN 13001-1:2015.

Žerjavi - Konstrukcija, splošno - 3-1. del: Mejna stanja in dokaz varnosti jeklene nosilne konstrukcije

General Information

Status
Not Published
Public Enquiry End Date
30-Jul-2022
Current Stage
4020 - Public enquire (PE) (Adopted Project)
Start Date
09-Jun-2022
Due Date
27-Oct-2022
Completion Date
29-Jul-2022

Relations

Overview

prEN 13001-3-1 (CEN) defines the limit states and proof of competence required for steel structures of cranes. The standard specifies the requirements and verification methods to prevent mechanical hazards by design and theoretical proof. It focuses on the limit state method (as referenced in EN 13001-1:2015) and identifies significant hazardous situations in Annex L. This document serves as a reference base for particular crane-type standards (see Annex K) and is intended for use by designers, manufacturers and safety authorities.

Key Topics

  • Scope of protection: addresses exceedance of strength limits (yield, ultimate, fatigue), material/component temperature limits, and elastic instability (buckling, bulging).
  • Design and documentation: requirements for design records, material selection and traceability for structural members.
  • Connections and joints: guidance on bolted, pinned and welded connections, and proof of competence for structural members and their connections.
  • Strength verification: procedures for proof of static strength including limit design stresses and forces, and execution of static proofs.
  • Fatigue assessment: methods and execution of fatigue strength proofs, stress histories and determination of limit design stress ranges.
  • Stability checks: elastic stability verifications including lateral buckling, plate field buckling, lateral–torsional buckling of beams, and proofs for hollow section girder joints.
  • Informative annexes: practical aids such as tightening torques for preloaded bolts, design weld stresses, geometric hot-spot and effective notch fatigue methods, and a hazards list (Annex L).

The standard also references harmonized norms (Eurocode 3, EN 13001-2) and relevant material and testing standards to ensure consistent application.

Applications

prEN 13001-3-1 is directly applicable to the mechanical design phase for steel crane structures and is valuable for:

  • Crane designers and OEMs seeking harmonized verification methods for structural safety.
  • Structural engineers performing static, fatigue and stability proofs for lifting equipment.
  • Compliance and safety teams ensuring conformity with Machinery Directive requirements using a harmonized standard.
  • Maintenance and inspection planners who need to understand failure modes and design margins relevant to inspection criteria.

Use of this document helps reduce risk to persons during intended use by prescribing design practices and theoretical verification methods that target identified hazardous situations.

Related Standards

  • EN 13001-1 - General principles and requirements (limit state method reference)
  • EN 13001-2 - Load actions for cranes
  • Other parts of EN 13001 series addressing wire ropes, wheel/rail contacts, machinery and other components
  • Relevant EN and ISO material, fastener and welding standards referenced in normative clauses

For practical implementation, consult Annex K to select the appropriate set of crane product standards and Annex L for the list of hazards to be addressed during design and verification.

Draft
oSIST prEN 13001-3-1:2022
English language
129 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
01-julij-2022
Žerjavi - Konstrukcija, splošno - 3-1. del: Mejna stanja in dokaz varnosti jeklene
nosilne konstrukcije
Cranes - General design - Part 3-1: Limit states and proof competence of steel structure
Krane - Konstruktion allgemein - Teil 3-1: Grenzzustände und Sicherheitsnachweis von
Stahltragwerken
Appareils de levage à charge suspendue - Conception générale - Partie 3-1 : Etats
limites et vérification d'aptitude des charpentes en acier
Ta slovenski standard je istoveten z: prEN 13001-3-1
ICS:
53.020.20 Dvigala Cranes
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

DRAFT
EUROPEAN STANDARD
NORME EUROPÉENNE
EUROPÄISCHE NORM
June 2022
ICS 53.020.20 Will supersede EN 13001-3-1:2012+A2:2018
English Version
Cranes - General design - Part 3-1: Limit states and proof
competence of steel structure
Appareils de levage à charge suspendue - Conception Krane - Konstruktion allgemein - Teil 3-1:
générale - Partie 3-1 : Etats limites et vérification Grenzzustände und Sicherheitsnachweis von
d'aptitude des charpentes en acier Stahltragwerken
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/TC 147.
If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations
which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CEN All rights of exploitation in any form and by any means reserved Ref. No. prEN 13001-3-1:2022 E
worldwide for CEN national Members.

Contents Page
European foreword . 4
Introduction . 6
1 Scope . 7
2 Normative references . 7
3 Terms, definitions, symbols and abbreviations . 8
3.1 Terms and definitions . 8
3.2 Symbols and abbreviations . 9
4 General . 12
4.1 Documentation . 12
4.2 Materials for structural members . 13
4.3 Bolted connections . 18
4.4 Pinned connections . 19
4.5 Welded connections . 20
4.6 Proof of competence for structural members and connections . 20
5 Proof of static strength . 21
5.1 General . 21
5.2 Limit design stresses and forces . 21
5.3 Execution of the proof . 35
6 Proof of fatigue strength . 38
6.1 General . 38
6.2 Assessment methods . 39
6.3 Stress histories . 43
6.4 Execution of the proof . 46
6.5 Determination of the limit design stress range. 47
7 Proof of static strength of hollow section girder joints . 49
8 Proof of elastic stability . 49
8.1 General . 49
8.2 Lateral buckling of members loaded in compression . 50
8.3 Buckling of plate fields subjected to compressive and shear stresses . 54
8.4 Lateral-torsional stability of beams . 60
8.5 Execution of the proof . 64
Annex A (informative) Limit design shear force F per bolt and per shear plane for
v,Rd
multiple shear plane connections . 66
Annex B (informative) Preloaded bolts. 67
B.1 Tightening torques . 67
B.2 Limit design slip force F . 69
S,Rd
Annex C (normative) Design weld stresses . 70
Annex D (normative) Values of slope constant m and characteristic fatigue strength Δσ ,
c
Δτ . 76
c
Annex E (informative) Calculated values of limit design stress ranges Δσ and Δσ . 98
Rd Rd,1
Annex F (informative) Evaluation of stress cycles (example) . 100
Annex G (informative) Calculation of stiffnesses for connections loaded in tension . 102
Annex H (informative) Hollow sections . 105
Annex J (informative) General formula for elastic critical moment in lateral-torsional
buckling of a simple beam . 121
Annex K (informative) Selection of a suitable set of crane standards for a given application . 125
Annex L (informative) List of hazards . 126
Annex ZA (informative) Relationship between this European Standard and the essential
requirements of Directive 2006/42/EC aimed to be covered . 127
Bibliography . 128

