ISO/FDIS 12215-9
(Main)Small craft - Hull construction and scantlings - Part 9: Sailing craft appendages
Small craft - Hull construction and scantlings - Part 9: Sailing craft appendages
ISO 12215-9:2011 defines the loads and specifies the scantlings of sailing craft appendages on monohull sailing craft with a length of hull of up to 24 m, measured according to ISO 8666. It gives design stresses, the structural components to be assessed, load cases and design loads for keel, centreboard and their attachments, computational methods and modelling guidance, and the means for compliance with its provisions.
Petits navires — Construction de coques et échantillons — Partie 9: Appendices des bateaux à voiles
L'ISO 12215-9:2011 définit les chargements et spécifie l'échantillonnage des appendices des bateaux à voiles d'une longueur de coque, LH, mesurée conformément à l'ISO 8666, inférieure ou égale à 24 m. Elle fournit: les contraintes de conception, les éléments structurels à évaluer, les cas de chargement et les charges de conception pour la quille, la dérive et leurs éléments de liaison, les méthodes de calcul et des instructions de modélisation et les moyens de se conformer à ses dispositions.
General Information
- Status
- Not Published
- Technical Committee
- ISO/TC 188 - Small craft
- Drafting Committee
- ISO/TC 188 - Small craft
- Current Stage
- 5000 - FDIS registered for formal approval
- Start Date
- 28-Feb-2025
- Completion Date
- 13-Feb-2025
Relations
- Effective Date
- 25-Jun-2022
- Revises
ISO 12215-9:2012 - Small craft - Hull construction and scantlings - Part 9: Sailing craft appendages - Effective Date
- 18-Jun-2022
Overview
ISO/FDIS 12215-9:2025 is an international standard detailing the hull construction and scantling requirements specifically for sailing craft appendages. It applies to monohull sailing boats up to 24 meters in hull length, measured according to ISO 8666. This part 9 of the ISO 12215 series focuses on the structural design, loads, and assessment of appendages such as keels and centreboards, which are critical for the safety, stability, and performance of sailing vessels.
The standard defines design stresses, outlines which structural components require assessment, and provides load cases and detailed design loads for appendages including fixed and canting keels, centreboards, and their attachments. It further offers computational and modelling guidance along with compliance methods to ensure appendage integrity under various sailing conditions.
Key Topics
Scope and Applicability
Applicable to monohull sailing craft with hull length up to 24 meters; addresses structural scantlings and hull construction related to appendages.Design Stresses and Coefficients
Provides formulas and factors for calculating design stresses considering the material properties, load cases, and design category factors. Different stress limits are defined for metals (including welded and unwelded states), wood, and fiber-reinforced composites.Load Cases
Six primary load cases cover realistic forces the appendages are subjected to, including:- Fixed keel subjected to knockdown at 90°
- Canted keel under steady load with dynamic overloads at 30° heel
- Vertical pounding and longitudinal impacts on keelboats
- Centreboard loads on capsize-recoverable dinghies
- Centreboard or daggerboard forces when sailing upwind
Structural Components Assessed
The standard specifies key components to evaluate, such as:- Keel fin and bulb
- Fasteners and attachment bolts
- Keel support structures and actuator considerations for canting keels
- Centreboards and their deployment mechanisms
Computational Methods
Designers can choose between advanced 3D numerical procedures (e.g., finite element analysis) or simplified 2D stress formulas for structure assessment. Guidance is included for both methodologies to ensure consistency and compliance.Compliance and Documentation
Provides criteria and documentation requirements, including mandatory completion of an application declaration (Annex A) for conformity verification.
Applications
Sailing Craft Design and Manufacturing
Enables naval architects and boatbuilders to define appendage structures capable of withstanding operational and extreme sea loads, enhancing safety and durability.Inspection and Maintenance Protocols
Guides maintenance engineers and surveyors in assessing condition and structural integrity of appendages, particularly after incidents like grounding.Regulatory Compliance
Assists manufacturers and authorities in meeting international regulatory requirements such as those aligned with Directive 2013/53/EU on recreational craft.Performance Optimization
Supports design optimization balancing strength, weight, and hydrodynamic efficiency of appendages for cruising and racing sailboats.
Related Standards
- ISO 8666 – Defines hull length measurement and basic vessel nomenclature for small craft.
- ISO 12215-3 – Hull construction and scantlings specifics for different materials like steel, aluminium, wood, and composites.
- ISO 12215-5:2019 – Provides design pressures and scantling determination for monohulls.
- ISO 12217 Series – Stability and buoyancy assessment standards for various categories of sailing and non-sailing small craft.
- ISO 3506-1 and ISO 898-1 – Mechanical properties of fasteners used in appendage attachments.
Practical Value Summary
ISO/FDIS 12215-9:2025 delivers crucial guidelines for designing and building sailing craft appendages to withstand static and dynamic loads encountered during operation. It provides a robust framework for structural safety, ensuring appendages like keels and centreboards maintain the vessel’s stability and performance across diverse sea conditions. Utilizing this standard helps reduce the risk of catastrophic failures such as keel loss, which is a leading cause of capsize accidents in sailing craft. By following this standardized approach, designers, manufacturers, and maintenance professionals can better safeguard lives and property while enhancing the longevity and reliability of sailing vessels.
ISO/FDIS 12215-9 - Small craft — Hull construction and scantlings — Part 9: Sailing craft appendages Released:18. 06. 2025
REDLINE ISO/FDIS 12215-9 - Small craft — Hull construction and scantlings — Part 9: Sailing craft appendages Released:18. 06. 2025
ISO/FDIS 12215-9 - Petits navires — Construction de coques et échantillons — Partie 9: Appendices des bateaux à voiles Released:25. 07. 2025
Frequently Asked Questions
ISO/FDIS 12215-9 is a draft published by the International Organization for Standardization (ISO). Its full title is "Small craft - Hull construction and scantlings - Part 9: Sailing craft appendages". This standard covers: ISO 12215-9:2011 defines the loads and specifies the scantlings of sailing craft appendages on monohull sailing craft with a length of hull of up to 24 m, measured according to ISO 8666. It gives design stresses, the structural components to be assessed, load cases and design loads for keel, centreboard and their attachments, computational methods and modelling guidance, and the means for compliance with its provisions.
ISO 12215-9:2011 defines the loads and specifies the scantlings of sailing craft appendages on monohull sailing craft with a length of hull of up to 24 m, measured according to ISO 8666. It gives design stresses, the structural components to be assessed, load cases and design loads for keel, centreboard and their attachments, computational methods and modelling guidance, and the means for compliance with its provisions.
ISO/FDIS 12215-9 is classified under the following ICS (International Classification for Standards) categories: 47.080 - Small craft. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO/FDIS 12215-9 has the following relationships with other standards: It is inter standard links to ISO 11737-3:2023, ISO 12215-9:2012. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
ISO/FDIS 12215-9 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.
Standards Content (Sample)
FINAL DRAFT
International
Standard
ISO/TC 188
Small craft — Hull construction and
Secretariat: SIS
scantlings —
Voting begins on:
2025-07-02
Part 9:
Sailing craft appendages
Voting terminates on:
2025-08-27
Petits navires — Construction de coques et échantillons —
Partie 9: Appendices des bateaux à voiles
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
ISO/CEN PARALLEL PROCESSING LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
Reference number
FINAL DRAFT
International
Standard
ISO/TC 188
Small craft — Hull construction and
Secretariat: SIS
scantlings —
Voting begins on:
Part 9:
Sailing craft appendages
Voting terminates on:
Petits navires — Construction de coques et échantillons —
Partie 9: Appendices des bateaux à voiles
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
© ISO 2025
IN ADDITION TO THEIR EVALUATION AS
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
ISO/CEN PARALLEL PROCESSING
LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
or ISO’s member body in the country of the requester.
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland Reference number
ii
Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols . 2
5 Design stresses . 3
6 Structural components to be assessed . 5
7 Load cases . 6
7.1 General .6
7.1.1 Status of design load cases .6
7.1.2 Limitation of load cases .6
7.2 Load case 1 — Fixed keel at 90° knockdown .7
7.3 Load case 2 — Canted keel steady load at 30° heel with dynamic overload factor .8
7.3.1 General .8
7.3.2 Specific requirements for canting keel structure .9
7.4 Load case 3 — Keelboat vertical pounding .9
7.5 Load case 4 — Keelboat longitudinal impact .10
7.6 Load case 5 — Centreboard on capsize recoverable dinghies .11
7.7 Load case 6 — Centreboard or dagger board upwind .11
7.7.1 Non-ballasted centreboards .11
7.7.2 Ballasted centreboards . 12
7.8 Other load cases . 12
7.8.1 General . 12
7.8.2 Combined bending and torsion (knockdown case) . 12
7.8.3 Combined bending moment and vertical load (load case 3) . 13
7.8.4 Other combined load cases.14
8 Computational methods . 14
8.1 General .14
8.2 General guidance for assessment by 3D numerical procedures .14
8.2.1 General .14
8.2.2 3D numerical procedures .14
8.2.3 Material properties . 15
8.2.4 Boundary assumptions . 15
8.2.5 Load application . . 15
8.2.6 Model idealization . 15
8.3 Assessment by strength of materials/non-computational-based methods . 15
9 Compliance .15
Annex A (normative) Application declaration . 17
Annex B (normative) Information on metal for appendages and fasteners and established
practice for fastening and welding . 19
Annex C (informative) Established practice structural arrangement for ballast keels .27
Annex D (informative) Established practice calculation of keel fin strength (fixed, lifting or
canting) and fixed ballast keel connected by bolts .39
Annex E (informative) Geometrical properties of some typical appendage aerofoil section
shapes .56
Annex F (informative) Simplified fatigue strength assessment .59
iii
Annex ZA (informative) Relationship between this European Standard and the essential
[12]
requirements of Directive 2013/53/EU aimed to be covered .71
Bibliography .73
iv
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers are cautioned that
this may not represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 188, Small craft, in collaboration with
the European Committee for Standardization (CEN) Technical Committee CEN/TC 464, Small Craft, in
accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This second edition cancels and replaces the first edition (ISO 12215-9:2012), which has been technically
revised.
The main changes are as follows:
— considerations of canting keel actuator and keel support structure have been added to Table 3;
— Annex A is now required to be completed in all instances;
— a qualified backing plate diameter and thickness treatment in the case of reduced hull thickness has
been added to Table D.2;
— a specific caution about bolt proximity to welds has been added in D.4.7;
— in Annex F, the operational life has been doubled to 16 million stress cycles and the associated MSF
calculation revised.
A list of all parts in the ISO 12215 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
v
Introduction
This document recognizes the importance of adequate scantlings, construction practice and condition
assessment for sailing craft appendages, principally the ballast keel.
The loss of a ballast keel leading to craft capsize is one of the major casualty hazards on sailing craft and
therefore the structural effectiveness of all elements of the keel and its connection to the craft is paramount.
This document specifies the design loads and their associated stress factors. The user (e.g. the designer or
builder) then has a choice of one of the following two options to assess the structural arrangement:
a) Use of computational methods which allow the structure to be modelled three-dimensionally. Methods
include finite element analysis, matrix displacement or framework methods, following which Annex A is
completed for compliance. General guidance is provided on modelling assumptions in Clause 8.
b) Use of simplified two-dimensional stress formulae. These are presented in Annexes B to F and, if
this option is chosen, use of all applicable annexes will be necessary to fulfil the requirements of this
document, following which Annex A is completed for compliance.
This document has been developed in consideration of current practice and sound engineering principles.
The design loads and criteria of this document may be used with the scantling determination formulae of
this document or using equivalent engineering methods as indicated in a) above.
This document reflects current practice, provided the craft is correctly handled in accordance with good
seamanship, is well designed and built, maintained, equipped and operated at a speed appropriate to the
prevailing sea state. Inspection of all appendages after grounding is essential.
NOTE Compliance with this document will not ensure a satisfactory design in all cases nor absolve the user, such
as the designer or builder, of their design responsibilities, with whom such responsibilities are entirely vested.
Racing craft are not the principal focus of the ISO 12215 series. In particular, users are strongly cautioned
against attempting to design scantlings for racing craft such that scantlings only just comply.
vi
FINAL DRAFT International Standard ISO/FDIS 12215-9:2025(en)
Small craft — Hull construction and scantlings —
Part 9:
Sailing craft appendages
1 Scope
This document defines the loads and specifies the scantlings of sailing craft appendages on monohull
sailing craft with a length of hull (L ) measured in accordance with ISO 8666 or a load line length (see
H
ISO 12215-5:2019, Clause 1, NOTE 1) of up to 24 m. It gives:
— design stresses;
— the structural components to be assessed;
— load cases and design loads for keel, centreboard and their attachments;
— computational methods and modelling guidance;
— the means for compliance with its provisions.
