Geometrical product specifications (GPS) — Surface texture: Areal — Part 606: Design and characteristics of non-contact (focus variation) instruments

ISO 25178-606:2015 defines the metrological characteristics of a particular non-contact method measuring surface texture using a focus variation (FV) sensor.

Spécification géométrique des produits (GPS) — État de surface: Surfacique — Partie 606: Conception et caractéristiques des instruments sans contact (à variation de focale)

L'ISO 25178-606:2015 définit les caractéristiques métrologiques d'une méthode de mesure sans contact particulière de l'état de surface au moyen d'un capteur à variation de focale (FV).

General Information

Status
Not Published
Current Stage
5020 - FDIS ballot initiated: 2 months. Proof sent to secretariat
Start Date
23-Jan-2026
Completion Date
23-Jan-2026

Relations

Effective Date
07-Oct-2023
Effective Date
30-Sep-2023

Overview

ISO/FDIS 25178-606:2025, titled "Geometrical Product Specifications (GPS) - Surface Texture: Areal - Part 606: Design and characteristics of non-contact (focus variation) instruments," is an international standard issued by ISO Technical Committee ISO/TC 213. This standard specifies the design principles and metrological characteristics of focus variation (FV) instruments used for non-contact areal surface texture measurements. Focus variation technology enables highly accurate surface topography data acquisition without physical contact, making it vital in precision manufacturing and quality control.

The document establishes standardized requirements and definitions for FV sensors, illumination systems, optical configurations, and measurement algorithms. It ensures consistent performance, data reliability, and traceability for users employing these non-contact optical methods to characterize surface textures of materials and components.

Key Topics

  • Focus Variation Measurement Method: The core principle uses the sharpness of a series of images obtained through an axial scan to derive surface height information. Sharpness, also referred to as contrast, is analyzed by the instrument's measurement algorithm to determine the best focus point of each surface location.

  • Instrument Design Requirements: ISO 25178-606 outlines mandatory components including:

    • FV sensor converting surface points to height signals.
    • Optical system with defined angular ranges for illumination and detection.
    • Illumination systems with options for coaxial and fixed pattern light sources.
    • Axial scanner performing mechanical displacement along the optical axis.
    • Optionally, polarization elements (polarizer and analyser) to enhance performance for specular surfaces.
  • Metrological Characteristics: The standard sets criteria for precision, accuracy, and uncertainty sources related to FV measurement, incorporating error analysis tied to illumination and optical parameters.

  • Terminology and Definitions: Key terms such as axial scan, focus information curve, angular ranges of illumination and detection, and polarization mode are clearly defined to ensure consistent understanding across manufacturers and users.

  • Information Flow Model: An informative diagram illustrates data acquisition from the real surface through optical imaging and processing to yield a scale-limited areal surface measurement.

Applications

ISO 25178-606 is critical for industries relying on detailed surface texture analysis through non-contact optical methods, including but not limited to:

  • Precision manufacturing: Monitoring surface finish of machined parts to ensure conformity with strict tolerances.
  • Quality assurance: Non-destructive inspection of medical implants, microelectronics, automotive components, and aerospace materials.
  • Research and development: Surface characterization for enhancing product performance, wear resistance, and coatings.
  • Metrology labs: Calibration and verification of FV instruments guaranteeing traceable, standard-compliant surface texture measurements.

Focus variation instruments guided by this standard enable high-resolution 3D surface mapping across various materials, including both optically smooth and rough surfaces, depending on illumination methods used.

Related Standards

ISO/FDIS 25178-606 complements and aligns with several related standards within the ISO GPS and surface texture families:

  • ISO 25178-600:2019: Defines metrological characteristics and uncertainty models for areal surface texture measurement methods, referenced normatively by Part 606.

  • ISO 25178 series: A comprehensive set of standards covering surface texture parameters, instrumentation, and verification methods.

  • ISO 14638: Provides the general framework for Geometrical Product Specifications (GPS) standards.

  • ISO 8015: Outlines fundamental GPS principles applied throughout surface metrology.

  • ISO 14253-1: Specifies decision rules for conformity assessment relevant for areal surface texture specifications.

This standard harmonizes FV instrument design and operation to seamlessly integrate into the broader ISO GPS ecosystem, supporting consistent, global surface texture evaluation practices.


Keywords: ISO 25178-606, focus variation instruments, non-contact surface texture measurement, areal surface topography, metrological characteristics, optical surface metrology, axial scan, optical illumination, polarization mode, geometrical product specifications (GPS), surface texture standards.

