ISO/FDIS 12179
(Main)Geometrical product specifications (GPS) — Surface texture: Profile — Calibration of contact (stylus) instruments
Geometrical product specifications (GPS) — Surface texture: Profile — Calibration of contact (stylus) instruments
This document specifies the calibration and adjustment of the metrological characteristics of contact (stylus) instruments for the measurement of surface texture by the profile method as defined in ISO 3274. The calibration and adjustment is intended to be carried out with the aid of measurement standards. Annex B specifies the calibration and adjustment of metrological characteristics of simplified operator contact (stylus) instruments which do not conform with ISO 3274.
Spécification géométrique des produits (GPS) — État de surface: Profil — Étalonnage des instruments à contact (palpeur)
Le présent document spécifie l'étalonnage et l’ajustage des caractéristiques métrologiques des instruments à contact (stylet) pour le mesurage de l'état de surface par la méthode du profil comme défini dans l'ISO 3274. L'étalonnage et et l’ajustage s’effectuent à l'aide d'étalons de mesure. L'Annexe B spécifie l'étalonnage et le réglage des caractéristiques métrologiques des instruments à contact (stylet) à utilisation simplifiée qui ne sont pas conformes à l'ISO 3274.
General Information
- Status
- Not Published
- Current Stage
- 5020 - FDIS ballot initiated: 2 months. Proof sent to secretariat
- Start Date
- 06-Feb-2026
- Completion Date
- 06-Feb-2026
Relations
- Effective Date
- 12-Feb-2026
- Effective Date
- 25-Mar-2023
- Effective Date
- 18-Mar-2023
Overview
ISO/FDIS 12179:2025 is an international standard developed by the International Organization for Standardization (ISO) that establishes procedures for the calibration and adjustment of contact (stylus) instruments used to measure surface texture through the profile method. This document is a key part of the ISO Geometrical Product Specifications (GPS) family and aims to ensure reliability, accuracy, and traceability in surface texture measurements. It aligns with the requirements of ISO 3274 and ISO 25178-601, as well as other measurement standards, to promote global consistency in industrial quality assurance.
Key Topics
Calibration Procedures: Detailed methods for the calibration of contact (stylus) instruments using standardized measurement artifacts. Specific procedures cover residual profile, vertical and horizontal profile components, profile coordinate system, and total system calibration.
Measurement Standards: Specifies the types of reference standards used for calibration, including optical flats and artifacts for verifying depth, spacing, roughness, and coordinate parameters. These are critical for establishing traceability and measurement confidence.
Instrument Configurations: Guidelines on calibrating distinct instrument configurations, including those with interchangeable probes and drive units. Each configuration must be individually calibrated to guarantee measurement validity across setups.
Measurement Uncertainty: Directs users on evaluating and documenting measurement uncertainty in the calibration process. This is essential for compliance with ISO/IEC requirements and for supporting robust measurement management systems.
Defects and Environmental Conditions: Provides instructions on handling detected defects during calibration and emphasizes calibrating instruments under real-use conditions (considering temperature, vibration, and other influences).
Simplified Operator Instruments: Annex B addresses the calibration and adjustment of simplified operator contact (stylus) instruments that may not fully comply with ISO 3274 or ISO 25178-601. This extends best practices to a broader range of equipment.
Applications
Implementing ISO/FDIS 12179 provides practical value across industries such as automotive, aerospace, electronics, and precision engineering by:
- Enhancing Measurement Reliability: Ensures that surface roughness and texture measurements are traceable, accurate, and repeatable, supporting quality control and process optimization.
- Supporting Regulatory Compliance: Fulfills requirements in ISO 10012 and ISO/IEC 17025 for metrological traceability and competence in measurement, essential for certified testing and calibration laboratories.
- Enabling Process Comparability: Facilitates the use of standardized procedures so that measurements taken with different instruments, operators, and facilities remain comparable.
- Extending Service Life of Instruments: Systematic calibration and adjustment help identify equipment degradation early, reducing downtime and improving maintenance planning.
- Adapting to Non-Standard Equipment: Incorporates guidance for calibrating operator-friendly, simplified stylus instruments, broadening adoption in diverse manufacturing settings.
Related Standards
To ensure comprehensive implementation of measurement and calibration systems, consider these closely associated standards:
- ISO 3274: Geometrical Product Specifications (GPS) - Surface texture: Profile method - Nominal characteristics of contact (stylus) instruments
- ISO 25178-601: Geometrical Product Specifications (GPS) - Surface texture: Areal - Design and characteristics of contact (stylus) instruments
- ISO 5436-1: Surface texture: Profile method - Measurement standards - Material measures
- ISO 10012: Measurement management systems - Requirements for measurement processes and measuring equipment
- ISO/IEC 17025: General requirements for the competence of testing and calibration laboratories
- ISO/IEC Guide 98-3: Uncertainty of measurement - Guide to the expression of uncertainty in measurement (GUM)
- ISO 14253-2: Guidance for estimation of uncertainty in GPS measurement, calibration, and verification
By following ISO/FDIS 12179, organizations strengthen quality assurance in surface metrology, build international credibility, and ensure the highest standards of measurement accuracy in their products and processes.
ISO/FDIS 12179 - Geometrical product specifications (GPS) — Surface texture: Profile — Calibration of contact (stylus) instruments Released:23. 01. 2026
REDLINE ISO/FDIS 12179 - Geometrical product specifications (GPS) — Surface texture: Profile — Calibration of contact (stylus) instruments Released:23. 01. 2026
ISO/FDIS 12179 - Spécification géométrique des produits (GPS) — État de surface: Profil — Étalonnage des instruments à contact (palpeur) Released:4. 02. 2026
Get Certified
Connect with accredited certification bodies for this standard
BSMI (Bureau of Standards, Metrology and Inspection)
Taiwan's standards and inspection authority.
Sponsored listings
Frequently Asked Questions
ISO/FDIS 12179 is a draft published by the International Organization for Standardization (ISO). Its full title is "Geometrical product specifications (GPS) — Surface texture: Profile — Calibration of contact (stylus) instruments". This standard covers: This document specifies the calibration and adjustment of the metrological characteristics of contact (stylus) instruments for the measurement of surface texture by the profile method as defined in ISO 3274. The calibration and adjustment is intended to be carried out with the aid of measurement standards. Annex B specifies the calibration and adjustment of metrological characteristics of simplified operator contact (stylus) instruments which do not conform with ISO 3274.
This document specifies the calibration and adjustment of the metrological characteristics of contact (stylus) instruments for the measurement of surface texture by the profile method as defined in ISO 3274. The calibration and adjustment is intended to be carried out with the aid of measurement standards. Annex B specifies the calibration and adjustment of metrological characteristics of simplified operator contact (stylus) instruments which do not conform with ISO 3274.
ISO/FDIS 12179 is classified under the following ICS (International Classification for Standards) categories: 17.040.30 - Measuring instruments; 17.040.40 - Geometrical Product Specification (GPS). The ICS classification helps identify the subject area and facilitates finding related standards.
ISO/FDIS 12179 has the following relationships with other standards: It is inter standard links to FprEN ISO 12179, ISO 24078:2025, ISO 12179:2021. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
ISO/FDIS 12179 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.