Table 4 lists where the structural components to be assessed are found in this document and describes step-
by-step procedures to establish compliance.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 898-1, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and
studs with specified property classes — Coarse thread and fine pitch thread
ISO 3506-1, Fasteners — Mechanical properties of corrosion-resistant stainless steel fasteners — Part 1: Bolts,
screws and studs with specified grades and property classes
ISO 12215-5:2019, Small craft — Hull construction and scantlings — Part 5: Design pressures for monohulls,
design stresses, scantlings determination
ISO 12217-1, Small craft — Stability and buoyancy assessment and categorization — Part 1: Non-sailing boats
of hull length greater than or equal to 6 m
ISO 12217-2, Small craft — Stability and buoyancy assessment and categorization — Part 2: Sailing boats of hull
length greater than or equal to 6 m
ISO 12217-3, Small craft — Stability and buoyancy assessment and categorization — Part 3: Boats of hull length
less than 6 m
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1
design category
description of the sea and wind conditions for which a craft is assessed to be suitable
Note 1 to entry: The design categories are defined in the ISO 12217 series.
Note 2 to entry: The definitions of design categories are in line with the European Recreational Craft Directive
[12]
2013/53/EU .
3.2
loaded displacement
m
LDC
mass of the craft, including all appendages, when in fully loaded ready for use condition
Note 1 to entry: The fully loaded ready for use condition is further defined in ISO 8666.
3.3
sailing craft
craft for which the primary means of propulsion is wind power
Note 1 to entry: It is further defined in ISO 8666.
3.4
mass of keel
m
KEEL
mass of the ballast keel, i.e. keel fin plus bulb, where fitted, and, for twin or multiple keels, of a single keel
4 Symbols
For the purposes of this document, unless specifically otherwise defined, the symbols given in Table 1 apply.
Table 1 — Nomenclature
Symbol Unit Designation/meaning of symbol Clause/subclause
A m Area of fully deployed centreboard 7.7.1
CB
Reference sail area (mainsail + fore triangle + wing mast) as per
A m 7.7.1
S
ISO 12217-2
Distance along keel centreline, from centre of gravity (CG) of keel to
a m 7.2
keel junction with hull or tuck
b mm Overall breadth of the appendage aerofoil section E.1
f
c m Distance along keel centreline from keel junction to floor mid-height 7.2
c m Average value of c for several floors 7.5
a
d mm Selected keel bolt nominal diameter (may exceed d ) B.5.2
req
d mm Diameter of ith keel bolt considered (i = 1, 2, etc.) D.4.4, D.4.5
i
d mm Keel bolt neck diameter D.4.1
neck
d mm Neck diameter of ith keel bolt considered (i = 1, 2, etc.) D.4.4.2
ineck
Calculated keel bolt nominal diameter for load case 1 or
d mm D.4
req
load case 4
d mm ISO-specific designation for d Table D.1
3 neck
e m Proportion of the total side force taken by the centreboard 7.7.1
F N Design force with i according to load case 7
i
TTabablele 1 1 ((ccoonnttiinnueuedd))
Symbol Unit Designation/meaning of symbol Clause/subclause
2 2
g m/s Acceleration of gravity = 9,81 m/s 7
h m Height of centre of area of A 7.7.1
CE S
h m Height of keel between its bottom and hull connection 7.5
K
h m Height of application of force F (load case 4) 7.5
F4 4
I cm Longitudinal second moment appendage aerofoil section E.2.2
L
k — Design category coefficient Table 2
DC
k — Appendage section shape factor Table E.1
f
k — Appendage section shape factor Table E.1
f1
k — Load case coefficient Table 3
LC
k — Length displacement coefficient 7.7.1
LD
k — Material coefficient Table 2
MAT
L mm Chord length of appendage aerofoil section E.1
f
L m Length of waterline in m conditions 7.7.1
WL LDC
m kg See 3.2 3.2, 7
LDC
m kg See 3.4 3.4, 7.4
KEEL
m N·m Design bending moment, with index I and J according to load case 7
IJ
P mm Keel bolt thread pitch D.4.1
SM cm Appendage aerofoil shape longitudinal section modulus E.2.2
L
SM cm Appendage aerofoil shape transverse section modulus E.2.1
T
st N/mm Stress, which can be σ or τ, and where i can be LIM, d, u, y, yw or yu 5
i
t mm Wall thickness of hollow appendage aerofoil section E.1
f
α ° Angle of attack of centreboard 7.7.1
ε % Elongation at break Table B.2
R
θ ° Angle between keel axis and centreline for canting keels 7.3.1
5 Design stresses
The maximum stress shall be calculated for each relevant structural component and load case.
The design stress, st , expressed in N/mm , is the relevant limit stress multiplied by various stress
d
coefficients, as shown by Formula (1):
st =×st kk××k (1)
dLIM MATLCDC
where
st is the limit stress, with st representing either σ, the direct stress, or τ, the shear stress, and index
LIM
LIM is as follows:
— for metal in the unwelded state or well clear of the heat affected zone (HAZ), min(st ;0,5 × st )
y u
where index y is the yield strength and index u is the ultimate strength, i.e. σ ,σ for direct
y u
stress, τ ,τ for shear stress and σ ,σ for bearing stress;
y u yb ub
— for metal within the HAZ, min(st ;0,5 × st ) where index y is the yield strength and index
yw uw
u is the ultimate strength, i.e. σ ,σ , for direct stress, τ ,τ , for shear stress and for σ
yw uw yw uw yb-
,σ bearing stress;
w ubw
— for wood and fibre-reinforced polymer (FRP), the ultimate strength in tensile σ , compressive
ut
σ , flexural σ , bearing, σ or shear stress τ ;
uc uf ub u
k is the material coefficient as defined in Table 2, with the design stress adjusted according to the
MAT
material;
k is the load case coefficient as defined in Table 3, with the design stress adjusted according to the
LC
load case;
k is the design category coefficient as defined in Table 2, with allowance for an increase in design
DC
stress for lower design categories.
NOTE 1 Table 2 gives details on these variables.
The values of st (i.e. σ ,σ ,τ for unwelded metals, σ ,σ ,τ ,τ for welded metals in a HAZ, or σ , σ ,
LIM y u u yw uw yw uw ut uc
σ , σ or τ for wood and FRP) shall be taken:
uf ub u
— in accordance with ISO 12215-5:2019, Annexes C, E and F, i.e. according to tests or default values specified
for FRP, sandwich core, and laminated wood and plywood, respectively;
— in accordance with ISO 3506-1 for stainless steel fasteners and ISO 898-1 for carbon steel or alloy steel
fasteners.
NOTE 2 See Annex B for listed metals.
Table 2 — Design stresses and stress coefficients
Variable Material/designation Value
a b,c
Metals, unwelded or well clear of HAZ min(st ;0,5 × st )
y u
a b,c
st Metals, within HAZ, in welded condition min(st ;0,5 × st )
LIM yw uw
c
Wood or FRP as dictated by sense of applied stress σ , σ , σ , σ and τ as relevant
uc ut uf ub u
Stress factor
Metals with elongation at break, ε ≥ 7 % 0,75
R
k
MAT
d
Metals with elongation at break, ε < 7 % min.(0,062 5ε + 0,312 5;0,75)
R R
e
Wood and FRP 0,33
k Stress factor (see Table 3)
LC
Stress factor
k Craft of design categories A and B 1,00
DC
Craft of design categories C and D 1,25
a
The heat-affected zone shall be considered as being 50 mm from the weld as specified in F.3.4.3.
b
For metals, τ = 0,58 × σ.
c
Bearing stress depends on material type (typically, σ /σ = 2,8 for glass chopped strand mat (CSM) and 0,91 for roving).
ub uc
Metals usually attract 2,4 to 3,0 for bolts (but with restrictions: far from edges, minimum bolt spacing, minimum thickness/bolt
d).
d
The factor gives 0,75 for ε ≥ 7 %, and 0,375 for ε = 1 % and linear interpolation in between. Values of ε shall be in
R R R
accordance with Table B.2.
e
For wood and FRP, k can be reduced (i.e. design stress reduced and factor of safety increased) in shall be in accordance
MAT
with the appropriate k (FRP only; to avoid doubt, for wood k = 1,0) and k (FRP and wood) as specified in ISO 12215-5:2019,
BB BB AM
Table 15 and Table 16, respectively. For example, in an instance where k = 0,75 and k = 0,9, k would become
BB AM MAT
0,33 × 0,75 × 0,9 = 0,22. If k = 1,0 and k = 1,0, k remains 0,33.
BB AM MAT
Table 3 — Value of k stress factor according to load case
LC
Load case Load case description of keels and appendages Subclause Value
ofk
LC
a
Keel bolt 7.2 0,67
1 Other elements of fixed keel: metal — 0,8
b
Other elements of fixed keel: FRP — 0,9
Canting keel: metal 7.3 0,8
Canting keel: FRP 7.3 0,9
Canting keel: metallic actuator/metallic actuator and keel support structure 7.3 0,8
Canting keel: FRP actuator/FRP actuator and keel support structure 7.3 0,9
3 Keel vertical pounding 7.4 1
4 Keel longitudinal impact 7.5 1
5 Dinghy capsize recovery (strength of centre/dagger board) 7.6 1,34
6 Centre/dagger board upwind 7.7 1,0
NOTE The design stress of bolts is lower than that of other structural components in recognition of stress concentration
effects in bolts, according to long-standing practice.
a
Load case 1 treats bolts differently from other structural components.
b
Caution: The requirements of this document are based on strength criteria. In some cases, such as keel fins constructed of
lower modulus materials, the need to limit deflections and/or increase natural frequencies can require a substantial increase in
scantlings above those requirements. Such cases are outside the scope of this document.
6 Structural components to be assessed
CAUTION — Keel loss can be attributed to insufficient thickness of bottom plating in the keel region.
In particular, connecting bolts or inadequately assessed load paths between connecting bolts and
the corresponding structure and bolts located too far from the relevant stiffener are causative. It
is strongly recommended that the provisions of Clause D.5 and Table D.2 should be followed and, in
particular, for bolts located too far from a stiffener, those provisions of Table D.2, item 3.
Keel loss can also be attributed to insufficient fatigue strength. Fabricated (usually welded) metal
keel fins are particularly susceptible to fatigue. In such cases, fatigue shall be considered and
assessed and the provisions in Annex For other suitable fatigue design methods shall be followed.
The following shall be considered when assessing or designing the structure covered by this document:
— Keel-to-hull connection (bolts, wedge connection, stub keel, etc.), see Figures 1, C.3, C.4 and D.1.
— Bottom shell plating in respect of the keel bolts and transition arrangements beyond the keel bolting
zone into the hull structure. Keels should not be bolted to a hull bottom of sandwich construction. The
structural arrangement shall ensure that all loads (keel compression loads, bolt preload, etc.)are safely
transferred.
NOTE 1 The terms “pre-stress” and “preload” are used interchangeably.
— Backing plates (usually rectangular steel plates installed on the hull plating inner surface that spread
load)/steel washers (annular, placed under securing nuts or bolt heads).
— Floors, girders and associated supporting structure.
— Keel boxes, canting keel actuators and support structure.
— Fins, centreboards, dagger boards of aerofoil cross-section.
NOTE 2 Hydrofoils are not considered.
Assessment shall be conducted either by numerical methods in accordance with Clause 8 or the established
practice methods given in Clause 9.
Table 4 lists where the structural components to be assessed are found in this document and describes step-
by-step procedures to establish compliance.
Table 4 — Structural components to be assessed and procedure to establish compliance
Step Subject Clause/subclause
1 Design stresses 5
2 Structural components to be assessed 6
3 Load cases 7
The structural analysis and scantlings determination shall be achieved using one of the two methods
listed in Step 4 or 5:
Calculation by computational 3D numerical procedures including
4 8.1, 8.2
fatigue as required
Calculation by simplified strength assessment methods including 8.1, 8.3 and
fatigue as required Annexes B to F
6 Compliance and completion of Annex A 9, Annex A
7 Load cases
7.1 General
7.1.1 Status of design load cases
CAUTION — For load cases 1 and 2, where keels have a large sweep angle, the centre of gravity (CG) of
the bulb/fin can be located a significant distance aft or forward of the fin or bolt group longitudinal
centre at the root. This will induce a torsional moment in addition to the bending moment. In such
cases the direct stresses due to bending shall be combined with shear stresses due to torsion (the von
Mises equivalent stress) and shall not exceed the design stress given in Formula (1), also noting 7.8.
The design stress shall be assessed for each load case using Formula (1), together with the design stress
coefficients given in Table 2 and Table 3, as follows:
— 7.2 defines the fixed keel 90° knockdown load case 1 and corresponding force, F , and design bending
moment, M , at 90° heel, for the keel at its root/bolt level and floor neutral axis, respectively; it shall be
used for fixed keels, either vertical or angled as in the case of twin keel craft, and axially lifting or swing
ballast keels;
— 7.3 defines canted keel load case 2 and the corresponding force, F , and design bending moment, M , at
2 2
30° steady heel plus a dynamic overload factor; it shall only be used for canting keels;
— 7.4 defines vertical pounding load case 3 and design vertical force, F ;
— 7.5 defines longitudinal impact load case 4 and design horizontal force, F , that considers a longitudinal
impact with a fixed or submerged object or marine life;
— 7.6 defines dinghy capsize recovery load case 5 and the design vertical force, F , in 90° knockdown,
applied on the tip of a centreboard for dinghy capsize recovery;
— 7.7 defines centreboard/dagger board load case 6 and the transverse horizontal force, F , applied to
centreboard or dagger board used while sailing upwind;
— 7.8 considers other load cases, particularly where specific designs cause combined stresses.
