Cranes - General design - Part 3-2: Limit states and proof of competence of wire ropes in reeving systems

EN 13001-3-2 is to be used together with EN 13001-1 and EN 13001-2 and as such they specify general conditions, requirements and methods to prevent mechanical hazards of wire ropes of cranes by design and theoretical verification. NOTE Specific requirements for particular types of cranes are given in the appropriate European Standard for the particular crane type. The following is a list of significant hazardous situations and hazardous events that could result in risks to persons during intended use and reasonably foreseeable misuse. Clauses 5 to 6 of this standard are necessary to reduce or eliminate risks associated with the following hazard: - exceeding the limits of strength (yield, ultimate, fatigue). This European Standard is not applicable to cranes which are manufactured before the date of its publication as EN and serves as reference base for the European Standards for particular crane types (see Annex C). EN 13001-3-2 deals only with the limit state method in accordance with EN 13001-1.

Krane - Konstruktion allgemein - Teil 3-2: Grenzzustände und Sicherheitsnachweis von Drahtseilen in Seiltrieben

Diese Europäische Norm ist zusammen mit EN 13001-1 und EN 13001-2 anzuwenden und spezifiziert allgemeine Bedingungen, Anforderungen und Methoden zur Vermeidung von mechanischen Gefährdungen bei Drahtseilen von Kranen durch die Konstruktion und theoretische Überprüfung.
ANMERKUNG 1   Besondere Anforderungen für spezielle Krantypen sind in der zugehörigen Europäischen Norm für den speziellen Krantyp angegeben.
Im Folgenden ist eine Liste der signifikanten Gefährdungssituationen und Gefährdungsereignisse angegeben, die zu gefährlichen Situationen für Personen während des bestimmungsgemäßen Gebrauchs und vorher¬sehbaren Missbrauchs (des Krans) führen können. Abschnitte 5 und 6 dieser Norm sind erforderlich, um die Risiken in Verbindung mit den folgenden Gefährdungen zu reduzieren oder zu eliminieren:
Überschreiten der Festigkeitsgrenzen (Betriebsfestigkeit).
Diese Europäische Norm gilt für Krane, die nach dem Datum der Genehmigung dieser Technischen Spezi¬fikation durch CEN hergestellt werden, und dient als Referenzgrundlage für die Technischen Spezifikationen für spezielle Krantypen.
ANMERKUNG 2   EN 13001-3-2 berücksichtigt nur die Methode der Grenzzustände nach EN 13001-1.

Appareils de levage à charge suspendue - Conception générale - Partie 3-2: Etats limites et verification de la sécurité des câbles de systémes de mouflage

La présente Norme européenne est à utiliser conjointement avec l’EN 13001-1 et l’EN 13001-2 pour spécifier les conditions, prescriptions et méthodes générales permettant, par la conception et la vérification théorique, d’éviter les risques mécaniques dus aux câbles en acier d’appareils de levage à charge suspendue.
NOTE    Les prescriptions spécifiques relatives aux types particuliers d’appareils de levage à charge suspendue sont données dans la Norme européenne appropriée au type particulier d’appareil de levage à charge suspendue.
Ce qui suit est une liste de situations et d’événements dangereux significatifs susceptibles d'entraîner des risques pour les personnes lors d'une utilisation prévue ou d'une mauvaise utilisation prévisible. Les Articles 5 à 6 de la présente norme sont nécessaires pour réduire ou éliminer les risques associés au phénomène dangereux suivant :
-   dépassement des limites de résistance (élasticité, rupture, fatigue) ;
La présente Norme européenne s'applique aux appareils de levage à charge suspendue construits après sa publication en norme EN, et sert de référence pour Normes européennes de types particuliers d’appareils de levage à charge suspendue (voir Annexe C).
L'EN 13001-3-2 traite uniquement de la méthode des états limites selon l’EN 13001-1.