European foreword
This document (prEN 13001-3-1:2022) has been prepared by Technical Committee CEN/TC 147
“Cranes - Safety”, the secretariat of which is held by DIN.
This document is currently submitted to the CEN Enquiry.
This document will supersede EN 13001-3-1:2012+A2:2018.
This document has been prepared under a Standardization Request given to CEN by the European
Commission and the European Free Trade Association, and supports essential requirements of EU
Directive(s).
For relationship with EU Directive(s), see informative Annex ZA, which is an integral part of this
document.
CEN/TC 147 WG 2 has reviewed EN 13001-3-1:2012+A2:2018 to adapt the document to technical
progress. The main changes are:
— Design values for bolt materials were changed (Table 5);
— Limit design values for welded connection were changed (5.2.5);
— Static proof of welded connections was changed (5.3.4 and Annex C);
— Proof of fatigue strength was revised to include additional modern methods (6.1);
— Fatigue strength specific resistance factors were modified (Table 9);
— The geometric stress (Hot Spot) method was added (6.2.4 and Annex I);
— The effective notch method was added (6.2.5);
— Lateral torsional stability of beams was added (8.4 and 8.5.3 and Annex J);
— Recommended tightening torques for preloaded bolts were modified (Annex B);
— Characteristic fatigue strengths for plates in shear were modified (Table D.1);
— Annex L with a list of hazards was inserted;
— Annex ZA was significantly revised.
This European Standard is one part of the EN 13001 series of standards. The other parts are:
— Part 1: General principles and requirements;
— Part 2: Load actions;
— Part 3-2: Limit states and proof of competence of wire ropes in reeving systems;
— Part 3-3: Limit states and proof of competence of wheel/rail contacts;
— Part 3-4: Limit states and proof of competence of machinery;
— Part 3-5: Limit states and proof of competence of forged hooks.
— Part 3-6: Limit states and proof of competence of hydraulic cylinders.
This European Standard is intended to be used together with EN 13001-2:2021 as well as pertinent
crane type product EN standards, see Annex K.
Introduction
This document has been prepared to be a harmonized standard to provide one means for the
mechanical design and theoretical verification of cranes to conform to the essential health and safety
requirements of the Machinery Directive, as amended.
This document is a type-C standard as stated in EN ISO 12100:2010.
This document is of relevance, in particular, for the following stakeholder groups representing the
market players with regard to machinery safety:
— machine manufacturers (small, medium and large enterprises);
— health and safety bodies (regulators, accident prevention organizations, market surveillance, etc.).
Others can be affected by the level of machinery safety achieved with the means of the document by the
above-mentioned stakeholder groups:
— machine users/employers (small, medium and large enterprises);
— machine users/employees (e.g. trade unions, organizations for people with special needs);
— service providers, e.g. for maintenance (small, medium and large enterprises);
— consumers (in case of machinery intended for use by consumers).
The above-mentioned stakeholder groups have been given the possibility to participate in the drafting
process of this document.
The machinery concerned and the extent to which hazards, hazardous situations or hazardous events
are covered are indicated in the scope of this document.
When provisions of this type-C standard are different from those which are stated in type-A
or B standards, the provisions of this type-C standard take precedence over the provisions of the other
standards, for machines that have been designed and built according to the provisions of this type-C
standard.
1 Scope
This document specifies limit states, requirements and methods to prevent mechanical hazards in steel
structures of cranes by design and theoretical proof of competence.
The significant hazardous situations and hazardous events that could result in risks to persons during
intended use are identified in Annex L. Clauses 4 to 8 of this document provide requirements and
methods to reduce or eliminate these risks:
a) exceeding the limits of strength (yield, ultimate, fatigue);
b) exceeding temperature limits of material or components;
c) elastic instability of the crane or its parts (buckling, bulging).
This document is not applicable to cranes which are designed before the date of its publication as EN
and serves as reference base for the European Standards for particular crane types (see Annex K).
NOTE This document deals only with the limit state method in accordance with EN 13001-1:2015.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 1993-1-8:2005, Eurocode 3: Design of steel structures - Part 1-8: Design of joints
EN 10025-2:2019, Hot rolled products of structural steels - Part 2: Technical delivery conditions for non-
alloy structural steels
EN 10025-3:2019, Hot rolled products of structural steels - Part 3: Technical delivery conditions for
normalized/normalized rolled weldable fine grain structural steels
EN 10025-4:2019, Hot rolled products of structural steels - Part 4: Technical delivery conditions for
thermomechanical rolled weldable fine grain structural steels
EN 10025-6:2019, Hot rolled products of structural steels - Part 6: Technical delivery conditions for flat
products of high yield strength structural steels in the quenched and tempered condition
EN 10029:2010, Hot-rolled steel plates 3 mm thick or above - Tolerances on dimensions and shape
EN 10088-2:2014, Stainless steels - Part 2: Technical delivery conditions for sheet/plate and strip of
corrosion resisting steels for general purposes
EN 10149-2:2013, Hot rolled flat products made of high yield strength steels for cold forming - Part 2:
Technical delivery conditions for thermomechanically rolled steels
EN 10149-3:2013, Hot rolled flat products made of high yield strength steels for cold forming - Part 3:
Technical delivery conditions for normalized or normalized rolled steels
