EN IEC 62232:2022
(Main)Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure
Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure
IEC 62232:2022 addresses the evaluation of RF field strength, power density and specific absorption rate (SAR) levels in the vicinity of base stations (BS), also called products or equipment under test (EUT), intentionally radiating in the radio frequency (RF) range 110 MHz to 300 GHz in accordance with the scope, see Clause 1. It does not address the evaluation of current density. RF exposure evaluation methods to be used for product compliance, product installation compliance and in-situ RF exposure assessments are specified in this document. Exposure limits are not specified in this document. The entity conducting RF exposure assessments refers to the set of exposure limits applicable where exposure takes place. Examples of applicable exposure limits considered in this document are provided in the Bibliography, for example ICNIRP-2020 [1], ICNIRP-1998 [2], IEEE Std C95.1™-2019 [3] and Safety Code 6 [4].
Bestimmung der HF-Feldstärke, der Leistungsdichte und der spezifischen Absorptionsrate (SAR) in der Nachbarschaft von Funkkommunikations-Basisstationen zur Ermittlung der menschlichen Exposition
Détermination de l'intensité de champ de radiofréquences, de la densité de puissance et du DAS à proximité des stations de base dans le but d'évaluer l'exposition humaine
IEC 62232:2022 traite de l’évaluation de l’intensité du champ RF, de la densité de puissance et des niveaux de débit d’absorption spécifique (DAS) à proximité des stations de base (BS), également appelées produits ou équipements sous test (EUT), rayonnant intentionnellement dans la gamme des radiofréquences (RF) de 110 MHz à 300 GHz conformément au domaine d’application, voir Article 1. Il ne traite pas de l’évaluation de la densité actuelle. Les méthodes d’évaluation de l’exposition aux RF à utiliser pour la conformité du produit, la conformité de l’installation du produit et les évaluations in situ de l’exposition aux RF sont spécifiées dans le présent document. Les limites d’exposition ne sont pas spécifiées dans le présent document. L’entité qui effectue les évaluations de l’exposition aux RF fait référence à l’ensemble des limites d’exposition applicables là où l’exposition a lieu. Des exemples de limites d’exposition applicables examinées dans le présent document sont fournis dans la bibliographie, par exemple ICNIRP-2020 [1], ICNIRP-1998 [2], IEEE Std C95.1-2019™ [3] et Safety Code 6 [4].
Določitev RF poljske jakosti, gostote moči in SAR v okolici baznih postaj za namene ocenjevanja izpostavljenosti ljudi
Ta dokument opisuje metode za določitev radiofrekvenčne (RF) poljske jakosti, gostote moči in specifične hitrosti absorpcije (SAR) v okolici baznih postaj (BS) za namene ocenjevanja izpostavljenosti ljudi. Ta dokument: a) obravnava namerno sevajoče bazne postaje, ki oddajajo prek ene ali več anten z eno ali več frekvencami v območju od 110 MHz do 300 GHz; b) upošteva vpliv okoliških virov na radiofrekvenčno izpostavljenost vsaj v frekvenčnem območju od 100 kHz do 300 GHz; c) določa metode, ki se uporabljajo za oceno radiofrekvenčne izpostavljenosti za oceno skladnosti, in sicer: 1) skladnost izdelka – določitev meje skladnosti za izdelek bazne postaje, preden je uveden na trg; 2) skladnost namestitve izdelka – določitev ravni skupne radiofrekvenčne izpostavljenosti v dostopnih območjih pri bazni postaji in drugih ustreznih virih, preden se izdelek začne uporabljati; 3) ocena radiofrekvenčne izpostavljenosti na mestu uporabe – merjenje ravni radiofrekvenčne izpostavljenosti na mestu uporabe v bližini bazne postaje, ko izdelek začne obratovati; d) določa, kako izvesti oceno radiofrekvenčne izpostavljenosti na podlagi