EN IEC 62232:2025
(Main)Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure
Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure
IEC 62232:2025 provides methods for the determination of RF field strength, power density and specific absorption rate (SAR) in the vicinity of base stations (BS) for the purpose of evaluating human exposure. This document: a) considers intentionally radiating BS which transmit on one or more antennas using one or more frequencies in the range 110 MHz to 300 GHz; b) considers the impact of ambient sources on RF exposure at least in the 100 kHz to 300 GHz frequency range; c) specifies the methods to be used for RF exposure evaluation for compliance assessment applications, namely: 1) product compliance – determination of compliance boundary information for a BS product before it is placed on the market; 2) product installation compliance – determination of the total RF exposure levels in accessible areas from a BS product and other relevant sources before the product is put into operation; 3) in-situ RF exposure assessment – measurement of in-situ RF exposure levels in the vicinity of a BS installation after the product has been taken into operation; d) specifies how to perform RF exposure assessment based on the actual maximum approach; e) describes several RF field strength, power density, and SAR measurement and computation methodologies with guidance on their applicability to address both the in-situ evaluation of installed BS and laboratory-based evaluations; f) describes how surveyors establish their specific evaluation procedures appropriate for their evaluation purpose; g) provides guidance on how to report, interpret and compare results from different evaluation methodologies and, where the evaluation purpose requires it, determine a justified decision against a limit value; h) provides methods for the RF exposure assessment of BS using time-varying beam-steering technologies such as new radio (NR) BS using massive multiple input multiple output (MIMO). NOTE 1 Practical implementation case studies are provided as examples in the companion Technical Report IEC TR 62669 [5]. NOTE 2 Although the current BS product types have been specified to operate up to 200 GHz (see, for example, [6] and [7]), the upper frequency of 300 GHz is consistent with applicable exposure limits. NOTE 3 The lower frequency considered for ambient sources, 100 kHz, is derived from ICNIRP-1998 [2] and ICNIRP-2020 [1]. However, some applicable exposure guidelines require ambient fields to be evaluated as low as 3 kHz, e.g. Safety Code 6 [4] and IEEE Std C95.1-2019 [3]. NOTE 4 Specification of appropriate RF exposure mitigation measures such as signage, access control, and training are beyond the scope of this document. It is possible to refer to the applicable regulations or recommended practices on these topics. NOTE 5 While this document is based on the current international consensus about the best engineering practice for assessing the compliance of RF exposure with the applicable exposure limits, it is possible that national regulatory agencies specify different requirements. The entity conducting an RF exposure assessment needs to be aware of the applicable regulations. This fourth edition cancels and replaces the third edition published in 2022. It includes corrections of obvious errors and text improvements on the third edition in order to bring more clarity in the description of the assessment methods and avoid misinterpretations. This edition has the same technical content as the third edition.
Bestimmung der HF-Feldstärke, der Leistungsdichte und der spezifischen Absorptionsrate (SAR) in der Nachbarschaft von Funkkommunikations-Basisstationen zur Ermittlung der menschlichen Exposition
Détermination de l'intensité du champ de radiofréquences, de la densité de puissance et du DAS à proximité des stations de base dans le but d'évaluer l'exposition humaine
IEC 62232:2025 donne des méthodes de détermination de l'intensité de champ RF, de la densité de puissance et du débit d'absorption spécifique (DAS) à proximité des stations de base (BS) dans le but d'évaluer l'exposition humaine. Le présent document: a) examine des BS rayonnant intentionnellement qui émettent sur une ou plusieurs antennes dans la plage de fréquences de 110 MHz à 300 GHz; b) étudie l'impact des sources ambiantes d'exposition RF au moins dans la plage de fréquences de 100 kHz à 300 GHz; c) spécifie les méthodes d'évaluation de l'exposition RF à utiliser pour les applications d'appréciation de la conformité, à savoir: 1) conformité du produit: détermination des informations sur la frontière de conformité d'un produit BS avant sa commercialisation; 2) conformité de l'installation du produit: détermination des niveaux d'exposition RF totaux dans les zones accessibles depuis un produit BS et les autres sources pertinentes avant la mise en service du produit; 3) appréciation de l'exposition RF sur site: mesurage des niveaux d'exposition RF sur site à proximité d'une installation BS après la mise en service du produit; d) spécifie la manière de procéder à l'appréciation de l'exposition RF en s'appuyant sur l'approche fondée sur la réelle maximale; e) décrit plusieurs méthodologies de mesure et de calcul de l'intensité de champ RF, de la densité de puissance et du DAS avec des recommandations relatives à leur applicabilité pour couvrir tant l'évaluation sur site des BS installées que les évaluations en laboratoire; f) décrit la manière dont les vérificateurs établissent leurs propres procédures d'évaluation, en fonction de leurs objectifs d'évaluation; g) fournit des recommandations quant à la manière de rendre compte, d'interpréter et de comparer les résultats obtenus à partir de différentes méthodologies d'évaluation et, lorsque l'objectif de l'évaluation l'exige, prendre une décision justifiée en vertu d'une valeur limite donnée; h) fournit les méthodes d'appréciation de l'exposition RF de la BS à l'aide de technologies à orientation de faisceau variable dans le temps telles que les BS New Radio (NR) qui utilisent la technologie de système massif à entrée multiple et sortie multiple (MIMO, Multiple Input Multiple Output). NOTE 1 Des exemples d'études de cas de mise en œuvre pratique sont donnés dans le Rapport technique d'accompagnement IEC TR 62669 [5]. NOTE 2 Bien que les produits BS actuels soient conçus pour fonctionner jusqu'à 200 GHz (voir par exemple [6] et [7]), la fréquence supérieure de 300 GHz est cohérente avec les limites d'exposition applicables. NOTE 3 La fréquence inférieure prise en considération pour les sources ambiantes, 100 kHz, provient de l'ICNIRP 1998 [2] et de l'ICNIRP-2020 [1]. Toutefois, certaines lignes directrices applicables en matière d'exposition exigent d'évaluer les champs ambiants à des valeurs aussi basses que 3 kHz (Code de sécurité 6 [4] et IEEE Std C95.1-2019 [3], par exemple). NOTE 4 La spécification de mesures appropriées d'atténuation de l'exposition RF, telles que la signalisation, le contrôle d'accès et la formation, ne relève pas du domaine d'application du présent document. Il est possible de consulter les règlements applicables ou les pratiques recommandées sur ces sujets. NOTE 5 Bien que le présent document repose sur le c
Določitev RF poljske jakosti, gostote moči in SAR v okolici baznih postaj za namene ocenjevanja izpostavljenosti ljudi
Ta dokument opisuje metode za določitev radiofrekvenčne (RF) poljske jakosti, gostote moči in specifične hitrosti absorpcije (SAR) v okolici baznih postaj (BS) za namene ocenjevanja izpostavljenosti ljudi.