Standards Content (Sample)
FINAL DRAFT
International
Standard
ISO/TC 213
Geometrical product specifications
Secretariat: BSI
(GPS) — Surface texture: Profile
Voting begins on:
— Calibration of contact (stylus)
2026-02-06
instruments
Voting terminates on:
2026-04-03
Spécification géométrique des produits (GPS) — État de surface:
Profil — Étalonnage des instruments à contact (palpeur)
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO
ISO/CEN PARALLEL PROCESSING LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
Reference number
FINAL DRAFT
International
Standard
ISO/TC 213
Geometrical product specifications
Secretariat: BSI
(GPS) — Surface texture: Profile
Voting begins on:
— Calibration of contact (stylus)
instruments
Voting terminates on:
Spécification géométrique des produits (GPS) — État de surface:
Profil — Étalonnage des instruments à contact (palpeur)
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
© ISO 2026
IN ADDITION TO THEIR EVALUATION AS
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO
ISO/CEN PARALLEL PROCESSING
LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
or ISO’s member body in the country of the requester.
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland Reference number
ii
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Conditions of use . 3
4.1 Components and configurations of the contact (stylus) instrument .3
4.2 Calibration of a configuration .3
4.3 Place of calibration .3
4.4 Defects .3
5 Measurement standards . . 3
6 Contact (stylus) instrument metrological characteristics . 6
6.1 General .6
6.2 Residual profile calibration .6
6.3 Vertical profile component calibration .7
6.4 Horizontal profile component calibration .7
6.5 Profile coordinate system calibration .7
6.6 Total contact (stylus) instrument calibration .7
7 Calibration . 7
7.1 Preparation for calibration .7
7.2 Evaluation of the residual profile .8
7.3 Calibration of the vertical profile component .8
7.3.1 Overall objective .8
7.3.2 Procedure .8
7.4 Calibration of the horizontal profile component . .9
7.4.1 Overall objective .9
7.4.2 Procedure .9
7.5 Calibration of the profile coordinate system .9
7.5.1 Overall objective .9
7.5.2 Procedure .9
7.6 Calibration of the total contact (stylus) instrument .9
7.6.1 Overall objective .9
7.6.2 Procedure .9
7.7 Other calibrations .9
8 Measurement uncertainty .10
8.1 Information from the calibration certificate for a measurement standard .10
8.2 Measurement uncertainty during calibration of a measuring instrument .10
9 Contact (stylus) instrument calibration certificate .11
10 General information .11
Annex A (normative) Calibration of instruments measuring parameters of the motifs method .12
Annex B (normative) Calibration of simplified operator instruments for the measurements of
surface texture. 14
Annex C (informative) Example — Roughness measurement standard parameter Ra .15
Annex D (informative) Concept diagram .18
Annex E (informative) Overview of profile and areal standards in the GPS matrix model . 19
Annex F (informative) Relationship to the GPS matrix model .20
Bibliography .21
iii
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers are cautioned that
this may not represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 213, Dimensional and geometrical product
specifications and verification, in collaboration with the European Committee for Standardization (CEN)
Technical Committee CEN/TC 290, Dimensional and geometrical product specification and verification, in
accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This third edition cancels and replaces the second edition (ISO 12179:2021), which has been technically
revised.
The main changes are as follows:
— The example estimation of measurement uncertainty has been amended in Annex C;
— 8.2 has been modified accordingly.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
Introduction
This document is a geometrical product specification (GPS) standard and is to be regarded as a general GPS
standard (see ISO 14638). It influences chain link G of the chain of standards on profile surface texture.
The ISO GPS matrix model given in ISO 14638 gives an overview of the ISO GPS system of which this
document is a part. The fundamental rules of ISO GPS given in ISO 8015 apply to this document and the
default decision rules given in ISO 14253-1 apply to specifications made in accordance with this document,
unless otherwise indicated.
For more detailed information on the relationship of this document to other standards and the GPS matrix
model, see Annex F.
An overview of standards on profiles and areal surface texture is given in Annex E.
This document introduces calibration of contact (stylus) instruments as defined in ISO 25178-601. The
calibration is carried out with the aid of measurement standards.
v
FINAL DRAFT International Standard ISO/FDIS 12179:2026(en)
Geometrical product specifications (GPS) — Surface texture:
Profile — Calibration of contact (stylus) instruments
1 Scope
This document specifies the calibration and adjustment of the metrological characteristics of contact (stylus)
instruments for the measurement of surface texture by the profile method as defined in ISO 25178-601.
The calibration and adjustment specified within this document is intended to be carried out with the aid of
measurement standards.
NOTE Annex B specifies the calibration and adjustment of metrological characteristics of simplified operator
contact (stylus) instruments which do not conform with ISO 25178-601.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 10012, Measurement management systems — Requirements for measurement processes and measuring
equipment
ISO 12085, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Motif parameters
ISO 14253-2, Geometrical product specifications (GPS) — Inspection by measurement of workpieces and
measuring equipment — Part 2: Guidance for the estimation of uncertainty in GPS measurement, in calibration
of measuring equipment and in product verification
ISO/IEC 17025:2017, General requirements for the competence of testing and calibration laboratories
ISO 21920-2, Geometrical product specifications (GPS) — Surface texture: Profile — Part 2: Terms, definitions
and surface texture parameters
ISO 25178-73:2019, Geometrical product specifications (GPS) — Surface texture: Areal — Part 73: Terms and
definitions for surface defects on material measures
ISO 25178-601, Geometrical product specifications (GPS) — Surface texture: Areal — Part 601: Design and
characteristics of contact (stylus) instruments
ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in
measurement (GUM:1995)
ISO/IEC Guide 99:2007, International vocabulary of metrology — Basic and general concepts and associated
terms (VIM)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 25178-601, ISO/IEC Guide 98-3
and ISO/IEC Guide 99 and the following apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1
calibration
operation that, under specified conditions:
a) in a first step, establishes a relation between the quantity values with measurement uncertainties
provided by measurement standards and corresponding indications with associated measurement
uncertainties; and
b) in a second step, uses this information to establish a relation for obtaining a measurement result from
an indication
[SOURCE: ISO/IEC Guide 99:2007, 2.39, modified — The original Notes to entry have been deleted.]
3.2
task-related calibration
set of operations which establish, under specified conditions, the relationship between values of quantities
indicated by a measuring instrument and the corresponding known values of a limited family of precisely
defined measurands
Note 1 to entry: These measurands constitute a subset of the measuring capabilities of the measuring instrument.
3.3
adjustment
adjustment of a measuring system
set of operations carried out on a measuring system so that it provides prescribed indications corresponding
to given values of a quantity to be measured
[SOURCE: ISO/IEC Guide 99:2007, 3.11, modified — The original Notes to entry have been deleted.]
3.4
measurement standard
etalon
realization of the definition of a given quantity, with stated quantity value and associated measurement
uncertainty, used as a reference
Note 1 to entry: Measurement standards are also referred to as “calibration specimens”.
[SOURCE: ISO/IEC Guide 99:2007, 5.1, modified — The original Examples and Notes to entry have been
deleted.]
3.5
measurement uncertainty
uncertainty of measurement
uncertainty
non-negative parameter characterizing the dispersion of the quantity values being attributed to a
measurand, based on the information used
[SOURCE: ISO/IEC Guide 99:2007, 2.26, modified —The original Notes to entry have been deleted.]