EN 10160:1999, Ultrasonic testing of steel flat product of thickness equal or greater than 6 mm (reflection
method)
EN 10163-1:2004, Delivery requirements for surface condition of hot-rolled steel plates, wide flats and
sections - Part 1: General requirements
EN 10163-2:2004, Delivery requirements for surface condition of hot-rolled steel plates, wide flats and
sections - Part 2: Plate and wide flats
EN 10163-3:2004, Delivery requirements for surface condition of hot-rolled steel plates, wide flats and
sections - Part 3: Sections
EN 10164:2018, Steel products with improved deformation properties perpendicular to the surface of the
product - Technical delivery conditions
EN 13001-1:2015, Cranes - General design - Part 1: General principles and requirements
EN 13001-2:2021, Crane safety - General design - Part 2: Load actions
EN 20273:1991, Fasteners - Clearance holes for bolts and screws (ISO 273:1979)
EN ISO 148-1:2016, Metallic materials - Charpy pendulum impact test - Part 1: Test method
(ISO 148-1:2016)
EN ISO 286-2:2010, Geometrical product specifications (GPS) - ISO code system for tolerances on linear
sizes - Part 2: Tables of standard tolerance classes and limit deviations for holes and shafts
(ISO 286-2:2010)
EN ISO 898-1:2013, Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts,
screws and studs with specified property classes - Coarse thread and fine pitch thread (ISO 898-1:2013)
EN ISO 5817:2014, Welding - Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding
excluded) - Quality levels for imperfections (ISO 5817:2014)
EN ISO 9013:2017, Thermal cutting - Classification of thermal cuts - Geometrical product specification
and quality tolerances (ISO 9013:2017)
EN ISO 12100:2010, Safety of machinery - General principles for design - Risk assessment and risk
reduction (ISO 12100:2010)
EN ISO 17659:2004, Welding - Multilingual terms for welded joints with illustrations (ISO 17659:2002)
ISO 4306-1:2007, Cranes - Vocabulary - Part 1: General
3 Terms, definitions, symbols and abbreviations
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in EN ISO 12100:2010 apply. For the
definitions of loads, Clause 6 of ISO 4306-1:2007 applies.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/
3.2 Symbols and abbreviations
The symbols and abbreviations used in this document are given in Table 1.
Table 1 — Symbols and abbreviations
Symbols, Description
abbreviations
A cross section
A net cross section
n
A stress area of a bolt
S
A shear area of the tear-out section (pinned connections)
S
a length of plate in buckling
a throat thickness of fillet welds
a effective weld thickness
r
b width of plate
c edge stress ratio factor (buckling)
D , D outer, inner diameter of hollow pin
o i
d diameter (shank of bolt, pin)
d diameter of hole
o
E modulus of elasticity
F tensile force in bolt
b
F limit force
d
F characteristic value (force)
k
F preloading force in bolt
p
F limit design force
Rd
F external tensile force on bolted connection
e,t
F limit design bearing force
b, Rd
F ; F design bearing force
b, Sd bi, Sd
F limit design tensile force
cs, Rd
F design preloading force
p, d
F reduction in compression force due to external tension
cr
F limit design tensile force in bolt
t, Rd
external tensile force per bolt
F
t,Sd
F design shear force per bolt and shear plane
v, Sd
F limit design shear force per pin and shear plane
vp, Rd
F design shear force per pin and shear plane
vp, Sd
F limit design slip force per bolt and shear plane
s,Rd
Symbols, Description
abbreviations
F limit design shear force of the connected part
vs, Rd
F design force in the connected part
vd, Sd
F limit design tensile force of the connected part
vt, Rd
F acting normal/shear force
σ,τ
f maximum imperfection
f limit stress
d
f characteristic value (stress)
k
f limit design stress
Rd
f ultimate strength of material
u
f ultimate strength of bolts
ub
f limit design weld stress
w, Rd
f limit design weld stress with respect to the weld material
w, Rd,1
f limit design weld stress with respect to the material of the connected members
w, Rd,2
f yield stress of material, specified or measured
y
f yield stress of bolts
yb
f yield stress of pins, specified or measured
yp
h distance between weld and contact level of acting load
d
I, I moments of inertia of members
i
k stress concentration factor (pinned connections)
K stiffness of bolt
b
K stiffness of connected parts
c
k* specific spectrum ratio factor
k stress spectrum factor based on m of the detail under consideration
m
k stress spectrum factor based on m = 3
k , k k buckling factors
σx σy, τ
L element length (buckling)
l gauge length
m
l relevant weld length
r
l weld length
W
M limit design bending moment
Rd
M design bending moment
Sd
m slope constant of log Δσ/log N-curve
N compressive force (buckling)
Symbols, Description
abbreviations
NC notch class
N critical buckling load
k
N reference number of cycles
ref
min σ, max σ extreme values of stresses
P probability of survival
S
p penetration of weld
Q shear (evaluation of stress cycles)
q impact toughness parameter
i
α cross section parameter (lateral buckling)
α characteristic factor for bearing connection
b
α load introduction factor (bolted connection)
L
α characteristic factor for limit weld stress
w
γ general resistance factor
m
γ fatigue strength specific resistance factor
mf
γ partial safety factor
p
γ resulting resistance factor
R
γ specific resistance factor
S
γ resulting resistance factor of bolt
Rb
γ , γ , γ specific resistance factors of bolted connections
sbb sbs sbt
γ resulting resistance factor of members
Rm
γ specific resistance factor of members
sm
γ resulting resistance factor of pins
Rp
γ γ γ γ specific resistance factors of pins
spm, sps, spb, spt
γ resulting resistance factor of slip-resistance connection
Rs
γ specific resistance factor of slip-resistance connection
ss
γ resulting resistance factor for tension on section with holes
Rc
γ specific resistance factor for tension on section with holes
st
γ resulting resistance factor of welding connection
Rw
γ specific resistance factor of welding connection