Ta dokument:
a) obravnava namerno sevajoče bazne postaje, ki oddajajo prek ene ali več anten z eno ali več frekvencami v območju od 110 MHz do 300 GHz;
b) upošteva vpliv okoliških virov na radiofrekvenčno izpostavljenost vsaj v frekvenčnem območju od 100 kHz do 300 GHz;
c) določa metode za vrednotenje radiofrekvenčne izpostavljenosti za oceno skladnosti, in sicer:
1) skladnost izdelka – določitev meje skladnosti za izdelek bazne postaje, preden je uveden na trg;
2) skladnost namestitve izdelka – določitev ravni skupne radiofrekvenčne izpostavljenosti v dostopnih območjih pri bazni postaji in drugih ustreznih virih, preden se izdelek začne uporabljati;
3) ocena radiofrekvenčne izpostavljenosti na mestu uporabe – merjenje ravni radiofrekvenčne izpostavljenosti na mestu uporabe v bližini bazne postaje, ko izdelek začne obratovati;
d) določa, kako oceniti radiofrekvenčno izpostavljenost na podlagi dejanskega največjega pristopa;
e) opisuje več metodologij za merjenje in izračun radiofrekvenčne poljske jakosti, gostote moči ter SAR z navodili za njihovo uporabo pri vrednotenju na lokaciji nameščene bazne postaje in vrednotenju v laboratoriju;
f) opisuje, kako izvajalci meritev vzpostavijo posebne postopke vrednotenja, ki ustrezajo njihovemu namenu;
g) podaja smernice za poročanje, razlago in primerjavo rezultatov iz različnih metodologij vrednotenja ter, če to zahteva namen vrednotenja, utemeljeno odločitev glede na mejne vrednosti;
h) zagotavlja metode za oceno radiofrekvenčne izpostavljenosti bazne postaje z uporabo časovno spremenljivih tehnologij za usmerjanje snopa, kot je nova radijska (NR) bazna postaja z uporabo več vhodov in več izhodov (MIMO).
OPOMBA 1: V spremnem tehničnem poročilu IEC TR 62669 [5] so kot primer na voljo študije primerov praktične izvedbe.
OPOMBA 2: Čeprav je za trenutne vrste baznih postaj določeno, da delujejo do frekvence 200 GHz (glej na primer [6] in [7]), je zgornja frekvenca 300 GHz skladna z veljavnimi omejitvami izpostavljenosti.
OPOMBA 3: Nižja frekvenca 100 kHz, upoštevana za okoljske vire, izhaja iz določil ICNIRP-1998 [2] in ICNIRP-2020 [1]. Vendar nekatere veljavne smernice za izpostavljenost zahtevajo, da se okoljska polja ocenijo že pri 3 kHz (npr. varnostni predpis 6 [4] in IEEE Std C95.1-2019 [3]).
OPOMBA 4: Specifikacije ustreznih ukrepov za zmanjšanje radiofrekvenčne izpostavljenosti, kot so označevanje, nadzor dostopa in usposabljanje, ne spadajo na področje uporabe tega dokumenta. Pri teh temah se je mogoče sklicevati na veljavne predpise ali priporočene prakse.
OPOMBA 5: Čeprav ta dokument temelji na trenutnem mednarodnem soglasju o dobri inženirski praksi za ocenjevanje skladnosti radiofrekvenčne izpostavljenosti z veljavnimi mejnimi vrednostmi , je možno, da nacionalne regulativne agencije določijo drugačne zahteve. Subjekt, ki izvaja oceno radiofrekvenčne izpostavljenosti, mora poznati veljavne predpise.
General Information
Relations
Overview - EN IEC 62232:2025 (RF exposure assessment for base stations)
EN IEC 62232:2025 defines engineering methods to determine RF field strength, power density and specific absorption rate (SAR) in the vicinity of base stations (BS) to evaluate human exposure. The standard covers intentionally radiating BS transmitting in the 110 MHz to 300 GHz band and considers ambient sources in at least the 100 kHz to 300 GHz range. It supports product conformity, site installation checks and post‑installation (in‑situ) RF exposure assessments, and includes provisions for modern time‑varying beam‑steering technologies (e.g., NR base stations using massive MIMO).
Key topics and technical requirements
- Evaluation categories: product compliance (compliance boundary), product installation compliance, and in‑situ RF exposure assessment.
- Evaluation methods: measurement, computational modelling, or hybrid approaches, with guidance on selecting the appropriate method based on the source‑environment plane.
- Actual maximum approach: procedures for assessments based on real maximum transmitted power or EIRP, including monitoring and control options.
- Metrics & averaging: field strength, power density and SAR metrics, spatial and time averaging rules for comparisons with exposure limits.
- Uncertainty & reporting: requirements for quantifying uncertainty, standardized report formats, interpretation and comparison across methods.
- Multi‑source assessment: combining contributions from multiple transmitters and ambient fields.
- Modern antenna technologies: methods for beam‑steering and massive MIMO dynamic exposures.
- Guidance material: annexes on method selection, source‑environment plane, and normative references; companion Technical Report IEC TR 62669 provides practical case studies.
Practical applications and users
Who uses EN IEC 62232:
- Base station manufacturers preparing product compliance documentation and establishing compliance boundaries.
- Network operators and site engineers performing installation compliance checks and site planning to ensure safe public access areas.
- RF surveyors and test laboratories conducting in‑situ measurements and uncertainty analyses.
- Regulators and health & safety teams evaluating compliance with national exposure rules and interpreting measurement reports.
- Consultants and modelling teams performing SAR and power‑density computations for complex deployments (e.g., dense urban sites, massive MIMO).
Related standards
Relevant complementary documents referenced in EN IEC 62232 include:
- IEC/IEEE 62209 series (SAR measurement procedures)
- IEC 62311 and IEC 62479 (human exposure assessment of equipment)
- IEC/IEEE 62704 series (FDTD SAR modelling guidance)
- IEC/IEEE 63195 (power density assessment 6–300 GHz)
- IEC TR 62669 (practical implementation case studies)
EN IEC 62232:2025 is essential for ensuring consistent, auditable RF exposure assessments around modern base stations and for demonstrating compliance with applicable exposure limits.