7.1.2 Limitation of load cases
This document is based on the presumption that load magnitudes are set at such a high level of severity that
the number of expected occurrences during the lifetime of the craft will be low. Hence, all load cases are
considered to be static and used in conjunction with static design stresses according to Tables 2 and 3.
For keels of welded construction, compliance with the static load cases cannot guarantee that fatigue failure
due to cyclic loading will not occur. In such cases, an explicit fatigue life assessment and inspection regime
shall be implemented.
NOTE 1 See Annexes A and F for fatigue life assessment and inspection regime.
NOTE 2 It is of the utmost importance that the response of structures experiencing cyclic loading is less than the
fatigue strength. Fatigue analysis is required when the stresses are high in magnitude and when structures feature
welds that require detailed design and documentation.
Keel configurations resembling the types shown in Figure C.4 require case-by-case consideration.
NOTE 3 In addition, the load cases consider that, for bolted connections, the methods for assessing keel bolts are
based on the presumption of a broadly uniform distribution of diameter and spacing along the fin root or keel flange
(see Clause D.4 for details).
7.2 Load case 1 — Fixed keel at 90° knockdown
7.2.1 This case corresponds to a 90° knockdown case (heeled at 90°) (see Figure 1), which is usually the
most severe transverse bending load for fixed ballast keels.
a) Craft with axial keel heeled at 90° b) Craft with axial keel with stub keel
c) Craft with twin keels heeled at 90° d) Craft with canting keel heeled at 30°
Figure 1 — Sketch of fixed axial keel, twin keels and laterally canting keel
Calculate the vertical force at 90° knockdown exerted by gravity at the keel CG, F , expressed in N, using
Formula (2):
Fm=×g (2)
1 KEEL
Calculate the keel heeling design bending moment at the keel junction, M , expressed in N⋅m, using
1.1
Formula (3):
MF=×a (3)
11. 1
Calculate the keel heeling design bending moment at floor mid-height, M , expressed in N⋅m, using
1.2
Formula (4):
MF=×()ac+ (4)
12. 1
where
a is the distance, in m, along the keel centreline, from the keel CG to the keel’s junction with the
hull or stub;
c is the distance, in m, along the keel centreline from the keel junction to the floor at mid-height;
g is the acceleration due to gravity, taken as 9,81 m/s and used throughout this document.
The craft’s structure, keel connection and stiffeners shall be able to withstand this force and moments.
NOTE 1 Annex C provides information on how to calculate the shear force and bending moment on each floor when
these are analysed as independent beams.
NOTE 2 For single fixed keels, when considered parallel to the centreline, these bending moments correspond to a
heel angle of 90° knock-down. For fixed twin keels [see Figure 1 c)], the cosine of angle ϕ from the horizontal when the
craft is knocked down is not considered, as the keels will be parallel to the waterline at some point before or after the
craft reaches 90° of heel.
7.2.2 For craft fitted with a fin and stub [see Figure 1 b)], the user should consider a range of values of c to
establish the most highly stressed point.
7.3 Load case 2 — Canted keel steady load at 30° heel with dynamic overload factor
7.3.1 General
This case shall only apply to canting keels as illustrated in Figure 1 d) and corresponds to a steady heel at 30°
that can be experienced as a long-term load, with an additional dynamic overload factor which represents
the additional fluctuating load experienced as the craft responds to the seaway.
Load case 2 represents the normal sailing condition for a craft with canted keel, but is augmented by a 40 %
dynamic overload factor to allow for unusual combinations of rigid body motions and accelerations, and is
thereby considered to constitute an infrequently occurring case. Fatigue shall be considered and assessed in
calculations, in accordance with 7.1.2.
NOTE 1 The dynamic overload factor for normal sailing conditions is in the order of 15 % to 20 % but can be higher.
Calculate the vertical force exerted by gravity at the keel CG, F , expressed in N, using Formula (5):
Fm=×14, ×g (5)
2 KEEL
Calculate the canting keel design bending moment when heeling at the keel junction, M , expressed in N⋅m,
2.1
using Formula (6):
MF=×a×°sin()30 +θ (6)
21. 2
where θ is the maximum canting angle from axial (vertical) plane. It shall not be taken as greater than 60°
or less than 30°.
NOTE 2 The lower limit of 30° ensures a load at least 22 % greater than load case 1.
NOTE 3 Very thin fins of a canting keel, especially those of FRP construction, often require “flutter” (vibration)
analysis, but this is considered outside the scope of this document (see 7.1.2 and Annex F).
For calculation of floors,
Calculate the canting keel design bending moment when heeling of supporting structure floors, M ,
2.2
expressed in N⋅m, using Formula (7):
MF=× ac×°sin 30 +θ +05, (7)
[]()
22. 2
The craft structure, keel connection and stiffeners shall be able to withstand this force and moments.
NOTE 4 Annex C provides information on how to calculate the shear force and bending moment on each of the two
“wet-box” bulkheads when these can be analysed as independent beams.
7.3.2 Specific requirements for canting keel structure
The canting keel system shall be fitted with a box that is watertight.
Structural elements shall be provided to support the loads from the canting keel, in case of leakage or a
defect in the orientation rams or system, and to protect the surrounding structure, such as stops, actuators
and locking pins.
7.4 Load case 3 — Keelboat vertical pounding
This case considers a vertical impact load in relation to the events of dry-docking or purely vertical and
upwards grounding.
Calculate the vertical pounding force exerted at the keel bottom with the craft upright, F , expressed in N,
using Formula (8):
Fg=−mm (8)
()
3 LDCKEEL
NOTE The bending moment is not specifically given in this case, as it depends on the floor and keel arrangement
(number, length, stiffness, end fixity, etc.). Annex C gives information on how to calculate the shear force and bending
moment on each floor when these are analysed as independent beams.
The craft structure, keel connection and stiffeners shall be able to withstand a vertical force, F , exerted
at the ballast keel bottom, passing through the keel CG, without exceeding the grounding design stresses
defined in Clause 5.
For twin or multiple keels, 100 % of F is applied to the bottom of each keel and its structure and attachment,
as the grounding can happen on one keel. This will induce a bending moment for such keels that shall be in
accordance with the requirements specified in 7.8.2.
Canting keels shall be considered in the “neutral” (cant angle of zero) position.
For lifting keels, this requirement applies to the worst case of deployed or retracted condition.
In the deployed condition, the lifting/deploying device shall:
— either be able to support load F without surpassing the design stress; or
— retract without damaging the actuating system until the retracted condition is attained.
7.5 Load case 4 — Keelboat longitudinal impact
The craft structure and keel connection shall be able to withstand, without exceeding design stresses, a
longitudinal and horizontal force, F , exerted at the bottom of the leading edge of the keel and which should
not be taken lower than 0,2L below the loaded waterline.
WL
CAUTION — The moments given in Formulae (9) to (11) are not the bending moments in the various
floors; see Annex C.
Calculate the longitudinal and horizontal impact force, F , expressed in N, using Formula (9):
Fg=×12, ×−()mm (9)
4 LDCKEEL
Calculate the combined design bending moment at the keel connection (root) from both longitudinal and
lateral horizontal impact forces, M , expressed in N⋅m, using Formula (10):
4.1
MF=×h (10)
41. 44F
Calculate the combined design bending moment at floor mid-height from both longitudinal and transverse
impact forces, M , expressed in N⋅m, using Formula (11):
4.2
MF=×()hc+ (11)
42. 44Fa
where
hh=min();,02L , expressed in m, is the lesser of:
F4 KWL
— the height of the keel, h measured parallel to the axial plane of the craft, between its bottom
K
and its connection to the hull or skeg (see Figure 1);
— 0,2L , measured from the loaded waterline;
WL
c is the average vertical distance, in m, of the c values from the keel junction to the mid-height of the
a
loaded floor.
Measure h for canting keels with the keel oriented to achieve the maximum draft, with the craft upright.
K
For twin or multiple keels, F shall apply on each keel at the level of h , as defined above, because the impact
4 F4
can be on only one keel when heeled.
Measure h for lifting keels with the keel fully deployed. The device shall resist F in the worst case of
K 4
deployed or retracted condition.
In the deployed condition, the lifting/deploying device shall either:
— be able to support F without surpassing the design stress; or
— retract without damaging the actuating system until the retracted condition is attained.
NOTE 1 The centreboards and lifting keels that are not required by the ISO 12217 series to be locked in the deployed
condition are not considered in the application of F .
NOTE 2 For tilting centreboards, the lifting rope or ram usually acts as a breaking-pin. For dagger boards, the well
or a crash box acts as the device supporting F .
7.6 Load case 5 — Centreboard on capsize recoverable dinghies
On capsize recoverable sailing craft, as defined in the ISO 12217 series, and where the capsize recovery
method, according to those International Standards, uses the centreboard as a lever, this centreboard shall
be assessed using the more demanding of either F , calculated using Formula (12), or F as defined in 7.7.
5 6
Calculate the vertical force at the tip of the deployed centreboard on a knocked-down dinghy, F , expressed
in N, using Formula (12):
Fn=×80 98, 1× (12)
5 PR
where n is the minimal required number of persons for recovering from capsize in accordance with the
PR
ISO 12217 series.
NOTE This requirement represents the case where the mass of the crew is pushed down on the tip of the
centreboard to right the craft. The mass of 80 kg corresponds to a wet crew member.
In either case, the greatest bending stress generally occurs at the point where the centreboard enters the
hull. The centreboard shall be taken as fully deployed.
7.7 Load case 6 — Centreboard or dagger board upwind
7.7.1 Non-ballasted cent
...
ISO/TC 188/WG 35
Secretariat: SIS
Date: 2025-03-0506-17
Small craft — Hull construction and scantlings —
Part 9:
Sailing craft appendages
Petits navires — Construction de coques et échantillons —
Partie 9: Appendices des bateaux à voiles
FDIS stage
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication
may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying,
or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO
at the address below or ISO’s member body in the country of the requester.
ISO Copyright Office copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: + 41 22 749 01 11
Email: E-mail: copyright@iso.org
Website: www.iso.org
Published in Switzerland.
ii
Contents
Foreword . iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Symbols . 2
5 Design stresses . 4
6 Structural components to be assessed . 5
7 Load cases . 7
7.1 General . 7
7.2 Load case 1 — Fixed keel at 90° knockdown . 8
7.3 Load case 2 — Canted keel steady load at 30° heel with dynamic overload factor . 9
7.4 Load case 3 — Keelboat vertical pounding . 10
7.5 Load case 4 — Keelboat longitudinal impact . 11
7.6 Load case 5 — Centreboard on capsize recoverable dinghies . 12
7.7 Load case 6 — Centreboard or dagger board upwind . 12
7.8 Other load cases . 13
8 Computational methods . 15
8.1 General . 15
8.2 General guidance for assessment by 3D numerical procedures . 15
8.3 Assessment by strength of materials/non-computational-based methods . 16
9 Compliance . 16
Annex A (normative) Application declaration . 18
Annex B (normative) Information on metal for appendages and fasteners and established
practice for fastening and welding . 20
Annex C (informative) Established practice structural arrangement for ballast keels . 29
Annex D (informative) Established practice calculation of keel fin strength (fixed, lifting or
canting) and fixed ballast keel connected by bolts . 41
Annex E (informative) Geometrical properties of some typical appendage aerofoil section
shapes. 59
Annex F (informative) Simplified fatigue strength assessment . 62
Annex ZA (informative) Relationship between this European Standard and the essential
[ ]
requirements of Directive 2013/53/EU 12 aimed to be covered . 74
Bibliography . 77
iii
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of
ISO document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights
in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s)
which may be required to implement this document. However, implementers are cautioned that this may not
represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 188, Small craft, in collaboration with the
European Committee for Standardization (CEN) Technical Committee CEN/TC 464, Small Craft, in accordance
with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This second edition cancels and replaces the first edition (ISO 12215-9:2012), which has been technically
revised.
The main changes are as follows:
— — considerationconsiderations of canting keel actuator and keel support structure have been added to
Table 3;
— Annex A is now required to be completed in all instances;
— a qualified backing plate diameter and thickness treatment in the case of reduced hull thickness has been
added to Table D.2;
— a specific caution about bolt proximity to welds has been added in D.4.7;
— in Annex F, the operational life has been doubled to 16 million stress cycles and the associated MSF
calculation revised.
A list of all parts in the ISO 12215 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
Introduction
This document recognizes the importance of adequate scantlings, construction practice and condition
assessment for sailing craft appendages, principally the ballast keel.
The loss of a ballast keel leading to craft capsize is one of the major casualty hazards on sailing craft and
therefore the structural effectiveness of all elements of the keel and its connection to the craft is paramount.