sw
δ elongation from preloading
p
ϕ dynamic factor
κ dispersion angle (wheel pressure)
κ, κ , κ , κ reduction factors (buckling)
x y τ
Symbols, Description
abbreviations
λ width of contact area in weld direction
λ , λ , λ non-dimensional plate slenderness (buckling)
x y τ
Ψ edge stress ratio (buckling)
ΔF additional force
b
Δδ additional elongation
t
µ slip factor
ν relative total number of stress cycles
ν ratio of diameters
D
Δσ characteristic value of stress range (normal stress)
c
Δτ characteristic value of stress range (shear stress)
c
σ reference stress (buckling)
e
σ lower extreme value of stress range
b
σ upper extreme value of stress range
u
σ design stress (normal)
Sd
τ design stress (shear)
Sd
σ design weld stress (normal)
w, Sd
design weld stress (shear)
τ
w, Sd
limit design stress range (normal)
Δσ
Rd
Δσ limit design stress range for k* = 1
Rd,1
Δτ limit design stress range (shear)
Rd
Δσ design stress range (normal)
Sd
Δτ design stress range (shear)
Sd
4 General
4.1 Documentation
The documentation of the proof of competence shall include:
— design assumptions including calculation models,
— applicable loads and load combinations,
— material grades and qualities,
— weld quality levels, in accordance with EN ISO 5817:2014,
— materials of connecting elements,
— relevant limit states,
— results of the proof of competence calculation and tests when applicable.
4.2 Materials for structural members
4.2.1 Grades and qualities
For structural members, steels in accordance with the following European Standards shall be used:
a) Non-alloy structural steels EN 10025-2:2019;
b) Weldable fine grain structural steels in conditions:
1) normalized (N) EN 10025-3:2019;
2) thermomechanical (M) EN 10025-4:2019;
c) High yield strength structural steels in the quenched and tempered condition EN 10025-6:2019;
d) High yield strength steels for cold forming in conditions:
1) thermomechanical (M) EN 10149-2:2013;
2) normalized (N) EN 10149-3:2013.
e) Austenitic stainless steels EN 10088-2:2014.
Alternatively, grades and qualities other than those mentioned in the above standards and in Table 2
may be used, if the mechanical properties and the chemical composition are specified in a manner
corresponding to relevant European standard, and the following conditions are fulfilled:
— the design value of f is limited to f /1,05 for materials with f /f < 1,05;
y u u y
— the percentage elongation at fracture A ≥ 7 % on a gauge length Ls5,65× (where S is the
original cross-sectional area);
— the weldability or non-weldability of the material is specified and, if intended for welding,
weldability is demonstrated;
— if the material is intended for cold forming, the pertinent parameters are specified.
Where stainless steels are welded, special attention should be given to the welding process and
corrosion effects. Only austenitic stainless steels are covered by this standard.
Table 2 shows specific values for the nominal value of strength f , f For limit design stresses f see
u y. Rd
5.2. The values given are applicable for temperatures up to 100 °C for stainless steels and up to 150 °C
for all other steels. For more information see the specific European Standard.
To allow the use of nominal values of plate thicknesses in the proof calculations, the minus tolerance of
the plate shall be equal or better than that of class A of EN 10029:2010. Otherwise, the actual minimum
value of plate thickness shall be used. Nominal dimensions for other steel products than plates may be
used, provided those products comply with their standardized minus tolerances.
Where it is deemed necessary to check for internal defects, classes of EN 10160:1999 should be
specified.
=
Table 2 — Specific values of steels for structural members
Nominal strength
Thickness
f f
y u
Steel Standard t
yield ultimate
mm
2 2
N/mm N/mm
t ≤ 16 235
16 < t ≤ 40 225
S235 340
40 < t ≤ 100 215
100 < t ≤ 150 195
t ≤ 16 275
16 < t ≤ 40 265
40 < t ≤ 63 255
S275 430
63 < t ≤ 80 245
EN 10025-2:2019
80 < t ≤ 100 235
100 < t ≤ 150 225
t ≤ 16 355
16 < t ≤ 40 345
40 < t ≤ 63 335
S355 490
63 < t ≤ 80 325
80 < t ≤ 100 315
100 < t ≤ 150 295
t ≤ 16 355
16 < t ≤ 40 345
40 < t ≤ 63 335
S355 450
63 < t ≤ 80 (N) 325
80 < t ≤ 100 (N) 315
100 < t ≤ 150 (N) 295
t ≤ 16 420
EN 10025-3:2019
16 < t ≤ 40 400
(N)
EN 10025-4:2019
40 < t ≤ 63 390
(M)
S420 500
63 < t ≤ 80 (N) 370
80 < t ≤ 100 (N) 360
100 < t ≤ 150 (N) 340
t ≤ 16 460
16 < t ≤ 40 440
S460 530
40 < t ≤ 63 430
63 < t ≤ 80 (N) 410
Nominal strength
Thickness f f
y u
Steel Standard t
yield ultimate
mm
2 2
N/mm N/mm
80 < t ≤ 100 (N) 400
3 < t ≤ 50 460
S460 550
50 < t ≤ 100 440
3 < t ≤ 50 500
S500 590
50 < t ≤ 100 480
3 < t ≤ 50 550
S550 640
50 < t ≤ 100 530
EN 10025-6:2019 3 < t ≤ 50 620
S620 700
50 < t ≤ 100 580
3 < t ≤ 50 690 770
S690
50 < t ≤ 100 650 760
3 < t ≤ 50 890 940
S890
50 < t ≤ 100 830 880
S960 3 < t ≤ 50 960 980
S315 315 390
EN 10149-3:2013
S355 all t 355 430
EN 10149-2:2013
S420 420 480
S460 460 520
S500 500 550
all t
S550 550 600
S600 600 650
t ≤ 8 650
S650 EN 10149-2 2013 700
t > 8 630
t ≤ 8 700
S700 750
t > 8 680
S900 900 930
all t
S960 960 980
a b
X2CrNi18–9
200 500
a b
X5CrNi18–10
210 520
a b
X2CrNi19–11 EN 10088-2:2014 t ≤ 75
200 500
a b
X2CrNiMo17–12–2
220 520
a b
X5CrNiMo17–12–2 220 520
Nominal strength
Thickness f f
y u
Steel Standard t
yield ultimate
mm
2 2
N/mm N/mm
a
0,2 % – proof strength for hot rolled plate (P);
b
Tensile strength for hot rolled plate (P).
4.2.2 Impact toughness
When selecting grade and quality of the steel for tensile members, the sum of impact toughness
parameters q shall be taken into account. Table 3 gives the impact toughness parameters q for various
i i
influences. Table 4 gives the required steel quality and impact energy/test temperature in dependence
of Σq . The direction of loading shall be considered when assessing the impact toughness. Grades and
i
qualities of steel other than mentioned in Table 4 may be used, if an impact energy/temperature is
tested in accordance with EN ISO 148-1:2016, specified and meet the requirements given in first two
rows of Table 4.
Table 3 — Impact toughness parameters q