dejanskega največjega pristopa; e) opisuje več metodologij za merjenje in izračun radiofrekvenčne poljske jakosti, gostote moči ter SAR z navodili za njihovo uporabo pri obravnavi vrednotenja na lokaciji nameščene bazne postaje in vrednotenj v laboratoriju; f) opisuje, kako nadzorniki vzpostavijo posebne postopke vrednotenja, ki ustrezajo njihovemu namenu; g) podaja smernice o tem, kako poročati, razlagati in primerjati rezultate iz različnih metodologij vrednotenja ter, če to zahteva namen vrednotenja, določiti utemeljeno odločitev glede mejne vrednosti; h) zagotavlja metode za oceno radiofrekvenčne izpostavljenosti bazne postaje z uporabo časovno spremenljivih tehnologij za usmerjanje snopa, kot je nova radijska (NR) bazna postaja z uporabo več vhodov in več izhodov (MIMO). OPOMBA 1: V spremnem tehničnem poročilu IEC TR 62669:2019 [5] so kot primer na voljo študije primerov praktične izvedbe. OPOMBA 2: Čeprav je za trenutne vrste baznih postaj določeno, da delujejo do 200 GHz (glej na primer [6] in [7]), je zgornja frekvenca 300 GHz skladna z veljavnimi omejitvami izpostavljenosti. OPOMBA 3: Nižja frekvenca 100 kHz, upoštevana za okoljske vire, izhaja iz določil ICNIRP-1998 [2] in ICNIRP-2020 [1]. Vendar nekatere veljavne smernice za izpostavljenost zahtevajo, da se okoljska polja ocenijo že pri 3 kHz, npr. varnostni predpis 6 [4] in IEEE Std C95.1-2019 [3]. OPOMBA 4: Specifikacije ustreznih ukrepov za zmanjšanje radiofrekvenčne izpostavljenosti, kot so znaki, nadzor dostopa in usposabljanje, ne spadajo na področje uporabe tega dokumenta. Pri teh temah se je mogoče sklicevati na veljavne predpise ali priporočene prakse. OPOMBA 5: Čeprav ta dokument temelji na trenutnem mednarodnem soglasju o dobri inženirski praksi za ocenjevanje skladnosti radiofrekvenčne izpostavljenosti z veljavnimi mejami izpostavljenosti, je možno, da nacionalne regulativne agencije določijo drugačne zahteve. Subjekt, ki izvaja oceno radiofrekvenčne izpostavljenosti, mora poznati veljavne predpise.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-januar-2023
Nadomešča:
SIST EN 62232:2019
Določitev RF poljske jakosti, gostote moči in SAR v okolici baznih postaj za
namene ocenjevanja izpostavljenosti ljudi
Determination of RF field strength, power density and SAR in the vicinity of base
stations for the purpose of evaluating human exposure
Bestimmung der HF-Feldstärke, der Leistungsdichte und der spezifischen
Absorptionsrate (SAR) in der Nachbarschaft von Funkkommunikations-Basisstationen
zur Ermittlung der menschlichen Exposition
Détermination de l'intensité de champ de radiofréquences, de la densité de puissance et
du DAS à proximité des stations de base de radiocommunication dans le but d'évaluer
l'exposition humaine
Ta slovenski standard je istoveten z: EN IEC 62232:2022
ICS:
13.280 Varstvo pred sevanjem Radiation protection
17.240 Merjenje sevanja Radiation measurements
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EUROPEAN STANDARD EN IEC 62232
NORME EUROPÉENNE
EUROPÄISCHE NORM November 2022
ICS 13.280; 17.240 Supersedes EN 62232:2017
English Version
Determination of RF field strength, power density and SAR in the
vicinity of base stations for the purpose of evaluating human
exposure
(IEC 62232:2022)
Détermination de l'intensité de champ de radiofréquences, Bestimmung der HF-Feldstärke, der Leistungsdichte und
de la densité de puissance et du DAS à proximité des der spezifischen Absorptionsrate (SAR) in der
stations de base dans le but d'évaluer l'exposition humaine Nachbarschaft von Funkkommunikations-Basisstationen zur
(IEC 62232:2022) Ermittlung der menschlichen Exposition
(IEC 62232:2022)
This European Standard was approved by CENELEC on 2022-11-18. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Türkiye and the United Kingdom.
