Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure

This document provides methods for the determination of RF field strength, power density and
specific absorption rate (SAR) in the vicinity of base stations (BS) for the purpose of evaluating
human exposure.
This document:
a) considers intentionally radiating BS which transmit on one or more antennas using one or
more frequencies in the range 110 MHz to 300 GHz;
b) considers the impact of ambient sources on RF exposure at least in the 100 kHz to 300 GHz
frequency range;
c) specifies the methods to be used for RF exposure evaluation for compliance assessment
applications, namely:
1) product compliance – determination of compliance boundary information for a BS
product before it is placed on the market;
2) product installation compliance – determination of the total RF exposure levels in
accessible areas from a BS product and other relevant sources before the product is put
into operation;
3) in-situ RF exposure assessment – measurement of in-situ RF exposure levels in the
vicinity of a BS installation after the product has been taken into operation;
d) specifies how to perform RF exposure assessment based on the actual maximum approach;
e) describes several RF field strength, power density, and SAR measurement and computation
methodologies with guidance on their applicability to address both the in-situ evaluation of
installed BS and laboratory-based evaluations;
f) describes how surveyors establish their specific evaluation procedures appropriate for their
evaluation purpose;
g) provides guidance on how to report, interpret and compare results from different evaluation
methodologies and, where the evaluation purpose requires it, determine a justified decision
against a limit value;
h) provides methods for the RF exposure assessment of BS using time-varying beam-steering
technologies such as new radio (NR) BS using massive multiple input multiple output
(MIMO).
NOTE 1 Practical implementation case studies are provided as examples in the companion Technical Report
IEC TR 62669:2019 [5].
NOTE 2 Although the current BS product types have been specified to operate up to 200 GHz (see, for example,
[6] and [7]), the upper frequency of 300 GHz is consistent with applicable exposure limits.
NOTE 3 The lower frequency considered for ambient sources, 100 kHz, is derived from ICNIRP-1998 [2] and
ICNIRP-2020 [1]. However, some applicable exposure guidelines require ambient fields to be evaluated as low as
3 kHz, e.g. Safety Code 6 [4] and IEEE Std C95.1-2019 [3].
NOTE 4 Specification of appropriate RF exposure mitigation measures such as signage, access control, and training
are beyond the scope of this document. It is possible to refer to the applicable regulations or recommended practices
on these topics.
NOTE 5 While this document is based on the current international consensus about the best engineering practice
for assessing the compliance of RF exposure with the applicable exposure limits, it is possible that national regulatory
agencies specify different requirements. The entity conducting an RF exposure assessment needs to be aware of
the applicable regulations.

Bestimmung der HF-Feldstärke, der Leistungsdichte und der spezifischen Absorptionsrate (SAR) in der Nachbarschaft von Funkkommunikations-Basisstationen zur Ermittlung der menschlichen Exposition

Détermination de l'intensité de champ de radiofréquences, de la densité de puissance et du DAS à proximité des stations de base de radiocommunication dans le but d'évaluer l'exposition humaine

IEC 62232:2022 traite de l’évaluation de l’intensité du champ RF, de la densité de puissance et des niveaux de débit d’absorption spécifique (DAS) à proximité des stations de base (BS), également appelées produits ou équipements sous test (EUT), rayonnant intentionnellement dans la gamme des radiofréquences (RF) de 110 MHz à 300 GHz conformément au domaine d’application, voir Article 1. Il ne traite pas de l’évaluation de la densité actuelle.
Les méthodes d’évaluation de l’exposition aux RF à utiliser pour la conformité du produit, la conformité de l’installation du produit et les évaluations in situ de l’exposition aux RF sont spécifiées dans le présent document. Les limites d’exposition ne sont pas spécifiées dans le présent document. L’entité qui effectue les évaluations de l’exposition aux RF fait référence à l’ensemble des limites d’exposition applicables là où l’exposition a lieu. Des exemples de limites d’exposition applicables examinées dans le présent document sont fournis dans la bibliographie, par exemple ICNIRP-2020 [1], ICNIRP-1998 [2], IEEE Std C95.1-2019™ [3] et Safety Code 6 [4].

Določitev RF poljske jakosti, gostote moči in SAR v okolici baznih postaj za namene ocenjevanja izpostavljenosti ljudi