i
i Influence q
i
1 0 ≤ T 0
−10 ≤ T < 0 1
−20 ≤ T < −10 2
Operating temperature T (°C)
−30 ≤ T < −20 3
−40 ≤ T < −30 4
−50 ≤ T < −40 6
2 f ≤ 300 0
y
300 < f ≤ 460 1
y
460 < f ≤ 700 2
Yield stress f (N/mm )
y
y
700 < f ≤ 1000 3
y
1 000 < f ≤ 1300 4
y
3 t ≤ 10 0
Material thickness t (mm)
10 < t ≤ 20 1
Equivalent thickness t for solid bars:
20 < t ≤ 40 2
40 < t ≤ 60 3
60 < t ≤ 80 4
80 < t ≤ 100 5
d bb
100 < t ≤ 125 6
t= for <=1, 8 : t
18, h 18,
125 < t ≤ 150 7
i Influence q
i
4 Δσ > 125 0
c
80 < Δσ ≤ 125 1
c
56 < Δσ ≤ 80 2
c
Characteristic value of stress range Δσ
c
(N/mm ) (see Annex D and Annex H)
40 < Δσ ≤ 56 3
c
30 < Δσ ≤ 40 4
c
Δσ ≤ 30 5
c
5 Utilization of static strength (see 5.3.1) 0
σ >×0,75 f
sd Rdσ
−1
0,5× f <σ
Rdσ sd
and
σ ≤×0,75 f
sd Rdσ
−2
0,25× f <σ
Rsddσ
and
σ ≤×0,5 f
sd Rdσ
−3
σ ≤×0,25 f
sd Rdσ
Table 4 — Impact toughness requirement and corresponding steel quality for ∑q
i
Impact energy/ ∑q ≤ 5 6 ≤ ∑q ≤ 8 9 ≤ ∑q ≤ 11 12 ≤ ∑q ≤ 14
i i i i
test temperature
27 J / +20 °C 27 J / 0 °C 27 J / −20 °C 27 J / −40 °C
requirement
Grades and qualities which meet the impact energy/test temperature requirement
a
EN 10025-2:2019 JR J0 J2
EN 10025-3:2019 N N N NL
EN 10025-4:2019 M M M ML
EN 10025-6:2019 Q Q Q QL
a
EN 10149-2:2013 MC MC MC
a
EN 10149-3:2013 NC NC NC
b b b b
EN 10088-2:2014
a
May be used if the impact toughness is at least 27 J at –40 °C, tested in accordance with EN ISO 148-1:2016
and specified.
b
All steels of EN 10088-2:2014 listed in Table 2. The impact energy is not explicitly given by EN 10088-2:2014
at these temperatures however the impact energy/ test temperature requirement in the row two is fulfilled.
4.3 Bolted connections
4.3.1 Bolt materials
For bolted connections bolts of the property classes (bolt grades) 4.6, 5.6, 8.8, 10.9 or 12.9 in
accordance with EN ISO 898-1:2013 shall be used. Table 5 shows design values for the strengths to be
used in design calculations.
Table 5 — Design values for bolt strengths
Property class 4.6 5.6 8.8 10.9 12.9
(Bolt grade)
d ≤ 16mm d > 16mm
240 300 640 660 940 1100
f (N/mm )
yb
400 500 800 830 1040 1220
f (N/mm )
ub
For the property classes (bolt grades) 10.9 and 12.9 the compliance regarding the protection against
hydrogen brittleness shall be demonstrated.
NOTE Technical requirements are given in EN ISO 15330:1999, EN ISO 4042:2018 and ISO 9587:2007.
4.3.2 General
For the purpose of this standard bolted connections are connections between members and/or
components utilizing bolts.
In general, bolted connections are tensioned wrench tight. A controlled bolt tightening method is a
method, where the tightening force in the bolt is measured during tightening, either directly or
indirectly through tightening torque, rotation angle or bolt elongation.
Where slippage (e.g. caused by vibrations or fluctuations in loading) causes deleterious changes in
geometry, bolts shall be tightened to avoid slippage or the connected members shall be secured against
relative displacement by form closed locking means.
4.3.3 Shear and bearing connections
For the purpose of this standard shear and bearing connections are those connections where the loads
act perpendicular to the bolt axis and cause shear and bearing stresses in the bolts and bearing stresses
in the connected parts, and where:
— clearance between bolt and hole shall conform to EN ISO 286-2:2010, tolerances h13 and H11 or
closer, where bolts are exposed to load reversal or where slippage can cause deleterious changes in
geometry;
— in other cases wider clearances in accordance with EN 20273:1991 may be used;
— special surface treatment of the contact surfaces is not needed.
4.3.4 Friction grip type (slip resistant) connections
For the purpose of this standard friction grip connections are those connections where the loads are
transmitted by friction between the joint surfaces. The following requirements apply:
— bolts of property classes (bolt grades) 8.8, 10.9 or 12.9 shall be used;
— bolts shall be tightened by a controlled method to a specified preloading state;
— the surface condition of the contact surfaces shall be specified and taken into account in accordance
with 5.2.3.2;
— washers compatible in strength and size with the bolts and compatible with the hole shape shall be
used.
4.3.5 Connections loaded in tension
For the purpose of this standard connections loaded in tension are those connections where the loads
act in the direction of the bolt axis and cause axial stresses in the bolts. The following requirements
apply:
— bolts of property classes (bolt grades) 8.8, 10.9 or 12.9 shall be used and tightened by a controlled
method to a specified preloading state;
— washers compatible in strength and size with the bolts shall be used.
NOTE Bolts in tension that are not preloaded are treated as structural members.
4.4 Pinned connections
For the purpose of this standard pinned connections are connections that do not constrain rotation
between connected parts. Only round pins are considered.
The requirements herein apply to pinned connections designed to carry loads, i.e. they do not apply to
connections made only as a convenient means of attachment.
Clearance between pin and hole shall be in accordance with EN ISO 286-2:2010, tolerances h13 and
H13 or closer. In case of forces with varying directions closer tolerances shall be applied.
All pins shall be furnished with retaining means to prevent the pins from becoming displaced from the
hole.
4.5 Welded connections
For the purposes of this standard welded connections are joints between members and/or components
which utilize fusion welding processes, and where connected parts are 3 mm or larger in thickness
except for hollow sections.
Quality levels of EN ISO 5817:2014 shall be applied, and methods of non-destructive testing, compatible
with quality requirement and welding method, shall be used to verify compliance with quality level
requirements.
In general, load carrying welds shall be at least of quality level C. Quality level D may be applied only in
joints where local failure of the weld will not result in failure of the structure or falling of loads. Terms