Žerjavi - Konstrukcija, splošno - 3-2. del: Mejna stanja in dokaz varnosti jeklenih vrvi pri vrvnih pogonih

Standard EN 13001-3-2 je namenjen uporabi s standardoma EN 13001-1 in EN 13001-2. Ti standardi skupaj določajo splošne pogoje, zahteve in metode za preprečevanje mehanskih nevarnosti jeklenih vrvi za žerjave s preverjanjem konstrukcije in teoretičnih predpostavk. OPOMBA Posebne zahteve za posamezne vrste žerjavov so navedene v ustreznem evropskem standardu za posamezne vrste žerjavov. Spodaj je naveden seznam pomembnih nevarnih razmer in dogodkov, zaradi katerih bi lahko prišlo do ogroženosti oseb med nameravano uporabo in razumno predvideno nepravilno uporabo. Točki 5 in 6 v tem standardu sta potrebni za omejitev ali odpravo tveganj, povezanih z naslednjo nevarnostjo: - prekoračitev mej trdnosti (meja prožnosti, končna meja, meja utrujanja). Ta evropski standard se ne uporablja za žerjave, ki so bili izdelani pred datumom objave te publikacije kot standard EN in se uporablja kot referenčna osnova evropskim standardom za posamezne vrste žerjavov (glejte dodatek C). Standard EN 13001-3-2 v skladu s standardom EN 13001-1 obravnava le metodo mejnega stanja.

General Information

Status
Published
Public Enquiry End Date
19-Feb-2013
Publication Date
02-Sep-2014
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
14-Aug-2014
Due Date
19-Oct-2014
Completion Date
03-Sep-2014

Relations

Buy Standard

Standard
EN 13001-3-2:2014
English language
36 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Žerjavi - Konstrukcija, splošno - 3-2. del: Mejna stanja in dokaz varnosti jeklenih vrvi pri vrvnih pogonihKrane - Konstruktion allgemein - Teil 3-2: Grenzzustände und Sicherheitsnachweis von Drahtseilen in SeiltriebenAppareils de levage à charge suspendue - Conception générale - Partie 3-2: Etats limites et verification de la sécurité des câbles de systémes de mouflageCranes - General design - Part 3-2: Limit states and proof of competence of wire ropes in reeving systems53.020.20DvigalaCranes21.220.20Vrvni pogoni in njihovi deliCable or rope drives and their componentsICS:Ta slovenski standard je istoveten z:EN 13001-3-2:2014SIST EN 13001-3-2:2014en,fr,de01-oktober-2014SIST EN 13001-3-2:2014SLOVENSKI
STANDARDSIST-TS CEN/TS 13001-3-2:20081DGRPHãþD