Ta dokument opisuje metode za določitev radiofrekvenčne (RF) poljske jakosti, gostote moči in specifične hitrosti absorpcije (SAR) v okolici baznih postaj (BS) za namene ocenjevanja izpostavljenosti ljudi. Ta dokument: a) obravnava namerno sevajoče bazne postaje, ki oddajajo prek ene ali več anten z eno ali več frekvencami v območju od 110 MHz do 300 GHz; b) upošteva vpliv okoliških virov na radiofrekvenčno izpostavljenost vsaj v frekvenčnem območju od 100 kHz do 300 GHz; c) določa metode, ki se uporabljajo za oceno radiofrekvenčne izpostavljenosti za oceno skladnosti, in sicer: 1) skladnost izdelka – določitev meje skladnosti za izdelek bazne postaje, preden je uveden na trg; 2) skladnost namestitve izdelka – določitev ravni skupne radiofrekvenčne izpostavljenosti v dostopnih območjih pri bazni postaji in drugih ustreznih virih, preden se izdelek začne uporabljati; 3) ocena radiofrekvenčne izpostavljenosti na mestu uporabe – merjenje ravni radiofrekvenčne izpostavljenosti na mestu uporabe v bližini bazne postaje, ko izdelek začne obratovati; d) določa, kako izvesti oceno radiofrekvenčne izpostavljenosti na podlagi dejanskega največjega pristopa; e) opisuje več metodologij za merjenje in izračun radiofrekvenčne poljske jakosti, gostote moči ter SAR z navodili za njihovo uporabo pri obravnavi vrednotenja na lokaciji nameščene bazne postaje in vrednotenj v laboratoriju; f) opisuje, kako nadzorniki vzpostavijo posebne postopke vrednotenja, ki ustrezajo njihovemu namenu; g) podaja smernice o tem, kako poročati, razlagati in primerjati rezultate iz različnih metodologij vrednotenja ter, če to zahteva namen vrednotenja, določiti utemeljeno odločitev glede mejne vrednosti; h) zagotavlja metode za oceno radiofrekvenčne izpostavljenosti bazne postaje z uporabo časovno spremenljivih tehnologij za usmerjanje snopa, kot je nova radijska (NR) bazna postaja z uporabo več vhodov in več izhodov (MIMO). OPOMBA 1: V spremnem tehničnem poročilu IEC TR 62669:2019 [5] so kot primer na voljo študije primerov praktične izvedbe. OPOMBA 2: Čeprav je za trenutne vrste baznih postaj določeno, da delujejo do 200 GHz (glej na primer [6] in [7]), je zgornja frekvenca 300 GHz skladna z veljavnimi omejitvami izpostavljenosti. OPOMBA 3: Nižja frekvenca 100 kHz, upoštevana za okoljske vire, izhaja iz določil ICNIRP-1998 [2] in ICNIRP-2020 [1]. Vendar nekatere veljavne smernice za izpostavljenost zahtevajo, da se okoljska polja ocenijo že pri 3 kHz, npr. varnostni predpis 6 [4] in IEEE Std C95.1-2019 [3]. OPOMBA 4: Specifikacije ustreznih ukrepov za zmanjšanje radiofrekvenčne izpostavljenosti, kot so znaki, nadzor dostopa in usposabljanje, ne spadajo na področje uporabe tega dokumenta. Pri teh temah se je mogoče sklicevati na veljavne predpise ali priporočene prakse. OPOMBA 5: Čeprav ta dokument temelji na trenutnem mednarodnem soglasju o dobri inženirski praksi za ocenjevanje skladnosti radiofrekvenčne izpostavljenosti z veljavnimi mejami izpostavljenosti, je možno, da nacionalne regulativne agencije določijo drugačne zahteve. Subjekt, ki izvaja oceno radiofrekvenčne izpostavljenosti, mora poznati veljavne predpise.

General Information

Status
Published
Public Enquiry End Date
29-Sep-2021
Publication Date
06-Dec-2022
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
01-Dec-2022
Due Date
05-Feb-2023
Completion Date
07-Dec-2022

Relations

Buy Standard

Standard
EN IEC 62232:2023 - BARVE
English language
346 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Draft
prEN IEC 62232:2021 - BARVE
English language
318 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN IEC 62232:2023
01-januar-2023
Nadomešča:
SIST EN 62232:2019
Določitev RF poljske jakosti, gostote moči in SAR v okolici baznih postaj za
namene ocenjevanja izpostavljenosti ljudi
Determination of RF field strength, power density and SAR in the vicinity of base
stations for the purpose of evaluating human exposure
Bestimmung der HF-Feldstärke, der Leistungsdichte und der spezifischen
Absorptionsrate (SAR) in der Nachbarschaft von Funkkommunikations-Basisstationen
zur Ermittlung der menschlichen Exposition
Détermination de l'intensité de champ de radiofréquences, de la densité de puissance et
du DAS à proximité des stations de base de radiocommunication dans le but d'évaluer
l'exposition humaine
Ta slovenski standard je istoveten z: EN IEC 62232:2022
ICS:
13.280 Varstvo pred sevanjem Radiation protection
17.240 Merjenje sevanja Radiation measurements
SIST EN IEC 62232:2023 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
SIST EN IEC 62232:2023

---------------------- Page: 2 ----------------------
SIST EN IEC 62232:2023


EUROPEAN STANDARD EN IEC 62232

NORME EUROPÉENNE

EUROPÄISCHE NORM November 2022
ICS 13.280; 17.240 Supersedes EN 62232:2017
English Version
Determination of RF field strength, power density and SAR in the
vicinity of base stations for the purpose of evaluating human
exposure
(IEC 62232:2022)
Détermination de l'intensité de champ de radiofréquences, Bestimmung der HF-Feldstärke, der Leistungsdichte und
de la densité de puissance et du DAS à proximité des der spezifischen Absorptionsrate (SAR) in der
stations de base dans le but d'évaluer l'exposition humaine Nachbarschaft von Funkkommunikations-Basisstationen zur
(IEC 62232:2022) Ermittlung der menschlichen Exposition
(IEC 62232:2022)
This European Standard was approved by CENELEC on 2022-11-18. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Türkiye and the United Kingdom.