Draft

ISO/FDIS 25178-606 - Geometrical product specifications (GPS) — Surface texture: Areal — Part 606: Design and characteristics of non-contact (focus variation) instruments Released:9. 01. 2026

English language
18 pages
sale 15% off
sale 15% off
Draft

REDLINE ISO/FDIS 25178-606 - Geometrical product specifications (GPS) — Surface texture: Areal — Part 606: Design and characteristics of non-contact (focus variation) instruments Released:9. 01. 2026

English language
18 pages
sale 15% off
sale 15% off
Draft

ISO/FDIS 25178-606 - Spécification géométrique des produits (GPS) — État de surface: Surfacique — Partie 606: Conception et caractéristiques des instruments sans contact (à variation de focale) Released:25. 01. 2026

French language
22 pages
sale 15% off
sale 15% off

Get Certified

Connect with accredited certification bodies for this standard

BSMI (Bureau of Standards, Metrology and Inspection)

Taiwan's standards and inspection authority.

TAF Taiwan Verified

Sponsored listings

Frequently Asked Questions

ISO/FDIS 25178-606 is a draft published by the International Organization for Standardization (ISO). Its full title is "Geometrical product specifications (GPS) — Surface texture: Areal — Part 606: Design and characteristics of non-contact (focus variation) instruments". This standard covers: ISO 25178-606:2015 defines the metrological characteristics of a particular non-contact method measuring surface texture using a focus variation (FV) sensor.

ISO 25178-606:2015 defines the metrological characteristics of a particular non-contact method measuring surface texture using a focus variation (FV) sensor.

ISO/FDIS 25178-606 is classified under the following ICS (International Classification for Standards) categories: 17.040.40 - Geometrical Product Specification (GPS). The ICS classification helps identify the subject area and facilitates finding related standards.

ISO/FDIS 25178-606 has the following relationships with other standards: It is inter standard links to ISO 15614-1:2017/FDAmd 2, ISO 25178-606:2015. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

ISO/FDIS 25178-606 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.

Standards Content (Sample)


FINAL DRAFT
International
Standard
ISO/TC 213
Geometrical product specifications
Secretariat: BSI
(GPS) — Surface texture: Areal —
Voting begins on:
2026-01-23
Part 606:
Design and characteristics of
Voting terminates on:
2026-03-20
non-contact (focus variation)
instruments
Spécification géométrique des produits (GPS) - État de surface:
Surfacique —
Partie 606: Conception et caractéristiques des instruments sans
contact (à variation de focale)
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
ISO/CEN PARALLEL PROCESSING LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
Reference number
FINAL DRAFT
International
Standard
ISO/TC 213
Geometrical product specifications
Secretariat: BSI
(GPS) — Surface texture: Areal —
Voting begins on:
Part 606:
Design and characteristics of
Voting terminates on:
non-contact (focus variation)
instruments
Spécification géométrique des produits (GPS) - État de surface:
Surfacique —
Partie 606: Conception et caractéristiques des instruments sans
contact (à variation de focale)
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
© ISO 2026
IN ADDITION TO THEIR EVALUATION AS
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
ISO/CEN PARALLEL PROCESSING
LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
or ISO’s member body in the country of the requester.
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland Reference number
ii
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Instrument requirements . 5
5 Metrological characteristics . 6
6 Design features . 6
7 General information . 6
Annex A (informative) Components of a focus variation instrument . 7
Annex B (informative) Sources of measurement error for focus variation .13
Annex C (informative) Relationship to the GPS matrix model .16
Bibliography . 17

iii
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers are cautioned that
this may not represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 213, Dimensional and geometrical product
specifications and verification, in collaboration with the European Committee for Standardization (CEN)
Technical Committee CEN/TC 290, Dimensional and geometrical product specification and verification, in
accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This second edition cancels and replaces the first edition (ISO 25178:606:2015), which has been technically
revised.
The main changes are as follows:
— removal of the terms and definitions now specified in ISO 25178-600;
— revision of all terms and definitions for clarity and consistency with other ISO standards documents;
— addition of Clause 4 for instrument requirements;
— addition of Clause 5 on metrological characteristics;
— addition of Clause 6 on design features, which clarifies the types of instruments relevant to this document;
— addition of an information flow concept diagram in Clause 4;
— revision of Annex A describing the principles of instruments addressed by this document;
— addition of Annex B on metrological characteristics and influence quantities, replacement of the
normative table of influence quantities with an informative description of common error sources and
how these relate to the metrological characteristics in ISO 25178-600.
A list of all parts in the ISO 25178 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

iv
Introduction
This document is a geometrical product specification (GPS) standard and is to be regarded as a general GPS
standard (see ISO 14638). It influences the chain link F of the chain of standards on profile and areal surface
texture.
The ISO GPS matrix model given in ISO 14638 gives an overview of the ISO GPS system of which this
document is a part. The fundamental rules of ISO GPS given in ISO 8015 apply to this document and the
default decision rules given in ISO 14253-1 apply to specifications made in accordance with this document,
unless otherwise indicated.
For more detailed information of the relation of this document to other standards and the GPS matrix model,
see Annex C.
This document includes terms and definitions relevant to the focus variation instruments for the
measurement of areal surface topography. Annex A briefly summarizes focus variation instruments and
methods to clarify the definitions and to provide a foundation for Annex B, which describes common sources
of uncertainty and their relation to the metrological characteristics of focus variation.
NOTE Portions of this document, particularly the informative sections, describe patented systems and methods.
This information is provided only to assist users in understanding the operating principles of focus variation. This
document is not intended to establish priority for any intellectual property, nor does it imply a license to proprietary
technologies described herein.