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN IEC 62232:2022 E
European foreword
The text of document 106/576/FDIS, future edition 3 of IEC 62232, prepared by IEC/TC 106 "Methods
for the assessment of electric, magnetic and electromagnetic fields associated with human exposure"
was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2023-08-18
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2025-11-18
document have to be withdrawn
This document supersedes EN 62232:2017 and all of its amendments and corrigenda (if any).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Standard IEC 62232:2022 was approved by CENELEC as a European
Standard without any modification.
In the official version, for Bibliography, the following note has to be added for the standard indicated:
ISO/IEC 17025 NOTE Harmonized as EN ISO/IEC 17025
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod),
the relevant EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cenelec.eu.
Publication Year Title EN/HD Year
IEC/IEEE 62209- - Measurement procedure for the EN IEC/IEEE 62209- -
1528 assessment of specific absorption rate of 1528
human exposure to radio frequency fields
from hand-held and body-worn wireless
communication devices - Part 1528:
Human models, instrumentation and
procedures (Frequency range of 4 MHz to
10 GHz)
IEC 62209-3 - Measurement procedure for the EN IEC 62209-3 -
assessment of specific absorption rate of
human exposure to radio frequency fields
from hand-held and body-mounted
wireless communication devices - Part 3:
Vector measurement-based systems
(Frequency range of 600 MHz to 6 GHz)
IEC 62311 - Assessment of electronic and electrical EN IEC 62311 -
equipment related to human exposure
restrictions for electromagnetic fields (0
Hz to 300 GHz)
IEC 62479 - Assessment of the compliance of low- EN 62479 -
power electronic and electrical equipment
with the basic restrictions related to
human exposure to electromagnetic fields
(10 MHz to 300 GHz)
IEC/IEEE 62704-1 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communications devices, 30 MHz to 6
GHz - Part 1: General requirements for
using the finite difference time-domain
(FDTD) method for SAR calculations
Publication Year Title EN/HD Year
IEC/IEEE 62704-2 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communications devices, 30 MHz to 6
GHz - Part 2: Specific requirements for
finite difference time domain (FDTD)
modelling of exposure from vehicle
mounted antennas
IEC/IEEE 62704-3 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communications devices, 30 MHz to 6
GHz - Part 3: Specific requirements for
using the finite difference time domain
(FDTD) method for SAR calculations of
mobile phones
IEC/IEEE 62704-4 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communication devices, 30 MHz to 6 GHz
- Part 4: General requirements for using
the finite element method for SAR
calculations
IEC/IEEE 63195-1 - IEC/IEEE 63195-1 ED1: Measurement - -
procedure for the assessment of power
density of human exposure to radio
frequency fields from wireless devices
operating in close proximity to the head
and body – Frequency range of 6
GHz to 300 GHz
IEC/IEEE 63195-2 - IEC/IEEE 63195-2 ED1: Determining the - -
power density of the electromagnetic field
associated with human exposure to
wireless devices operating in close
proximity to the head and body using
computational techniques, 6 GHz to 300
GHz
IEC 62232 ®
Edition 3.0 2022-10
INTERNATIONAL
STANDARD
colour
inside
Determination of RF field strength, power density and SAR in the vicinity of
base stations for the purpose of evaluating human exposure
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