SIST EN 13001-3-2:2014



EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 13001-3-2
August 2014 ICS 21.220.20; 53.020.20 Supersedes CEN/TS 13001-3-2:2008English Version
Cranes - General design - Part 3-2: Limit states and proof of competence of wire ropes in reeving systems
Appareils de levage à charge suspendue - Conception générale - Partie 3-2 : Etats limites et vérification d'aptitude des câbles en acier mouflés
Krane - Konstruktion allgemein - Teil 3-2: Grenzzustände und Sicherheitsnachweis von Drahtseilen in Seiltrieben This European Standard was approved by CEN on 14 June 2014.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre:
Avenue Marnix 17,
B-1000 Brussels © 2014 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 13001-3-2:2014 ESIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 2 Contents Page Foreword .4 Introduction .5 1 Scope .6 2 Normative references .6 3 Terms, definitions, symbols and abbreviations .7 3.1 Terms and definitions .7 3.2 Symbols and abbreviations .7 4 General .9 4.1 Running ropes .9 4.2 Stationary ropes.9 4.3 Discard criteria . 10 4.4 Rope and rope terminations . 10 4.5 Documentation . 10 5 Proof of static strength . 10 5.1 General . 10 5.2 Vertical hoisting . 10 5.2.1 Design rope force . 10 5.2.2 Inertial and gravitational effects . 11 5.2.3 Rope reeving efficiency . 12 5.2.4 Non parallel falls . 13 5.2.5 Horizontal forces on the hoist load. 13 5.3 Non vertical drives . 14 5.3.1 Design rope force . 14 5.3.2 Equivalent force . 15 5.3.3 Inertial effects . 16 5.3.4 Rope reeving efficiency . 17 5.3.5 Non parallel falls . 17 5.4 Limit design rope force . 17 6 Proof of fatigue strength . 18 6.1 General . 18 6.2 Design rope force . 18 6.2.1 Principle conditions. 18 6.2.2 Inertial effects . 19 6.2.3 Non parallel falls . 19 6.2.4 Horizontal forces in vertical hoisting. 20 6.3 Limit design rope force . 21 6.3.1 Basic formula . 21 6.3.2 Rope force history parameter . 21 6.3.3 Rope force spectrum factor . 21 6.3.4 Relative total number of bendings . 22 6.4 Further influences on the limit design rope force . 22 6.4.1 Basic formula . 22 6.4.2 Diameters of drum and sheaves . 23 6.4.3 Tensile strength of wire . 23 6.4.4 Fleet angle . 23 6.4.5 Rope lubrication . 24 SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 3 6.4.6 Groove . 25 6.4.7 Rope types . 25 6.5 Additional requirements for multilayer drum . 26 7 Stationary ropes . 27 7.1 Proof of static strength . 27 7.2 Proof of fatigue strength . 27 Annex A (normative)
Number of relevant bendings . 29 Annex B (informative)
Guidance for selection of design number of hoist ropes lr used during the design life of crane . 33 Annex C (informative)
Selection of a suitable set of crane standards for a given application . 34 Annex ZA (informative)
Relationship between this European Standard and the Essential Requirements of EU Directive 2006/42/EC . 35 Bibliography . 36
SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 4 Foreword This document (EN 13001-3-2:2014) has been prepared by Technical Committee CEN/TC 147 “Crane — Safety”, the secretariat of which is held by BSI. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2015 and conflicting national standards shall be withdrawn at the latest by February 2015. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document supersedes CEN/TS 13001-3-2:2008. CEN/TC 147/WG 2 has reviewed CEN/TS 13001-3-2:2008 to adapt the standard to the technical progress. The major changes in this document are in the following clauses: — 6.3 and 6.5; — there are new issues in Clause 7. The provisions of this standard shall not be mandatory to cranes manufactured within the first 12 months following the date of availability (DAV) of the standard. This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s). For relationship with EU Directive(s), see informative Annex ZA, which is an integral part of this document. This European Standard is one Part of EN 13001, Cranes — General design. The other parts are as follows: — Part 1: General principles and requirements — Part 2: Load actions — Part 3-1: Limit states and proof of competence of steel structures — Part 3-3: Limit states and proof of competence of wheel/rail contacts — Part 3-4: Limit states and proof of competence of machinery — Part 3-5: Limit states and proof of competence of forged hooks According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 5 Introduction This European Standard has been prepared to be a harmonized standard to provide one means for the mechanical design and theoretical verification of cranes to conform to the essential health and safety requirements of the Machinery Directive, as amended. This standard also establishes interfaces between the user (purchaser) and the designer, as well as between the designer and the component manufacturer, in order to form a basis for selecting cranes and components. This European Standard is a type C standard as stated in EN ISO 12100. The machinery concerned and the extent to which hazards, hazardous