Frequently Asked Questions
EN IEC 62232:2025 is a standard published by CLC. Its full title is "Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure". This standard covers: IEC 62232:2025 provides methods for the determination of RF field strength, power density and specific absorption rate (SAR) in the vicinity of base stations (BS) for the purpose of evaluating human exposure. This document: a) considers intentionally radiating BS which transmit on one or more antennas using one or more frequencies in the range 110 MHz to 300 GHz; b) considers the impact of ambient sources on RF exposure at least in the 100 kHz to 300 GHz frequency range; c) specifies the methods to be used for RF exposure evaluation for compliance assessment applications, namely: 1) product compliance – determination of compliance boundary information for a BS product before it is placed on the market; 2) product installation compliance – determination of the total RF exposure levels in accessible areas from a BS product and other relevant sources before the product is put into operation; 3) in-situ RF exposure assessment – measurement of in-situ RF exposure levels in the vicinity of a BS installation after the product has been taken into operation; d) specifies how to perform RF exposure assessment based on the actual maximum approach; e) describes several RF field strength, power density, and SAR measurement and computation methodologies with guidance on their applicability to address both the in-situ evaluation of installed BS and laboratory-based evaluations; f) describes how surveyors establish their specific evaluation procedures appropriate for their evaluation purpose; g) provides guidance on how to report, interpret and compare results from different evaluation methodologies and, where the evaluation purpose requires it, determine a justified decision against a limit value; h) provides methods for the RF exposure assessment of BS using time-varying beam-steering technologies such as new radio (NR) BS using massive multiple input multiple output (MIMO). NOTE 1 Practical implementation case studies are provided as examples in the companion Technical Report IEC TR 62669 [5]. NOTE 2 Although the current BS product types have been specified to operate up to 200 GHz (see, for example, [6] and [7]), the upper frequency of 300 GHz is consistent with applicable exposure limits. NOTE 3 The lower frequency considered for ambient sources, 100 kHz, is derived from ICNIRP-1998 [2] and ICNIRP-2020 [1]. However, some applicable exposure guidelines require ambient fields to be evaluated as low as 3 kHz, e.g. Safety Code 6 [4] and IEEE Std C95.1-2019 [3]. NOTE 4 Specification of appropriate RF exposure mitigation measures such as signage, access control, and training are beyond the scope of this document. It is possible to refer to the applicable regulations or recommended practices on these topics. NOTE 5 While this document is based on the current international consensus about the best engineering practice for assessing the compliance of RF exposure with the applicable exposure limits, it is possible that national regulatory agencies specify different requirements. The entity conducting an RF exposure assessment needs to be aware of the applicable regulations. This fourth edition cancels and replaces the third edition published in 2022. It includes corrections of obvious errors and text improvements on the third edition in order to bring more clarity in the description of the assessment methods and avoid misinterpretations. This edition has the same technical content as the third edition.
IEC 62232:2025 provides methods for the determination of RF field strength, power density and specific absorption rate (SAR) in the vicinity of base stations (BS) for the purpose of evaluating human exposure. This document: a) considers intentionally radiating BS which transmit on one or more antennas using one or more frequencies in the range 110 MHz to 300 GHz; b) considers the impact of ambient sources on RF exposure at least in the 100 kHz to 300 GHz frequency range; c) specifies the methods to be used for RF exposure evaluation for compliance assessment applications, namely: 1) product compliance – determination of compliance boundary information for a BS product before it is placed on the market; 2) product installation compliance – determination of the total RF exposure levels in accessible areas from a BS product and other relevant sources before the product is put into operation; 3) in-situ RF exposure assessment – measurement of in-situ RF exposure levels in the vicinity of a BS installation after the product has been taken into operation; d) specifies how to perform RF exposure assessment based on the actual maximum approach; e) describes several RF field strength, power density, and SAR measurement and computation methodologies with guidance on their applicability to address both the in-situ evaluation of installed BS and laboratory-based evaluations; f) describes how surveyors establish their specific evaluation procedures appropriate for their evaluation purpose; g) provides guidance on how to report, interpret and compare results from different evaluation methodologies and, where the evaluation purpose requires it, determine a justified decision against a limit value; h) provides methods for the RF exposure assessment of BS using time-varying beam-steering technologies such as new radio (NR) BS using massive multiple input multiple output (MIMO). NOTE 1 Practical implementation case studies are provided as examples in the companion Technical Report IEC TR 62669 [5]. NOTE 2 Although the current BS product types have been specified to operate up to 200 GHz (see, for example, [6] and [7]), the upper frequency of 300 GHz is consistent with applicable exposure limits. NOTE 3 The lower frequency considered for ambient sources, 100 kHz, is derived from ICNIRP-1998 [2] and ICNIRP-2020 [1]. However, some applicable exposure guidelines require ambient fields to be evaluated as low as 3 kHz, e.g. Safety Code 6 [4] and IEEE Std C95.1-2019 [3]. NOTE 4 Specification of appropriate RF exposure mitigation measures such as signage, access control, and training are beyond the scope of this document. It is possible to refer to the applicable regulations or recommended practices on these topics. NOTE 5 While this document is based on the current international consensus about the best engineering practice for assessing the compliance of RF exposure with the applicable exposure limits, it is possible that national regulatory agencies specify different requirements. The entity conducting an RF exposure assessment needs to be aware of the applicable regulations. This fourth edition cancels and replaces the third edition published in 2022. It includes corrections of obvious errors and text improvements on the third edition in order to bring more clarity in the description of the assessment methods and avoid misinterpretations. This edition has the same technical content as the third edition.
EN IEC 62232:2025 is classified under the following ICS (International Classification for Standards) categories: 13.280 - Radiation protection; 17.240 - Radiation measurements. The ICS classification helps identify the subject area and facilitates finding related standards.
EN IEC 62232:2025 has the following relationships with other standards: It is inter standard links to EN IEC 62232:2022. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase EN IEC 62232:2025 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CLC standards.