ICS 13.280; 17.240 ISBN 978-2-8322-5778-4
– 2 – IEC 62232:2022 © IEC 2022
CONTENTS
FOREWORD . 16
INTRODUCTION . 18
1 Scope . 19
2 Normative references . 20
3 Terms and definitions . 21
4 Symbols and abbreviated terms . 36
4.1 Physical quantities . 36
4.2 Constants . 36
4.3 Abbreviated terms . 36
5 How to use this document . 39
5.1 Quick start guide . 39
5.2 RF evaluation purpose categories . 42
5.3 Implementation case studies . 42
6 Evaluation processes for product compliance, product installation compliance and
in-situ RF exposure assessments . 42
6.1 Evaluation process for product compliance . 42
6.1.1 General . 42
6.1.2 Establishing compliance boundaries . 42
6.1.3 Iso-surface compliance boundary definition . 43
6.1.4 Simple compliance boundaries . 43
6.1.5 Methods for establishing the compliance boundary . 45
6.1.6 Uncertainty . 49
6.1.7 Reporting for product compliance . 49
6.2 Evaluation process used for product installation compliance . 50
6.2.1 General . 50
6.2.2 General evaluation procedure for product installations . 50
6.2.3 Product installation compliance based on the actual maximum
transmitted power or EIRP . 52
6.2.4 Product installation data collection . 55
6.2.5 Simplified product installation evaluation process . 56
6.2.6 Assessment area selection . 59
6.2.7 Measurements . 60
6.2.8 Computations . 62
6.2.9 Uncertainty . 62
6.2.10 Reporting for product installation compliance . 63
6.3 In-situ RF exposure evaluation or assessment process . 64
6.3.1 General . 64
6.3.2 In-situ measurement process . 64
6.3.3 Site analysis . 65
6.3.4 Case A evaluation . 66
6.3.5 Case B evaluation . 66
6.3.6 Uncertainty . 67
6.3.7 Reporting . 67
6.4 Averaging procedures . 67
6.4.1 Spatial averaging . 67
6.4.2 Time averaging . 68
7 Determining the evaluation method . 68
IEC 62232:2022 © IEC 2022 – 3 –
7.1 Overview. 68
7.2 Process to determine the evaluation method . 68
7.2.1 General . 68
7.2.2 Establishing the evaluation points in relation to the source-environment
plane . 69
7.2.3 Exposure metric selection . 70
8 Evaluation methods . 71
8.1 General . 71
8.2 Measurement methods . 72
8.2.1 General . 72
8.2.2 RF field strength and power density measurements . 72
8.2.3 SAR measurements . 73
8.3 Computation methods . 74
8.4 Methods for assessment based on actual maximum approach . 76
8.4.1 General requirements . 76
8.4.2 Actual transmitted power or EIRP monitoring . 76
8.4.3 Actual transmitted power or EIRP control . 77
8.5 Methods for the assessment of RF exposure to multiple sources . 78
8.6 Methods for establishing the BS transmitted power or EIRP . 79
9 Uncertainty . 80
10 Reporting. 80
10.1 General requirements . 80
10.2 Report format . 81
10.3 Opinions and interpretations . 82
Annex A (informative) Source-environment plane and guidance on the evaluation
method selection . 83
A.1 Guidance on the source-environment plane . 83
A.1.1 General . 83
A.1.2 Source-environment plane example . 83
A.1.3 Source regions . 84
A.2 Select between computation or measurement approaches . 90
A.3 Select measurement method . 91
A.3.1 Selection stages . 91
A.3.2 Selecting between RF field strength, power density and SAR
measurement approaches . 91
A.3.3 Selecting between broadband and frequency selective measurement . 92
A.3.4 Selecting RF field strength measurement procedures . 93
A.4 Select computation method . 93
A.5 Additional considerations . 95
A.5.1 Simplicity . 95
A.5.2 Evaluation method ranking . 95
A.5.3 Applying multiple methods for RF exposure evaluation . 95
Annex B (normative) Evaluation methods . 96
B.1 Overview. 96
B.2 General . 96
B.2.1 Coordinate systems and reference points . 96
B.2.2 Variables . 97
B.3 RF exposure evaluation principles . 98