for welded joints are as given in EN ISO 17659:2004.
Residual stresses and stresses not transferring forces across the weld need not to be considered in the
design of welds subjected to static actions. This applies specifically to the normal stress parallel to the
axis of the weld which is accommodated by the base material.
When the static tensile strength of a butt joint is tested, the test may be carried out with weld
reinforcement not removed.
Attention shall be paid to the dimensions of intermittent fillet welds (guidelines can be found in
EN 1993-1-8:2005).
Single sided fillet welds are not recommended for carrying loads perpendicular to the weld. However, if
used connected members shall be supported so as to avoid the effect of load eccentricity on the weld.
4.6 Proof of competence for structural members and connections
The object of the proof of competence is to demonstrate that the design stresses or forces S do not
d
exceed the design resistances R :
d
SR≤ (1)
dd
The design stresses or forces S shall be determined by applying the relevant loads, load combinations
d
and partial safety factors in accordance with EN 13001-2:2021.
In the following clauses, the design resistances R are represented as limit stresses f or limit forces
d d
F .
d
The following proofs for structural members and connections shall be demonstrated:
— proof of static strength in accordance with Clause 5;
— proof of fatigue strength in accordance with Clause 6;
— proof of strength of hollow section girder joints in accordance with Clause 7;
— proof of elastic stability in accordance with Clause 8.
The deformation and vibrational behaviour of structures should be limited considering the intended
use of the crane.
5 Proof of static strength
5.1 General
A proof of static strength by calculation is intended to prevent excessive deformations due to yielding of
the material, sliding of friction-grip connections, elastic instability (see Clause 8) and fracture of
structural members or connections. Dynamic factors given in EN 13001-2:2021 are used to produce
equivalent static loads to simulate dynamic effects.
The use of the theory of plasticity for calculation of ultimate load bearing capacity shall not be used
within the terms of this standard.
The proof shall be carried out for structural members and connections whilst taking into account the
most unfavourable load effects from the load combinations A, B or C in accordance with
EN 13001-2:2021 and applying the resistances according to 5.2.
This standard is based on nominal stresses, i.e. stresses calculated using traditional elastic strength of
materials theory which in general neglect localized stress non-uniformities. When more accurate
alternative methods of stress calculation are used, such as finite element analysis, using those stresses
for the proof given in this standard may yield inordinately conservative results.
5.2 Limit design stresses and forces
5.2.1 General
The limit design stresses and forces shall be calculated from:
Limit design stresses f = function ( f , γ ) or
Rd k R
Limit design forces F = function ( F , γ ) (2)
Rd k R
where
are characteristic values (or nominal values);
f or F
k k
γ is the total resistance factor γ γγ× ;
R R ms
γ is the general resistance factor γ = 1,1 (see EN 13001-1:2015);
m m
is the specific resistance factor applicable to specific structural components as given
γ
s
in the clauses below.
NOTE f and F are equivalent to R /γ in EN 13001-1:2015.
Rd Rd m
5.2.2 Limit design stress in structural members
The limit design stress f , used for the design of structural members, shall be calculated from:
Rd
f
y
f = for normal stresses (3)
Rdσ
γ
Rm
f
y
f = for shear stresses (4)
Rdτ
γ × 3
Rm
with γ γγ×
Rm m sm
=
=
where
is the value of the yield stress of the material
f
y
is the specific resistance factor for material as follows:
γ
sm
For non-rolled material:
γ = 0, 95
sm
For rolled materials (e.g. plates and profiles):
γ = 0, 95 for stresses in the plane of rolling
sm
γ = 0, 95 for compressive and shear stresses
sm
For tensile stresses perpendicular to the plane of rolling (see Figure 1):
Material shall be suitable for carrying perpendicular loads and be free of lamellar
defects.
γ = 10, for plate thicknesses less than 15 mm or material in quality classes Z25 or
sm
better in accordance with EN 10164:2018
for material in quality class Z15 in accordance with EN 10164:2018
γ = 1,16
sm
for materials without quality classification in accordance with
γ = 1,34
sm
EN 10164:2018, but conforming to classes S2 and E3 of EN 10160:1999
without quality classification of through-thickness property.
γ = 1,50
sm
Key
1 is the direction of the plane of rolling
2 is the direction of stress
Figure 1 — Tensile stress perpendicular to plane of rolling
5.2.3 Limit design forces in bolted connections
5.2.3.1 Shear and bearing connections
5.2.3.1.1 General
The resistance of a connection shall be taken as the least value of the limit forces of the individual
connection elements.
In addition to the bearing capacity of the connection elements other limit conditions at the most
stressed sections shall be verified using the resistance factor of the base material.
Only the unthreaded part of the shank is considered effective in the bearing calculations.
5.2.3.1.2 Bolt shear
The limit design shear force F per bolt and for each shear plane shall be calculated from:
v,Rd
fA×
yb
F = (5)
v,Rd
γ × 3
Rb
with γ γγ×
R m sbs
b
where
is the yield stress (nominal value) of the bolt material (see Table 5);
f
yb
A
is the cross-sectional area of the bolt shank at the shear plane;
is the specific resistance factor for bolted connections
γ
sbs
γ = 10, for multiple shear plane connections
sbs
γ = 1,3 for single shear plane connections.
sbs
See Annex A for limit design shear forces of selected bolt sizes.
5.2.3.1.3 Bearing on bolts and connected parts
The limit design bearing force F per bolt shall be calculated from:
b, Rd
f ××dt
y
F = (6)
b, Rd
γ
Rb
with γ γγ×
R m sbb
b
with the requirement
ed≥ 1,5× (7)
1 0
and with the following recommendations for the plate