v
FINAL DRAFT International Standard ISO/FDIS 25178-606:2026(en)
Geometrical product specifications (GPS) — Surface texture:
Areal —
Part 606:
Design and characteristics of non-contact (focus variation)
instruments
1 Scope
This document specifies the design and characteristics of focus variation instruments for areal measurement
of surface topography. Because surface profiles can be extracted from areal surface topography data, the
methods described in this document are also applicable to profiling measurements as well.
This document applies to focus variation without pattern illumination or with fixed pattern illumination.
This document does not cover methods using varying pattern illumination during the measurement.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 25178-600:2019, Geometrical product specifications (GPS) — Surface texture: Areal — Part 600:
Metrological characteristics for areal topography measuring methods
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1
focus variation
FV
measurement method whereby the sharpness of a series of surface images that is acquired during an axial
scan in an optical instrument is used to measure the surface topography
Note 1 to entry: In this document, surface image is an image of a surface obtained by capturing the reflected light from
the surface with or without a fixed pattern illumination.
Note 2 to entry: In this document, sharpness is a quantity of the surface image calculated by the neighbourhood
information indicating best focus. Other names for sharpness are for example contrast.
Note 3 to entry: Focus variation without fixed pattern illumination only works on optically rough surfaces (see
ISO 25178-600:2019, 3.4.5). If fixed pattern illumination is used, optically smooth surfaces (see ISO 25178-600:2019,
3.4.4) can also be measured.
3.2
focus variation sensor
device that converts the height of points on the surface into signals during measurement using the focus
variation (3.1) method
3.3
axial scan
mechanical or optical displacement between the sample under inspection and the imaging optics
Note 1 to entry: The optical axis of the imaging optics is nominally parallel to the axial scan axis of the microscope.
[SOURCE: ISO 25178-607:2019, 3.5, modified — “imaging optics” replaced by “optical axis of the imaging
optics” in Note 1 to entry.]
3.4
focus variation measurement algorithm
algorithm for analysing the variation of focus in order to calculate the scan positions where each point is
best in focus
3.5
focus information
measure to quantify the degree of focus based on image sharpness at a specific lateral position in the surface
image and at a specific axial scan (3.3) position
3.6
focus information curve
signal recorded for a specific lateral position of the surface image as a function of the axial scan (3.3) position
Note 1 to entry: See Figure 1.
Note 2 to entry: The surface is located at the axial scan position of the maximum of the focus information curve (see
"c" in Figure 1).
Note 3 to entry: To improve the resolution in axial scan direction, the maximum of a fitted curve can be used instead
of "c" in Figure 1.
Key
X axial scan position
Y focus information
1 highest focus information from the captured axial scan positions
Figure 1 — Focus information curve

3.7
focus variation illumination system
source of light with a predefined spectral and spatial distribution
Note 1 to entry: Possible light sources are coaxial illumination, ring light and external light sources.
Note 2 to entry: A variant of coaxial illumination is the use of a fixed pattern projected onto a sample surface. For
example, this pattern can be a chessboard.
3.8
angular range of illumination
α
angular range from which the sample is illuminated
Note 1 to entry: See Figure 2.
Note 2 to entry: The angular range of illumination affects the maximum measurable slope on optically smooth
surfaces.
3.8.1
angular range of coaxial illumination
α
I
angular range from which the sample is coaxially illuminated
Note 1 to entry: The value α can be influenced by the choice of the objective.
I
Note 2 to entry: The value α is often related to the angular range of detection, see Figure 3.
I
Note 3 to entry: In normal cases, the value α can be derived from the numerical aperture of the objective.
I
Note 4 to entry: When special illumination sources are used (ring light, external light sources, etc., see Figure 2) the
angular range of illumination (3.8) can be much larger than α .
I
3.8.2
minimum incident angle of ring light illumination
β
Imin
angle between the optical axis and the light rays of the ring light that illuminate the sample closest to the
optical axis
Note 1 to entry: See Figure 2.
3.8.3
maximum incident angle of ring light illumination
β
Imax
angle between the optical axis and the light rays of the ring light that illuminate the sample farthest to the
optical axis
Note 1 to entry: See Figure 2.