European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
 Ref. No. EN IEC 62232:2022 E

---------------------- Page: 3 ----------------------
SIST EN IEC 62232:2023
EN IEC 62232:2022 (E)
European foreword
The text of document 106/576/FDIS, future edition 3 of IEC 62232, prepared by IEC/TC 106 "Methods
for the assessment of electric, magnetic and electromagnetic fields associated with human exposure"
was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
EN IEC 62232:2022.
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2023-08-18
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2025-11-18
document have to be withdrawn
This document supersedes EN 62232:2017 and all of its amendments and corrigenda (if any).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Standard IEC 62232:2022 was approved by CENELEC as a European
Standard without any modification.
In the official version, for Bibliography, the following note has to be added for the standard indicated:
ISO/IEC 17025 NOTE Harmonized as EN ISO/IEC 17025
2

---------------------- Page: 4 ----------------------
SIST EN IEC 62232:2023
EN IEC 62232:2022 (E)
Annex ZA
(normative)

Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1  Where an International Publication has been modified by common modifications, indicated by (mod),
the relevant EN/HD applies.
NOTE 2  Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cenelec.eu.
Publication Year Title EN/HD Year
IEC/IEEE 62209- - Measurement procedure for the EN IEC/IEEE 62209- -
1528 assessment of specific absorption rate of 1528
human exposure to radio frequency fields
from hand-held and body-worn wireless
communication devices - Part 1528:
Human models, instrumentation and
procedures (Frequency range of 4 MHz to
10 GHz)
IEC 62209-3 - Measurement procedure for the EN IEC 62209-3 -
assessment of specific absorption rate of
human exposure to radio frequency fields
from hand-held and body-mounted
wireless communication devices - Part 3:
Vector measurement-based systems
(Frequency range of 600 MHz to 6 GHz)
IEC 62311 - Assessment of electronic and electrical EN IEC 62311 -
equipment related to human exposure
restrictions for electromagnetic fields (0
Hz to 300 GHz)
IEC 62479 - Assessment of the compliance of low- EN 62479 -
power electronic and electrical equipment
with the basic restrictions related to
human exposure to electromagnetic fields
(10 MHz to 300 GHz)
IEC/IEEE 62704-1 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communications devices, 30 MHz to 6
GHz - Part 1: General requirements for
using the finite difference time-domain
(FDTD) method for SAR calculations
3

---------------------- Page: 5 ----------------------
SIST EN IEC 62232:2023
EN IEC 62232:2022 (E)
Publication Year Title EN/HD Year
IEC/IEEE 62704-2 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communications devices, 30 MHz to 6
GHz - Part 2: Specific requirements for
finite difference time domain (FDTD)
modelling of exposure from vehicle
mounted antennas
IEC/IEEE 62704-3 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communications devices, 30 MHz to 6
GHz - Part 3: Specific requirements for
using the finite difference time domain
(FDTD) method for SAR calculations of
mobile phones
IEC/IEEE 62704-4 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communication devices, 30 MHz to 6 GHz
- Part 4: General requirements for using
the finite element method for SAR
calculations
IEC/IEEE 63195-1 - IEC/IEEE 63195-1 ED1: Measurement - -
procedure for the assessment of power
density of human exposure to radio
frequency fields from wireless devices
operating in close proximity to the head
and body – Frequency range of 6
GHz to 300 GHz
IEC/IEEE 63195-2 - IEC/IEEE 63195-2 ED1: Determining the - -
power density of the electromagnetic field
associated with human exposure to
wireless devices operating in close
proximity to the head and body using
computational techniques, 6 GHz to 300
GHz

4

---------------------- Page: 6 ----------------------
SIST EN IEC 62232:2023




IEC 62232

®


Edition 3.0 2022-10




INTERNATIONAL



STANDARD








colour

inside










Determination of RF field strength, power density and SAR in the vicinity of

base stations for the purpose of evaluating human exposure


























INTERNATIONAL

ELECTROTECHNICAL


COMMISSION





ICS 13.280; 17.240 ISBN 978-2-8322-5778-4




  Warning! Make sure that you obtained this publication from an authorized distributor.