3.6
metrological traceability
property of a measurement result whereby the result can be related to a reference through a documented
unbroken chain of calibrations, each contributing to the measurement uncertainty
[SOURCE: ISO/IEC Guide 99:2007, 2.41, modified — The original Notes to entry have been deleted.]
3.7
defect
part of the measurement standard’s geometrical feature (non-ideal surface) on
which the geometrical shape and geometrical dimensions deviate from those on the nominal feature (ideal
surface) either by an amount greater than some agreed or stated maximum value, or, in the absence of any
such agreed or stated maximum value, by an amount greater than what is typical or characteristic for the
processes used in manufacturing the measurement standard
[SOURCE: ISO 25178-73:2019, 3.1.2, modified — The original Notes to entry have been deleted.]
3.8
residual profile
primary profile obtained by tracing an ideally smooth and flat surface (optical flat)
Note 1 to entry: The residual profile is composed of the deviations of the guide, external and internal disturbances, as
well as deviations in profile transmission. The determination of the causes of the deviations is not normally possible
without special equipment and a suitable environment.
Note 2 to entry: The residual profile is the profile equivalent of the areal flatness deviation defined in
ISO 25178-600:2019, 3.1.12.
Note 3 to entry: Optical flats are equivalent to Type AFL (flat plane) material measures, according to ISO 25178-70:2014,
8.1.
4 Conditions of use
4.1 Components and configurations of the contact (stylus) instrument
The contact (stylus) instrument comprises the basic equipment, a drive unit and a probe (see ISO 25178-601).
If the basic equipment is used with several drive units and probing systems, each of these instrumental
combinations (configurations) shall be calibrated separately.
4.2 Calibration of a configuration
The contact (stylus) instrument shall be calibrated when a change is made to the basic elements of the
system which intentionally or unintentionally modifies the measured profile or measuring result. Each
configuration of the contact (stylus) instrument shall be calibrated separately. For example, with a change of
the probing system, the contact (stylus) instrument is calibrated.
4.3 Place of calibration
The contact (stylus) instrument should be calibrated at the place of use with environmental conditions
similar to those present when in use for measurement to take into account external influence factors.
EXAMPLE Noise, temperature, vibration and air turbulence.
4.4 Defects
If a defect is encountered during any measurement of a measurement standard during calibration in
accordance with a measuring plan, then that defect shall be dealt with by removing or ignoring it in the
terms and definitions of ISO 25178-73:2019, 3.3. In former case, the measurement shall be repeated at a
nearby defect-free location.
5 Measurement standards
The following measurement standards are applicable to the calibrations given in Clause 6:
— optical flat;
— depth measurement standard (see Figure 1): type A according to ISO 5436-1:2000, 6.1;
— spacing measurement standard (see Figure 2): type C according to ISO 5436-1:2000, 6.3;
— profile coordinate measurement standard (consisting of a sphere or prism): type E according to
ISO 5436-1:2000, 6.5;
— roughness measurement standard (see Figure 4): type D according to ISO 5436-1:2000, 6.4.
An optical flat is used to obtain residual profile by aligning its surface parallel to movement direction of
drive unit (see 6.2), and can also be used to calibrate coordinate system by inclining the optical flat (see
Figure 3 and 6.5).
A profile coordinate measurement standard should be used on contact (stylus) instruments where the stylus
rotates at least plus and minus one half of a degree when moving through its full range.
A type C periodic measurement standard can also be used for calibrating the vertical amplification by
considering the Ra (arithmetic mean height of the roughness profile), Rz (maximum height of roughness of
the roughness profile) or Rt (total height of the roughness profile) value as described in ISO 5436-1:2000,
5.4. The measurement standard should be chosen so that the values of Rsm (mean profile element spacing of
the roughness profile) and Ra are not affected by attenuation due to the stylus tip or S-filter with a nesting
index N .
is
NOTE 1 Type A corresponds to PGR (groove, rectangular), and PGC (groove, circular) according to
ISO 25178-70:2014, 7.5 and 7.6.
NOTE 2 Type C corresponds to PPS (periodic sinusoidal shape), PPT (periodic triangular shape), PPA (periodic
arcuate shape) and PAS (approximated sinusoidal shape) according to ISO 25178-70:2014, 7.1, 7.2, 7.4 and 7.11.
NOTE 3 Type E corresponds to PRI (prism) and ASP (hemisphere) according to ISO 25178-70:2014, 7.9 and 8.3.
NOTE 4 Type D corresponds to PRO (irregular profile) and PCR (circular irregular profile) according to
ISO 25178-70:2014, 7.7 and 7.8.
Dimensions in millimetres
Figure 1 — Example of a depth measurement standard (type A)
Dimensions in millimetres
Figure 2 — Example of a spacing measurement standard (type C)
Dimensions in millimetres
Figure 3 — Example of an optical flat in an inclined state and a measuring plan
Dimensions in millimetres
Figure 4 — Example of a roughness measurement standard (type D) and measuring plan
6 Contact (stylus) instrument metrological characteristics
6.1 General
Only those task-related contact (stylus) instrument metrological characteristics which are relevant for the
intended measurements should be selected for calibration and adjustment. For example, for the measurement
of spacing parameters, the vertical profile component may be omitted. Adjustment (if required) of the
metrological characteristic shall be carried out after calibration of the metrological characteristic according
to the instrument manufacturer’s procedures.
6.2 Residual profile calibration
The scratch-free optical flat reproduces the residual profile. For task-related calibrations, use the appropriate
profile and parameters, for example:
— Ra, see ISO 21920-2;
— the root mean square Rq of the roughness profile, see ISO 21920-2;
— Rt, see ISO 21920-2;
— the arithmetic mean height Wa of the waviness profile, see ISO 21920-2;
— the root mean square Wq of the waviness profile, see ISO 21920-2;
— the total height square Wt of the waviness profile, see ISO 21920-2.
NOTE By using this approach the effects of external guide straightness, environmental conditions and instrument
noise can be established.
6.3 Vertical profile component calibration
The depth measurement standard establishes a profile depth in order to measure the error of indication of
the vertical profile component of an instrument.
If no depth measurement standards are available, gauge blocks steps may be used. Care should be taken
concerning the measurement uncertainty of the height difference when using gauge blocks steps.
6.4 Horizontal profile component calibration
The spacing measurement standard reproduces the mean profile element spacing of the primary profile
Psm, see ISO 21920-2, in order to measure the error of indication of the horizontal profile component.
6.5 Profile coordinate system calibration
The optical flat in an inclined state reproduces:
— the angle of the least square association method in degrees;
— the total height of the primary profile Pt, see ISO 21920-2, after removal of the straight line of the least
square association method,
thus establishing the error of the linked horizontal and vertical coordinates (e.g. variation in traverse speed
if the x-coordinate is time-based, nonlinearities in scales).
The profile coordinate measurement
...
ISO /TC 213/WG 16
Secretariat: BSI
Date: 2025-10-162026-01-23
Geometrical product specifications (GPS) — Surface texture:
Profile — Calibration of contact (stylus) instruments
Spécification géométrique des produits (GPS) — État de surface: Profil — Étalonnage des instruments à
contact (palpeur)
FDIS stage
TThhiis drs draafftt i is s susubbmmiitttteed d ttoo aa ppaarraallellel l vvoottee i inn IISSOO,, CCEEN.N.