Key
L lens of optical system
RL ring light
α angular range of coaxial illumination
I
β minimum incident angle of ring light illumination
Imin
β maximum incident angle of ring light illumination
Imax
S sample
Figure 2 — Angular range of illumination
3.9
angular range of detection
α
D
angular range of light rays that can be gathered by the objective
Note 1 to entry: See Figure 3.
Key
L lens of optical system
RL ring light
α angular range of detection
D
S sample
Figure 3 — Angular range of detection

3.10
axial scan length
total range travelled by the focus variation microscope axial scan (3.3), usually the total displacement
between the sample and the microscope’s objective translated along its optical axis during data acquisition
Note 1 to entry: This parameter can be limited by the overall range of the axial scanner, but is generally a parameter
chosen by the operator taking account of the height range of the surface topography.
[SOURCE: ISO 25178-607:2019, 3.6, modified —“confocal microscope axial scan” has been replaced by “focus
variation microscope axial scan”.]
3.11
polarization mode
method which allows one to filter out light waves in certain polarization states by using special optical
elements called polarizers (3.13) or analysers (3.12)
3.12
analyser
optical element used to filter the rays of the light after they have been reflected from the sample and
gathered by the objective before reaching the electronic camera
3.13
polarizer
optical element used to polarize the rays of the light source before they are transmitted to the sample
4 Instrument requirements
An instrument shall perform areal surface topography measurements of a sample surface using focus
variation. The instrument shall comprise a focus variation sensor, optics, focus variation illumination
system, and an axial scanner. The instrument shall acquire data by illuminating the surface with an angular
range of illumination and capturing data from angular range of detection at several axial positions along the
optical axis by performing an axial scan over an axial scan length. To improve the performance of specular
reflection the application of polarization mode can help. Therefore, a polarizer and an analyser are used.
The instrument shall convert acquired data to an areal topography using a focus variation measurement
algorithm which calculates the focus information to get the focus information curve.
Figure 4 shows the information flow between these elements for a FV instrument, from the real surface
to a scale-limited surface. Example FV hardware, techniques and error sources are given in Annex A and
Annex B.
Key
measurand
operator with intended modification
operator without intended modification
Figure 4 — Information flow concept diagram for focus variation instruments
5 Metrological characteristics
The standard metrological characteristics for areal surface texture measuring instruments specified in
ISO 25178-600 shall be considered when designing and calibrating the instrument.
Annex B describes sources of measurement error that can influence the calibration result.
6 Design features
Standard design features specified in ISO 25178-600 shall be considered in the design.
Annex A provides examples of specific design features of FV instruments.
7 General information
The relation between this document and the GPS matrix model is given in Annex C.

Annex A
(informative)
Components of a focus variation instrument
A.1 Introduction
This annex is a short overview of the focus variation principle and the components of a focus variation
instrument. Further literature can be found in References [8] to [24].
A.2 Typical configuration
Figure A.1 illustrates the typical configuration of a focus variation instrument.

Key
1 electronic camera
2 optical components
3 white light source
4 illumination beam splitter
5 objective
6 sample
7 axial scan (along optical axis)
8 focus information curve
9 light beam
10 analyser
11 polarizer (optional)
12 optical axis (alternate long and short dash line)
13 ring light (optional)
14 illumination pattern (optional)
15 reflected light
Figure A.1 — Schematic diagram of a typical focus variation instrument
A.3 Operation principle
Focus variation combines the small depth of focus of an optical system with an axial scan along the optical
axis to provide topographical information from the variation of focus. In the following, the operating
principle is demonstrated for a typical focus variation instrument schematically shown in Figure A.1. The
main component of the system is the optical instrument containing various lenses that can be equipped
with different objectives allowing measurements with different resolution. With a beam splitting mirror,
light emerging from a white light source is inserted into the optical path of the system and focused onto the
sample through the objective. Depending on the topography of the sample, the light is scattered into several
directions as soon as it hits the sample through the objective. If the topography shows diffuse reflective
properties, the light is scattered strongly into all directions. In the case of specular reflection, the light is
reflected mainly into one direction. All rays emerging from the sample and hitting the objective lens are

collected in the optics and gathered by a light sensitive sensor behind the beam splitting mirror. Due to the
small depth of field of the optics, only small regions of the object are sharply imaged. To perform a complete
detection of the surface with full dept
...


ISO/FDIS 25178-606:2025(en)
ISO /TC 213/WG 16
2025-09-26
Secretariat: BSI
Date: 2026-01-09
Geometrical product specifications (GPS) — Surface texture:
Areal —
Part 606:
Design and characteristics of non-contact (focus variation)
instruments
Spécification géométrique des produits (GPS) — - État de surface: Surfacique —
Partie 606: Conception et caractéristiques des instruments sans contact (à variation de focale)

TTTTThThhhhhiiiiiiss s s s s ddddddrrrrrraaaaaafffffftttttt i i i i i is s s s s s susususususubbbbbbmmmmmmiiiiiitttttttttttteeeeeedddddd   ttttttoooooo   aaaaaa   ppppppaaaaaarrrrrraaaaaallellellellellellel l vl l l l vvvvvooooootttttteeeeee i  iiiiinnnnnn   IIIIIISSSSSSOOOOOO,,,,,, C  CCCCCEEEEEEN.N.N.N.N.N.