® Registered trademark of the International Electrotechnical Commission

---------------------- Page: 7 ----------------------
SIST EN IEC 62232:2023
– 2 – IEC 62232:2022 © IEC 2022
CONTENTS
FOREWORD . 16
INTRODUCTION . 18
1 Scope . 19
2 Normative references . 20
3 Terms and definitions . 21
4 Symbols and abbreviated terms . 36
4.1 Physical quantities . 36
4.2 Constants . 36
4.3 Abbreviated terms . 36
5 How to use this document . 39
5.1 Quick start guide . 39
5.2 RF evaluation purpose categories . 42
5.3 Implementation case studies . 42
6 Evaluation processes for product compliance, product installation compliance and
in-situ RF exposure assessments . 42
6.1 Evaluation process for product compliance . 42
6.1.1 General . 42
6.1.2 Establishing compliance boundaries . 42
6.1.3 Iso-surface compliance boundary definition . 43
6.1.4 Simple compliance boundaries . 43
6.1.5 Methods for establishing the compliance boundary . 45
6.1.6 Uncertainty . 49
6.1.7 Reporting for product compliance . 49
6.2 Evaluation process used for product installation compliance . 50
6.2.1 General . 50
6.2.2 General evaluation procedure for product installations . 50
6.2.3 Product installation compliance based on the actual maximum
transmitted power or EIRP . 52
6.2.4 Product installation data collection . 55
6.2.5 Simplified product installation evaluation process . 56
6.2.6 Assessment area selection . 59
6.2.7 Measurements . 60
6.2.8 Computations . 62
6.2.9 Uncertainty . 62
6.2.10 Reporting for product installation compliance . 63
6.3 In-situ RF exposure evaluation or assessment process . 64
6.3.1 General . 64
6.3.2 In-situ measurement process . 64
6.3.3 Site analysis . 65
6.3.4 Case A evaluation . 66
6.3.5 Case B evaluation . 66
6.3.6 Uncertainty . 67
6.3.7 Reporting . 67
6.4 Averaging procedures . 67
6.4.1 Spatial averaging . 67
6.4.2 Time averaging . 68
7 Determining the evaluation method . 68

---------------------- Page: 8 ----------------------
SIST EN IEC 62232:2023
IEC 62232:2022 © IEC 2022 – 3 –
7.1 Overview. 68
7.2 Process to determine the evaluation method . 68
7.2.1 General . 68
7.2.2 Establishing the evaluation points in relation to the source-environment
plane . 69
7.2.3 Exposure metric selection . 70
8 Evaluation methods . 71
8.1 General . 71
8.2 Measurement methods . 72
8.2.1 General . 72
8.2.2 RF field strength and power density measurements . 72
8.2.3 SAR measurements . 73
8.3 Computation methods . 74
8.4 Methods for assessment based on actual maximum approach . 76
8.4.1 General requirements . 76
8.4.2 Actual transmitted power or EIRP monitoring . 76
8.4.3 Actual transmitted power or EIRP control . 77
8.5 Methods for the assessment of RF exposure to multiple sources . 78
8.6 Methods for establishing the BS transmitted power or EIRP . 79
9 Uncertainty . 80
10 Reporting. 80
10.1 General requirements . 80
10.2 Report format . 81
10.3 Opinions and interpretations . 82
Annex A (informative) Source-environment plane and guidance on the evaluation
method selection . 83
A.1 Guidance on the source-environment plane . 83
A.1.1 General . 83
A.1.2 Source-environment plane example . 83
A.1.3 Source regions . 84
A.2 Select between computation or measurement approaches . 90
A.3 Select measurement method . 91
A.3.1 Selection stages . 91
A.3.2 Selecting between RF field strength, power density and SAR
measurement approaches . 91
A.3.3 Selecting between broadband and frequency selective measurement . 92
A.3.4 Selecting RF field strength measurement procedures . 93
A.4 Select computation method . 93
A.5 Additional considerations . 95
A.5.1 Simplicity . 95
A.5.2 Evaluation method ranking . 95
A.5.3 Applying multiple methods for RF exposure evaluation . 95
Annex B (normative) Evaluation methods . 96
B.1 Overview. 96
B.2 General . 96
B.2.1 Coordinate systems and reference points . 96
B.2.2 Variables . 97
B.3 RF exposure evaluation principles . 98
B.3.1 Simple calculation of RF field strength and power density . 98

---------------------- Page: 9 ----------------------
SIST EN IEC 62232:2023
– 4 – IEC 62232:2022 © IEC 2022
B.3.2 Measurement of RF field strength and power density . 102
B.3.3 Spatial averaging . 104
B.3.4 Time averaging . 107
B.3.5 Comparing measured and computed values . 109
B.3.6 Personal RF monitors . 109
B.4 RF field strength and power density measurements . 109
B.4.1 Applicability of RF field strength and power density measurements . 109
B.4.2 In-situ RF exposure measurements . 109
B.4.3 Laboratory based RF field strength and power density measurements . 121
B.4.4 RF field strength and power density measurement uncertainty . 131
B.5 SAR measurements . 136
B.5.1 Overview of SAR measurements . 136
B.5.2 SAR measurement requirements . 136
B.5.3 SAR measurement description . 138
B.5.4 SAR measurement uncertainty. 143
B.6 Basic computation methods . 146
B.6.1 General . 146
B.6.2 Basic computation formulas for RF field strength or power density
evaluation . 146
B.6.3 Basic whole-body SAR and peak spatial-average SAR evaluation
formulas . 153
B.6.4 Basic compliance boundary assessment method for BS using parabolic
dish antennas . 160
B.6.5 Basic compliance boundary assessment method for intentionally
radiating cables . 163
B.7 Advanced computation methods. 164
B.7.1 General . 164
B.7.2 Synthetic model and ray tracing algorithms . 164
B.7.3 Full wave RF exposure computation . 171
B.7.4 Full wave SAR computation . 180
B.8 Extrapolation from the evaluated values to the maximum or actual values . 185
B.8.1 Extrapolation method . 185
B.8.2 Extrapolation to maximum in-situ RF field strength or power density
using broadband measurements . 187
B.8.3 Extrapolation to maximum in-situ RF field strength / power density using