This document specifies the design loads and their associated stress factors. The user (e.g. the designer or
builder) then has a choice of one of the following two options to assess the structural arrangement:
a) Use of computational methods which allow the structure to be modelled three-dimensionally. Methods
include finite element analysis, matrix displacement or framework methods, following which Annex A is
completed for compliance. General guidance is provided on modelling assumptions in Clause 8.
b) Use of simplified two-dimensional stress formulae. These are presented in Annexes B to F and, if this
option is chosen, use of all applicable annexes will be necessary to fulfil the requirements of this
document, following which Annex A is completed for compliance.
This document has been developed in consideration of current practice and sound engineering principles. The
design loads and criteria of this document may be used with the scantling determination formulae of this
document or using equivalent engineering methods as indicated in a) above.
This document reflects current practice, provided the craft is correctly handled in accordance with good
seamanship, is well designed and built, maintained, equipped and operated at a speed appropriate to the
prevailing sea state. Inspection of all appendages after grounding is essential.
NOTE Compliance with this document will not ensure a satisfactory design in all cases nor absolve the user, such as
the designer or builder, of their design responsibilities, with whom such responsibilities are entirely vested.
Racing craft are not the principal focus of the ISO 12215 series. In particular, users are strongly cautioned
against attempting to design scantlings for racing craft such that scantlings only just comply.
v
Small craft — Hull construction and scantlings —
Part 9:
Sailing craft appendages
1 Scope
This document defines the loads and specifies the scantlings of sailing craft appendages on monohull sailing
craft with a length of hull (LH) measured in accordance with ISO 8666 or a load line length (see ISO 12215-
5:2019, Clause 1, NOTE 1) of up to 24 m. It gives:
— design stresses;
— the structural components to be assessed;
— load cases and design loads for keel, centreboard and their attachments;
— computational methods and modelling guidance;
— the means for compliance with its provisions.
Table 4 lists where the structural components to be assessed are found in this document and describes
thestep-by-step procedures to establish compliance, step by step.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 3506-1, Fasteners – Mechanical properties of corrosion-resistant stainless steel fasteners — Part 1: Bolts,
screws and studs with specified grades and property classes
ISO 898-1, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and
studs with specified property classes — Coarse thread and fine pitch thread
ISO 12217-2, Small craft — Stability and buoyancy assessment and categorization — Part 2: Sailing boats of hull
length greater than or equal to 6 m
ISO 12215-3 , Small craft — Hull construction and scantlings — Part 3: Materials — Steel, aluminium alloys,
wood, other materials
ISO 3506-1, Fasteners — Mechanical properties of corrosion-resistant stainless steel fasteners — Part 1: Bolts,
screws and studs with specified grades and property classes
ISO 12215-5:2019, Small craft — Hull construction and scantlings — Part 5: Design pressures for monohulls,
design stresses, scantlings determination
ISO 12215-6 12217-1, Small craft — Hull constructionStability and scantlingsbuoyancy assessment and
categorization — Part 1: Non-sailing boats of hull length greater than or equal to 6 m
ISO 12217-2, Small craft — Stability and buoyancy assessment and categorization — Part 2: Sailing boats of hull
length greater than or equal to 6: Structural arrangements and details m
ISO 12217-3, Small craft — Stability and buoyancy assessment and categorization — Part 3: Boats of hull length
less than 6 m
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/
3.1
design category
description of the sea and wind conditions for which a craft is assessed to be suitable
Note 1 to entry: The design categories are defined in the ISO 12217 (all parts).series.
Note 2 to entry: The definitions of design categories are in line with the European Recreational Craft Directive
[12[X] ]
2013/53/EU . .
3.2
loaded displacement
m
LDC
mass of the craft, including all appendages, when in fully loaded ready for use condition
Note 1 to entry: The fully loaded ready for use condition is further defined in ISO 8666.
3.3
sailing craft
craft for which the primary means of propulsion is wind power
Note 1 to entry: It is further defined in ISO 8666.
3.4
mass of keel
m
KEEL
mass of the ballast keel, i.e. keel fin plus bulb, where fitted, and, for twin or multiple keels, of a single keel
4 Symbols
For the purposes of this document, unless specifically otherwise defined, the symbols given in Table 1 apply.
Table 1 — Nomenclature
Clause/Subclause
Symbol Unit Designation/meaning of symbol
subclause
ACB m Area of fully deployed centreboard 7.7.1
Reference sail area (mainsail + fore triangle + wing mast) as per
AS m 7.7.1
ISO 12217-2
Distance along keel centreline, from centre of gravity (CG) of keel to
a m 7.2
keel junction with hull or tuck
b mm Overall breadth of the appendage aerofoil section E.1
f
Clause/Subclause
Symbol Unit Designation/meaning of symbol
subclause
c m Distance along keel centreline from keel junction to floor mid-height 7.2
ca m Average value of c for several floors 7.5
d mm Selected keel bolt nominal diameter (may exceed d ) B.5.2
req
d mm Diameter of ith keel bolt considered (i = 1, 2, etc.) D.4.4, D.4.5
i
dneck mm Keel bolt neck diameter D.4.1
dineck mm Neck diameter of ith keel bolt considered (i = 1, 2, etc.) D.4.4.2
Calculated keel bolt nominal diameter for load case 1 or
dreq mm D.4
load case 4
d3 mm ISO-specific designation for dneck Table D.1
e m Proportion of the total side force taken by the centreboard 7.7.1
Fi N Design force with i according to load case 7
2 2
g m/s Acceleration of gravity = 9,81 m/s 7
hCE m Height of centre of area of AS 7.7.1
h m Height of keel between its bottom and hull connection 7.5
K
hF4 m Height of application of force F4 (load case 4) 7.5
IL cm Longitudinal second moment appendage aerofoil section E.2.2
kDC — Design category coefficient Table 2
k — Appendage section shape factor Table E.1
f
kf1 — Appendage section shape factor Table E.1
kLC — Load case coefficient Table 3
kLD — Length displacement coefficient 7.7.1
k — Material coefficient Table 2
MAT
Lf mm Chord length of appendage aerofoil section E.1
LWL m Length of waterline in mLDC conditions 7.7.1
mLDC kg See definition 3.2 3.2, 7
m kg See definition 3.4 3.4, 7.4
KEEL
m N·m Design bending moment, with index I and J according to load case 7
IJ
P mm Keel bolt thread pitch D.4.1
SML cm Appendage aerofoil shape longitudinal section modulus E.2.2
SM cm Appendage aerofoil shape transverse section modulus E.2.1
T
st N/mm Stress, which can be σ or τ, and where i can be LIM, d, u, y, yw or yu 5
i
tf mm Wall thickness of hollow appendage aerofoil section E.1
α ° Angle of attack of centreboard 7.7.1
ε % Elongation at break Table B.2
R
θ ° Angle between keel axis and centreline for canting keels 7.3.1
5 Design stresses
The maximum stress shall be calculated for each relevant structural component and load case.
The design stress, st , expressed in N/mm , is the relevant limit stress multiplied by various stress coefficients,
d
as shown by Formula (1):
𝑠𝑠𝑡𝑡 =𝑠𝑠𝑡𝑡 ×𝑘𝑘 ×𝑘𝑘 ×𝑘𝑘 (1)
d LIM MAT LC DC
where
stLIM is the limit stress, with st representing either σ, the direct stress, or τ, the shear stress, and index LIM is as
follows:
— for metal in the unwelded state or well clear of the heat affected zone (HAZ),
min(st ;0,5 × st ) where index y is the yield strength and index u is the ultimate strength, i.e.
y u
σ ,σ for direct stress, τ ,τ for shear stress and σ ,σ for bearing stress;
y u y u yb ub
— for metal within the HAZ, min(st ;0,5 × st ) where index y is the yield strength and index u
yw uw
is the ultimate strength, i.e. σyw,σuw, for direct stress, τyw,τuw, for shear stress and for
σ ,σ bearing stress;
ybw ubw
— for wood and fibre-reinforced polymer (FRP), the ultimate strength in tensile σut,
compressive σ , flexural σ , bearing, σ or shear stress τ ;
uc uf ub u
kMAT is the material coefficient as defined in Table 2, with the design stress adjusted according to the
material;
k is the load case coefficient as defined in Table 3, with the design stress adjusted according to the
LC
load case;
k is the design category coefficient as defined in Table 2, with allowance for an increase in design
DC
stress for lower design categories.
NOTE 1 Table 2 gives details on these variables.
The values of st (i.e. σ ,σ ,τ for unwelded metals, σ ,σ ,τ ,τ for welded metals in a HAZ, or σ , σ ,
LIM y u u yw uw yw uw ut uc
σ , σ or τ for wood and FRP) shall be taken:
uf ub u
— in accordance with ISO 12215-5:2019, Annexes C, E and F, i.e. according to tests or default values specified
for FRP, sandwich core, and laminated wood and plywood, respectively;
— in accordance with ISO 3506-1 for stainless steel fasteners and ISO 898-1 for carbon steel or alloy steel
fasteners;.
NOTE 2 See Annex B for listed metals.
Table 2 — Design stresses and stress coefficients
Variabl
Material/designation Value
e
a b,c
Metals, unwelded or well clear of HAZ min(sty;0,5 × stu)
a b,c
stLIM Metals, within HAZ, in welded condition min(styw;0,5 × stuw)
c
Wood or FRP as dictated by sense of applied stress σuc, σut, σuf, σub and τu as relevant
Stress factor
kMAT
Metals with elongation at break, ε ≥ 7 % 0,75
R
Variabl
Material/designation Value
e
d
Metals with elongation at break, εR < 7 % min.(0,062 5εR + 0,312 5;0,75)
e
Wood and FRP 0,33
k Stress factor (see Table 3)
LC
Stress factor
kDC Craft of design categories A and B 1,00
Craft of design categories C and D 1,25
a The heat-affected zone shall be considered as being 50 mm from the weld as specified in F.3.4.3.
b For metals, τ = 0,58 × σ.
c Bearing stress depends on material type (typically, σub/σuc = 2,8 for glass chopped strand mat (CSM) and 0,91 for roving). Metals
usually attract 2,4 to 3,0 for bolts (but with restrictions: far from edges, minimum bolt spacing, minimum thickness/bolt d).
d The factor gives 0,75 for ε ≥ 7 %, and 0,375 for ε = 1 % and linear interpolation in between. Values of ε shall be in accordance
R R R
with Table B.2.
e For wood and FRP, kMAT can be reduced (i.e. design stress reduced and factor of safety increased) in shall be in accordance with
the appropriate k (FRP only; to avoid doubt, for wood k = 1,0) and k (FRP and wood) as specified in in Table 15 and Table 16
BB BB AM
respectively of ISO12215ISO 12215-5:2019. For example, in an instance where kBB = 0,75 and kAM = 0,9, kMAT would become
0,33 × 0,75 × 0,9 = 0,22. If kBB = 1,0 and kAM = 1,0, kMAT remains 0,33.
Table 3 — Value of k stress factor according to load case
LC
Load case Load case description of keels and appendages Subclause Value
of kLC
a
Keel bolt 7.2 0,67
1 Other elements of fixed keel: metal — 0,8
b
Other elements of fixed keel: FRP — 0,9
Canting keel: metal 7.3 0,8
Canting keel: FRP 7.3 0,9
Canting keel: metallic actuator/metallic actuator and keel support structure 7.3 0,8
Canting keel: FRP actuator/FRP actuator and keel support structure 7.3 0,9
3 Keel vertical pounding 7.4 1
4 Keel longitudinal impact 7.5 1
5 Dinghy capsize recovery (strength of centre/dagger board) 7.6 1,34
6 Centre/dagger board upwind 7.7 1,0
NOTE The design stress of bolts is lower than that of other structural components in recognition of stress concentration effects
in bolts, according to long-standing practice.
a Load case 1 treats bolts differently from other structural components.
b Caution: The requirements of this document are based on strength criteria. In some cases, such as keel fins constructed of lower
modulus materials, the need to limit deflections and/or increase natural frequencies can require a substantial increase in scantlings
above those requirements. Such cases are outside the scope of this document.
6 Structural components to be assessed
CAUTION — Keel loss can be attributed to insufficient thickness of bottom plating in the keel region.
In particular, connecting bolts or inadequately assessed load paths between connecting bolts and the
corresponding structure and bolts located too far from the relevant stiffener are causative. It is
strongly recommended that the provisions of Clause D.5 and Table D.2 should be followed and, in
particular, for bolts located too far from a stiffener, those provisions of Table D.2, item 3.
Keel loss can also be attributed to insufficient fatigue strength. Fabricated (usually welded) metal keel
fins are particularly susceptible to fatigue. In such cases, fatigue shall be considered and assessed and
the provisions in Annex F or other suitable fatigue design methods shall be followed.
The following shall be considered when assessing or designing the structure covered by this document:
— Keel-to-hull connection (bolts, wedge connection, stub keel, etc.), see Figures 1, C.3, C.4 and D.1.
— Bottom shell plating in respect of the keel bolts and transition arrangements beyond the keel bolting zone
into the hull structure. Keels should not be bolted to a hull bottom of sandwich construction. The structural
arrangement shall ensure that all loads (keel compression loads, bolt preload, etc.)are safely transferred.
NOTE 1 The terms “pre-stress” and “preload” are used interchangeably.