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2025
Nadomešča:
SIST EN IEC 62232:2023
Določitev RF poljske jakosti, gostote moči in SAR v okolici baznih postaj za
namene ocenjevanja izpostavljenosti ljudi
Determination of RF field strength, power density and SAR in the vicinity of base stations
for the purpose of evaluating human exposure
Bestimmung der HF-Feldstärke, der Leistungsdichte und der spezifischen
Absorptionsrate (SAR) in der Nachbarschaft von Funkkommunikations-Basisstationen
zur Ermittlung der menschlichen Exposition
Détermination de l'intensité du champ de radiofréquences, de la densité de puissance et
du das à proximité des stations de base dans le but d'évaluer l'exposition humaine
Ta slovenski standard je istoveten z: EN IEC 62232:2025
ICS:
13.280 Varstvo pred sevanjem Radiation protection
17.240 Merjenje sevanja Radiation measurements
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EUROPEAN STANDARD EN IEC 62232
NORME EUROPÉENNE
EUROPÄISCHE NORM June 2025
ICS 13.280; 17.240 Supersedes EN IEC 62232:2022
English Version
Determination of RF field strength, power density and SAR in the
vicinity of base stations for the purpose of evaluating human
exposure
(IEC 62232:2025)
Détermination de l'intensité du champ de radiofréquences, Bestimmung der HF-Feldstärke, der Leistungsdichte und
de la densité de puissance et du DAS à proximité des der spezifischen Absorptionsrate (SAR) in der
stations de base dans le but d'évaluer l'exposition humaine Nachbarschaft von Funkkommunikations-Basisstationen zur
(IEC 62232:2025) Ermittlung der menschlichen Exposition
(IEC 62232:2025)
This European Standard was approved by CENELEC on 2025-06-03. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Türkiye and the United Kingdom.
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2025 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN IEC 62232:2025 E
European foreword
The text of document 106/626/CDV, future edition 4 of IEC 62232, prepared by TC 106 "Methods for
the assessment of electric, magnetic and electromagnetic fields associated with human exposure" was
submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62232:2025.
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2026-06-30
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2028-06-30
document have to be withdrawn
This document supersedes EN IEC 62232:2022 and all of its amendments and corrigenda (if any).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Standard IEC 62232:2025 was approved by CENELEC as a European
Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standard indicated:
ISO/IEC 17025 NOTE Approved as EN ISO/IEC 17025
CISPR 16-4-2:2011 NOTE Approved as EN 55016-4-2:2011 (not modified)
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod),
the relevant EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cencenelec.eu.
Publication Year Title EN/HD Year
IEC/IEEE 62209- - Measurement procedure for the EN IEC/IEEE 62209- -
1528 assessment of specific absorption rate of 1528
human exposure to radio frequency fields
from hand-held and body-worn wireless
communication devices - Part 1528:
Human models, instrumentation and
procedures (Frequency range of 4 MHz
to 10 GHz)
IEC 62209-3 - Measurement procedure for the EN IEC 62209-3 -
assessment of specific absorption rate of
human exposure to radio frequency fields
from hand-held and body-mounted
wireless communication devices - Part 3:
Vector measurement-based systems
(Frequency range of 600 MHz to 6 GHz)
IEC 62311 - Assessment of electronic and electrical EN IEC 62311 -
equipment related to human exposure
restrictions for electromagnetic fields (0
Hz to 300 GHz)
IEC 62479 - Assessment of the compliance of low- EN 62479 -
power electronic and electrical equipment
with the basic restrictions related to
human exposure to electromagnetic
fields (10 MHz to 300 GHz)
IEC/IEEE 62704-1 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communications devices, 30 MHz to 6
GHz - Part 1: General requirements for
using the finite difference time-domain
(FDTD) method for SAR calculations
Publication Year Title EN/HD Year
IEC/IEEE 62704-2 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communications devices, 30 MHz to 6
GHz - Part 2: Specific requirements for
finite difference time domain (FDTD)
modelling of exposure from vehicle
mounted antennas
IEC/IEEE 62704-3 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communications devices, 30 MHz to 6
GHz - Part 3: Specific requirements for
using the finite difference time domain
(FDTD) method for SAR calculations of
mobile phones
IEC/IEEE 62704-4 - Determining the peak spatial-average - -
specific absorption rate (SAR) in the
human body from wireless
communication devices, 30 MHz to 6
GHz - Part 4: General requirements for
using the finite element method for SAR
calculations
IEC/IEEE 63195-1 - Assessment of power density of human EN IEC/IEEE 63195-1 -
exposure to radio frequency fields from
wireless devices in close proximity to the
head and body (frequency range of 6
GHz to 300 GHz) - Part 2: Computational
procedure
IEC/IEEE 63195-2 - Évaluation de la densité de puissance de EN IEC/IEEE 63195-2 -
l'exposition humaine aux champs
radiofréquences provenant de dispositifs
sans fil à proximité immédiate de la tête
et du corps (plage de fréquences de 6
GHz à 300 GHz) - Partie 2: Procédure de
calcul
IEC 62232 ®
Edition 4.0 2025-04
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Determination of RF field strength, power density and SAR in the vicinity of
base stations for the purpose of evaluating human exposure
Détermination de l'intensité du champ de radiofréquences, de la densité de
puissance et du DAS à proximité des stations de base dans le but d'évaluer
l'exposition humaine
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 13.280, 17.240 ISBN 978-2-8327-0316-8
– 2 – IEC 62232:2025 © IEC 2025
CONTENTS
FOREWORD . 16
INTRODUCTION . 18
1 Scope . 19
2 Normative references . 20
3 Terms and definitions . 21
4 Symbols and abbreviated terms . 37
4.1 Physical quantities . 37
4.2 Constants . 37
4.3 Abbreviated terms. 38
5 How to use this document . 41
5.1 Quick start guide . 41
5.2 RF evaluation purpose categories . 43
5.3 Implementation case studies . 43
6 Evaluation processes for product compliance, product installation compliance and
in-situ RF exposure assessments . 43
6.1 Evaluation process for product compliance . 43
6.1.1 General. 43
6.1.2 Establishing compliance boundaries . 44
6.1.3 Iso-surface compliance boundary definition . 44
6.1.4 Simple compliance boundaries . 44
6.1.5 Methods for establishing the compliance boundary . 46
6.1.6 Uncertainty . 50
6.1.7 Reporting for product compliance . 51
6.2 Evaluation process used for product installation compliance . 52
6.2.1 General. 52
6.2.2 General evaluation procedure for product installations . 52
6.2.3 Product installation compliance based on the actual maximum
transmitted power or EIRP . 53
6.2.4 Product installation data collection . 57