frequency or code selective measurements . 187
B.8.4 Influence of traffic in real operating network . 188
B.8.5 Extrapolation for massive MIMO and beamforming BS . 189
B.8.6 Maximum exposure extrapolation with dynamic spectrum sharing (DSS) . 191
B.9 Guidance for implementing the actual maximum approach . 192
B.9.1 BS actual EIRP evaluation assumptions . 192
B.9.2 Technology duty-cycle factor description . 193
B.9.3 CDF evaluation using modelling studies . 195
B.9.4 CDF evaluation using measurement studies on operational BS sites . 196
B.9.5 Actual transmitted power or EIRP monitoring counters . 198
B.9.6 Configurations with multiple transmitters . 198
B.10 Transmitted power or EIRP evaluation . 200
B.10.1 General . 200
B.10.2 Measurement of the transmitted power in conducted mode . 200
B.10.3 Measurement of the transmitted power in OTA conditions . 201

---------------------- Page: 10 ----------------------
SIST EN IEC 62232:2023
IEC 62232:2022 © IEC 2022 – 5 –
B.10.4 Measurement of the EIRP in OTA and laboratory conditions . 201
B.10.5 Measurement of the EIRP in OTA and in-situ conditions . 202
Annex C (informative) Guidelines for the validation of power or EIRP control features
and monitoring counter(s) related to the actual maximum approach . 203
C.1 Overview. 203
C.2 Guidelines for validating control feature(s) and monitoring counters . 203
C.3 Validation of power or EIRP monitoring counter in laboratory conditions . 204
C.3.1 Validation of power or EIRP monitoring counter in conducted mode –
test procedure . 204
C.3.2 Validation of power or EIRP monitoring counter in OTA mode – test
procedure . 206
C.3.3 Validation of control feature(s) in laboratory conditions . 209
C.3.4 Validation of control features using in-situ measurements . 212
C.4 Validation test report . 214
C.5 Case studies . 215
C.5.1 Case study A – In-situ validation . 215
C.5.2 Case study B – In-situ validation . 219
C.5.3 Case study C – In-situ validation . 222
Annex D (informative) Rationale supporting simplified product installation criteria. 227
D.1 General . 227
D.2 Class E2 . 227
D.3 Class E10 . 228
D.4 Class E100 . 229
D.5 Class E+ . 231
D.6 Simplified formulas for millimetre-wave antennas using massive MIMO or

beam steering . 232
Annex E (informative) Technology-specific exposure evaluation guidance . 234
E.1 Overview to guidance on specific technologies . 234
E.2 Summary of technology-specific information . 234
E.3 Guidance on spectrum analyser settings . 235
E.3.1 Overview of spectrum analyser settings . 235
E.3.2 Detection algorithms . 236
E.3.3 Resolution bandwidth and channel power processing . 236
E.3.4 Integration per service . 239
E.4 Stable transmitted power signals . 239
E.4.1 TDMA/FDMA technology . 239
E.4.2 WCDMA/UMTS technology . 240
E.4.3 OFDM technology .
...

SLOVENSKI STANDARD
oSIST prEN IEC 62232:2021
01-september-2021
Določitev RF poljske jakosti, gostote moči in SAR v okolici radiokomunikacijskih
baznih postaj za namene ocenjevanja izpostavljenosti ljudi
Determination of RF field strength, power density and SAR in the vicinity of
radiocommunication base stations for the purpose of evaluating human exposure
Bestimmung der HF-Feldstärke, der Leistungsdichte und der spezifischen
Absorptionsrate (SAR) in der Nachbarschaft von Funkkommunikations-Basisstationen
zur Ermittlung der menschlichen Exposition
Détermination de l'intensité de champ de radiofréquences, de la densité de puissance et
du DAS à proximité des stations de base de radiocommunication dans le but d'évaluer
l'exposition humaine
Ta slovenski standard je istoveten z: prEN IEC 62232:2021
ICS:
13.280 Varstvo pred sevanjem Radiation protection
17.240 Merjenje sevanja Radiation measurements
oSIST prEN IEC 62232:2021 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
oSIST prEN IEC 62232:2021