— Backing plates (usually rectangular steel plates installed on the hull plating inner surface that spread
load)/steel washers (annular, placed under securing nuts or bolt heads).
— Floors, girders and associated supporting structure.
— Keel boxes, canting keel actuators and support structure.
— Fins, centreboards, dagger boards of aerofoil cross-section.
NOTE 2 Hydrofoils are not considered.
Assessment shall be conducted either by numerical methods in accordance with Clause 8 or the established
practice methods given in Clause 9.
NOTE Table 4 lists where the structural components to be assessed are found in this document and describes
thestep-by-step procedures to establish compliance, step by step.
Table 4 — Structural components to be assessed and procedure to establish compliance
Clause
Step N° Subject
N°/subclause
1 Design stresses 55
2 Structural components to be assessed 66
3 Load cases 77
The structural analysis and scantlings determination shall be achieved using one of the two methods
listed in Step 4 or 5:
Calculation by computational 3D numerical procedures including
4 8.1, 8.2
fatigue as required
Calculation by simplified strength assessment methods including 8.1, 8.3 and
fatigue as required Annexes B to F
6 Compliance and completion of Annex A 9, Annex A
7 Load cases
7.1 General
7.1.1 Status of design load cases
CAUTION — For load cases 1 and 2, where keels have a large sweep angle, the centre of gravity (CG) of
the bulb/fin can be located a significant distance aft or forward of the fin or bolt group longitudinal
centre at the root. This will induce a torsional moment in addition to the bending moment. In such
cases the direct stresses due to bending shall be combined with shear stresses due to torsion (the von
Mises equivalent stress) and shall not exceed the design stress given in Formula (1), also noting 7.8.
The design stress shall be assessed for each load case using Formula (1), together with the design stress
coefficients given in Table 2 and Table 3, as follows:
— 7.2 defines the fixed keel 90° knockdown load case 1 and corresponding force, F , and design bending
moment, M , at 90° heel, for the keel at its root/bolt level and floor neutral axis, respectively; it shall be
used for fixed keels, either vertical or angled as in the case of twin keel craft, and axially lifting or swing
ballast keels;
— 7.3 defines canted keel load case 2 and the corresponding force, F , and design bending moment, M , at
2 2
30° steady heel plus a dynamic overload factor; it shall only be used for canting keels;
— 7.4 defines vertical pounding load case 3 and design vertical force, F3;
— 7.5 defines longitudinal impact load case 4 and design horizontal force, F , that considers a longitudinal
impact with a fixed or submerged object or marine life;
— 7.6 defines dinghy capsize recovery load case 5 and the design vertical force, F , in 90° knockdown, applied
on the tip of a centreboard for dinghy capsize recovery;
— 7.7 defines centreboard/dagger board load case 6 and the transverse horizontal force, F6, applied to
centreboard or dagger board used while sailing upwind;
— 7.8 considers other load cases, particularly where specific designs cause combined stresses.
7.1.2 Limitation of load cases
This document is based on the presumption that load magnitudes are set at such a high level of severity that
the number of expected occurrences during the lifetime of the craft will be low. Hence, all load cases are
considered to be static and used in conjunction with static design stresses according to Tables 2 and 3.
For keels of welded construction, compliance with the static load cases cannot guarantee that fatigue failure
due to cyclic loading will not occur. In such cases, an explicit fatigue life assessment and inspection regime
shall be implemented.
NOTE 1 See Annexes Aannexes A and F for fatigue life assessment and inspection regime.
NOTE 2 It is of the utmost importance that the response of structures experiencing cyclic loading is less than the
fatigue strength. Fatigue analysis is required when the stresses are high in magnitude and when structures feature welds
that require detailed design and documentation.
Keel configurations resembling the types shown in Figure C.4 require case-by-case consideration.
NOTE 3 In addition, the load cases consider that, for bolted connections, the methods for assessing keel bolts are based
on the presumption of a broadly uniform distribution of diameter and spacing along the fin root or keel flange (see
Clause D.4 for details).
7.2 Load case 1 — Fixed keel at 90° knockdown
7.2.1 This case corresponds to a 90° knockdown case (heeled at 90°) (see Figure 1), which is usually the
most severe transverse bending load for fixed ballast keels.
a) Craft with axial keel heeled at 90° b) Craft with axial keel with stub keel
c) Craft with twin keels heeled at 90° d) Craft with canting keel heeled at 30°
Figure 1 — Sketch of fixed axial keel, twin keels and laterally canting keel
Calculate the vertical force at 90° knockdown exerted by gravity at the keel CG, F1F , expressed in N, using
Formula (2):
𝐹𝐹 =𝑚𝑚 ×𝑔𝑔 (2)
1 KEEL
Calculate the keel heeling design bending moment at the keel junction, M , expressed in N⋅m, using
1.1
Formula (3):
𝑀𝑀 =𝐹𝐹 ×𝑎𝑎 (3)
1.1 1
Calculate the keel heeling design bending moment at floor mid-height, M , expressed in N⋅m, using
1.2
Formula (4):
𝑀𝑀 =𝐹𝐹 × (𝑎𝑎 +𝑐𝑐) (4)
1.2 1
where
a is the distance, in m, along the keel centreline, from the keel CG to the keel’s junction with the hull
or stub;
c is the distance, in m, along the keel centreline from the keel junction to the floor at mid-height;
g is the acceleration due to gravity, taken as 9,81 m/s and used throughout this document.
The craft’s structure, keel connection and stiffeners shall be able to withstand this force and moments.
NOTE 1 For craft fitted with a fin and stub [see Figure 1 b)], the user should consider a range of values of c to establish
the most highly stressed point.
NOTE 2 NOTE 1 Annex C provides information on how to calculate the shear force and bending moment on each
floor when these are analysed as independent beams.
NOTE 32 For single fixed keels, when considered parallel to the centreline, these bending moments correspond to a
heel angle of 90° knock-down. For fixed twin keels [see Figure 1 c)], the cosine of angle ϕ from the horizontal when the
craft is knocked down is not considered, as the keels will be parallel to the waterline at some point before or after the
craft reaches 90° of heel.
7.2.2 For craft fitted with a fin and stub [see Figure 1 b)], the user should consider a range of values of c to
establish the most highly stressed point.
7.3 Load case 2 — Canted keel steady load at 30° heel with dynamic overload factor
7.3.1 General
This case shall only apply to canting keels as illustrated in Figure 1 d) and corresponds to a steady heel at 30°
that can be experienced as a long-term load, with an additional dynamic overload factor which represents the
additional fluctuating load experienced as the craft responds to the seaway.
Load case 2 represents the normal sailing condition for a craft with canted keel, but is augmented by a 40 %
dynamic overload factor to allow for unusual combinations of rigid body motions and accelerations, and is
thereby considered to constitute an infrequently occurring case. Fatigue shall be considered and assessed in
calculations, in accordance with 7.1.2.
NOTE 1 The dynamic overload factor for normal sailing conditions is in the order of 15 % to 20 % but can be higher.
Calculate the vertical force exerted by gravity at the keel CG, F , expressed in N, using Formula (5):
𝐹𝐹 = 1,4 ×𝑚𝑚 ×𝑔𝑔 (5)
2 KEEL
Calculate the canting keel design bending moment when heeling at the keel junction, M , expressed in N⋅m,
2.1
using Formula (6):
𝑀𝑀 =𝐹𝐹 ×𝑎𝑎 × sin(30° +𝜃𝜃) (6)
2.1 2
where
θ is the maximum canting angle from axial (vertical) plane. It shall not be taken as greater than
60° or less than 30°.
where θ is the maximum canting angle from axial (vertical) plane. It shall not be taken as greater than 60° or
less than 30°.
NOTE 12 The lower limit of 30° ensures a load at least 22 % greater than load case 1.
NOTE 23 Very thin fins of a canting keel, especially those of FRP construction, often require “flutter” (vibration)
analysis, but this is considered outside the scope of this document (see 7.1.2 and Annex F).
For calculation of floors,
Calculate the canting keel design bending moment when heeling of supporting structure floors, M2.2, expressed
in N⋅m, using Formula (7):
𝑀𝑀 =𝐹𝐹 × [𝑎𝑎 × sin(30° + 𝜃𝜃) + 0,5𝑐𝑐] (7)
2.2 2
The craft structure, keel connection and stiffeners shall be able to withstand this force and moments.
NOTE 4 Annex C provides information on how to calculate the shear force and bending moment on each of the two
“wet-box” bulkheads when these can be analysed as independent beams.
7.3.2 Specific requirements for canting keel structure
The canting keel system shall be fitted with a box that is watertight.
Structural elements shall be provided to support the loads from the canting keel, in case of leakage or a defect
in the orientation rams or system, and to protect the surrounding structure, such as stops, actuators and
locking pins.
7.4 Load case 3 — Keelboat vertical pounding
This case considers a vertical impact load in relation to the events of dry-docking or purely vertical and
upwards grounding.
Calculate the vertical pounding force exerted at the keel bottom with the craft upright, F3, expressed in N,
using Formula (8)formula (8)::
𝐹𝐹 =𝑔𝑔(𝑚𝑚 −𝑚𝑚 ) (8)
3 LDC KEEL
NOTE The bending moment is not specifically given in this case, as it depends on the floor and keel arrangement
(number, length, stiffness, end fixity, etc.). Annex C gives information on how to calculate the shear force and bending
moment on each floor when these are analysed as independent beams.
The craft structure, keel connection and stiffeners shall be able to withstand a vertical force, F3, exerted at the
ballast keel bottom, passing through the keel CG, without exceeding the grounding design stresses defined in
Clause 5.
For twin or multiple keels, 100 % of F3 is applied to the bottom of each keel and its structure and attachment,
as the grounding can happen on one keel. This will induce a bending moment for such keels that shall be in
accordance with the requirements specified in 7.8.2.
Canting keels shall be considered in the “neutral” (cant angle of zero) position.
For lifting keels, this requirement applies to the worst case of deployed or retracted condition.
In the deployed condition, the lifting/deploying device shall:
— either be able to support load F3 without surpassing the design stress; or
— retract without damaging the actuating system until the retracted condition is attained.
7.5 Load case 4 — Keelboat longitudinal impact
The craft structure and keel connection shall be able to withstand, without exceeding design stresses, a
longitudinal and horizontal force, F4, exerted at the bottom of the leading edge of the keel and which should
not be taken lower than 0,2L below the loaded waterline.
WL
CAUTION — The moments given in Formulae (9) to (11) are not the bending moments in the various
floors; see Annex C.
Calculate the longitudinal and horizontal impact force, F4, expressed in N, using Formula (9):
𝐹𝐹 = 1,2 ×𝑔𝑔 × (𝑚𝑚 −𝑚𝑚 ) (9)
4 LDC KEEL
Calculate the combined design bending moment at the keel connection (root) from both longitudinal and
, expressed in N⋅m, using Formula (10):
lateral horizontal impact forces, M4.1
𝑀𝑀 =𝐹𝐹 ×ℎ (10)
4.1 4 𝐹𝐹4
Calculate the combined design bending moment at floor mid-height from both longitudinal and transverse
impact forces, M , expressed in N⋅m, using Formula (11):
4.2
𝑀𝑀 =𝐹𝐹 × (ℎ +𝑐𝑐 ) (11)
4.2 4 F4 a
where
ℎ = min(ℎ ; 0,2𝐿𝐿 ), expressed in m, is the lesser of:
F4 K WL
— the height of the keel, h measured parallel to the axial plane of the craft, between its bottom
K
and its connection to the hull or skeg (see Figure 1);
— 0,2L , measured from the loaded waterline;
WL
c is the average vertical distance, in m, of the c values from the keel junction to the mid-height of the
a
loaded floor.
Measure h for canting keels with the keel oriented to achieve the maximum draft, with the craft upright.
K
For twin or multiple keels, F shall apply on each keel at the level of h , as defined above, because the impact
4 F4
can be on only one keel when heeled.
Measure h for lifting keels with the keel fully deployed. The device shall resist F in the worst case of deployed
K 4
or retracted condition.
In the deployed condition, the lifting/deploying device shall either:
— be able to support F4 without surpassing the design stress; or
— retract without damaging the actuating system until the retracted condition is attained.
NOTE 1 The centreboards and lifting keels that are not required by the ISO 12217 series to be locked in the deployed
condition are not considered in the application of F4.
NOTE 2 For tilting centreboards, the lifting rope or ram usually acts as a breaking-pin. For dagger boards, the well or
a crash box acts as the device supporting F .
7.6 Load case 5 — Centreboard on capsize recoverable dinghies
On capsize recoverable sailing craft, as defined in the ISO 12217 series, and where the capsize recovery
method, according to thatthose International StandardStandards, uses the centreboard as a lever, this
centreboard shall be assessed using the more demanding of either F , calculated using Formula (12), or F as
5 6
defined in 7.7.
Calculate the vertical force at the tip of the deployed centreboard on a knocked-down dinghy, F5, expressed in
N, using Formula (12):
𝐹𝐹 = 80 × 9,81 ×𝑛𝑛 (12)
5 PR
where
n is the minimal required number of persons for recovering from capsize in accordance with
PR
the ISO 12217 series.
where n is the minimal required number of persons for recovering from capsize in accordance with the ISO
PR
12217 series.