ISO/DIS FDIS 12179:20242026(en)
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication
may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying,
or posting on the internet or an intranet, without prior written permission. Permission can be requested from either
ISO at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: + 41 22 749 01 11
EmailE-mail: copyright@iso.org
Website: www.iso.org
Published in Switzerland
© ISO 2024 2026 – All rights reserved
ii
Contents
Foreword . iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Conditions of use . 3
4.1 Components and configurations of the contact (stylus) instrument . 3
4.2 Calibration of a configuration . 3
4.3 Place of calibration . 3
4.4 Defects . 4
5 Measurement standards . 4
6 Contact (stylus) instrument metrological characteristics . 9
6.1 General . 9
6.2 Residual profile calibration . 9
6.3 Vertical profile component calibration . 9
6.4 Horizontal profile component calibration . 9
6.5 Profile coordinate system calibration . 9
6.6 Total contact (stylus) instrument calibration . 10
7 Calibration . 10
7.1 Preparation for calibration . 10
7.2 Evaluation of the residual profile . 10
7.3 Calibration of the vertical profile component . 11
7.4 Calibration of the horizontal profile component . 11
7.5 Calibration of the profile coordinate system . 12
7.6 Calibration of the total contact (stylus) instrument . 12
7.7 Other calibrations . 12
8 Measurement uncertainty . 12
8.1 Information from the calibration certificate for a measurement standard . 12
8.2 Measurement uncertainty during calibration of a measuring instrument . 13
9 Contact (stylus) instrument calibration certificate . 14
10 General information . 14
Annex A (normative) Calibration of instruments measuring parameters of the motifs method . 15
Annex B (normative) Calibration of simplified operator instruments for the measurements of
surface texture . 20
Annex C (informative) Example — Roughness measurement standard parameter Ra . 21
Annex D (informative) Concept diagram . 24
Annex E (informative) Overview of profile and areal standards in the GPS matrix model. 25
Annex F (informative) Relationship to the GPS matrix model. 26
Bibliography . 28
© ISO 2025 2026 – All rights reserved
iii
ISO/DIS FDIS 12179:20242026(en)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of
ISO document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights
in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s)
which may be required to implement this document. However, implementers are cautioned that this may not
represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 213, Dimensional and geometrical product
specifications and verification, in collaboration with the European Committee for Standardization (CEN)
Technical Committee CEN/TC 290, Dimensional and geometrical product specification and verification, in
accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This third edition cancels and replaces the second edition (ISO 12179:2021), which has been technically
revised.
The main changes are as follows:
— — The example estimation of measurement uncertainty has been amended in Annex CAnnex C;;
— 8.2— 8.2 has been modified accordingly.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
© ISO 2024 2026 – All rights reserved
iv
Introduction
This document is a geometrical product specification (GPS) standard and is to be regarded as a general GPS
standard (see ISO 14638). It influences chain link G of the chain of standards on profile surface texture.
The ISO GPS matrix model given in ISO 14638 gives an overview of the ISO GPS system of which this document
is a part. The fundamental rules of ISO GPS given in ISO 8015 apply to this document and the default decision
rules given in ISO 14253-1 apply to specifications made in accordance with this document, unless otherwise
indicated.
For more detailed information on the relationrelationship of this document to other standards and the GPS
matrix model, see Annex FAnnex F. .
An overview of standards on profiles and areal surface texture is given in Annex EAnnex E.
This document introduces calibration of contact (stylus) instruments as defined in
ISO 25178-601. The calibration is carried out with the aid of measurement standards.
© ISO 2025 2026 – All rights reserved
v
Geometrical product specifications (GPS) — Surface texture: Profile —
Calibration of contact (stylus) instruments
1 Scope
This document specifies the calibration and adjustment of the metrological characteristics of contact (stylus)
instruments for the measurement of surface texture by the profile method as defined in ISO 25178-601. The
calibration and adjustment specified within this document is intended to be carried out with the aid of
measurement standards.
NOTE Annex BAnnex B specifies the calibration and adjustment of metrological characteristics of simplified
operator contact (stylus) instruments which do not conform with ISO 25178-601.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 10012, Measurement management systems — Requirements for measurement processes and measuring
equipment
ISO 12085, Geometrical product specificationsProduct Specifications (GPS) — Surface texture: Profile method
— Motif parameters
ISO 14253--2, Geometrical product specifications (GPS) — Inspection by measurement of workpieces and
measuring equipment — Part 2: Guidance for the estimation of uncertainty in GPS measurement, in calibration
of measuring equipment and in product verification
ISO/IEC 17025:2017, General requirements for the competence of testing and calibration laboratories
ISO 21920--2, Geometrical product specifications (GPS) — Surface texture: profile Profile — Part 2: Terms,
definitions and surface texture parameters
ISO 25178--73:2019, Geometrical product specifications (GPS) — Surface texture: Areal — Part 73: Terms and
definitions for surface defects on material measures
ISO 25178-601, Geometrical product specifications (GPS) — Surface texture: Areal — Part 601: Design and
characteristics of contact (stylus) instruments
ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in
measurement (GUM:1995)
ISO/IEC Guide 99:2007, International vocabulary of metrology — Basic and general concepts and associated
terms (VIM)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 25178-601, ISO/IEC Guide 98-3
and ISO/IEC Guide 99 and the following apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
ISO/DIS FDIS 12179:20242026(en)
— — ISO Online browsing platform: available at https://www.iso.org/obp
— — IEC Electropedia: available at https://www.electropedia.org/
3.1 3.1
calibration
operation that, under specified conditions:
a) a) in a first step, establishes a relation between the quantity values with measurement
uncertainties provided by measurement standards and corresponding indications with associated
measurement uncertainties; and
b) b) in a second step, uses this information to establish a relation for obtaining a measurement
result from an indication
[SOURCE: ISO/IEC Guide 99:2007, 2.39, modified — The original Notes to entry have been deleted.]
3.2 3.2
task-related calibration
set of operations which establish, under specified conditions, the relationship between values of quantities
indicated by a measuring instrument and the corresponding known values of a limited family of precisely
defined measurands
Note 1 to entry: These measurands constitute a subset of the measuring capabilities of the measuring instrument.
3.3 3.3
adjustment
adjustment of a measuring system
set of operations carried out on a measuring system so that it provides prescribed indications corresponding
to given values of a quantity to be measured
[SOURCE: ISO/IEC Guide 99:2007, 3.11, modified — The original Notes to entry have been deleted.]
3.4 3.4
measurement standard
etalon
realization of the definition of a given quantity, with stated quantity value and associated measurement
uncertainty, used as a reference
Note 1 to entry: Measurement standards are also referred to as “calibration specimens”.
[SOURCE: ISO/IEC Guide 99:2007, 5.1, modified — The original Examples and Notes to entry have been
deleted.]
3.5 3.5
measurement uncertainty
uncertainty of measurement
uncertainty
non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand,
based on the information used
[SOURCE: ISO/IEC Guide 99:2007, 2.26, modified —The original Notes to entry have been deleted.]
© ISO 2024 2026 – All rights reserved
3.6 3.6
metrological traceability
property of a measurement result whereby the result can be related to a reference through a documented
unbroken chain of calibrations, each contributing to the measurement uncertainty
[SOURCE: ISO/IEC Guide 99:2007, 2.41, modified — The original Notes to entry have been deleted.]