FDIS stage
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication
may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying,
or posting on the internet or an intranet, without prior written permission. Permission can be requested from either
ISO at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: + 41 22 749 01 11
EmailE-mail: copyright@iso.org
Website: www.iso.org
Published in Switzerland
iii
ISO/DIS FDIS 25178-606:20242026(en)
Contents
Foreword . v
Introduction . vii
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Instrument requirements . 7
5 Metrological characteristics . 9
6 Design features . 9
7 General information . 9
Annex A (informative) Components of a focus variation instrument . 10
Annex B (informative) Sources of measurement error for focus variation . 17
Annex C (informative) Relationship to the GPS matrix model . 21
Bibliography . 23

© ISO 2024 - 2026 – All rights reserved
iv
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of
ISO document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights
in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s)
which may be required to implement this document. However, implementers are cautioned that this may not
represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 213, Dimensional and geometrical product
specifications and verification, in collaboration with the European Committee for Standardization (CEN)
Technical Committee CEN/TC 290, Dimensional and geometrical product specification and verification, in
accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This second edition cancels and replaces the first edition (ISO 25178:606:2015), which has been technically
revised.
The main changes are as follows:
— — removal of the terms and definitions now specified in ISO 25178-600;
— — revision of all terms and definitions for clarity and consistency with other ISO standards documents;
— — addition of Clause 4 for instrument requirements, which summarizes normative features and
characteristics;
— — addition of Clause 5 on metrological characteristics;
— — addition of Clause 6 on design features, which clarifies the types of instruments relevant to this
document;
— — addition of an information flow concept diagram in Clause 4;;
— — revision of Annex A describing the principles of instruments addressed by this document;
v
ISO/DIS FDIS 25178-606:20242026(en)
— — addition of Annex B on metrological characteristics and influence quantities, replacement of the
normative table of influence quantities with an informative description of common error sources and how
these relate to the metrological characteristics in ISO 25178-600.
A list of all parts in the ISO 25178 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
Field Code Changed
© ISO 2024 - 2026 – All rights reserved
vi
Introduction
This document is a geometrical product specification (GPS) standard and is to be regarded as a general GPS
standard (see ISO 14638). It influences the chain link F of the chain of standards on profile and areal surface
texture.
The ISO GPS matrix model given in ISO 14638 gives an overview of the ISO GPS system of which this document
is a part. The fundamental rules of ISO GPS given in ISO 8015 apply to this document and the default decision
rules given in ISO 14253-1 apply to specifications made in accordance with this document, unless otherwise
indicated.
For more detailed information of the relation of this document to other standards and the GPS matrix model,
see Annex CAnnex C.
This document includes terms and definitions relevant to the focus variation instruments for the
measurement of areal surface topography. Annex A briefly summarizes focus variation instruments and
methods to clarify the definitions and to provide a foundation for ,Annex B, which describes common sources
of uncertainty and their relation to the metrological characteristics of focus variation.
NOTE Portions of this document, particularly the informative sections, describe patented systems and methods. This
information is provided only to assist users in understanding the operating principles of focus variation. This document
is not intended to establish priority for any intellectual property, nor does it imply a license to proprietary technologies
described herein.
vii
DRAFT International Standard ISO/FDIS 25178-606:2025(en)