NOTE This requirement represents the case where the mass of the crew is pushed down on the tip of the centreboard
to right the craft. The mass of 80 kg corresponds to a wet crew member.
In either case, the greatest bending stress generally occurs at the point where the centreboard enters the hull.
The centreboard shall be taken as fully deployed.
7.7 Load case 6 — Centreboard or dagger board upwind
7.7.1 Non-ballasted centreboards
The design force, F6, exerted at the geometric centroid of a non-ballasted (typically 0,5 × span) fully deployed
centreboard shall be the greater of the design force due to lift at angle of attack, F , or the design force
6.1
balancing the force on sails when sailing upwind, F , both expressed in N, as shown by Formulae (13) and
6.2
(14):
𝐹𝐹 = 136 × (0,075𝛼𝛼) ×𝐴𝐴 ×𝑉𝑉 (13)
6.1 CB
𝑀𝑀
RUP
𝐹𝐹 =𝑒𝑒 (14)
6.2
ℎ
CE
where
α is the design angle, in degrees, of attack of the aerofoil, which shall not be taken as less than 5°;
A is the average centreboard planform area (mean chord × span beyond hull), in m , in the fully
CB
deployed condition, where relevant;
V is the maximum speed of the craft, in knots, in the minimum operation condition, m (see the
MOC
ISO 12217 series); if this speed is not known, it may be taken as:
𝑘𝑘
LD
0,5
𝑉𝑉 = 2,5 ×𝐿𝐿 × ( )
WL
6,15
where
𝐿𝐿
WL
𝑘𝑘 =
LD
𝑚𝑚
LDC 0,33
( )
1 025
but it shall not be taken as less than 6,15;
e is the proportion of the total side force carried by the centreboard or dagger board, depending
on the contribution from the keel, rudder and canoe body for balancing the force from sails, and
which, in the absence of better data, may be taken as 0,6;
M expressed in N⋅m, is the righting moment when the craft is sailing upwind, which shall be taken
RUP
as the moment at 30° heel unless otherwise documented;
h expressed in m, is the height of the centre of the area of the nominal sail area, A , above the
CE S
waterline when the craft is upright, as used in FKR of STIX (stability index) in accordance with
ISO 12217-2.
NOTE The coefficient 0,075 given in Formula (13) is valid for centreboards with a symmetrical aerofoil section but
is not always valid for non-symmetrical profiles, which usually achieve greater lifting force.
If the centreboard is not designed to support the forces defined by Formulae (13) and (14) at maximum speed
V, as defined above, a warning shall be included in the owner’s manual.
7.7.2 Ballasted centreboards
Ballasted centreboards shall also be analysed according to all the relevant load cases specified in Clause 7,
with the more demanding requirement being applied.
7.8 Other load cases
7.8.1 General
This document should not be regarded as a complete structural design procedure. Load cases 1 to 6 are
intended to correspond to those loads which normally govern keel attachment scantlings for most
conventional keel configurations.
7.8.2 Combined bending and torsion (knockdown case)
For load cases 1 and 2, with large keel sweep angle and/or bulb CG positioned well aft or forward, the CG of
the bulb/fin shall be located at a significant distance aft or forward of the fin or bolt group longitudinal centre
at the keel root.
NOTE 1 See CAUTION in 7.1.1.
The presence of torsion significantly complicates the simplified independent beam approach used to assess
floor strength in Annex C (e.g. Table C.1). For users undertaking 3D structural analysis, it is recommended that
the keel should be modelled as a stiff member/framework and the ballast force applied at its correct vertical
and fore and aft locations. This is considered to be good practice as point loads should generally be applied
well away from the area of interest in finite element analysis (FEA). See 8.2.4.
The effect of torsion on the bolt stress shall be determined, assuming the reference axis is:
— for the torque, T, a vertical line passing through the CG of bolt group areas (see Key item 1 in Figure 2);
— for the bending moment, M, a horizontal line defined by the hinge bearing axis (see Key item 2 in Figure 2
and Key item 1 in Figure D.1), and using Formulae (15) and (16):
𝑀𝑀 × 𝑦𝑦
𝑖𝑖 max
𝜎𝜎 = (15)
𝑛𝑛
max
� [𝑎𝑎 × 𝑦𝑦 ]
𝑖𝑖
𝑖𝑖
𝑇𝑇 × 𝑟𝑟
𝑖𝑖 max
𝜏𝜏 = (16)
𝑛𝑛
max 2
� [𝑎𝑎 × 𝑟𝑟 ]
𝑖𝑖 𝑖𝑖
Figure 2 indicates a relationship between the applied torque and bending moment (M1.1) for a set of n =
10 bolts (of identical area a ), set up in a uniform “keel-flange” style arrangement.
i
Key
X (torque/transverse bending moment) ratio
Y (von Mises stress/stress due to bending moment) ratio
1 torque reference axis (bolt group centroid)
2 bending moment reference axis
Figure 2 — Effect of torque on bolt stress under load case 1
NOTE 1 2 It can be seen that the torq
...
PROJET FINAL
Norme
internationale
ISO/TC 188
Petits navires — Construction de
Secrétariat: SIS
coques et échantillons —
Début de vote:
Partie 9:
Appendices des bateaux à voiles
Vote clos le:
Small craft — Hull construction and scantlings —
Part 9: Sailing craft appendages
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
PROJETS DE NORMES
TRAITEMENT PARALLÈLE ISO/CEN
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
NORMES POUVANT
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
Numéro de référence
PROJET FINAL
Norme
internationale
ISO/TC 188
Petits navires — Construction de
Secrétariat: SIS
coques et échantillons —
Début de vote:
Partie 9:
Appendices des bateaux à voiles
Vote clos le:
Small craft — Hull construction and scantlings —
Part 9: Sailing craft appendages
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
DOCUMENT PROTÉGÉ PAR COPYRIGHT
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
© ISO 2025 INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
PROJETS DE NORMES
TRAITEMENT PARALLÈLE ISO/CEN
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
NORMES POUVANT
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse Numéro de référence
ii
Sommaire Page
Avant-propos .v
Introduction .vi
1 Domaine d'application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Symboles . 2
5 Contraintes de conception . 3
6 Élément structurel à évaluer . 6
7 Cas de chargement . 7
7.1 Généralités .7
7.1.1 Statut des cas de chargement de conception .7
7.1.2 Limitation des cas de chargement .7
7.2 Cas de chargement 1 — Quille fixe avec le bateau couché à 90° .8
7.3 Cas de chargement 2 — Charge continue sur une quille basculante (pendulaire) à 30°
de gîte, avec un facteur de surcharge dynamique.9
7.3.1 Généralités .9
7.3.2 Exigences particulières pour la structure des quilles basculantes
transversalement .10
7.4 Cas de chargement 3 — Talonnage vertical d'un voilier à quille .10
7.5 Cas de chargement 4 — Talonnage longitudinal d'un voilier à quille .11
7.6 Cas de chargement 5 — Dérive sur un dériveur chaviré redressable . 12
7.7 Cas de chargement 6 — Dérive pivotante ou coulissante au près . 12
7.7.1 Dérives non lestées. 12
7.7.2 Dérives lestées . . 13
7.8 Autres cas de chargement. 13
7.8.1 Généralités . 13
7.8.2 Flexion et torsion combinées (cas du bateau couché) . 13
7.8.3 Moment de flexion et impact vertical combinés, cas de chargement 3 . 15
7.8.4 Autres combinaisons de cas de chargement . 15
8 Méthodes numériques d'évaluation .15
8.1 Généralités . 15
8.2 Recommandations générales pour l'évaluation par des procédures de calcul 3-D .16
8.2.1 Généralités .16
8.2.2 Procédures numériques 3-D .16
8.2.3 Propriétés des matériaux .16
8.2.4 Hypothèse de conditions aux limites .16
8.2.5 Application de la charge . .16
8.2.6 Idéalisation du modèle .16
8.3 Évaluation à l'aide de méthodes de résistance des matériaux non fondées sur le calcul
par ordinateur .17
9 Conformité . 17
Annexe A (normative) Déclaration d'application .18
Annexe B (normative) Informations sur le métal pour les appendices et les fixations et
pratiques établies pour la fixation et le soudage .20
Annexe C (informative) Dispositions structurelles de pratique établie au droit de la quille de
lest .29
Annexe D (informative) Dispositions structurelles de pratique établie pour le calcul de la
résistance du voile de quille (fixe ou basculante) et des quilles de lest boulonnées .44
iii
Annexe E (informative) Propriétés géométriques des profils de sections aérodynamiques
d'appendices typiques .62
Annexe F (informative) Évaluation simplifiée de la résistance en fatigue .65
Annexe ZA (informative) Relation entre la présente Norme européenne et les exigences
[12]
essentielles concernées de la Directive 2013/53/UE .78
Bibliographie .81
iv
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux
de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général
confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire
partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (IEC) en ce qui concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier, de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document
a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2
(voir www.iso.org/directives).
L'ISO attire l'attention sur le fait que la mise en application du présent document peut entraîner l'utilisation
d'un ou de plusieurs brevets. L'ISO ne prend pas position quant à la preuve, à la validité et à l'applicabilité
de tout droit de propriété revendiqué à cet égard. À la date de publication du présent document, l'ISO
n'avait pas reçu notification qu'un ou plusieurs brevets pouvaient être nécessaires à sa mise en application.
Toutefois, il y a lieu d'avertir les responsables de la mise en application du présent document que des
informations plus récentes sont susceptibles de figurer dans la base de données de brevets, disponible à
l'adresse www.iso.org/brevets. L'ISO ne saurait être tenue pour responsable de ne pas avoir identifié tout ou
partie de tels droits de brevet.
Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour
information, par souci de commodité, à l'intention des utilisateurs et ne sauraient constituer un engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion de
l'ISO aux principes de l'Organisation mondiale du commerce (OMC) concernant les obstacles techniques au
commerce (OTC), voir www.iso.org/avant-propos.
Le présent document a été élaboré par le comité technique ISO/TC 188, Petits navires, en collaboration avec
le comité technique CEN/TC 464, Petits navires, du Comité européen de normalisation (CEN), conformément
à l'Accord de coopération technique entre l'ISO et le CEN (Accord de Vienne).
Cette deuxième édition annule et remplace la première édition (ISO 12215-9:2012), qui a fait l'objet d'une
révision technique.
Les principales modifications sont les suivantes:
— des considérations relatives à l'actionneur de quille basculante et à la structure de support de la quille
ont été ajoutées au Tableau 3;
— l'Annexe A doit désormais être complétée dans tous les cas;
— un traitement qualifié du diamètre et de l'épaisseur de la contre-plaque dans le cas d'une épaisseur de
coque réduite a été ajouté au Tableau D.2;
— une note d'attention spécifique concernant la proximité des boulons avec les soudures a été ajoutée
en D.4.7;
— à l'Annexe F, la vie opérationnelle a été doublée pour atteindre 16 millions de cycles de contrainte et le
calcul du MSF associé a été révisé.
Une liste de toutes les parties de la série ISO 12215 se trouve sur le site web de l'ISO.
Il convient que l'utilisateur adresse tout retour d'information ou toute question concernant le présent
document à l'organisme national de normalisation de son pays. Une liste exhaustive desdits organismes se
trouve à l'adresse www.iso.org/fr/members.html.
v
Introduction
Le présent document reconnaît l'importance d'une évaluation adéquate des échantillons, des pratiques de
construction et de l'état des appendices des bateaux à voiles, principalement de la quille de lest.
La perte d'une quille de lest entraînant le chavirage du bateau est l'un des principaux risques de décès sur
les bateaux à voiles et l'effectivité structurelle de tous éléments de la quille et de sa liaison au bateau est
capitale.
Le présent document spécifie les charges de conception et les facteurs de contrainte qui leur sont associés.
L'utilisateur (par exemple, le concepteur ou le constructeur) a alors le choix entre l'une des deux options
suivants pour évaluer la disposition structurelle:
a) utilisation de méthodes de calcul permettant de modéliser la structure en trois dimensions. Ces méthodes
incluent l'analyse par éléments finis, une matrice de déplacement ou les méthodes d'encadrement, après
quoi l'Annexe A est remplie à des fins de conformité. Des recommandations relatives aux hypothèses de
modélisation sont fournies à l’Article 8;
b) utilisation de formules simplifiées pour les contraintes bidimensionnelles. Elles sont données dans les
Annexes B à F et, lorsque cette option est choisie, l'utilisation de toutes les annexes applicables sera
nécessaire pour satisfaire aux exigences du présent document, après quoi l'Annexe A est remplie à des
fins de conformité.
Le présent document a été élaboré en tenant compte des pratiques actuelles et des principes d'ingénierie.
Les charges et critères du présent document peuvent être utilisés avec leurs formules de détermination de
l'échantillonnage du présent document ou à l'aide de méthodes d'ingénierie équivalentes, comme indiqué au
point a) ci-dessus.