3.7 3.7
defect
part of the measurement standard’s geometrical feature (non-ideal surface) on which
the geometrical shape and geometrical dimensions deviate from those on the nominal feature (ideal surface)
either by an amount greater than some agreed or stated maximum value, or, in the absence of any such agreed
or stated maximum value, by an amount greater than what is typical or characteristic for the processes used
in manufacturing the measurement standard
[SOURCE: ISO 25178-73:2019, 3.1.2, modified — The original Notes to entry have been deleted.]
3.8 3.8
residual profile
primary profile obtained by tracing an ideally smooth and flat surface (optical flat)
Note 1 to entry: The residual profile is composed of the deviations of the guide, external and internal disturbances, as
well as deviations in profile transmission. The determination of the causes of the deviations is not normally possible
without special equipment and a suitable environment.
Note 2 to entry: The residual profile is the profile equivalent of the areal flatness deviation defined in ISO 25178-
600:2019, 3.1.12.
Note 3 to entry: Optical flats are equivalent to Type AFL (flat plane) material measures, according to ISO 25178-70:2014,
8.1.
4 Conditions of use
4.1 Components and configurations of the contact (stylus) instrument
The contact (stylus) instrument comprises the basic equipment, a drive unit and a probe (see ISO 25178-601).
If the basic equipment is used with several drive units and probing systems, each of these instrumental
combinations (configurations) shall be calibrated separately.
4.2 Calibration of a configuration
The contact (stylus) instrument shall be calibrated when a change is made to the basic elements of the system
which intentionally or unintentionally modifies the measured profile or measuring result. Each configuration
of the contact (stylus) instrument shall be calibrated separately. For example, with a change of the probing
system, the contact (stylus) instrument is calibrated.
4.3 Place of calibration
The contact (stylus) instrument should be calibrated at the place of use with environmental conditions similar
to those present when in use for measurement to take into account external influence factors.
EXAMPLE Noise, temperature, vibration and air turbulence.
© ISO 2025 2026 – All rights reserved
ISO/DIS FDIS 12179:20242026(en)
4.4 Defects
If a defect is encountered during any measurement of a measurement standard during calibration in
accordance with a measuring plan, then that defect shall be dealt with by removing or ignoring it in the terms
and definitions of ISO 25178-73:2019, 3.3. In former case, the measurement shall be repeated at a nearby
defect-free location.
5 Measurement standards
The following measurement standards are applicable to the calibrations given in Clause 6Clause 6::
— — optical flat;
— — depth measurement standard (see Figure 1Figure 1):): type A according to ISO 5436-1:2000, 6.1;
— — spacing measurement standard (see Figure 2Figure 2):): type C according to ISO 5436-1:2000, 6.3;
— — profile coordinate measurement standard (consisting of a sphere or prism): type E according to
ISO 5436-1:2000, 6.5;
— — roughness measurement standard (see Figure 4Figure 4):): type D according to ISO 5436-1:2000, 6.4.
An optical flat is used to obtain residual profile by aligning its surface parallel to movement direction of drive
unit (see 6.26.2),), and can also be used to calibrate coordinate system by inclining the optical flat (see
Figure 3Figure 3 and 6.56.5).).
A profile coordinate measurement standard should be used on contact (stylus) instruments where the stylus
rotates at least plus and minus one half of a degree when moving through its full range.
A type C periodic measurement standard can also be used for calibrating the vertical amplification by
considering the Ra (arithmetic mean height of the roughness profile), Rz (maximum height of roughness of
the roughness profile) or Rt (total height of the roughness profile) value as described in ISO 5436-1:2000, 5.4.
The measurement standard should be chosen so that the values of Rsm (mean profile element spacing of the
roughness profile) and Ra are not affected by attenuation due to the stylus tip or S-filter with a nesting
index N .
is
NOTE 1 Type A corresponds to PGR (groove, rectangular), and PGC (groove, circular) according to ISO 25178-
70:2014, 7.5 and 7.6.
NOTE 2 Type C corresponds to PPS (periodic sinusoidal shape), PPT (periodic triangular shape), PPA (periodic arcuate
shape) and PAS (approximated sinusoidal shape) according to ISO 25178-70:2014, 7.1, 7.2, 7.4 and 7.11.
NOTE 3 Type E corresponds to PRI (prism) and ASP (hemisphere) according to ISO 25178-70:2014, 7.9 and 8.3.
NOTE 4 Type D corresponds to PRO (irregular profile) and PCR (circular irregular profile) according to ISO 25178-
70:2014, 7.7 and 7.8.
© ISO 2024 2026 – All rights reserved
Dimensions in millimetres
Figure 1 — Example of a depth measurement standard (type A)
© ISO 2025 2026 – All rights reserved
ISO/DIS FDIS 12179:20242026(en)
Dimensions in millimetres
Figure 2 — Example of a spacing measurement standard (type C)
© ISO 2024 2026 – All rights reserved
Dimensions in millimetres
Figure 3 — Example of an optical flat in an inclined state and a measuring plan
© ISO 2025 2026 – All rights reserved
ISO/DIS FDIS 12179:20242026(en)
Dimensions in millimetres
© ISO 2024 2026 – All rights reserved
Figure 4 — Example of a roughness measurement standard (type D) and measuring plan
6 Contact (stylus) instrument metrological characteristics
6.1 General
Only those task-related contact (stylus) instrument metrological characteristics which are relevant for the
intended measurements should be selected for calibration and adjustment. For example, for the measurement
of spacing parameters, the vertical profile component may be omitted. Adjustment (if required) of the
metrological characteristic shall be carried out after calibration of the metrological characteristic according to
the instrument manufacturer’s procedures.
6.2 Residual profile calibration
The scratch-free optical flat reproduces the residual profile. For task-related calibrations, use the appropriate
profile and parameters, for example:
— — Ra, see ISO 21920-2;
— — the root mean square Rq of the roughness profile, see ISO 21920-2;
— — Rt, see ISO 21920-2;
— — the arithmetic mean height Wa of the waviness profile, see ISO 21920-2;
— — the root mean square Wq of the waviness profile, see ISO 21920-2;
— — the total height square Wt of the waviness profile, see ISO 21920-2.
NOTE By using this approach the effects of external guide straightness, environmental conditions and instrument
noise can be established.
6.3 Vertical profile component calibration
The depth measurement standard establishes a profile depth in order to measure the error of indication of
the vertical profile component of an instrument.
If no depth measurement standards are available, gauge blocks steps may be used. Care should be taken
concerning the measurement uncertainty of the height difference when using gauge blocks steps.
6.4 Horizontal profile component calibration
The spacing measurement standard reproduces the mean profile element spacing of the primary profile Psm,
see ISO 21920-2, in order to measure the error of indication of the horizontal profile component.
6.5 Profile coordinate system calibration
The optical flat in an inclined state reproduces:
— — the angle of the least square association method in degrees;
— — the total height of the primary profile Pt, see ISO 21920-2, after removal of the straight line of the least
square association method,
thus establishing the error of the linked horizontal and vertical coordinates (e.g. variation in traverse speed if
the x-coordinate is time-based, nonlinearities in scales).
© ISO 2025 2026 – All rights reserved
ISO/DIS FDIS 12179:20242026(en)
The profile coordinate measurement standard provides calibration for Pt, after removal of the nominal form
of the least square association method, thus establishing the coordinate system.