6.2.5 Simplified product installation evaluation process . 57
6.2.6 Assessment area selection . 61
6.2.7 Measurements . 62
6.2.8 Computations . 64
6.2.9 Uncertainty . 65
6.2.10 Reporting for product installation compliance . 65
6.3 In-situ RF exposure evaluation or assessment process . 66
6.3.1 General. 66
6.3.2 In-situ measurement process . 66
6.3.3 Site analysis . 67
6.3.4 Case A evaluation . 68
6.3.5 Case B evaluation . 68
6.3.6 Uncertainty . 69
6.3.7 Reporting . 69
6.4 Averaging procedures . 70
6.4.1 Spatial averaging . 70
6.4.2 Time averaging . 70
7 Determining the evaluation method . 70
IEC 62232:2025 © IEC 2025 – 3 –
7.1 Overview . 70
7.2 Process to determine the evaluation method . 70
7.2.1 General. 70
7.2.2 Establishing the evaluation points in relation to the source-environment
plane . 71
7.2.3 Exposure metric selection . 73
8 Evaluation methods . 74
8.1 General . 74
8.2 Measurement methods . 74
8.2.1 General. 74
8.2.2 RF field strength and power density measurements . 75
8.2.3 SAR measurements . 76
8.3 Computation methods . 76
8.4 Methods for assessment based on actual maximum approach . 78
8.4.1 General requirements . 78
8.4.2 Actual transmitted power or EIRP monitoring . 79
8.4.3 Actual transmitted power or EIRP control . 79
8.5 Methods for the assessment of RF exposure to multiple sources . 80
8.6 Methods for establishing the BS transmitted power or EIRP . 82
9 Uncertainty . 82
10 Reporting . 83
10.1 General requirements. 83
10.2 Report format . 83
10.3 Opinions and interpretations . 84
Annex A (informative) Source-environment plane and guidance on the evaluation
method selection . 85
A.1 Guidance on the source-environment plane . 85
A.1.1 General. 85
A.1.2 Source-environment plane example . 85
A.1.3 Source regions . 86
A.2 Select between computation or measurement approaches . 92
A.3 Select measurement method . 93
A.3.1 Selection stages . 93
A.3.2 Selecting between RF field strength, power density and SAR
measurement approaches . 93
A.3.3 Selecting between broadband and frequency selective measurement . 94
A.3.4 Selecting RF field strength measurement procedures . 95
A.4 Select computation method . 96
A.5 Additional considerations . 97
A.5.1 Simplicity . 97
A.5.2 Evaluation method ranking . 97
A.5.3 Applying multiple methods for RF exposure evaluation . 97
Annex B (normative) Evaluation methods . 98
B.1 Overview . 98
B.2 General . 98
B.2.1 Coordinate systems and reference points . 98
B.2.2 Variables . 99
B.3 RF exposure evaluation principles . 100
B.3.1 Simple calculation of RF field strength and power density . 100
– 4 – IEC 62232:2025 © IEC 2025
B.3.2 Measurement of RF field strength and power density . 104
B.3.3 Spatial averaging . 106
B.3.4 Time averaging . 109
B.3.5 Comparing measured and computed values . 111
B.3.6 Personal RF monitors . 111
B.4 RF field strength and power density measurements . 111
B.4.1 Applicability of RF field strength and power density measurements . 111
B.4.2 In-situ RF exposure measurements . 111
B.4.3 Laboratory based RF field strength and power density measurements . 123
B.4.4 RF field strength and power density measurement uncertainty . 133
B.5 SAR measurements . 138
B.5.1 Overview of SAR measurements . 138
B.5.2 SAR measurement requirements . 138
B.5.3 SAR measurement description . 140
B.5.4 SAR measurement uncertainty . 146
B.6 Basic computation methods . 148
B.6.1 General. 148
B.6.2 Basic computation formulas for RF field strength or power density
evaluation . 149
B.6.3 Basic wbSAR and psSAR evaluation formulas. 155
B.6.4 Basic compliance boundary assessment method for BS using parabolic
dish antennas . 162
B.6.5 Basic compliance boundary assessment method for intentionally
radiating cables . 165
B.7 Advanced computation methods . 166
B.7.1 General. 166
B.7.2 Synthetic model and ray tracing algorithms . 166
B.7.3 Full wave RF exposure computation. 173
B.7.4 Full wave SAR computation . 182
B.8 Extrapolation from the evaluated values to the maximum or actual values . 187
B.8.1 Extrapolation method . 187
B.8.2 Extrapolation to maximum in-situ RF field strength or power density
using broadband measurements . 189
B.8.3 Extrapolation to maximum in-situ RF field strength / power density using
frequency or code selective measurements . 189
B.8.4 Influence of traffic in real operating network . 190
B.8.5 Extrapolation for massive MIMO and beamforming BS . 191
B.8.6 Maximum exposure extrapolation with dynamic spectrum sharing (DSS) . 193
B.9 Guidance for implementing the actual maximum approach . 194
B.9.1 BS actual EIRP evaluation assumptions . 194
B.9.2 Technology duty-cycle factor description . 195
B.9.3 CDF evaluation using modelling studies . 197
B.9.4 CDF evaluation using measurement studies on operational BS sites . 198
B.9.5 Actual transmitted power or EIRP monitoring counters . 200
B.9.6 Configurations with multiple transmitters . 200
B.10 Transmitted power or EIRP evaluation . 202
B.10.1 General. 202
B.10.2 Measurement of the transmitted power in conducted mode . 202
B.10.3 Measurement of the transmitted power in OTA conditions . 203
B.10.4 Measurement of the EIRP in OTA and laboratory conditions . 203
IEC 62232:2025 © IEC 2025 – 5 –
B.10.5 Measurement of the EIRP in OTA and in-situ conditions . 204
Annex C (informative) Guidelines for the validation of power or EIRP control features
and monitoring counter(s) related to the actual maximum approach . 205
C.1 Overview . 205
C.2 Guidelines for validating control feature(s) and monitoring counters . 205
C.3 Validation of power or EIRP monitoring counter in laboratory conditions . 206
C.3.1 Validation of power or EIRP monitoring counter in conducted mode –
test procedure . 206
C.3.2 Validation of power or EIRP monitoring counter in OTA mode – test
procedure . 208
C.3.3 Validation of control feature(s) in laboratory conditions . 211
C.3.4 Validation of control features using in-situ measurements . 214
C.4 Validation test report . 216
C.5 Case studies . 217
C.5.1 Case study A – In-situ validation. 217
C.5.2 Case study B – In-situ validation. 221
C.5.3 Case study C – In-situ validation . 224
Annex D (informative) Rationale supporting simplified product installation criteria . 230
D.1 General . 230
D.2 Class E2 . 230
D.3 Class E10 . 231
D.4 Class E100 . 232
D.5 Class E+ . 234
D.6 Simplified formulas for millimetre-wave antennas using massive MIMO or
beam steering . 235
Annex E (informative) Technology-specific exposure evaluation guidance . 237
E.1 Overview to guidance on specific technologies . 237
E.2 Summary of technology-specific information . 237
E.3 Guidance on spectrum analyser settings . 238
E.3.1 Overview of spectrum analyser settings. 238
E.3.2 Detection algorithms . 239
E.3.3 Resolution bandwidth and channel power processing . 239
E.3.4 Integration per service . 242
E.4 Stable transmitted power signals . 242
E.4.1 TDMA/FDMA technology . 242
E.4.2 WCDMA/UMTS technology . 243
E.4.3 OFDM technology . 244
E.5 WCDMA measurement and calibration using a code domain analyser . 244
E.5.1 WCDMA measurements – General . 244