B.3.1 Simple calculation of RF field strength and power density . 98
– 4 – IEC 62232:2022 © IEC 2022
B.3.2 Measurement of RF field strength and power density . 102
B.3.3 Spatial averaging . 104
B.3.4 Time averaging . 107
B.3.5 Comparing measured and computed values . 109
B.3.6 Personal RF monitors . 109
B.4 RF field strength and power density measurements . 109
B.4.1 Applicability of RF field strength and power density measurements . 109
B.4.2 In-situ RF exposure measurements . 109
B.4.3 Laboratory based RF field strength and power density measurements . 121
B.4.4 RF field strength and power density measurement uncertainty . 131
B.5 SAR measurements . 136
B.5.1 Overview of SAR measurements . 136
B.5.2 SAR measurement requirements . 136
B.5.3 SAR measurement description . 138
B.5.4 SAR measurement uncertainty. 143
B.6 Basic computation methods . 146
B.6.1 General . 146
B.6.2 Basic computation formulas for RF field strength or power density
evaluation . 146
B.6.3 Basic whole-body SAR and peak spatial-average SAR evaluation
formulas . 153
B.6.4 Basic compliance boundary assessment method for BS using parabolic
dish antennas . 160
B.6.5 Basic compliance boundary assessment method for intentionally
radiating cables . 163
B.7 Advanced computation methods. 164
B.7.1 General . 164
B.7.2 Synthetic model and ray tracing algorithms . 164
B.7.3 Full wave RF exposure computation . 171
B.7.4 Full wave SAR computation . 180
B.8 Extrapolation from the evaluated values to the maximum or actual values . 185
B.8.1 Extrapolation method . 185
B.8.2 Extrapolation to maximum in-situ RF field strength or power density
using broadband measurements . 187
B.8.3 Extrapolation to maximum in-situ RF field strength / power density using
frequency or code selective measurements . 187
B.8.4 Influence of traffic in real operating network . 188
B.8.5 Extrapolation for massive MIMO and beamforming BS . 189
B.8.6 Maximum exposure extrapolation with dynamic spectrum sharing (DSS) . 191
B.9 Guidance for implementing the actual maximum approach . 192
B.9.1 BS actual EIRP evaluation assumptions . 192
B.9.2 Technology duty-cycle factor description . 193
B.9.3 CDF evaluation using modelling studies . 195
B.9.4 CDF evaluation using measurement studies on operational BS sites . 196
B.9.5 Actual transmitted power or EIRP monitoring counters . 198
B.9.6 Configurations with multiple transmitters . 198
B.10 Transmitted power or EIRP evaluation . 200
B.10.1 General . 200
B.10.2 Measurement of the transmitted power in conducted mode . 200
B.10.3 Measurement of the transmitted power in OTA conditions . 201
IEC 62232:2022 © IEC 2022 – 5 –
B.10.4 Measurement of the EIRP in OTA and laboratory conditions . 201
B.10.5 Measurement of the EIRP in OTA and in-situ conditions . 202
Annex C (informative) Guidelines for the validation of power or EIRP control features
and monitoring counter(s) related to the actual maximum approach . 203
C.1 Overview. 203
C.2 Guidelines for validating control feature(s) and monitoring counters . 203
C.3 Validation of power or EIRP monitoring counter in laboratory conditions . 204
C.3.1 Validation of power or EIRP monitoring counter in conducted mode –
test procedure . 204
C.3.2 Validation of power or EIRP monitoring counter in OTA mode – test
procedure . 206
C.3.3 Validation of control feature(s) in laboratory conditions . 209
C.3.4 Validation of control features using in-situ measurements . 212
C.4 Validation test report . 214
C.5 Case studies . 215
C.5.1 Case study A – In-situ validation . 215
C.5.2 Case study B – In-situ validation . 219
C.5.3 Case study C – In-situ validation . 222
Annex D (informative) Rationale supporting simplified product installation criteria. 227