6.6 Total contact (stylus) instrument calibration
The roughness measurement standard reproduces a calibrated roughness parameter, for example:
— — Ra, see ISO 21920-2;
— — Rz, see ISO 21920-2,
thus establishing an overall check of the total contact (stylus) instrument.
7 Calibration
7.1 Preparation for calibration
Before calibration, the contact (stylus) instrument shall be checked to determine if it operates correctly as
described in the manufacturer's operating instructions. The condition of the stylus tip shall also be checked
according to the manufacturer's instructions.
For contact (stylus) instruments, the following requirements apply:
— — the residual profile shall be evaluated;
— — the plane of the depth measurement standard shall be aligned to the reference surface in the best
possible way;
— — all measurement standards shall be aligned properly, for example the plane of the roughness
measurement standard shall be aligned to within 10 % of the measuring gauge range but not more than
10 µm over the evaluation length;
— — in task-related calibrations, roughness measurement standards shall be used with the appropriate
roughness, comparable to the roughness of the surface to be measured;
— — measurements shall be taken in the middle of the vertical measuring range of the probe each time;
— — a sufficient number of measurements shall be taken on each measurement standard for the required
measurement uncertainty (see Clause 8Clause 8).). Repeated measurements are usually necessary due to
the inhomogeneity of the measurement standard, the variability of the measurement procedure and the
repeatability of the contact (stylus) instrument;
— — the conditions used to measure the measurement standard shall be equivalent with those used
previously to calibrate the measurement standard. If this is not possible, the measurement uncertainty
caused by the different conditions shall be estimated and taken into account (see Annex BAnnex B) ;);
— — the association method (i.e. total least square, least square or others) used in the calibration of the
measurement standard shall be used.
7.2 Evaluation of the residual profile
Traverse the optical flat. Determine the residual profile and calculate the surface texture parameters Pt and
root mean square height of the primary profile Pq, see ISO 21920-2.
© ISO 2024 2026 – All rights reserved
For task-related calibration, calibrate in accordance with the measuring conditions for each required
measurement. For example, when measuring a roughness measurement standard, a L-filter nesting index N
ic
= 0,8 mm (cut-off λ = 0,8 mm) and a S-filter nesting index N = 2,5 µm (cut-off λ = 2,5 µm), making a total
c is s
evaluation length of 4 mm, can be used. The measured parameter values (e.g. Ra and/or Rz) and the filter
nesting indices, see ISO 21920-2, shall be indicated in the calibration certificate for the instrument.
7.3 Calibration of the vertical profile component
7.3.1 Overall objective
Traverse the groove(s) of the depth measurement standard. From the primary profile determine the
respective deviations from the value stated in the appropriate calibration certificate.
7.3.2 Procedure
Measure the groove(s) in profile sectio
...
PROJET FINAL
Norme
internationale
ISO/TC 213
Spécification géométrique
Secrétariat: BSI
des produits (GPS) — État de
Début de vote:
surface: Profil — Étalonnage des
2026-02-06
instruments à contact (palpeur)
Vote clos le:
2026-04-03
Geometrical product specifications (GPS) — Surface texture:
Profile — Calibration of contact (stylus) instruments
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
PROJETS DE NORMES
TRAITEMENT PARALLÈLE ISO/CEN
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
NORMES POUVANT
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
Numéro de référence
PROJET FINAL
Norme
internationale
ISO/TC 213
Spécification géométrique
Secrétariat: BSI
des produits (GPS) — État de
Début de vote:
surface: Profil — Étalonnage des
2026-02-06
instruments à contact (palpeur)
Vote clos le:
2026-04-03
Geometrical product specifications (GPS) — Surface texture:
Profile — Calibration of contact (stylus) instruments
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
DOCUMENT PROTÉGÉ PAR COPYRIGHT
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
© ISO 2026 INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
PROJETS DE NORMES
TRAITEMENT PARALLÈLE ISO/CEN
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
NORMES POUVANT
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse Numéro de référence
ii
Sommaire Page
Avant-propos .v
Introduction .vi
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Conditions d'utilisation .3
4.1 Composants et configurations de l'instrument à contact (palpeur).3
4.2 Étalonnage d'une configuration .3
4.3 Lieu de l'étalonnage .3
4.4 Défauts .3
5 Étalons de mesure .3
6 Caractéristiques métrologiques de l'instrument à contact (palpeur) . 6
6.1 Généralités .6
6.2 Étalonnage du profil résiduel .6
6.3 Étalonnage de la composante verticale du profil .7
6.4 Étalonnage de la composante horizontale du profil .7
6.5 Étalonnage du système de coordonnées du profil .7
6.6 Étalonnage de l'instrument à contact (palpeur) dans son ensemble .7
7 Étalonnage . 7
7.1 Préparation de l'étalonnage .7
7.2 Évaluation du profil résiduel .8
7.3 Étalonnage de la composante verticale du profil .8
7.3.1 Objectif global .8
7.3.2 Mode opératoire . .8
7.4 Étalonnage de la composante horizontale du profil .9
7.4.1 Objectif global .9
7.4.2 Mode opératoire . .9
7.5 Étalonnage du système de coordonnées du profil .9
7.5.1 Objectif global .9
7.5.2 Mode opératoire . .9
7.6 Étalonnage de l'instrument à contact (palpeur) dans son ensemble .9
7.6.1 Objectif global .9
7.6.2 Mode opératoire . .9
7.7 Autres étalonnages .10
8 Incertitude de mesure.10
8.1 Information issue du certificat d'étalonnage d'un étalon .10
8.2 Incertitude de mesure pendant l'étalonnage d'un instrument de mesure .10
9 Certificat d'étalonnage des instruments à contact (palpeur) .11
10 Information générale .11
Annexe A (normative) Étalonnage des instruments mesurant les paramètres de la méthode
des motifs .12
Annexe B (normative) Étalonnage d'instruments à utilisation simplifiée pour les mesures
d'état de surface . 14
Annexe C (informative) Exemple — Paramètre d'étalon de rugosité Ra .15
Annexe D (informative) Diagramme conceptuel .18
Annexe E (informative) Vue d'ensemble des normes de profil et de surface dans le modèle de
matrice GPS . . 19
Annexe F (informative) Relation avec le modèle de matrice GPS .20
iii
Bibliographie .21
iv
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux
de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général
confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire
partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (IEC) en ce qui concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier, de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document
a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2
(voir www.iso.org/directives).
L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne prend pas position quant à la preuve, à
la validité et à l’applicabilité de tout droit de propriété revendiqué à cet égard. À la date de publication du
présent document, l’ISO n'avait pas reçu notification qu’un ou plusieurs brevets pouvaient être nécessaires
à sa mise en application. Toutefois, il y a lieu d’avertir les responsables de la mise en application du présent
document que des informations plus récentes sont susceptibles de figurer dans la base de données de
brevets, disponible à l'adresse www.iso.org/brevets. L’ISO ne saurait être tenue pour responsable de ne pas
avoir identifié de tels droits de propriété et averti de leur existence.
Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour
information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion de
l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles techniques au
commerce (OTC), voir www.iso.org/avant-propos.
Le présent document a été élaboré par le comité technique ISO/TC 213, Spécifications et vérification
dimensionnelles et géométriques des produits, en collaboration avec le comité technique CEN/TC 290,
Spécification dimensionnelle et géométrique des produits, et vérification correspondante, du Comité européen
de normalisation (CEN) conformément à l’Accord de coopération technique entre l’ISO et le CEN (Accord de
Vienne).