E.5.2 WCDMA decoder characteristics. 244
E.5.3 Calibration . 245
E.6 Wi-Fi measurements . 247
E.6.1 General. 247
E.6.2 Integration time for reproducible measurements . 248
E.6.3 Channel occupation. 248
E.6.4 Some considerations . 249
E.6.5 Measurement configuration and steps . 249
E.6.6 Influence of the application layers . 250
E.6.7 Power control . 250
– 6 – IEC 62232:2025 © IEC 2025
E.7 LTE measurements . 251
E.7.1 Overview . 251
E.7.2 LTE transmission modes . 251
E.7.3 LTE-FDD frame structure . 252
E.7.4 LTE-TDD frame structure . 253
E.7.5 Maximum LTE exposure evaluation . 255
E.7.6 Instantaneous LTE exposure evaluation . 260
E.7.7 MIMO multiplexing of LTE BS . 260
E.8 NR BS measurements . 261
E.8.1 General. 261
E.8.2 Maximum NR exposure evaluation . 261
E.9 Establishing compliance boundaries using numerical simulations of MIMO
array antennas emitting correlated waveforms . 270
E.9.1 General. 270
E.9.2 Field combining near base stations for correlated exposure with the
purpose of establishing compliance boundaries . 271
E.9.3 Numerical simulations of MIMO array antennas with densely packed
columns . 272
E.9.4 Numerical simulations of large MIMO array antennas . 272
E.10 Massive MIMO antennas . 273
E.10.1 Overview . 273
E.10.2 Deterministic conservative approach . 273
E.10.3 Statistical conservative approach. 273
E.10.4 Example approaches . 274
Annex F (informative) Guidelines for the assessment of BS compliance with ICNIRP-
2020 brief exposure limits . 291
F.1 General . 291
F.2 Brief exposure limits . 291
F.3 Implications of brief exposure limits on signal modulation and TDD duty
cycle . 293
F.4 Implications of brief exposure limits on the actual maximum approach . 293
Annex G (informative) Uncertainty . 298
G.1 Background . 298
G.2 Requirement to estimate uncertainty . 298
G.3 How to estimate uncertainty . 299
G.4 Guidance on uncertainty and assessment schemes . 299
G.4.1 General. 299
G.4.2 Overview of assessment schemes . 299
G.4.3 Examples of assessment schemes . 300
G.4.4 Assessment schemes and compliance probabilities . 303
G.5 Guidance on uncertainty . 305
G.5.1 Overview . 305
G.5.2 Measurement uncertainty and confidence levels . 306
G.6 Applying uncertainty for compliance assessments . 307
G.7 Example influence quantities for field measurements . 308
G.7.1 General. 308
G.7.2 Calibration uncertainty of measurement antenna or field probe . 308
G.7.3 Frequency response of the measurement antenna or field probe . 308
G.7.4 Isotropy of the measurement antenna or field probe . 310
G.7.5 Frequency response of the spectrum analyser . 310
IEC 62232:2025 © IEC 2025 – 7 –
G.7.6 Temperature response of a broadband field probe . 310
G.7.7 Linearity deviation of a broadband field probe . 311
G.7.8 Mismatch uncertainty . 311
G.7.9 Deviation of the experimental source from numerical source. 311
G.7.10 Meter fluctuation uncertainty for time-varying signals . 311
G.7.11 Uncertainty due to power variation in the RF source . 312
G.7.12 Uncertainty due to field gradients . 312
G.7.13 Mutual coupling between measurement antenna or isotropic probe and
object . 313
G.7.14 Uncertainty due to field scattering from the surveyor’s body . 314
G.7.15 Measurement device . 316
G.7.16 Fields out of measurement range . 316
G.7.17 Noise . 317
G.7.18 Integration time. 317
G.7.19 Power chain . 317
G.7.20 Positioning system . 317
G.7.21 Matching between probe and the EUT . 317
G.7.22 Drifts in output power of the EUT, probe, temperature, and humidity . 317
G.7.23 Perturbation by the environment . 317
G.8 Example influence quantities for RF field strength computations by ray
tracing or full wave methods . 318
G.8.1 General. 318
G.8.2 System . 318
G.8.3 Technique uncertainties . 319
G.8.4 Environmental uncertainties . 319
G.9 Influence quantities for SAR measurements . 320
G.9.1 General. 320
G.9.2 Post-processing . 320
G.9.3 EUT holder . 320
G.9.4 EUT positioning . 321
G.9.5 Phantom shell uncertainty . 322
G.9.6 SAR correction depending on target liquid permittivity and conductivity . 322
G.9.7 Liquid permittivity and conductivity measurements . 323
G.9.8 Liquid temperature . 323
G.10 Influence quantities for SAR calculations. 323
G.11 Spatial averaging . 323
G.11.1 General. 323
G.11.2 Small-scale fading variations . 324
G.11.3 Error on the estimation of local average power density . 324
G.11.4 Characterization of environment statistical properties . 325
G.11.5 Characterization of different spatial averaging schemes . 326
G.12 Influence of human body on measurements of the electric RF field strength . 330
G.12.1 Simulations of the influence of human body on measurements based on
the method of moments (surface equivalence principle) . 330
G.12.2 Comparison with measurements . 332
G.12.3 Conclusions . 333
Annex H (informative) Guidance on comparing evaluated parameters with a limit
value . 334
H.1 Overview . 334
H.2 Information recommended to compare evaluated value against limit value . 334
– 8 – IEC 62232:2025 © IEC 2025
H.3 Performing a limit comparison at a given confidence level . 334
H.4 Performing a limit comparison using a process-based assessment scheme . 335
Bibliography . 336
Figure 1 – Quick start guide to the evaluation process. 41
Figure 2 – Example of iso-surface compliance boundary. 44
Figure 3 – Example of cylindrical and half-pipe compliance boundaries . 45
Figure 4 – Example of box shaped compliance boundary . 46
Figure 5 – Example of truncated box shaped compliance boundary . 46
Figure 6 – Example illustrating the linear scaling procedure . 47
Figure 7 – Example of massive MIMO antenna and corresponding beams and envelope
patterns . 49
Figure 8 – Example of compliance boundary shape for BS antennas with beam
steering . 50
Figure 9 – Example of dish antenna compliance boundary . 50
Figure 10 – Flowchart describing the product installation evaluation process . 53
Figure 11 – Example of a CDF curve representing the normalized actual transmitted
power or EIRP. 55
Figure 12 – Flow chart for product installation compliance based on the actual
maximum transmitted power or EIRP threshold(s) . 56
Figure 13 – Simplified compliance assessment process using installation classes . 58
Figure 14 – Example of DI within a square-shaped assessment domain boundary
(ADB) with dimension L . 62
ADB
Figure 15 – In-situ RF exposure evaluation or assessment process flow chart . 67
Figure 16 – Source-environment plane concept . 72
Figure 17 – Flow chart of the measurement methods. 75
Figure 18 – Flow chart of the relevant computation methods . 77
Figure 19 – Example of segments used for monitoring and control of BS using mMIMO
or beam steering . 79
Figure A.1 – Example source-environment plane regions near a base station antenna
on a tower . 85
Figure A.2 – Example source-environment plane regions near a roof-top antenna that
has a narrow vertical (elevation plane) beamwidth (not to scale) . 86
Figure A.3 – Geometry of an antenna with largest linear dimension L and largest
eff
end dimension L . 87
end
Figure A.