D.1 General . 227
D.2 Class E2 . 227
D.3 Class E10 . 228
D.4 Class E100 . 229
D.5 Class E+ . 231
D.6 Simplified formulas for millimetre-wave antennas using massive MIMO or
beam steering . 232
Annex E (informative) Technology-specific exposure evaluation guidance . 234
E.1 Overview to guidance on specific technologies . 234
E.2 Summary of technology-specific information . 234
E.3 Guidance on spectrum analyser settings . 235
E.3.1 Overview of spectrum analyser settings . 235
E.3.2 Detection algorithms . 236
E.3.3 Resolution bandwidth and channel power processing . 236
E.3.4 Integration per service . 239
E.4 Stable transmitted power signals . 239
E.4.1 TDMA/FDMA technology . 239
E.4.2 WCDMA/UMTS technology . 240
E.4.3 OFDM technology . 241
E.5 WCDMA measurement and calibration using a code domain analyser . 241
E.5.1 WCDMA measurements – General. 241
E.5.2 WCDMA decoder characteristics . 241
E.5.3 Calibration . 242
E.6 Wi-Fi measurements . 244
E.6.1 General . 244
E.6.2 Integration time for reproducible measurements . 245
E.6.3 Channel occupation . 245
E.6.4 Some considerations . 246
E.6.5 Measurement configuration and steps. 246
E.6.6 Influence of the application layers . 247
– 6 – IEC 62232:2022 © IEC 2022
E.6.7 Power control . 247
E.7 LTE measurements . 248
E.7.1 Overview . 248
E.7.2 LTE transmission modes . 248
E.7.3 LTE-FDD frame structure . 249
E.7.4 LTE-TDD frame structure . 250
E.7.5 Maximum LTE exposure evaluation . 252
E.7.6 Instantaneous LTE exposure evaluation . 257
E.7.7 MIMO multiplexing of LTE BS . 258
E.8 NR BS measurements . 258
E.8.1 General . 258
E.8.2 Maximum NR exposure evaluation . 258
E.9 Establishing compliance boundaries using numerical simulations of MIMO
array antennas emitting correlated waveforms . 268
E.9.1 General . 268
E.9.2 Field combining near base stations for correlated exposure with the
purpose of establishing compliance boundaries . 268
E.9.3 Numerical simulations of MIMO array antennas with densely packed
columns . 269
E.9.4 Numerical simulations of large MIMO array antennas . 270
E.10 Massive MIMO antennas . 270
E.10.1 Overview . 270
E.10.2 Deterministic conservative approach . 270
E.10.3 Statistical conservative approach. 270
E.10.4 Example approaches . 271
Annex F (informative) Guidelines for the assessment of BS compliance with ICNIRP-
2020 brief exposure limits . 288
F.1 General . 288
F.2 Brief exposure limits . 288
F.3 Implications of brief exposure limits on signal modulation and TDD duty
cycle . 290
F.4 Implications of brief exposure limits on the actual maximum approach . 290
Annex G (informative) Uncertainty . 294
G.1 Background. 294
G.2 Requirement to estimate uncertainty . 294
G.3 How to estimate uncertainty . 295
G.4 Guidance on uncertainty and assessment schemes . 295
G.4.1 General . 295
G.4.2 Overview of assessment schemes . 295
G.4.3 Examples of assessment schemes . 296
G.4.4 Assessment schemes and compliance probabilities . 299
G.5 Guidance on uncertainty . 301
G.5.1 Overview . 301
G.5.2 Measurement uncertainty and confidence levels . 302
G.6 Applying uncertainty for compliance assessments . 303
G.7 Example influence quantities for field measurements . 304
G.7.1 General . 304
G.7.2 Calibration uncertainty of measurement antenna or field probe . 304
G.7.3 Frequency response of the measurement antenna or field probe . 304
G.7.4 Isotropy of the measurement antenna or field probe . 306
IEC 62232:2022 © IEC 2022 – 7 –
G.7.5 Frequency response of the spectrum analyser . 306
G.7.6 Temperature response of a broadband field probe . 306
G.7.7 Linearity deviation of a broadband field probe . 307
G.7.8 Mismatch uncertainty . 307