ed≥ 1,5×
pd≥×3,0
=
=
oSIST prEN 1300
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

Frequently Asked Questions

oSIST prEN 13001-3-1:2022 is a draft published by the Slovenian Institute for Standardization (SIST). Its full title is "Cranes - General design - Part 3-1: Limit states and proof competence of steel structure". This standard covers: This document specifies limit states, requirements and methods to prevent mechanical hazards in steel structures of cranes by design and theoretical proof of competence. The significant hazardous situations and hazardous events that could result in risks to persons during intended use are identified in Annex L. Clauses 4 to 8 of this document provide requirements and methods to reduce or eliminate these risks: a) exceeding the limits of strength (yield, ultimate, fatigue); b) exceeding temperature limits of material or components; c) elastic instability of the crane or its parts (buckling, bulging). This document is not applicable to cranes which are designed before the date of its publication as EN and serves as reference base for the European Standards for particular crane types (see Annex K). NOTE This document deals only with the limit state method in accordance with EN 13001-1:2015.

This document specifies limit states, requirements and methods to prevent mechanical hazards in steel structures of cranes by design and theoretical proof of competence. The significant hazardous situations and hazardous events that could result in risks to persons during intended use are identified in Annex L. Clauses 4 to 8 of this document provide requirements and methods to reduce or eliminate these risks: a) exceeding the limits of strength (yield, ultimate, fatigue); b) exceeding temperature limits of material or components; c) elastic instability of the crane or its parts (buckling, bulging). This document is not applicable to cranes which are designed before the date of its publication as EN and serves as reference base for the European Standards for particular crane types (see Annex K). NOTE This document deals only with the limit state method in accordance with EN 13001-1:2015.

oSIST prEN 13001-3-1:2022 is classified under the following ICS (International Classification for Standards) categories: 53.020.20 - Cranes. The ICS classification helps identify the subject area and facilitates finding related standards.

oSIST prEN 13001-3-1:2022 has the following relationships with other standards: It is inter standard links to SIST EN 13001-3-1:2012+A2:2018, SIST EN 13001-3-1:2012+A2:2018. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

oSIST prEN 13001-3-1:2022 is associated with the following European legislation: EU Directives/Regulations: 2006/42/EC; Standardization Mandates: M/396. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.

You can purchase oSIST prEN 13001-3-1:2022 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.

Die Norm oSIST prEN 13001-3-1:2022 stellt einen entscheidenden Fortschritt in der Sicherheit und Zuverlässigkeit von Kranen dar, indem sie sich mit den allgemeinen Entwurfskriterien auseinandersetzt, insbesondere hinsichtlich der Grenzzustände und der Nachweisführung der Tragfähigkeit von Stahlkonstruktionen. Die Norm definiert klar die Anwendung von Grenzzuständen und legt Anforderungen sowie Methoden fest, um mechanische Gefahren in Stahlkonstruktionen von Kranen durch gezielte Entwurfs- und Nachweisverfahren zu verhindern. Ein zentraler Fokus der Norm liegt auf der Identifizierung erheblicher Gefahren und riskanter Ereignisse, die während des vorgesehenen Einsatzes Risiken für Personen darstellen können. In Annex L werden diese Gefahren detailliert beschrieben, was einen wichtigen Beitrag zur Risikominderung leistet. Die Paragraphen 4 bis 8 der Norm bieten spezifische Anforderungen und Methoden zur Reduzierung oder Beseitigung dieser Risiken, einschließlich der Vermeidung von Überschreitungen der Festigkeitsgrenzen (Streckgrenze, Gesamtfestigkeit, Ermüdung), der Vermeidung von Temperaturüberschreitungen der Materialien oder Komponenten sowie der Verringerung der elastischen Instabilität des Krans oder seiner Teile, wie z.B. Knicken und Wölben. Ein weiterer wesentlicher Aspekt der Norm ist, dass sie sich ausschließlich mit der Grenzzustandsmethode gemäß EN 13001-1:2015 befasst, was ihre Relevanz für den Entwurf und die Bewertung von Kranen weiter stärkt. Diese Spezialisierung ermöglicht es Ingenieuren und Planern, sich auf bewährte Methoden zu stützen, um die Sicherheit ihrer Konstruktionen zu gewährleisten. Die Norm ist nicht anwendbar auf Krane, die vor dem Veröffentlichungsdatum als EN entworfen wurden, und dient als Referenzbasis für die europäischen Normen für spezifische Krantypen (siehe Annex K). Dies unterstreicht die Aktualität und Bedeutung der Norm in Bezug auf die Entwicklung sicherer und zuverlässiger Krananlagen in Europa. Insgesamt kann festgestellt werden, dass die oSIST prEN 13001-3-1:2022 ein unverzichtbares Dokument für Fachleute im Bereich Kranbau und -betrieb darstellt und einen wertvollen Beitrag zur Sicherheit von Krananlagen leistet.