...
EN IEC 62232:2025 표준 문서는 기지국 근처에서 RF 전계 강도, 전력 밀도 및 특정 흡수율(SAR)을 결정하기 위한 방법을 제공하여 인체 노출을 평가하는 데 중점을 두고 있습니다. 이 문서는 여러 가지 장점을 지니고 있으며, 특히 RF 노출 평가의 범위와 관련성에 있어서 중요한 역할을 하고 있습니다. 첫째, 본 표준은 110 MHz에서 300 GHz 범위의 주파수에서 한 개 이상의 안테나를 사용하는 기지국을 대상으로 하여, 의도적으로 방사되는 기지국의 RF 노출 평가를 다루고 있습니다. 둘째로, 100 kHz에서 300 GHz 주파수 범위에서 주변 소스가 RF 노출에 미치는 영향을 고려하여, 보다 포괄적인 RF 노출 평가가 가능하도록 합니다. 셋째, 이 문서에서는 RF 노출 평가를 위한 명확한 방법들을 명시하고 있으며, 제품이 시장에 출시되기 전의 제품 적합성과 같은 안전 기준을 충족하는 데 필요한 정보를 제공합니다. 설치 전, 기지국 제품에 의한 총 RF 노출 수준을 평가하는 방법은 설치 및 작업 전에 중요한 고려사항이 됩니다. 이와 함께, 기지국 설치 후의 RF 노출 수준을 측정하기 위한 실측 방법도 명확히 기술되어 있어, 실 질적인 RF 노출 관리에 기여합니다. 또한, RF 노출 평가를 위해 실제 최대 접근 방식에 따라 평가를 수행하는 방법을 구체적으로 설명하고 있으며, 다양한 RF 전계 강도, 전력 밀도 및 SAR 측정 및 계산 방법론을 제시하여 실험실 기반 평가와 설치된 기지국의 아울의 평가를 아우릅니다. 평가자의 특정 평가 절차를 어떻게 수립할지를 안내하는 부분 또한 유용합니다. 마지막으로, 기지국의 RF 노출 평가 및 시간 가변 빔 조정 기술을 사용하는 새로운 무선(NR) 기지국에 대한 평가 방법을 제공하여, 현대적 기술에 적합한 기준을 마련하고 있습니다. 이 표준은 RF 노출 규정을 준수하는 최선의 공학적 관행에 대한 국제적인 합의에 기초하고 있으며, 각국의 규제가 다를 수 있다는 점을 인지할 필요가 있는 점도 강조하고 있습니다. EN IEC 62232:2025는 RF 노출 평가를 위한 현대적인 기준으로, 기술적 내용이 충분히 명확하고 응용 가능성을 고려한 실용적인 방법론을 제공함으로써 인체 건강과 안전을 보장하는 데 있어서 매우 중요합니다.
The standard EN IEC 62232:2025 serves as a comprehensive framework for determining RF field strength, power density, and specific absorption rate (SAR) in the vicinity of base stations, specifically aimed at evaluating human exposure. Its strong emphasis on intentionally radiating base stations transmitting across a wide frequency range (110 MHz to 300 GHz) highlights its relevance to the ever-evolving landscape of telecommunications technology. One of the standard's significant strengths is its holistic approach to RF exposure evaluation, incorporating the impact of ambient sources of RF emissions in the 100 kHz to 300 GHz frequency range. This inclusivity ensures that comprehensive assessments can be conducted, making it a valuable resource for compliance applications. The specified methods for evaluating product compliance, installation compliance, and in-situ RF exposure assessments provide a robust framework for various stakeholders, from manufacturers to regulatory bodies. Moreover, the inclusion of methodologies for assessing RF exposure from advanced technologies, like time-varying beam-steering technologies including new radio (NR) and massive MIMO, underscores the standard's forward-thinking nature and relevance in the context of modern telecommunications infrastructure. The standard also provides guidance on the establishment of evaluation procedures, report interpretation, and comparison of results across different methodologies, promoting consistency and clarity in RF exposure assessments. This aspect is crucial for ensuring that assessments align with applicable exposure limits and regulatory frameworks, enhancing the reliability of the evaluation process. The revision in the fourth edition, which corrects errors and improves clarity, demonstrates a commitment to continual improvement and user understanding, making it an essential reference for practitioners in the field. Overall, EN IEC 62232:2025 is a well-structured and relevant document that establishes best practices for RF exposure assessment, supporting the ongoing efforts to safeguard human health in the proximity of base stations.