Geometrical product specifications (GPS) — Surface texture: Areal —
Part 606:
Design and characteristics of non-contact (focus variation)
instruments
1 Scope
This document specifies the design and characteristics of focus variation instruments for areal measurement
of surface topography. Because surface profiles can be extracted from areal surface topography data, the
methods described in this document are also applicable to profiling measurements as well.
This document applies to focus variation without pattern illumination or with fixed pattern illumination. This
document does not cover methods using varying pattern illumination during the measurement.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 25178--600:2019, Geometrical product specifications (GPS) — Surface texture: Areal — Part 600:
Metrological characteristics for areal topography measuring methods
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— — ISO Online browsing platform: available at https://www.iso.org/obp
— — IEC Electropedia: available at https://www.electropedia.org/
3.1 3.1
focus variation
FV
measurement method whereby the sharpness of a series of surface images that is acquired during an axial
scan in an optical instrument is used to measure the surface topography
Note 1 to entry: In this document, surface image is an image of a surface obtained by capturing the reflected light from
the surface with or without a fixed pattern illumination.
Note 2 to entry: In this document, sharpness is a quantity of the surface image calculated by the neighbourhood
information indicating best focus. Other names for sharpness are for example contrast.
Note 3 to entry: Focus variation without fixed pattern illumination only works on optically rough surfaces [(see
ISO 25178-600:2019, 3.4.5].). If fixed pattern illumination is used, optically smooth surfaces [(see ISO 25178-600:2019,
3.4.4]) can also be measured.
3.2 3.2
focus variation sensor
device that converts the height of points on the surface into signals during measurement using the focus
variation (3.1(3.1)) method
3.3 3.3
axial scan
mechanical or optical displacement between the sample under inspection and the imaging optics
Note 1 to entry: The optical axis of the imaging optics is nominally parallel to the axial scan axis of the microscope.
[SOURCE: ISO 25178-607:2019, 3.5, modified — “imaging optics” replaced by “optical axis of the imaging
optics” in Note 1 to entry.]
3.4 3.4
focus variation measurement algorithm
algorithm for analysing the variation of focus in order to calculate the scan positions where each point is best
in focus
3.5 3.5
focus information
measure to quantify the degree of focus based on image sharpness at a specific lateral position in the surface
image and at a specific axial scan (3.3(3.3)) position
3.6 3.6
focus information curve
signal recorded for a specific lateral position of the surface image as a function of the axial scan (3.3(3.3))
position
Note 1 to entry: See Figure 1Figure 1.
Note 2 to entry: The surface is located at the axial scan position of the maximum of the focus information curve (see "c"
in Figure 1Figure 1).).
Note 3 to entry: To improve the resolution in axial scan direction, the maximum of a fitted curve can be used instead of
"c" in Figure 1Figure 1.
© ISO 2024 2026 – All rights reserved
Key
a axial scan position
b focus information
c highest focus information from the captured axial scan positions
X axial scan position
Y focus information
1 highest focus information from the captured axial scan positions
Figure 1 — Focus information curve
3.7 3.7
focus variation illumination system
source of light with a predefined spectral and spatial distribution
Note 1 to entry: Possible light sources are coaxial illumination, ring light and external light sources.
Note 2 to entry: A variant of coaxial illumination is the use of a fixed pattern projected onto a sample surface. For
example, this pattern can be a chessboard.
© ISO 2025 2026 – All rights reserved
3.8 3.8
angular range of illumination
α
angular range from which the sample is illuminated
Note 1 to entry: See Figure 2Figure 2.
Note 2 to entry: The angular range of illumination affects the maximum measurable slope on optically smooth surfaces.
3.8.1 3.8.1
angular range of coaxial illumination
αI
angular range from which the sample is coaxially illuminated
Note 1 to entry: The value α can be influenced by the choice of the objective.
I
Note 2 to entry: The value αI is often related to the angular range of detection, see Figure 3Figure 3.
Note 3 to entry: In normal cases, the value αI can be derived from the numerical aperture of the objective.
Note 4 to entry: When special illumination sources are used (ring light, external light sources, etc., see Figure 2Figure 2))
the angular range of illumination (3.8(3.8)) can be much larger than αI.
3.8.2 3.8.2
minimum incident angle of ring light illumination
β
Imin
angle between the optical axis and the light rays of the ring light that illuminate the sample closest to the
optical axis
Note 1 to entry: See Figure 2Figure 2.
3.8.3 3.8.3
maximum incident angle of ring light illumination
β
Imax
angle between the optical axis and the light rays of the ring light that illuminate the sample farthest to the
optical axis
Note 1 to entry: See Figure 2Figure 2.
© ISO 2024 2026 – All rights reserved
Key
L lens of optical system
RL ring light
α angular range of coaxial illumination
I
βImin minimum incident angle of ring light illumination
βImax maximum incident angle of ring light illumination
S sample
L lens of optical system
RL ring light
α angular range of coaxial illumination
I
βImin minimum incident angle of ring light illumination
βImax maximum incident angle of ring light illumination
S sample
Figure 2 — Angular range of illumination
3.9 3.9
angular range of detection
αD
angular range of light rays that can be gathered by the objective
© ISO 2025 2026 – All rights reserved
Note 1 to entry: See Figure 3Figure 3.