Cette troisième édition annule et remplace la deuxième édition (ISO 12179:2021), qui a fait l’objet d’une
révision technique.
Les principales modifications sont les suivantes:
— l'exemple d'estimation de l'incertitude de mesure a été amendé en Annexe C;
— le 8.2 a été modifié en conséquence.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes se
trouve à l’adresse www.iso.org/fr/members.html.
v
Introduction
Le présent document est une norme de spécification géométrique des produits (GPS) et est à considérer
comme une norme GPS générale (voir l’ISO 14638). Il influence le maillon G des chaînes de normes sur l’état
de surface du profil.
Le modèle de matrice ISO GPS donné dans l'ISO 14638 donne une vue d'ensemble du système ISO GPS, dont le
présent document fait partie. Les principes fondamentaux de l'ISO GPS donnés dans l'ISO 8015 s'appliquent
au présent document et les règles de décision par défaut données dans l'ISO 14253-1 s'appliquent aux
spécifications faites conformément au présent document, sauf indication contraire.
Pour de plus amples informations sur la relation du présent document avec les autres normes et le modèle
de matrice GPS, voir l'Annexe F.
Une vue d’ensemble des normes relatives à l’état de surface des profils et à l’état de surface surfacique est
donnée dans l'Annexe E.
Le présent document introduit l'étalonnage des instruments à contact (palpeur) comme défini dans
l'ISO 25178-601. L'étalonnage est effectué à l'aide d'étalons de mesure.
vi
PROJET FINAL Norme internationale ISO/FDIS 12179:2026(fr)
Spécification géométrique des produits (GPS) — État de
surface: Profil — Étalonnage des instruments à contact
(palpeur)
1 Domaine d’application
Le présent document spécifie l'étalonnage et l’ajustage des caractéristiques métrologiques des instruments
à contact (palpeur) pour le mesurage de l'état de surface par la méthode du profil comme défini dans
l'ISO 25178-601. L'étalonnage et l'ajustage spécifiés dans le présent document sont destinés à être effectués
à l'aide d'étalons de mesure.
NOTE L'Annexe B spécifie l'étalonnage et l'ajustage des caractéristiques métrologiques des instruments à contact
(palpeur) à utilisation simplifiée qui ne sont pas conformes à l'ISO 25178-601.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l'édition citée s'applique. Pour
les références non datées, la dernière édition de la publication à laquelle il est fait référence s'applique (y
compris tous les amendements).
ISO 10012, Systèmes de management de la mesure — Exigences pour les processus et les équipements de mesure
ISO 12085, Spécification géométrique des produits (GPS) — État de surface: Méthode du profil — Paramètres
liés aux motifs
ISO 14253-2, Spécification géométrique des produits (GPS) — Vérification par la mesure des pièces et des
équipements de mesure — Partie 2: Lignes directrices pour l'estimation de l'incertitude dans les mesures GPS,
dans l'étalonnage des équipements de mesure et dans la vérification des produits
ISO/IEC 17025:2017, Exigences générales concernant la compétence des laboratoires d'étalonnages et d'essais
ISO 21920-2, Spécification géométrique des produits (GPS) — État de surface: Méthode du profil — Partie 2:
Termes, définitions et paramètres d’état de surface
ISO 25178-73:2019, Spécification géométrique des produits (GPS) — État de surface: surfacique — Partie 73:
Termes et définitions pour les défauts de surface sur les mesures matérialisées
ISO 25178-601, Spécification géométrique des produits (GPS) — État de surface: Surfacique — Partie 601:
Conception et caractéristiques des instruments à contact (palpeur)
Guide ISO/IEC 99:2007, Vocabulaire international de métrologie — Concepts fondamentaux et généraux et
termes associés (VIM)
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans l'ISO 25178-601, le
Guide ISO/IEC 98-3 et le Guide ISO/IEC 99, ainsi que les définitions suivantes s'appliquent.
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en normalisation,
consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l'adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l'adresse https:// www .electropedia .org/
3.1
étalonnage
opération qui, dans des conditions spécifiées,
a) établit en une première étape une relation entre les valeurs de grandeurs et les incertitudes de mesure
associées qui sont fournies par des étalons et les indications correspondantes avec les incertitudes
associées; et
b) utilise en une seconde étape cette information pour établir une relation permettant d'obtenir un résultat
de mesure à partir d'une indication
[SOURCE: Guide ISO/IEC 99:2007, 2.39, modifié — Les Notes à l’article originales ont été supprimées.]
3.2
étalonnage relatif à une tâche donnée
ensemble des opérations qui établissent, dans des conditions spécifiées, la relation entre les valeurs de
grandeurs indiquées par un instrument de mesure et les valeurs correspondantes connues d'une famille
limitée de mesurandes définis de façon précise
Note 1 à l'article: Ces mesurandes constituent un sous-ensemble des aptitudes de mesure de l'instrument de mesure.
3.3
ajustage
ajustage d'un système de mesure
ensemble d'opérations réalisées sur un système de mesure pour qu'il fournisse des indications prescrites
correspondant à des valeurs données d'une grandeur à mesurer
[SOURCE: Guide ISO/IEC 99:2007, 3.11, modifié — Les Notes à l’article originales ont été supprimées.]
3.4
étalon de mesure
étalon
réalisation de la définition d'une grandeur donnée, avec une valeur déterminée et une incertitude de mesure
associée, utilisée comme référence
Note 1 à l'article: Les étalons de mesure sont aussi appelés «échantillons d'étalonnage».
[SOURCE: Guide ISO/IEC 99:2007, 5.1, modifié — Les exemples et les Notes à l’article originaux ont été
supprimés.]
3.5
incertitude de mesure
incertitude
paramètre non négatif qui caractérise la dispersion des valeurs attribuées à un mesurande, à partir des
informations utilisées
[SOURCE: Guide ISO/IEC 99:2007, 2.26, modifié — Les Notes à l’article originales ont été supprimées.]
3.6
traçabilité métrologique
propriété d'un résultat de mesure selon laquelle ce résultat peut être relié à une référence par l'intermédiaire
d'une chaîne ininterrompue et documentée d'étalonnages dont chacun contribue à l'incertitude de mesure
[SOURCE: Guide ISO/IEC 99:2007, 2.41, modifié — Les Notes à l’article originales ont été supprimées.]
3.7
défaut
partie de l’élément géométrique de l’étalon de mesure (surface non idéale) sur
laquelle la forme géométrique et les dimensions géométriques s’écartent de celles de l’élément nominal
(surface idéale) soit d’une quantité supérieure à la valeur maximale convenue ou déclarée, soit, en l’absence
d’un tel accord ou d’une telle valeur maximale déclarée, d’une quantité supérieure à celle qui est typique ou
caractéristique des procédés utilisés pour la fabrication de l’étalon de mesure
[SOURCE: ISO 25178-73:2019, 3.1.2, modifié — Les Notes à l’article originales ont été supprimées.]
3.8
profil résiduel
profil primaire obtenu par traçage d'une surface idéalement lisse et plane (verre plan)
Note 1 à l'article: Le profil résiduel se compose des écarts du guide, des perturbations externes et internes, ainsi que
des écarts dans la transmission du profil. La détermination des causes des écarts n'est normalement pas possible sans
équipement spécial et un environnement adapté.