Le présent document reflète la pratique actuelle, à condition que le bateau soit correctement manœuvré
conformément avec un bon sens marin, qu'il soit bien conçu et construit) et qu'il soit entretenu, équipé
et exploité à une vitesse adaptée à l'état de la mer rencontré. L'inspection de tous les appendices après le
talonnage est essentielle.
NOTE Le respect du présent document n'assure pas une conception satisfaisante dans tous les cas et n'exonère
pas l'utilisateur, tel que le concepteur ou le constructeur, de ses responsabilités en matière de conception, lesquelles
lui incombent entièrement.
Les bateaux de course ne sont pas l'objet principal de la série ISO 12215. Les utilisateurs sont notamment
fortement mis en garde contre les tentatives de conception d'échantillons pour les bateaux de course de
manière à ce que ces échantillons soient tout juste conformes.
vi
PROJET FINAL Norme internationale ISO/FDIS 12215-9:2025(fr)
Petits navires — Construction de coques et échantillons —
Partie 9:
Appendices des bateaux à voiles
1 Domaine d'application
Le présent document définit les charges et spécifie les échantillonnages des appendices des voiliers
monocoques d'une longueur de coque (L ) mesurée conformément à l'ISO 8666 ou d'une longueur de
H
référence (voir la NOTE 1 de l'Article 1 de l'ISO 12215-5:2019) est inférieure ou égale à 24 m. Il indique:
— les contraintes de conception;
— les éléments structurels à évaluer;
— les cas de chargement et les charges de conception pour la quille, la dérive et leurs éléments de liaison;
— les méthodes de calcul et des recommandations de modélisation;
— les moyens de se conformer à ses dispositions.
Le Tableau 4 énumère où se trouvent les éléments structurels à évaluer dans le présent document et décrit
étape par étape les procédures permettant d'établir la conformité.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu'ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l'édition citée s'applique. Pour
les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels
amendements).
ISO 898-1, Caractéristiques mécaniques des éléments de fixation en acier au carbone et en acier allié — Partie 1:
Vis, goujons et tiges filetées de classes de qualité spécifiées — Filetages à pas gros et filetages à pas fin
ISO 3506-1, Fixations — Caractéristiques mécaniques des fixations en acier inoxydable résistant à la corrosion
— Partie 1: Vis, goujons et tiges filetées de grades et classes de qualité spécifiés
ISO 12215-5:2019, Petits navires — Construction de coques et échantillonnage — Partie 5: Pressions de
conception pour monocoques, contraintes de conception, détermination de l'échantillonnage
ISO 12217-1, Petits navires — Évaluation et catégorisation de la stabilité et de la flottabilité — Partie 1: Bateaux
à propulsion non vélique d'une longueur de coque supérieure ou égale à 6 m
ISO 12217-2, Petits navires — Évaluation et catégorisation de la stabilité et de la flottabilité — Partie 2: Bateaux
à voiles d'une longueur de coque supérieure ou égale à 6 m
ISO 12217-3, Petits navires — Évaluation et catégorisation de la stabilité et de la flottabilité — Partie 3: Bateaux
d'une longueur de coque inférieure à 6 m
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en normalisation,
consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l'adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l'adresse https:// www .electropedia .org/
3.1
catégorie de conception
description des conditions de mer et de vent pour lesquelles un bateau est évalué comme approprié
Note 1 à l'article: Les catégories de conception sont définies dans la série ISO 12217.
Note 2 à l'article: Les définitions des catégories de conception sont en ligne avec la directive européenne 2013/53/
[12]
UE sur les bateaux de plaisance.
3.2
déplacement en charge
m
LDC
masse du bateau, y compris tous ses appendices, lorsqu'il est en condition de charge maximale prêt à l'emploi
Note 1 à l'article: La condition de charge maximale prête à l'emploi est définie plus avant dans l'ISO 8666.
3.3
bateau à voiles
bateau dont le moyen principal de propulsion est la puissance du vent
Note 1 à l'article: Cela est défini plus avant dans l'ISO 8666.
3.4
masse de la quille
m
KEEL
masse de la quille de lest, en kilogrammes, c'est-à-dire l'aileron de quille plus le bulbe, le cas échéant, et, pour
les quilles doubles ou multiples, masse de chaque quille
4 Symboles
Pour les besoins du présent document, sauf définition spécifique contraire, les symboles donnés au
Tableau 1 s'appliquent.
Tableau 1 — Nomenclature
Symbole Unité Désignation/signification du symbole Article/Paragraphe
A m Surface de la dérive entièrement déployée 7.7.1
CB
Surface de voilure de référence (GV + triangle AV+ mât-aile), 7.7.1
A m
S
comme définie dans l'ISO 12217-2
Distance, mesurée le long de l'axe de la quille, entre le centre de 7.2
a m gravité (CG) de la quille et sa liaison avec la coque ou l'aileron de
quille
b mm Largeur totale de la section aérodynamique de l'appendice E.1
f
Distance, mesurée le long de l'axe de la quille, entre la liaison de 7.2
c m
la quille et la mi-hauteur de la varangue
c m Valeur moyenne de c pour plusieurs varangues 7.5
a
Diamètre nominal du boulon de quille sélectionné (peut dépasser B.5.2
d mm
d )
req
Diamètre du ième boulon de quille pris en considération (i = 1, 2, D.4.4, D.4.5
d mm
i
etc.)
d mm Diamètre du noyau du boulon de quille D.4.1
neck
TTabableleaauu 1 1 ((ssuuiitte)e)
Symbole Unité Désignation/signification du symbole Article/Paragraphe
Diamètre du noyau du ième boulon de quille pris en considéra- D.4.4.2
d mm
ineck
tion (i = 1, 2, etc.)
Diamètre nominal du boulon de quille calculé pour le cas de char- D.4
d mm
req
gement 1 ou le cas de chargement 4
d mm Désignation spécifique ISO pour d Tableau D.1
3 neck
e m Proportion de la force latérale totale prise par la dérive 7.7.1
F N Force de conception, où i correspond au cas de chargement 7
i
2 2
g m/s Accélération de la pesanteur = 9,81 m/s 7
h m Hauteur du centre de surface de A 7.7.1
CE S
h m Hauteur de la quille, entre sa base et sa liaison avec la coque 7.5
K
Hauteur du point d'application de la force F (cas de charge- 7.5
h m
F4
ment 4)
Second moment longitudinal de la section aérodynamique de E.2.2
I cm
L
l'appendice
k — Coefficient de catégorie de conception Tableau 2
DC
k — Facteur de forme de la section de l'appendice Tableau E.1
f
k — Facteur de forme de la section de l'appendice Tableau E.1
f1
k — Coefficient de cas de chargement Tableau 3
LC
k — Coefficient de longueur/déplacement 7.7.1
LD
k — Coefficient de matériau Tableau 2
MAT
L mm Longueur de la corde de la section aérodynamique de l'appendice E.1
f
L m Longueur de la flottaison en conditions m 7.7.1
WL LDC
m kg Voir 3.2 3.2, 7
LDC
m kg Voir 3.4 3.4, 7.4
KEEL
Moment de flexion de conception, où les indices I et J dépendent 7
m N·m
IJ
du cas de chargement
P mm Pas de filetage du boulon de quille D.4.1
Module d'inertie longitudinal de la forme aérodynamique de E.2.2
SM cm
L
l'appendice
Module d'inertie transversal de la forme aérodynamique de E.2.1
SM cm
T
l'appendice
Contrainte, qui peut être σ ou τ, où i peut être LIM, d, u, y, yw ou 5
st N/mm
i
yu
Épaisseur de la paroi de la section aérodynamique creuse de E.1
t mm
f
l'appendice
α ° Angle d'attaque de la dérive 7.7.1
ε % Allongement à la rupture Tableau B.2
R
Angle entre l'axe de la quille et l'axe du bateau, pour les quilles 7.3.1
θ °
basculantes
5 Contraintes de conception
La contrainte maximale doit être calculée pour chaque élément structurel pertinent et combinaison de cas
de chargement.
La contrainte de conception, st , exprimée en N/mm , est la contrainte limite pertinente multipliée par
d
divers coefficients de contrainte, comme indiqué par la Formule (1):
st =×st kk××k (1)
dLIM MATLCDC
où
st est la contrainte limite, où st signifie σ, pour une contrainte directe, ou τ, pour une contrainte de
LIM
cisaillement, et l'indice LIM signifie:
— pour les métaux non soudés ou loin des zones affectées par la chaleur de soudure (HAZ),
min(st ;0,5 × st où l'indice y signifie la limite élastique et l'indice u signifie la résistance à la
y u
rupture, c'est-à-dire. σ ,σ pour les contraintes directes, τ ,τ pour les contraintes de cisaille-
y u y u
ment et σ ,σ pour les contraintes de matage;
yb ub
— pour les métaux dans les zones affectées par la chaleur de soudure, min(st ;0,5 × st ) où
yw uw
l'indice y signifie la limite élastique et l'indice u signifie la résistance à la rupture (c'est-à-dire
σ ,σ , pour les contraintes directes, τ ,τ , pour les contraintes de cisaillement et σ ,σ
yw uw yw uw ybw ubw
pour les contraintes de matage;
— la contrainte de rupture en traction, σ , en compression, σ , en flexion, σ , en matage, σ ,
ut uc uf ub
ou en cisaillement, τ , pour le bois ou le stratifié (résine armée de fibre);
u
k est le coefficient de matériau défini au Tableau 2, et ajustant la contrainte de conception selon le
MAT
matériau;
k est le coefficient de chargement défini au Tableau 3, et ajustant la contrainte de conception selon
LC
le cas de chargement;
k est le coefficient de catégorie de conception défini au Tableau 2, et permettant d'augmenter la
DC
contrainte de conception pour des catégories de conception plus basses.
NOTE 1 Le Tableau 2 spécifie les détails de ces différentes variables.
Les valeurs de st (c'est-à-dire σ ,σ ,τ pour les métaux non soudés, σ ,σ ,τ ,τ pour les zones affectées
LIM y u u yw uw yw uw
par la chaleur de soudure sur les métaux soudés, ou σ , σ , σ , σ ou bien τ pour le bois et le stratifié)
ut uc uf ub u
doivent être déterminées:
— conformément à l'ISO 12215-5:2019, Annexes C, E et F, c'est-à-dire selon les valeurs provenant d'essais
ou selon les valeurs par défaut données respectivement pour les stratifiés, pour les âmes de sandwich, et
pour le bois moulé et le contreplaqué;
— conformément à l'ISO 3506-1 pour les fixations en acier inoxydable, et l'ISO 898-1 pour les fixations en
acier au carbone ou en acier allié.
NOTE 2 Voir l'Annexe B pour les métaux cités.
Tableau 2 — Contraintes de conception et coefficients de contrainte
Variable Matériau/désignation Valeur
Métaux, non soudés ou loin des zones affectées par la chaleur de
b,c
min(st ;0,5 × st )
a y u
soudure
st
LIM a b,c
Métaux, dans les zones affectées par la chaleur de soudure min(st ;0,5 × st )
yw uw
c
Bois et stratifiés, selon la direction de la contrainte appliquée σ , σ , σ , σ et τ le cas échéant
uc ut uf ub u
Facteur de contrainte
Métaux dont l'allongement à la rupture, ε ≥ 7 % 0,75
R
k
MAT
d
Métaux dont l'allongement à la rupture, ε < 7 % min.(0,062 5ε + 0,312 5;0,75)
R R
e
Bois et stratifié 0,33
k Facteur de contrainte (voir le Tableau 3)
LC
Facteur de contrainte
k Bateau de catégorie de conception A et B 1,00
DC
Bateau de catégorie de conception C et D 1,25
a
On doit considérer que la zone affectée par la chaleur de soudure est située à une distance inférieure à 50 mm des soudures,
comme spécifié en F.3.4.3.
b
Pour les métaux, τ = 0,58 × σ.
c
Les contraintes de matage dépendent du type de matériau (généralement, σ /σ = 2,8 pour le mat de verre (CSM) et 0,91
ub uc
pour le roving). Les métaux donnent généralement une valeur de 2,4 à 3,0 pour les boulons (mais avec des restrictions: loin des
bords, écartement minimal des boulons, valeur minimale épaisseur/diamètre du boulon d).
d
Le facteur donne 0,75 pour ε ≥ 7 %, et 0,375 pour ε = 1 % avec une interpolation linéaire entre ces valeurs. Les valeurs de ε
R R R
doivent être conformes au Tableau B.2.
e
Pour le bois et le stratifié, k peut être réduit (c'est-à-dire que la contrainte de calcul est réduite et le facteur de sécurité
MAT
est augmenté) et doit être conforme au k approprié (stratifié uniquement; pour éviter tout doute, pour le bois k = 1,0) et k
BB BB AM
(stratifié et bois) comme spécifié dans l'ISO 12215-5:2019, Tableau 15 et Tableau 16, respectivement. Par exemple, dans un cas où
k = 0,75 et k = 0,9, k deviendrait 0,33 × 0,75 × 0,9 = 0,22. Si k = 1,0 et k = 1,0, k reste de 0,33.