oSIST prEN 13001-3-1:2022は、クレーンの鋼構造に関する一般的な設計の限界状態及び能力証明を定義する重要な文書です。この標準は、クレーンの設計における機械的危険を防止するための限界状態、要件、及び方法を具体的に示していますので、非常にRelevantです。 この文書では、特に意図した使用中に人々にリスクをもたらす可能性のある重大な危険な状況と事象をAnnex Lにて特定しており、リスクを軽減または排除するための要件と方法を第4条から第8条で明確に定義しています。具体的には、強度の限界(降伏限界、極限強度、疲労強度)の超過、材料あるいは構成要素の温度限界の超過、及びクレーンまたはその部品の弾性不安定性(座屈や膨らみ)に関する注意が必要です。 この文書は、ENとして発行される前に設計されたクレーンには適用されず、特定のクレーンタイプのためのヨーロッパ規格の基準として機能します。特に、限界状態法にのみ焦点を当て、EN 13001-1:2015に準拠している点も、設計者にとっての大きな利点です。 全体として、oSIST prEN 13001-3-1:2022は、鋼構造の設計者が安全で信頼性の高いクレーンを設計するための強力な基盤を提供するものであり、その強みは明確な要件とリスク管理手法にあります。

The standard oSIST prEN 13001-3-1:2022 provides a comprehensive framework for the design and assessment of steel structures in cranes, focusing specifically on limit states and proof competence. Its importance lies not only in ensuring structural integrity but also in safeguarding human safety during crane operations. The scope of this standard is well-defined, addressing the critical aspects of mechanical hazards that could arise from the use of cranes. By outlining clear requirements and methodology aimed at preventing these hazards, the standard plays a crucial role in minimizing risks associated with exceeding strength limits-such as yield, ultimate, and fatigue-and temperature limitations of materials. Furthermore, the focus on preventing elastic instability, including buckling and bulging, strengthens the reliability of crane structures under various operational conditions. The detailed specifications in clauses 4 to 8 provide valuable insights into how to effectively reduce or eliminate the risks identified in Annex L. By meticulously analyzing potential hazardous situations and outlining preventative measures, this standard enhances the robustness of crane design, ensuring that it meets modern safety expectations. Relevance-wise, oSIST prEN 13001-3-1:2022 acts as a benchmark for European Standards concerning specific crane types, making it an essential reference for manufacturers and safety engineers alike. Its established guidelines ensure compliance not only with legal safety requirements but also with the industry's best practices. In summary, the strengths of the oSIST prEN 13001-3-1:2022 standard are evident in its well-structured approach to limiting risks associated with crane operations, providing a solid foundation for reliable and safe steel structure design within the crane industry.

Le document oSIST prEN 13001-3-1:2022 constitue une avancée significative dans la normalisation des grues, spécifiquement dans la conception générale. Son champ d'application est clair et bien défini, établissant des états limites, des exigences et des méthodes visant à prévenir les dangers mécaniques associés aux structures en acier des grues. Cette standardisation est cruciale pour garantir la sécurité des utilisateurs et réduire les risques liés à l'utilisation de ces équipements. Parmi ses points forts, le document identifie et analyse en profondeur les situations et événements dangereux du point de vue de la sécurité. L'Annexe L joue un rôle essentiel en répertoriant les scénarios qui pourraient entraîner des risques pour les personnes. De plus, les clauses 4 à 8 fournissent des exigences précises et des méthodes pratiques pour atténuer ou éliminer ces dangers. Notamment, les aspects concernant le dépassement des limites de résistance (comme le rendement, la limite ultime et la fatigue) et les limites de température des matériaux sont couverts de manière exhaustive, renforçant ainsi la sécurité des structures conçues. Un autre avantage de cette norme réside dans son approche envers l'instabilité élastique des grues ou de leurs composants. En abordant des phénomènes tels que le flambage et le renflement, le document assure que les concepteurs puissent anticiper et concevoir des structures robustes capables de résister à des situations extrêmes. Il est également essentiel de noter que cette norme est complétée par son lien avec d'autres normes européennes qui s'appliquent aux types particuliers de grues, comme mentionné dans l'Annexe K. Ce cadre intégré permet à la norme s'inscrire naturellement dans un ensemble réglementaire plus large, garantissant ainsi une cohérence normative indispensable dans le secteur. En résumé, oSIST prEN 13001-3-1:2022 est un document essentiel qui aborde avec rigueur et précision les enjeux de sécurité des grues. En intégrant les méthodes de l'état limite conformément à la norme EN 13001-1:2015, il joue un rôle fondamental dans la conception des structures en acier pour les grues, tout en témoignant d'une pertinence indéniable dans le cadre de l'évolution des exigences de sécurité.

oSIST prEN 13001-3-1:2022 표준은 크레인의 일반 설계를 위한 중요한 기준을 제시하며, 특히 강철 구조물의 한계 상태 및 검증 능력에 중점을 두고 있습니다. 이 문서는 크레인의 강철 구조물에서 발생할 수 있는 기계적 위험을 예방하기 위한 요구사항 및 방법을 명시하고 있습니다. 표준의 범위는 크레인의 설계와 이론적 검증을 통해 위험을 줄이는 것에 중점을 두고 있습니다. 특히, 가장 중요한 위험한 상황과 사건은 문서의 부록 L에 상세히 기재되어 있습니다. 이 표준은 강도 한계(항복, 극한, 피로)을 초과하는 경우, 재료 또는 구성 요소의 온도 한계를 초과하는 경우, 크레인 또는 그 부품의 탄성 불안정성(좌굴, 부풀어 오름) 등을 다루고 있습니다. 4조부터 8조까지의 조항은 이러한 위험을 줄이거나 제거하기 위한 구체적인 요구사항과 방법을 제공합니다. 이러한 측면에서 oSIST prEN 13001-3-1:2022는 크레인 설계 및 안전성 확인에 대한 강력한 기준을 제시하며, 유럽 표준에 대한 참고 자료로서의 역할도 수행하고 있습니다. 특히, 이 문서의 한계 상태 방법은 EN 13001-1:2015의 기준에 따르기 때문에, 크레인 설계에 있어 적용 가능한 신뢰성 높은 지침을 제공합니다. 전반적으로 이 표준은 안전성을 강화하고 작업자 및 공공의 안전을 보장하는 데 중요한 기여를 합니다.