Note 2 à l'article: Le profil résiduel est le profil équivalent à l'écart de planéité surfacique défini dans
l'ISO 25178-600:2019, 3.1.12.
Note 3 à l'article: Les verres plans sont équivalents aux mesures matérialisées de Type AFL (plan plat), conformément
à l'ISO 25178-70:2014, 8.1.
4 Conditions d'utilisation
4.1 Composants et configurations de l'instrument à contact (palpeur)
L'instrument à contact (palpeur) comprend l'équipement de base, une unité d'avance et un palpeur (voir
l'ISO 25178-601). Si l'équipement de base est utilisé avec plusieurs unités d'avance et systèmes de palpage,
chacune de ces combinaisons instrumentales (configurations) doit être étalonnée séparément.
4.2 Étalonnage d'une configuration
L'instrument à contact (palpeur) doit être étalonné à chaque modification des éléments de base du système,
qui modifie intentionnellement ou non le profil mesuré ou le résultat de mesure. Chaque configuration de
l'instrument à contact (palpeur) doit être étalonnée séparément. Par exemple lors d'un changement du
système de palpage, l'instrument à contact (palpeur) est étalonné.
4.3 Lieu de l'étalonnage
Il convient que l'instrument à contact (palpeur) soit étalonné sur le lieu d'utilisation, avec des conditions
environnementales similaires à celles qui existent lors de l'utilisation pour des mesurages, pour tenir compte
des facteurs d'influence externes.
EXEMPLE Bruit, température, vibration et turbulence de l'air.
4.4 Défauts
Si un défaut est rencontré lors d’une mesure quelconque d’un étalon de mesure pendant l’étalonnage
conformément à un plan de mesure, alors ce défaut doit être traité en le supprimant ou en l’ignorant selon
les termes et définitions de l'ISO 25178-73:2019, 3.3. Dans le premier cas, la mesure doit être répétée à un
emplacement proche exempt de défauts.
5 Étalons de mesure
Les étalons de mesure suivants s'appliquent aux étalonnages indiqués à l'Article 6:
— verre plan;
— étalon de profondeur (voir Figure 1): type A conformément à l'ISO 5436-1:2000, 6.1;
— étalon d'espacement (voir Figure 2): type C conformément à l'ISO 5436-1:2000, 6.3;
— étalon de coordonnées de profil (consistant en une sphère ou un prisme): type E conformément à
l'ISO 5436-1:2000, 6.5;
— étalon de rugosité (voir Figure 4): type D conformément à l'ISO 5436-1:2000, 6.4.
Un verre plan incliné est utilisé pour obtenir le profil résiduel en alignant sa surface parallèlement à
la direction de mouvement de l’unité d’avance (voir 6.2), et peut également être utilisé pour étalonner le
système de coordonnées en inclinant le verre plan (voir les Figures 3 et 6.5).
Il convient d'utiliser un étalon de coordonnées de profil pour les instruments à contact (palpeur) dont
le palpeur effectue au moins une rotation de plus et moins un demi-degré lors du déplacement sur toute
l'étendue.
Un étalon de mesure périodique de type C peut également être utilisé pour étalonner l’amplification verticale
en considérant la valeur de Ra (hauteur moyenne arithmétique du profil de rugosité), de Rz (hauteur
maximale de rugosité du profil de rugosité) ou de Rt (hauteur totale du profil de rugosité) telle que décrite
dans ISO 5436-1:2000, 5.4. Il convient que l'étalon de mesure soit choisi de manière à ce que les valeurs
de Rsm (espacement moyen des éléments de profil du profil de rugosité) et Ra ne soient pas affectées par
l’atténuation due à la pointe du stylet ou au filtre S avec un indice d’imbrication N .
is
NOTE 1 Le type A correspond à PGR (rainure rectangulaire) et PGC (rainure circulaire) selon
l'ISO 25178-70:2014, 7.5 et 7.6.
NOTE 2 Le type C correspond à PPS (forme sinusoïdale périodique), PPT (forme triangulaire périodique), PPA
(forme arquée périodique) et PAS (forme sinusoïdale approximative) selon l'ISO 25178-70:2014, 7.1, 7.2, 7.4 et 7.11.
NOTE 3 Le type E correspond à PRI (prisme) et ASP (hémisphère) selon l'ISO 25178-70:2014, 7.9 et 8.3.
NOTE 4 Le type D correspond à PRO (profil irrégulier) et PCR (profil irrégulier circulaire) selon l'ISO 25178-70:2014,
7.7 et 7.8.
Dimensions en millimètres
Figure 1 — Exemple d'étalon de profondeur (type A)
Dimensions en millimètres
Figure 2 — Exemple d'étalon d'espacement (type C)
Dimensions en millimètres
Figure 3 — Exemple d'un verre plan dans un état incliné et d'un plan de mesure
Dimensions en millimètres
Figure 4 — Exemple d'un étalon de rugosité (type D) et de plan de mesure
6 Caractéristiques métrologiques de l'instrument à contact (palpeur)
6.1 Généralités
Il convient de ne choisir, pour l'étalonnage et l'ajustement, que les caractéristiques métrologiques de
l'instrument à contact (palpeur) relatives à la tâche donnée, appropriées aux mesurages prévus. Par exemple,
pour le mesurage de paramètres d'espacement, la composante verticale du profil peut être omise. L'ajustage
(si requis) de la caractéristique métrologique doit être effectué après l'étalonnage de la caractéristique
métrologique selon les modes opératoires du fabricant de l'instrument.
6.2 Étalonnage du profil résiduel
Le verre plan exempt de rayures reproduit le profil résiduel. Pour des étalonnages relatifs à une tâche
donnée, utiliser les profils et paramètres appropriés, par exemple:
— Ra, voir l'ISO 21920-2;
— la hauteur quadratique Rq du profil de rugosité, voir l'ISO 21920-2;
— Rt, voir l'ISO 21920-2;
— la hauteur moyenne arithmétiquethe Wa du profil d'ondulation, voir l'ISO 21920-2;
— la hauteur quadratique Wq du profil d'ondulation, voir l'ISO 21920-2;
— the hauteur totale Wt du profil d'ondulation, voir l'ISO 21920-2.
NOTE Avec cette approche, il est possible d'établir les effets de la rectitude du guide externe, des conditions
environnementales et du bruit de l'instrument.
6.3 Étalonnage de la composante verticale du profil
L'étalon de profondeur établit une profondeur du profil afin de mesurer l'erreur d'indication de la composante
verticale du profil d'un instrument.
En l'absence d'étalon de profondeur, il est possible d'utiliser des cales-étalons. Il convient de faire attention à
l'incertitude de mesure de la différence de hauteur en utilisant les cales-étalons.
6.4 Étalonnage de la composante horizontale du profil
L'étalon d’espacement reproduit l'espacement moyen de l'élément de profil du profil primaire, Psm, voir
l'ISO 21920-2, afin de mesurer l'erreur d'indication de la composante horizontale du profil.
6.5 Étalonnage du système de coordonnées du profil
Le verre plan dans un état incliné reproduit:
— l'angle de la méthode d'association des moindres carrés en degrés;
— la hauteur totale du profil primaire Pt, voir l'ISO 21920-2, après retrait de la droite
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...