標準EN IEC 62232:2025は、基地局(BS)の近傍におけるRFフィールド強度、電力密度、および特定吸収率(SAR)の評価手法を提供しており、人間の曝露評価を目的としています。この標準のスコープは、幅広い周波数範囲(110 MHzから300 GHzまで)で動作する意図的放射BSを対象とし、RF曝露に対する周囲の影響を考慮しています。 この標準の強みは、RF曝露評価のための具体的な手法を明確に定義している点です。具体的には、製品コンプライアンスのための境界情報の決定や、BS製品および他の関連するソースからのアクセス可能なエリアでのRF曝露レベルの測定が含まれています。また、実際の最大アプローチに基づいたRF曝露評価を行う方法を具体的に示しており、温度変動ビームステアリング技術を利用した新しいラジオ(NR)BSに対するRF曝露評価方法も提供されています。これにより、さまざまな評価目的に応じた特定の評価手順を確立するための指針も示されています。 さらに、評価手法から得られた結果を報告、解釈、比較するためのガイダンスが含まれており、評価目的に応じた限界値に対する判定の正当性を確認する方法も提案されています。このような包括的なアプローチは、RF曝露に関する規制遵守を支援し、さらなる研究と技術開発の基盤を提供します。 標準の最新の第四版は、第三版の明らかな誤りを修正し、評価手法の記述をより明確にしています。同時に、技術的内容は第三版と同じであり、RF曝露評価に関する国際的な合意に基づいて最適な技術的実践を反映しています。 全体として、EN IEC 62232:2025は、RF曝露評価のための重要なガイドを提供し、基地局周辺での人間の健康を保護するための強力なツールです。これにより、RF曝露に関する技術的および規制上の要求に応じた適切な対応が可能となります。
Die Norm EN IEC 62232:2025 legt umfassende Methoden zur Bestimmung der RF-Feldstärke, Energiedichte und der spezifischen Absorptionsrate (SAR) in der Nähe von Basisstationen (BS) fest, um die menschliche Exposition zu bewerten. Die Reichweite dieser Norm ist besonders relevant, da sie verschiedene Aspekte der RF-Exposition behandelt und sicherstellt, dass die Bewertung der menschlichen Exposition unter Berücksichtigung aktueller technischer Standards erfolgt. Ein bemerkenswerter Stärke dieser Norm ist ihre umfassende Berücksichtigung von absichtlich strahlenden BS, die auf mehreren Frequenzen im Bereich von 110 MHz bis 300 GHz arbeiten. Dies gewährleistet, dass alle relevanten Frequenzen und deren potenziellen Auswirkungen auf die menschliche Gesundheit adäquat bewertet werden. Darüber hinaus wird auch der Einfluss von Umgebungsquellen auf die RF-Exposition berücksichtigt, was in der Norm detailliert erläutert wird. Die Norm beschreibt spezifische Methoden zur Durchführung von RF-Expositionsbewertungen für verschiedene Anwendungsbereiche, einschließlich der Produktkonformität und der Installation. Diese Vorgehensweise ermöglicht es Herstellern und Installateuren, bereits vor der Inbetriebnahme sicherzustellen, dass geltende Grenzwerte eingehalten werden. Insbesondere die in-situ RF-Expositionsbewertung bietet eine wertvolle Möglichkeit zur Messung von Expositionslevels direkt am Installationsort, was eine präzise Beurteilung des tatsächlichen Expositionsrisikos erlaubt. Ein weiterer bedeutender Aspekt ist die klare Anleitung zur Durchführung von Messungen und Berechnungen bezüglich RF-Feldstärke, Energiedichte und SAR, sowie zur Konzeption geeigneter Auswertungsverfahren. Die Norm enthält auch wichtige Empfehlungen zur Berichterstattung und zum Vergleich der Ergebnisse verschiedener Bewertungsmethoden, was die Transparenz und Nachvollziehbarkeit der Ergebnisse verbessert. Zusätzlich beschäftigt sich die Norm mit modernen Technologien wie beam-steering Verfahren und massive MIMO-Systemen, die in neuen Basisstationen Anwendung finden. Dies zeigt die Aktualität und Relevanz der Norm im Kontext der sich rasch entwickelnden Mobilfunktechnologien. Insgesamt bietet die EN IEC 62232:2025 eine solide und gut strukturierte Grundlage zur Bewertung der RF-Exposition in der Nähe von Basisstationen und stellt sicher, dass die Sicherheit und Gesundheit der Öffentlichkeit im Vordergrund steht. Die Verbesserung der Klarheit gegenüber der vorherigen Auflage und die Beibehaltung des technischen Inhalts sichern eine hohe Relevanz für Fachleute, die in diesem Bereich tätig sind.
La norme EN IEC 62232:2025 offre un cadre essentiel pour la détermination de la force du champ RF, de la densité de puissance et du taux d'absorption spécifique (SAR) à proximité des stations de base (BS) afin d'évaluer l'exposition humaine. Cette norme se concentre sur plusieurs aspects fondamentaux qui renforcent son importance et sa pertinence dans le contexte actuel de l'augmentation de l'utilisation des technologies sans fil. Le champ d'application de la norme est particulièrement vaste et inclut des stations de base utilisant une ou plusieurs antennes dans une gamme de fréquences allant de 110 MHz à 300 GHz. En intégrant l'impact des sources ambiantes sur l'exposition RF, la norme garantit que l'évaluation est non seulement précise, mais également exhaustive. Ce point est crucial pour avoir une vision claire de l’exposition réelle à laquelle la population peut être soumise. Parmi les points forts de cette norme, on trouve la spécification de méthodes robustes pour l'évaluation de l'exposition RF dans divers contextes, allant de la conformité des produits avant leur mise sur le marché, à des évaluations in-situ après que les produits aient été mis en service. Cette approche permet de s'assurer que les niveaux d'exposition aux champs RF sont systématiquement évalués, et ce, dès les phases initiales du cycle de vie d'un produit. La norme fournit également des directives sur plusieurs méthodologies de mesure et de calcul de la force du champ RF, de la densité de puissance et du SAR, ainsi que sur la façon de rapporter et d'interpréter les résultats. Cela facilite la comparaison des méthodes d’évaluation et assure une cohérence dans leur application. De plus, la prise en charge des technologies de formation d'onde à variation temporelle, telles que les stations de base NR utilisant MIMO, démontre la pertinence et l'actualité de cette norme dans un environnement technologique en constante évolution. Enfin, il est important de noter que cette quatrième édition a été améliorée par rapport à la troisième édition, avec des corrections d’erreurs évidentes et une clarté accrue dans la description des méthodes d'évaluation. Cela renforce la confiance des utilisateurs dans le respect des limites d'exposition et l'intégrité des résultats obtenus. En résumé, la norme EN IEC 62232:2025 représente un outil indispensable pour les professionnels en matière d'évaluation de l'exposition humaine aux champs RF, consolidant ainsi son rôle clé dans la protection de la santé publique dans le cadre de l'expansion des infrastructures sans fil.








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...