situations and events are covered are indicated in the scope of this standard. When provisions of this type C standard are different from those which are stated in type A or B standards, the provisions of this type C standard take precedence over the provisions of the other standards, for machines. SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 6 1 Scope This European Standard is to be used together with EN 13001-1 and EN 13001-2 and as such they specify general conditions, requirements and methods to prevent mechanical hazards of wire ropes of cranes by design and theoretical verification. NOTE Specific requirements for particular types of cranes are given in the appropriate European Standard for the particular crane type. The following is a list of significant hazardous situations and hazardous events that could result in risks to persons during intended use and reasonably foreseeable misuse. Clauses 5 to 6 of this standard are necessary to reduce or eliminate risks associated with the following hazard: − exceeding the limits of strength (yield, ultimate, fatigue). This European Standard is not applicable to cranes which are manufactured before the date of its publication as EN and serves as reference base for the European Standards for particular crane types (see Annex C). EN 13001-3-2 deals only with the limit state method in accordance with EN 13001-1. 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 1990:2002, Eurocode — Basis of structural design EN 12385-2, Steel wire ropes — Safety — Part 2: Definitions, designation and classification EN 12385-4, Steel wire ropes — Safety — Part 4: Stranded ropes for general lifting applications EN 13001-1, Cranes — General design — Part 1: General principles and requirements EN 13001-2, Crane safety — General design — Part 2: Load actions EN 13411-1, Terminations for steel wire ropes — Safety — Part 1: Thimbles for steel wire rope slings EN 13411-2, Terminations for steel wire ropes — Safety — Part 2: Splicing of eyes for wire rope slings EN 13411-3, Terminations for steel wire ropes — Safety — Part 3: Ferrules and ferrule-securing EN 13411-4, Terminations for steel wire ropes — Safety — Part 4: Metal and resin socketing EN 13411-6, Terminations for steel wire ropes — Safety — Part 6: Asymmetric wedge socket EN ISO 12100:2010, Safety of machinery — General principles for design — Risk assessment and risk reduction (ISO 12100:2010) ISO 4306-1:2007, Cranes — Vocabulary — Part 1: General ISO 4309, Cranes — Wire ropes — Care and maintenance, inspection and discard SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 7 3 Terms, definitions, symbols and abbreviations 3.1 Terms and definitions For the purposes of this document, the terms and definitions given in EN ISO 12100:2010 and the basic list of definitions as provided in EN 1990:2002 apply. For the definitions of loads, Clause 6 of ISO 4306-1:2007 applies. 3.2 Symbols and abbreviations The symbols and abbreviations used in this Part of the EN 13001 are given in Table 1.
Table 1— Symbols and abbreviations Symbols, abbreviations Description a Acceleration C Total number of working cycles (see EN 13001–1) during design life of crane D Relevant diameter Ddrum Minimum pitch diameter of drum Dsheave Minimum pitch diameter of sheave Dcomp Minimum pitch diameter of compensating sheave d Rope diameter dbearing Diameter of bearing or shaft Fequ Equivalent force Fgd Part of Fequ induced by gravity, exclusive of mass of payload, amplified by γp Fgl Part of Fequ induced by gravity forces of mass of payload, amplified by γp Fo Part of Fequ induced by any other forces, amplified by γp FRd,s Limit design rope force for the proof of static strength FRd,f Limit design rope force for the proof of fatigue strength FSd,s Design rope force for the proof of static strength Fr Part of Fequ induced by resistances, amplified by γp FSd,f Design rope force for the proof of fatigue strength Ft Part of Fequ induced by rope tightening forces, amplified by γp Fu Minimum rope breaking force Fw Part of Fequ induced by wind forces, amplified by γp ff Factor of further influences ff1 Factor of diameter ratio influence ff2 Factor tensile strength of wire influence SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 8 Symbols, abbreviations Description ff3 Factor of fleet angle influence ff4 Factor of lubrication influence ff5 Factor of multilayer drum influence ff6 Factor of groove radius influence ff7 Factor of rope type influence fS1 Rope force increasing factor from rope reeving efficiency fS2 Rope force increasing factor from non parallel falls fS3 Rope force increasing factor from horizontal acceleration sif* Rope force increasing factors in fatigue g Acceleration due to gravity i Index for cycles of lifting and lowering imax Total number of movements kr Rope force spectrum factor lr Number of ropes used during design life of the crane q Normalized height distribution mH Mass of hoist load (see EN 13001–2) mHr Mass of hoist load that is