---------------------- Page: 2 ----------------------
oSIST prEN IEC 62232:2021
106/550/CDV

COMMITTEE DRAFT FOR VOTE (CDV)
PROJECT NUMBER:
IEC 62232 ED3
DATE OF CIRCULATION: CLOSING DATE FOR VOTING:
2021-07-02 2021-09-24
SUPERSEDES DOCUMENTS:
106/511/CD, 106/517A/CC

IEC TC 106 : METHODS FOR THE ASSESSMENT OF ELECTRIC, MAGNETIC AND ELECTROMAGNETIC FIELDS ASSOCIATED WITH
HUMAN EXPOSURE
SECRETARIAT: SECRETARY:
Germany Mr Diego Cuartielles
OF INTEREST TO THE FOLLOWING COMMITTEES: PROPOSED HORIZONTAL STANDARD:

TC 9,TC 27,TC 29,TC 34,SC 62A,SC 62B,TC 69,TC
77,TC 78,TC 96,TC 100,TC 124,CISPR
Other TC/SCs are requested to indicate their interest, if
any, in this CDV to the secretary.
FUNCTIONS CONCERNED:
EMC ENVIRONMENT QUALITY ASSURANCE SAFETY
SUBMITTED FOR CENELEC PARALLEL VOTING NOT SUBMITTED FOR CENELEC PARALLEL VOTING
Attention IEC-CENELEC parallel voting
The attention of IEC National Committees, members of
CENELEC, is drawn to the fact that this Committee Draft for
Vote (CDV) is submitted for parallel voting.
The CENELEC members are invited to vote through the
CENELEC online voting system.

This document is still under study and subject to change. It should not be used for reference purposes.
Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which
they are aware and to provide supporting documentation.

TITLE:
Determination of RF field strength, power density and SAR in the vicinity of radiocommunication
base stations for the purpose of evaluating human exposure

PROPOSED STABILITY DATE: 2023

NOTE FROM TC/SC OFFICERS:


Copyright © 2021 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download
this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee
positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose
without permission in writing from IEC.

---------------------- Page: 3 ----------------------
oSIST prEN IEC 62232:2021
IEC CDV 62232/ED3 © IEC:2021     -2-   106/550/CDV

1 CONTENTS
2
3 FOREWORD . 15
4 INTRODUCTION . 17
5 1 Scope . 18
6 2 Normative references . 19
7 3 Terms and definitions . 19
8 4 Symbols and abbreviated terms . 32
9 4.1 Physical quantities . 32
10 4.2 Constants . 33
11 4.3 Abbreviated terms . 33
12 5 How to use this document . 36
13 5.1 Quick start guide . 36
14 5.2 RF evaluation purpose categories . 37
15 5.3 Implementation case studies . 38
16 6 Evaluation processes for product compliance, product installation compliance and in-
17 situ RF exposure assessments . 38
18 6.1 Evaluation process for product compliance . 38
19 6.1.1 General . 38
20 6.1.2 Establishing compliance boundaries . 38
21 6.1.3 Iso-surface compliance boundary definition . 39
22 6.1.4 Simple compliance boundaries . 39
23 6.1.5 Methods for establishing the compliance boundary . 41
24 6.1.6 Uncertainty . 44
25 6.1.7 Reporting for product compliance . 44
26 6.2 Evaluation process used for product installation compliance . 45
27 6.2.1 General . 45
28 6.2.2 General evaluation procedure for product installations . 45
29 6.2.3 Product installation compliance based on the actual maximum transmitted
30 power or EIRP . 47
31 6.2.4 Product installation data collection. 49
32 6.2.5 Simplified product installation evaluation process . 50
33 6.2.6 Assessment area selection . 54
34 6.2.7 Measurements . 55
35 6.2.8 Computations . 56
36 6.2.9 Uncertainty . 57
37 6.2.10 Reporting for product installation compliance . 57
38 6.3 In-situ RF exposure evaluation or assessment process . 58
39 6.3.1 General . 58
40 6.3.2 In-situ measurement process . 58
41 6.3.3 Site analysis . 60
42 6.3.4 Case A evaluation . 60
43 6.3.5 Case B evaluation . 61
44 6.3.6 Uncertainty . 61
45 6.3.7 Reporting . 61
46 6.4 Averaging procedures . 62
47 6.4.1 Spatial averaging . 62