Key
L lens of optical system
RL ring light
αD angular range of detection
S sample
L lens of optical system
RL ring light
αD angular range of detection
S sample
Figure 3 — Angular range of detection
3.10 3.10
axial scan length
total range travelled by the focus variation microscope axial scan (3.3(3.3),), usually the total displacement
between the sample and the microscope’s objective translated along its optical axis during data acquisition
Note 1 to entry: This parameter can be limited by the overall range of the axial scanner, but is generally a parameter
chosen by the operator taking account of the height range of the surface topography.
[SOURCE: ISO 25178-607:2019, 3.6, modified —“confocal microscope axial scan” has been replaced by “focus
variation microscope axial scan”.]
© ISO 2024 2026 – All rights reserved
3.11 3.11
polarization mode
method which allows one to filter out light waves in certain polarization states by using special optical
elements called polarizers (3.13(3.13)) or analysers (3.12(3.12))
3.12 3.12
analyser
optical element used to filter the rays of the light after they have been reflected from the sample and gathered
by the objective before reaching the electronic camera
3.13 3.13
polarizer
optical element used to polarize the rays of the light source before they are transmitted to the sample
4 Instrument requirements
An instrument shall perform areal surface topography measurements of a sample surface using focus
variation. The instrument shall comprise a focus variation sensor, optics, focus variation illumination system,
and an axial scanner. The instrument shall acquire data by illuminating the surface with an angular range of
illumination and capturing data from angular range of detection at several axial positions along the optical
axis by performing an axial scan over an axial scan length. To improve the performance of specular reflection
the application of polarization mode can help. Therefore, a polarizer and an analyser are used. The instrument
shall convert acquired data to an areal topography using a focus variation measurement algorithm which
calculates the focus information to get the focus information curve.
Figure 4Figure 4 shows the information flow between these elements for a FV instrument, from the real
surface to a scale-limited surface. Example FV hardware, techniques and error sources are given in
Annex AAnnex A and Annex BAnnex B.
© ISO 2025 2026 – All rights reserved
Illumination
system
Measured
Optical Focus
Real Image
electro-
Variation
Objective imaging Camera
surface stack magnetic
algorithm
system
surface
Spatial
filtering
Scale-
limited
surface
Key
Measurand
operator with intended modification

operator without intended modification

measurand
operator with intended modification
© ISO 2024 2026 – All rights reserved
operator without intended modification
Figure 4 — Information flow concept diagram for focus variation instruments
5 Metrological characteristics
The standard metrological characteristics for areal surface texture measuring instruments specified in
ISO 25178-600 shall be considered when designing and calibrating the instrument.
Annex B describes sources of measurement error that can influence the calibration result.
6 Design features
Standard design features specified in ISO 25178-600 shall be considered in the design.
Annex A provides examples of specific design features of FV instruments.
7 General information
The relation between this document and the GPS matrix model is given in Annex C.
© ISO 2025 2026 – All rights reserved
Annex A
(informative)
Components of a focus variation instrument
A.1 Introduction
This annex is a short overview of the focus variation principle and the components of a focus variation
instrument. Further literature can be found in References [8 [8]] to [24[24].].
A.2 Typical configuration
Figure A.1Figure A.1 illustrates the typical configuration of a focus variation instrument.
© ISO 2024 2026 – All rights reserved
Key
1 electronic camera 9 light beam
2 optical components 10 analyser
3 white light source 11 polarizer (optional)
4 illumination beam splitter 12
optical axis (alternate long and short dash
line)
5 objective 13 ring light (optional)
6 sample 14 illumination pattern (optional)
7 axial scan (along optical axis) 15 reflected light
© ISO 2025 2026 – All rights reserved
8 focus information curve
1 electronic camera
2 optical components
3 white light source
4 illumination beam splitter
5 objective
6 sample
7 axial scan (along optical axis)
8 focus information curve
9 light beam
10 analyser
11 polarizer (optional)
12 optical axis (alternate long and short dash line)
13 ring light (optional)
14 illumination pattern (optional)
15 reflected light
Figure A.1— — Schematic diagram of a typical focus variation instrument
A.3 Operation principle
Focus variation combines the small depth of focus of an optical system with an axial scan along the optical axis
to provide topographical information from the variation of focus. In the following, the operating principle is
demonstrated for a typical focus variation instrument schematically shown in Figure A.1Figure A.1. The main
component of the system is the optical instrument containing various lenses that can be equipped with
different objectives allowing measurements with different resolution. With a beam splitting mirror, light
emerging from a white light source is inserted into the optical path of the system and focused onto the sample
through the objective. Depending on the topography of the sample, the light is scattered into several directions
as soon as it hits the sample through the objective. If the topography shows diffuse reflective properties, the
light is scattered strongly into all directions. In the case of specular reflection, the light is reflected mainly into
one direction. All rays emerging from the sample and hitting the objective lens are collected in the optics and
gathered by a light sensitive sensor behind the beam splitting mirror. Due to the small depth of field of the
optics, only small regions of the object are sharply imaged. To perform a complete detection of the surface
with full depth of field, the optics is moved along the optical axis while continuously capturing data from the
surface. Each region of the object is sharply focused at one of the axial positions of the scanner. Algorithms
convert the acquired sensor data into 3D information with full depth of the field. This is achieved by analysing
the variation of focus along the axial axis.
In addition to the scanned height da
...