acting on the rope falls under consideration mr Rotatory rope driven mass mt Translational rope driven mass ns Number of fixed sheave between drum and moving part nm Mechanical advantage nr Number of ropes reeved from a drum R0 Minimum tensile strength of the wire used in the rope RDd Reference ratio of rope bending diameter to rope diameter Rr Tensile strength level of wire rg Groove radius sr Rope force history parameter t Rope type factor w Number of relevant bendings per movement wc Bending count wD Number of bendings at reference point wtot Total number of bendings SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 9 Symbols, abbreviations Description z, zi, zmin, zmax, zref Height coordinates . Angle of slope max Angles between falls and line of acting force γ Angle between gravity and projected rope in plane of Fh and g γn Risk coefficient γp Partial safety factor γrb Minimum rope resistance factor (static) γrf Minimum rope resistance factor (fatigue) / Design fleet angle 0 Angle between sheave planes s Efficiency of single sheave tot Total rope reeving efficiency νr Relative total number of bendings φ Dynamic factor for inertial or gravity effects φ* Dynamic factor for inertial or gravity effects in fatigue φ2 Dynamic factor for hoisting an unrestrained grounded load φ5 Dynamic factor for loads caused by acceleration φ6 Dynamic factor for test load ω Angle between the sheave groove sides 4 General 4.1 Running ropes Running wire ropes in cranes are stressed by loads and by bendings. Together these constitute a cumulative fatigue effect on the rope, which is expressed as a rope force history parameter sr. The rope force history parameter is independent of time. The proof of competence for static strength and the proof of competence for fatigue strength shall be fulfilled for the selection of ropes and components. 4.2 Stationary ropes Stationary ropes are considered as part of the crane structure. Clause 7 gives the requirements for the proof of competence for static strength and for fatigue strength of stationary ropes. SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 10 4.3 Discard criteria To ensure safe use of the rope, the discard criteria in accordance with ISO 4309 shall be applied. When polymer sheaves are used exclusively in conjunction with single-layer spooling, the deterioration of the rope is likely to advance at a greater rate internally than externally and the discard criteria in accordance with ISO 4309 cannot be applied. 4.4 Rope and rope terminations The wire rope should be in accordance with EN 12385-4. Rope terminations shall meet the requirements of EN 13411-1, EN 13411-2, EN 13411-3, EN 13411-4 and EN 13411-6. 4.5 Documentation The documentation of the proof of competence shall include: — design assumptions including calculation models; — applicable loads and load combinations; — rope specification and number of ropes specified for the design; — relevant limit states; — results of the proof of competence calculation and tests when applicable. 5 Proof of static strength 5.1 General For the proof of static strength it shall be proven that for all relevant load combinations of EN 13001-2 Sd,sRd,sFF≤ (1) where FSd,s is the design rope force; FRd,s is the limit design rope force. 5.2 Vertical hoisting 5.2.1 Design rope force The design rope force FSd,s in vertical hoisting shall be calculated as follows: HrSd,sS1S2S3pnmmgFfffnφ⋅=⋅××××× (2) where SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 11 mHr is the mass of the hoist load (mH) or that part of the mass of the hoist load that is acting on the rope falls under consideration (see Figure 1). The mass of the hoist load includes the masses of the payload, lifting attachments and a portion of the suspended hoist ropes. In statically undetermined systems, the unequal load distribution between ropes depends on elasticities and shall be taken into account; g is the acceleration due to gravity; nm is the mechanical advantage of falls carrying mHr; φ is the dynamic factor for inertial and gravity effects as shown in 5.2.2; fS1 to fS3 are the rope force increasing factors as shown in 5.2.3 to 5.2.5; p is the partial safety factor (see EN 13001–2): p = 1,34 for regular loads (load combinations A), p = 1,22 for occasional loads (load combinations B), p = 1,10 or exceptional loads (load combinations C); n is the risk coefficient (see EN 13001–2), where applicable.