G.7.9 Deviation of the experimental source from numerical source . 307
G.7.10 Meter fluctuation uncertainty for time-varying signals . 307
G.7.11 Uncertainty due to power variation in the RF source . 308
G.7.12 Uncertainty due to field gradients . 308
G.7.13 Mutual coupling between measurement antenna or isotropic probe and
object . 309
G.7.14 Uncertainty due to field scattering from the surveyor's body . 310
G.7.15 Measurement device . 312
G.7.16 Fields out of measurement range . 312
G.7.17 Noise . 313
G.7.18 Integration time . 313
G.7.19 Power chain . 313
G.7.20 Positioning system . 313
G.7.21 Matching between probe and the EUT . 313
G.7.22 Drifts in output power of the EUT, probe, temperature, and humidity . 313
G.7.23 Perturbation by the environment . 313
G.8 Example influence quantities for RF field strength computations by ray
tracing or full wave methods . 314
G.8.1 General . 314
G.8.2 System . 314
G.8.3 Technique uncertainties . 315
G.8.4 Environmental uncertainties . 315
G.9 Influence quantities for SAR measurements . 316
G.9.1 General . 316
G.9.2 Post-processing . 316
G.9.3 EUT holder . 316
G.9.4 EUT positioning . 317
G.9.5 Phantom shell uncertainty . 318
G.9.6 SAR correction depending on target liquid permittivity and conductivity . 318
G.9.7 Liquid permittivity and conductivity measurements . 319
G.9.8 Liquid temperature . 319
G.10 Influence quantities for SAR calculations . 319
G.11 Spatial averaging . 319
G.11.1 General . 319
G.11.2 Small-scale fading variations . 320
G.11.3 Error on the estimation of local average power density . 321
G.11.4 Characterization of environment statistical properties . 322
G.11.5 Characterization of different spatial averaging schemes . 322
G.12 Influence of human body on measurements of the electric RF field strength. 327
G.12.1 Simulations of the influence of human body on measurements based on
the method of moments (surface equivalence principle) . 327
G.12.2 Comparison with measurements . 329
G.12.3 Conclusions . 330
Annex H (informative) Guidance on comparing evaluated parameters with a limit value . 331
H.1 Overview. 331
– 8 – IEC 62232:2022 © IEC 2022
H.2 Information recommended to compare evaluated value against limit value . 331
H.3 Performing a limit comparison at a given confidence level. 331
H.4 Performing a limit comparison using a process-based assessment scheme . 332
Bibliography . 333
Figure 1 – Quick start guide to the evaluation process . 40
Figure 2 – Example of iso-surface compliance boundary . 43
Figure 3 – Example of cylindrical and half-pipe compliance boundaries . 44
Figure 4 – Example of box shaped compliance boundary . 45
Figure 5 – Example of truncated box shaped compliance boundary . 45
Figure 6 – Example illustrating the linear scaling procedure . 46
Figure 7 – Example of massive MIMO antenna and corresponding beams and envelope
patterns . 48
Figure 8 – Example of compliance boundary shape for BS antennas with beam
steering . 48
Figure 9 – Example of dish antenna compliance boundary . 49
Figure 10 – Flowchart describing the product installation evaluation process . 51
Figure 11 – Example of a CDF curve representing the normalized actual transmitted
power or EIRP . 53
Figure 12 – Flow chart for product installation compliance based on the actual
maximum transmitted power or EIRP threshold(s) . 55
Figure 13 – Simplified compliance assessment process using installation classes . 56
Figure 14 – Example of DI within a square-shaped assessment domain boundary
(ADB) with dimension L . 60
ADB
Figure 15 – In-situ RF exposure evaluation or assessment process flow chart . 65
Figure 16 – Source-environment plane concept .
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...