---------------------- Page: 4 ----------------------
oSIST prEN IEC 62232:2021
IEC CDV 62232/ED3 © IEC:2021 -3- 106/550/CDV
48 6.4.2 Time averaging . 62
49 7 Determining the evaluation method . 62
50 7.1 Overview . 62
51 7.2 Process to determine the evaluation method . 63
52 7.2.1 General . 63
53 7.2.2 Establishing the evaluation points in relation to the source-environment plane63
54 7.2.3 Exposure metric selection . 64
55 8 Evaluation methods . 65
56 8.1 General . 65
57 8.2 Measurement methods . 66
58 8.2.1 General . 66
59 8.2.2 RF field strength and power density measurements . 66
60 8.2.3 SAR measurements . 67
61 8.3 Computation methods . 68
62 8.4 Methods for assessment based on actual maximum approach . 69
63 8.4.1 General requirements . 69
64 8.4.2 Actual transmitted power or EIRP monitoring . 70
65 8.4.3 Actual transmitted power or EIRP control . 70
66 8.5 Methods for the assessment of RF exposure to multiple sources . 71
67 8.5.1 General requirements . 71
68 8.5.2 Ambient fields . 73
69 9 Uncertainty . 73
70 10 Reporting . 73
71 10.1 General requirements . 73
72 10.2 Report format . 74
73 10.3 Opinions and interpretations . 75
74 Annex A (informative) Source environment plane and guidance on the evaluation method
75 selection . 76
76 A.1 Guidance on the source-environment plane . 76
77 A.1.1 General . 76
78 A.1.2 Source-environment plane example . 76
79 A.1.3 Source regions . 77
80 A.2 Select between computation or measurement approaches . 84
81 A.3 Select measurement method . 84
82 A.3.1 Selection stages . 84
83 A.3.2 Selecting between RF field strength, power density and SAR measurement
84 approaches . 85
85 A.3.3 Selecting between broadband and frequency-selective measurement . 86
86 A.3.4 Selecting RF field strength measurement procedures . 87
87 A.4 Select computation method . 88
88 A.5 Additional considerations . 89
89 A.5.1 Simplicity . 89
90 A.5.2 Evaluation method ranking . 89
91 A.5.3 Applying multiple methods for RF exposure evaluation . 89
92 Annex B (normative)  Evaluation methods . 90
93 B.1 Overview . 90
94 B.2 General . 90
95 B.2.1 Coordinate systems and reference points . 90

---------------------- Page: 5 ----------------------
oSIST prEN IEC 62232:2021
IEC CDV 62232/ED3 © IEC:2021 -4- 106/550/CDV
96 B.2.2 Variables . 91
97 B.3 RF exposure evaluation principles . 94
98 B.3.1 Calculation of RF field strength and power density . 94
99 B.3.2 Measurement of RF field strength and power density . 97
100 B.3.3 Spatial averaging . 98
101 B.3.4 Time averaging . 101
102 B.3.5 Comparing measured and computed values . 102
103 B.3.6 Personal RF monitors . 102
104 B.4 RF field strength and power density measurements . 103
105 B.4.1 Applicability of RF field strength and power density measurements . 103
106 B.4.2 In-situ RF exposure measurements . 103
107 B.4.3 Laboratory based RF field strength and power density measurements . 113
108 B.4.4 RF field strength and power density measurement uncertainty . 123
109 B.5 SAR measurements . 128
110 B.5.1 Overview of SAR measurements. 128
111 B.5.2 SAR measurement requirements . 128
112 B.5.3 SAR measurement description . 130
113 B.5.4 SAR measurement uncertainty . 136
114 B.6 Basic computation methods . 139
115 B.6.1 General . 139
116 B.6.2 Basic computation formulas for RF field strength or power density evaluation139
117 B.6.3 Basic whole-body SAR and peak spatial-average SAR evaluation formulas . 146
118 B.6.4 Basic compliance boundary assessment method for BS using parabolic dish
119 antennas . 152
120 B.6.5 Basic compliance boundary assessment method for intentionally radiating
121 RF cables . 154
122 B.7 Advanced computation methods . 155
123 B.7.1 General . 155
124 B.7.2 Synthetic model and ray tracing algorithms . 155
125 B.7.3 Full wave RF exposure computation . 162
126 B.7.4 Full wave SAR computation . 170
127 B.8 Extrapolation from the evaluated values to the maximum or actual values . 175
128 B.8.1 Extrapolation method . 175
129 B.8.2 Extrapolation to maximum in-situ RF field strength or power density using
130 broadband measurements . 176
131 B.8.3 Extrapolation to maximum in-situ RF field strength / power density for
132 frequency and code selective measurements . 176
133 B.8.4 Influence of traffic in real operating network . 177
134 B.8.5 Extrapolation for massive MIMO and beamforming BS . 177
135 B.8.6 Maximum exposure extrapolation with dynamic spectrum sharing (DSS) . 179
136 B.9 Guidance for implementing the actual maximum approach . 179
137 B.9.1 BS actual EIRP evaluation assumptions . 179
138 B.9.2 Technology duty-cycle factor description . 180
139 B.9.3 CDF evaluation using modelling studies . 182
140 B.9.4 CDF evaluation using measurement studies on operational BS sites . 183
141 B.9.5 Actual transmitted power or EIRP monitoring counters. 185
142 B.9.6 Configurations with multiple transmitters. 185
143 Annex C (informative)  Guidelines for the validation of power or EIRP control features and
144 monitoring counter(s) related to the actual maximum approach . 187
145 C.1 Overview . 187