Figure 1 — Example for the acting parts of hoist mass 5.2.2 Inertial and gravitational effects 5.2.2.1 Dynamic factors For vertical hoisting the maximum inertial effects from either hoisting an unrestrained grounded load or from acceleration or deceleration shall be taken into account by the dynamic factor Ë, given in 5.2.2.2 to 5.2.2.4. 5.2.2.2 Hoisting an unrestrained grounded load 2φφ= (3) where SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 12 Ë2 is the dynamic factor for inertial and gravity effects when hoisting an unrestrained grounded load (see EN 13001-2). 5.2.2.3 Acceleration or deceleration of the suspended load 51agφφ=+× (4) where φ5 is the dynamic factor for loads caused by acceleration (see EN 13001–2); a is the vertical acceleration or deceleration; g is the acceleration due to gravity. 5.2.2.4 Test load 6φφ= (5) where φ6 is the dynamic factor for test load (see EN 13001-2). 5.2.3 Rope reeving efficiency The rope force increasing factor from rope reeving efficiency S1fshall be calculated as follows: S1tot1fη= (6) The total rope reeving efficiency of the rope drive tot shall be calculated as follows: smSStotmS()1()1nnnηηηη−=×− (7) where S is the efficiency of a single sheave: S = 0,985 for sheave with roller bearing, S = 0,985 × (1 − 0,15 × dbearing/DSheave) for sheave with plain bearing. Other values for S may be used if verified by test results for the applied rope, sheave and bearing. nm is the mechanical advantage (see example in Figure 2); ns is the number of fixed sheaves between drum and moving part. SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 13
Figure 2 — Example for a rope reeving 5.2.4 Non parallel falls When the rope falls are not parallel, the rope force is increased. The rope force increasing factor fS2 shall be determined for the most unfavourable position. For simplification fS2 may be calculated by S2max1cosf= (8) where max is the maximum angle between the falls and the direction of load (see Figure 3).
Figure 3 — Angle max 5.2.5 Horizontal forces on the hoist load The rope force increasing effect of the horizontal forces (e.g. by trolley or crane accelerations, wind) may be neglected in applications with free swinging loads. However in applications with several non-parallel ropes (rope pyramid, see Figure 4) the horizontal forces increase the rope force considerably. This effect shall be taken into account. For simplification the rope force increasing factor fS3 may be calculated by SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 14 hS3H12tanFfmgγ=+≤×× (9) where Fh is the horizontal force on the hoist load; mH is the mass of the hoist load; g is the acceleration due to gravity;
is the angle between direction of gravity and the rope projected in the plane determined by Fh and direction of gravity.
Figure 4 — Load suspension with inclined ropes Load actions due to φ and fS3 in Formula (2) may be handled separately, only in cases where simultaneous action of horizontal and vertical accelerations is prevented by technical means (e.g. by a control system). 5.3 Non vertical drives 5.3.1 Design rope force The design rope force FSd,s in non-vertical drives (see examples in Figure 5 and Figure 6) shall be calculated as follows: equSd,sS1S2nmFFffnφ=×××× (10) where Fequ is the equivalent force acting on the reeving system under consideration as shown in 5.3.2. In statically undetermined systems, the unequal load distribution between ropes depends on elasticities and shall be taken into account; nm is the mechanical advantage of the reeving; φ is the dynamic factor for inertial effects as shown in 5.3.3; fS1, fS2 are the rope force increasing factors as shown in 5.3.4 and 5.3.5; n is the risk coefficient (see EN 13001–2), where applicable. SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 15
Key mr1, mr2, mr3 rotatory rope driven masses, referred to the coordinate of acceleration mt1, mt2 translational rope driven masses, referred to the coordinate of acceleration Fequ, Fw, Fr forces, see 5.3.2 Acc., a accelerations nm mechanical advantage Figure 5 — Examples for non-vertical drive
Key mr1, mr2, mr3 rotatory rope driven masses, referred to the coordinate of acceleration mt translational rope driven mass, referred to the coordinate of acceleration Ft tightening forces, see 5.3.2 nm mechanical advantage Figure 6 — Example for rope tightening 5.3.2 Equivalent force In general the load actions of gravity forces, resistances (e.g. rolling or gliding, wheels, bearings), rope tightening forces, wind forces and any other forces (e.g. buffer forces, forces from climatic effects) contribute to the equivalent force Fequ as illustrated in Formula (11). The individual load actions shall be amplified by the relevant partial safety factors p (see EN 13001-2) for the load combination under consideration, as given in Table 2. SIST EN 13001-3-2:2014



EN 13001-3-2:2014 (E) 16 equgdglrwtoFFFFFFF=+++++ (11) where Fgd is that part of Fequ that is induced by gravity forces of the rope driven masses, exclusive of the mass of the payload; Fgl is that part of Fequ that is induced by gravity forces of the rope driven mass of the payload; Fr is that part of Fequ that is induced by resistances; Fw is that part of Fequ that is induced by wind forces; Ft is that part of Fequ that is induced by rope tightening forces (see example in Figure 6); Fo is that part of Fequ that is induced by any other forces. Table 2 — Partial safety factors p
Description Regular loads Load combinations A Occasional loads Load combinations B Exceptional loads Load
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.