BB AM MAT BB AM MAT
Tableau 3 — Valeurs de k , facteur de contrainte selon le cas de chargement
LC
Cas de charge- Description du cas de chargement des quilles et des appendices Paragraphe Valeur
ment dek
LC
a
Boulon de quille 7.2 0,67
1 Autres éléments de quilles fixes: métal — 0,8
b
Autres éléments de quilles fixes: stratifié — 0,9
Quilles basculantes: métal 7.3 0,8
Quilles basculantes: stratifié 7.3 0,9
Quille basculante: actionneur métallique/actionneur et structure de 7.3
0,8
support de quille métalliques
Quilles basculantes: actionneur en stratifié/actionneur et structure de 7.3
0,9
soutien de la quille en stratifié
3 Talonnage vertical 7.4 1
4 Impact longitudinal sur la quille 7.5 1
Redressement d'un dériveur chaviré (résistance de la dérive pivotante 7.6
5 1,34
ou coulissante)
6 Dérive pivotante ou coulissante au près 7.7 1,0
NOTE La contrainte de conception des boulons est plus faible que celle des autres éléments structurels afin de prendre en
compte les effets de concentration de contrainte dans les boulons et conformément à une pratique établie depuis longtemps.
a
Le cas de chargement 1 considère différemment les boulons des autres éléments structurels.
b
Attention: Les exigences du présent document sont fondées sur des critères de résistance. Dans certains cas, comme les voiles
de quille construits avec des matériaux à faible module d'élasticité, la nécessité de limiter les déformations et/ou d'augmenter les
fréquences naturelles peut exiger une augmentation substantielle d'échantillonnage par rapport à celui requis par le présent
document. De tels cas ne relèvent pas du domaine d'application du présent document.
6 Élément structurel à évaluer
ATTENTION — La perte de la quille peut être attribuée à une épaisseur insuffisante du bordé de
fond dans la zone de la quille. Particulièrement, les boulons de liaison ou un chemin de contrainte
inadéquat entre les boulons de liaison et la structure correspondante, ainsi que les boulons placés
trop loin des raidisseurs correspondants, sont des facteurs de causalité. Il est fortement recommandé
de suivre les dispositions données en D.5 et au Tableau D.2 et, en particulier, pour les boulons placés
trop loin des raidisseurs, les dispositions du Tableau D.2, élément 3.
La perte de la quille peut également être attribuée à une résistance insuffisante en fatigue. Les voiles
de quille en métal fabriqués (généralement soudés) sont particulièrement sensibles à la fatigue.
Dans ces cas, la fatigue doit être prise en considération et évaluée et les dispositions de l'Annexe F ou
d'autres méthodes appropriées de conception en fatigue doivent être suivies.
Les éléments suivants doivent être pris en compte lors de l'évaluation ou la conception des éléments de
structure couverts par le présent document:
— liaison entre la quille et la coque (boulons, blocage conique, aileron de quille, etc.); voir les Figures 1, C.3,
C.4 et D.1;
— bordé de fond au niveau des boulons de quille et disposition de la transition au-delà de la zone des boulons
de quille dans la structure de la coque. Il convient de ne pas boulonner les quilles à un fond de coque en
construction sandwich. La disposition structurelle doit assurer que tous les chargements (contraintes de
compression dues à la quille, précontrainte des boulons, etc.) sont correctement transmis;
NOTE 1 Les termes «prétension» et «précharge» sont utilisés de manière interchangeable.
— contre-plaques (généralement des plaques d'acier rectangulaires installées sur la surface intérieure
du bordé de coque, qui répartissent la charge)/rondelles d'acier (annulaires, placées sous les écrous de
fixation ou les têtes de boulons);
— varangues, carlingues et structure porteuse associée;
— boîtes de quille, actionneurs de quille basculante et structure de support;
— voiles, dérives, dérives pivotantes de section aérodynamique.
NOTE 2 Les hydrofoils ne sont pas pris en considération.
L'évaluation doit être effectuée au moyen de méthodes numériques conformément à l’Article 8 ou au moyen
de méthodes de «pratique établie» indiquées à l’Article 9.
Le Tableau 4 énumère où se trouvent les éléments structurels à évaluer dans le présent document et décrit
étape par étape les procédures permettant d'établir la conformité.
Tableau 4 — Éléments structurels à évaluer et procédure permettant d'établir la conformité
Étape Sujet Article/Paragraphe
1 Contraintes de conception 5
2 Élément structurel à évaluer 6
3 Cas de chargement 7
L'analyse structurelle et la détermination de l'échantillonnage doivent être effectuées en utilisant une des deux
méthodes énumérées à l'étape 4 ou 5:
Calcul par des procédures numériques de calcul en 3D, y compris la fatigue
4 8.1, 8.2
le cas échéant
Calcul par des méthodes simplifiées d'évaluation de la résistance, y com-
5 8.1, 8.3 et Annexes B à F
pris la fatigue le cas échéant
6 Conformité et achèvement de l'Annexe A 9, Annexe A
7 Cas de chargement
7.1 Généralités
7.1.1 Statut des cas de chargement de conception
ATTENTION — Pour les cas de chargement 1 et 2, lorsque les quilles ont un grand angle de balayage
longitudinal, le centre de gravité (CG) de l'ensemble aileron/bulbe peut se trouver à une distance
significative en avant ou en arrière du centre longitudinal du profil d'aileron de quille à sa racine ou
du groupe de boulons. Cela induit un moment de torsion en plus du moment de flexion. Dans de tels
cas, les contraintes directes dues à la flexion doivent être combinées aux contraintes de cisaillement
dues à la torsion (contrainte équivalente de von Mises) et ne doivent pas dépasser la contrainte de
conception indiquée dans la Formule (1), en notant également 7.8.
La contrainte de conception doit être évaluée pour chaque cas de chargement, à l'aide de la Formule (1) avec
les coefficients de contrainte de conception respectivement donnés aux Tableaux 2 et 3, comme suit:
— le paragraphe 7.2 définit le cas de chargement 1, quille fixe couchée à 90°, ainsi que la force correspondante,
F , et le moment de flexion de conception, M , à 90° de gîte, respectivement pour la quille au niveau de sa
1 1
racine ou de son boulonnage et pour la varangue à son axe neutre; il doit être appliqué pour les quilles
fixes (qu'elles soient verticales ou angulées comme pour les biquilles) et pour les quilles relevables
coulissantes ou pivotantes dans l'axe;
— le paragraphe 7.3 définit le cas de chargement 2, quille basculante transversalement, ainsi que la force
correspondante, F , et le moment de flexion de conception, M , à un angle continu de 30° de gîte, plus
2 2
un coefficient de chargement dynamique; il doit uniquement être appliqué pour les quilles basculantes
transversalement;
— le paragraphe 7.4 définit le cas de chargement 3, talonnage vertical, ainsi que la force de conception
verticale, F ;
— le paragraphe 7.5 définit le cas de chargement 4, impact longitudinal, ainsi que la force de conception
horizontale, F , qui considère un impact longitudinal avec un objet fixe ou immergé ou avec un animal marin;
— le paragraphe 7.6 définit le cas de chargement 5, redressement d'un dériveur chaviré, ainsi que la force
de conception verticale, F , appliquée sur l'extrémité de la dérive pour le redressement d'un dériveur
couché à 90°;
— le paragraphe 7.7 définit le cas de chargement 6, dérive pivotante ou coulissante, ainsi que la force de
conception horizontale, F , qui s'applique sur une dérive pivotante ou coulissante lors de la navigation
au près;
— le paragraphe 7.8 prend en compte d'autres cas de chargement, particulièrement lorsque des conceptions
particulières causent des charges combinées.
7.1.2 Limitation des cas de chargement
Le présent document est basé sur l'hypothèse que le niveau des efforts est placé à un degré suffisamment
élevé pour que le nombre de fois où ces efforts sont rencontrés pendant la vie du bateau soit faible. En
conséquence, tous les cas de chargement sont considérés comme étant statiques et utilisés en conjonction
avec des contraintes de conception statiques dans les Tableaux 2 et 3.
Pour les quilles en construction soudée, la conformité aux cas de chargement statique ne peut assurer
l'absence de rupture en fatigue causée par des charges cycliques. Dans ces cas, on doit mettre en œuvre une
évaluation explicite de la durée de vie en fatigue et une procédure d'inspection.
NOTE 1 Voir les Annexes A et F pour l'évaluation de la durée de vie en fatigue et la procédure d'inspection.
NOTE 2 Il est de la plus haute importance que la réponse des structures soumises à des charges cycliques soit
inférieure à la résistance en fatigue. L'analyse de la fatigue est nécessaire lorsque les contraintes sont importantes et
lorsque les structures comportent des soudures qui nécessitent une conception et une documentation détaillées.
Les configurations de quilles ressemblant aux types illustrés à la Figure C.4 nécessitent un examen au cas
par cas.
NOTE 3 En outre, les cas de chargement considèrent que, pour les connexions boulonnées, les méthodes d'évaluation
des boulons des quilles se fondent sur l'hypothèse d'une distribution essentiellement uniforme des diamètres et
des espacements des boulons le long de la racine de l'aileron ou de la semelle de quille (voir D.4 pour de plus amples
détails).
7.2 Cas de chargement 1 — Quille fixe avec le bateau couché à 90°
7.2.1 Ce cas correspond au cas où le bateau est couché à 90° (voir Figure 1), habituellement le cas le plus
sévère pour le moment de flexion transversal d'une quille de lest fixe.
a) Bateau avec quille axiale gîté à 90° b) Bateau avec quille axiale avec un aileron de
quille
c) Bateau biquille gîté à 90° d) Bateau à quille basculante gîté à 30°
Figure 1 — Schéma de quille axiale fixe, biquille et quille basculante latéralement
Calculer la force verticale, bateau couché à 90°, exercée par la pesanteur au centre de gravité de la quille, F ,
exprimée en N, à l'aide de la Formule (2):
Fm=×g (2)
1 KEEL
Calculer le moment de flexion de conception provenant de la quille, à la section de liaison de la quille, M ,
1,1
exprimé en N m, à l'aide de la Formule (3):
MF=×a (3)
11, 1
Calculer le moment de flexion de conception provenant de la quille, à mi-hauteur de la varangue, M ,
1,2
exprimé en N m, à l'aide de la Formule (4):
MF=×()ac+ (4)
12, 1
où
a est la distance mesurée le long de l'axe de la quille entre le CG de la quille et sa liaison avec la
coque ou l'aileron, exprimée en mètres (m);
c est la distance mesurée, en mètres, le long de l'axe de la quille entre la liaison de la quille avec
la coque ou l'aileron et la mi-hauteur de la varangue;
g est l'accélération due à la gravité, prise comme étant égale à 9,81 m/s et utilisée dans l'ensemble
du présent document.
La structure du bateau, la liaison de la quille et les raidisseurs doivent pouvoir résister à cette force et à ces
moments.
NOTE 1 L'Annexe C fournit des informations sur la manière de calculer l'effort tranchant et le moment de flexion sur
chaque varangue lorsqu'elles peuvent être analysées comme des poutres indépendantes.
NOTE 2 Pour les quilles fixes simples, considérées comme étant parallèles à l'axe du bateau, ces moments de flexion
correspondent à un angle de gîte du bateau de 90°. Pour les quilles doubles biquilles, [voir la Figure 1 c)], le cosinus de
l'angle ϕ avec l'horizontale, lorsque le bateau est couché à 90°, n'est pas pris en compte, car les quilles seront parallèles
à la flottaison à un certain angle avant ou après que le bateau gîte à 90°.
7.2.2 Pour les bateaux dotés d'un aileron [voir la Figure 1 b)], il convient que l'utilisateur prenne en
considération plusieurs valeurs de c afin de déterminer le point le plus chargé.
7.3 Cas de chargement 2 — Charge continue sur une quille basculante (pendulaire) à 30° de
gîte, avec un facteur de surcharge dynamique
7.3.1 Généralités
Le présent cas de chargement doit s'appliquer uniquement aux quilles basculantes comme illustré à
la Figure 1d) et correspondre à un angle de gîte continu de 30°, qui peut se rencontrer sous forme d'un
chargement continu sur une longue période, avec un facteur de charge dynamique représentant la charge
fluctuante additionnelle qui s'exerce lorsque le bateau réagit à la mer.
Le cas de chargement 2 représente la condition de navigation normale avec un bateau dont la quille
est basculée au vent, mais qui est augmentée d'un facteur de surcharge dynamique) de 40 % pour tenir
compte d'une combinaison inhabituelle des mouvements d'un corps rigide et d'une accélération, et est
en conséquence considéré comme un cas se produisant peu fréquemment. La fatigue doit être prise en
considération et évaluée dans les calculs, conformément à 7.1.2.
NOTE 1 Le facteur de surcharge dynamique pour des conditions de navigation normales est de l'ordre de 15 % à
20 %, mais peut être plus élevé.
Calculer la force verticale exercée par la pesanteur au centre de gravité de la quille, F , exprimée en N, à
l'aide de la Formule (5):
Fm=×14, ×g (5)
2 KEEL
Calculer le moment de flexion de conception provenant de la quille basculante en cas de gîte à la jonction de
la quille, M ,
...


















Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...