---------------------- Page: 6 ----------------------
oSIST prEN IEC 62232:2021
IEC CDV 62232/ED3 © IEC:2021 -5- 106/550/CDV
146 C.2 Guidelines for validating control feature(s) and monitoring counters . 187
147 C.3 Validation of power or EIRP monitoring counter in laboratory conditions . 188
148 C.3.1 Validation of power or EIRP monitoring counter in conducted mode . 188
149 C.3.2 Validation of power or EIRP monitoring counter in OTA mode . 190
150 C.3.3 Validation of control feature(s) in laboratory conditions . 193
151 C.3.4 Validation of control features using in-situ measurements . 196
152 C.4 Validation report . 198
153 C.5 Case studies . 199
154 C.5.1 Case study A – In-situ validation . 199
155 C.5.2 Case study B – In-situ validation . 203
156 C.5.3 Case study C – In-situ validation . 205
157 Annex D (informative)  Rationale supporting simplified product installation criteria . 211
158 D.1 General . 211
159 D.2 Class E2 . 211
160 D.3 Class E10 . 212
161 D.4 Class E100 . 213
162 D.5 Class E+ . 215
163 D.6 Simplified formulas for millimetre-wave antennas using massive MIMO or beam
164 steering . 216
165 Annex E (informative)  Technology-specific guidance . 218
166 E.1 Overview to guidance on specific technologies . 218
167 E.2 Summary of technology-specific information . 218
168 E.3 Guidance on spectrum analyser settings . 220
169 E.3.1 Overview of spectrum analyser settings . 220
170 E.3.2 Detection algorithms . 220
171 E.3.3 Resolution bandwidth and channel power processing . 221
172 E.3.4 Integration per service . 223
173 E.4 Stable transmitted power signals . 224
174 E.4.1 TDMA/FDMA technology . 224
175 E.4.2 WCDMA/UMTS technology . 225
176 E.4.3 OFDM technology . 225
177 E.5 WCDMA measurement and calibration using a code domain analyser . 225
178 E.5.1 WCDMA measurements – General . 225
179 E.5.2 Requirements for the code domain analyser . 226
180 E.5.3 Calibration . 227
181 E.6 Wi-Fi measurements . 228
182 E.6.1 General . 228
183 E.6.2 Integration time for reproducible measurements . 229
184 E.6.3 Channel occupation . 229
185 E.6.4 Some considerations . 230
186 E.6.5 Measurement configuration and steps . 230
187 E.6.6 Influence of the application layers . 231
188 E.6.7 Power control . 231
189 E.7 LTE measurements . 231
190 E.7.1 Overview . 231
191 E.7.2 LTE transmission modes. 232
192 E.7.3 LTE-FDD frame structure . 233
193 E.7.4 LTE-TDD frame structure . 234
194 E.7.5 Maximum LTE exposure evaluation . 235

---------------------- Page: 7 ----------------------
oSIST prEN IEC 62232:2021
IEC CDV 62232/ED3 © IEC:2021 -6- 106/550/CDV
195 E.7.6 Instantaneous LTE exposure evaluation . 240
196 E.7.7 MIMO multiplexing of LTE BS . 240
197 E.8 NR BS measurements . 240
198 E.8.1 General . 240
199 E.8.2 Maximum NR exposure evaluation . 241
200 E.9 Establishing compliance boundaries using numerical simulations of MIMO array
201 antennas emitting correlated wave-forms . 248
202 E.9.1 General . 248
203 E.9.2 Field combining near radio base stations for correlated exposure with the
204 purpose of establishing compliance boundaries . 249
205 E.9.3 Numerical simulations of MIMO array antennas with densely packed columns250
206 E.9.4 Numerical simulations of large MIMO array antennas . 250
207 E.10 Massive MIMO antennas . 251
208 E.10.1 Overview . 251
209 E.10.2 Deterministic conservative approach . 251
210 E.10.3 Statistical conservative approach . 251
211 E.10.4 Example approaches . 252
212 Annex F (informative)  Guidelines for the assessment of BS compliance with ICNIRP-2020
213 brief exposure limits . 267
214 F.1 General . 267
215 F.2 Brief exposure limits . 267
216 F.3 Implications of brief exposure limits on signal modulation and TDD duty cycle . 268
217 F.4 Implications of brief exposure limits on the actual maximum approach . 268
218 Annex G (informative)  Uncertainty . 273
219 G.1 Background . 273
220 G.2 Requirement to estimate uncertainty . 273
221 G.3 How to estimate uncertainty . 274
222 G.4 Guidance on uncertainty and assessment schemes . 274
223 G.4.1 General . 274
224 G.4.2 Overview of assessment schemes . 274
225 G.4.3 Examples of assessment schemes . 275
226 G.4.4 Assessment schemes and compliance probabilities . 278
227 G.5 Guidance on uncertainty . 280
228 G.5.1 Overview . 280
229 G.5.2 Measurement uncertainty and confidence levels . 280
230 G.6 Applying uncertainty for compliance assessments . 282
231 G.7 Example influence quant
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.