PROJET FINAL
Norme
internationale
ISO/TC 213
Spécification géométrique des
Secrétariat: BSI
produits (GPS) - État de surface:
Début de vote:
Surfacique —
2026-01-23
Partie 606:
Vote clos le:
2026-03-20
Conception et caractéristiques
des instruments sans contact (à
variation de focale)
Geometrical product specifications (GPS) — Surface texture:
Areal —
Part 606: Design and characteristics of non-contact (focus
variation) instruments
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
PROJETS DE NORMES
TRAITEMENT PARALLÈLE ISO/CEN
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
NORMES POUVANT
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
Numéro de référence
PROJET FINAL
Norme
internationale
ISO/TC 213
Spécification géométrique des
Secrétariat: BSI
produits (GPS) - État de surface:
Début de vote:
Surfacique —
2026-01-23
Partie 606:
Vote clos le:
2026-03-20
Conception et caractéristiques
des instruments sans contact (à
variation de focale)
Geometrical product specifications (GPS) — Surface texture:
Areal —
Part 606: Design and characteristics of non-contact (focus
variation) instruments
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
DOCUMENT PROTÉGÉ PAR COPYRIGHT
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
© ISO 2026 INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
PROJETS DE NORMES
TRAITEMENT PARALLÈLE ISO/CEN
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
NORMES POUVANT
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse Numéro de référence
ii
Sommaire Page
Avant-propos .iv
Introduction .vi
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Exigences relatives aux instruments . 5
5 Caractéristiques métrologiques . . 6
6 Caractéristiques de conception . 6
7 Informations générales. 7
Annexe A (informative) Composants d’un instrument à variation de focale . 8
Annexe B (informative) Sources d'erreur de mesure pour la variation de focale .15
Annexe C (informative) Relation avec le modèle de matrice GPS . 19
Bibliographie .20

iii
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux
de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général
confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire
partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (IEC) en ce qui concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier, de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a
été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir
www.iso.org/directives).
L’ISO attire l’attention sur le fait que la mise en application du présent document peut entraîner l’utilisation
d’un ou de plusieurs brevets. L’ISO ne prend pas position quant à la preuve, à la validité et à l’applicabilité de
tout droit de propriété revendiqué à cet égard. À la date de publication du présent document, l’ISO n'avait pas
reçu notification qu’un ou plusieurs brevets pouvaient être nécessaires à sa mise en application. Toutefois,
il y a lieu d’avertir les responsables de la mise en application du présent document que des informations
plus récentes sont susceptibles de figurer dans la base de données de brevets, disponible à l'adresse
www.iso.org/brevets. L’ISO ne saurait être tenue pour responsable de ne pas avoir identifié tout ou partie de
tels droits de propriété.
Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour
information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion de
l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles techniques au
commerce (OTC), voir www.iso.org/avant-propos.
Le présent document a été élaboré par le comité technique ISO/TC 213, Spécifications et vérification
dimensionnelles et géométriques des produits, en collaboration avec le comité technique CEN/TC 290,
Spécification dimensionnelle et géométrique des produits, et vérification correspondante, du Comité européen
de normalisation (CEN) conformément à l’Accord de coopération technique entre l’ISO et le CEN (Accord de
Vienne).
Cette deuxième édition annule et remplace la première édition (ISO 25178-606:2015) qui a fait l’objet d’une
révision technique.
Les principales modifications sont les suivantes:
— suppression des termes et définitions maintenant spécifiés das l'ISO 25178-600;
— révision de tous les termes et définitions pour la clarté et la cohérence avec les autres normes ISO;
— ajout de l'Article 4 pour les exigences relatives aux instruments;
— ajout de l'Article 5 sur les caractéristiques métrologiques;
— ajout de l'Article 6 sur les caractéristiques de conception qui clarifie les types d'instruments pertinents
pour le présent document;
— ajout du diagramme conceptuel de flux d'information à l'Article 4;
— révision de l'Annexe A qui décrit les principes des instruments couverts par le présent document;
— ajout de l'Annexe B sur les caractéristiques métrologiques et les grandeurs d'influence, remplacement
du tableau normatif des grandeurs d'influence avec une description informative des sources d'erreur
courantes et comment elles sont liées aux caractéristiques métrologiques dans l'ISO 25178-600.

iv
Une liste de toutes les parties de la série ISO 25178 se trouve sur le site web de l’ISO.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes se
trouve à l’adresse www.iso.org/fr/members.html.

v
Introduction
Le présent document est une norme de spécification géométrique des produits (GPS) et est à considérer
comme une norme GPS générale (voir l’ISO 14638). Il influence le maillon F de la chaîne de normes concernant
l’état de surface du profil et surfacique.
Le modèle de matrice ISO GPS de l’ISO 14638 donne une vue d’ensemble du système ISO GPS, dont le présent
document fait partie. Les principes fondamentaux du système ISO GPS donnés dans l’ISO 8015 s’appliquent
au présent document et les règles de décision par défaut données dans l’ISO 14253-1 s’appliquent aux
spécifications faites conformément au présent document, sauf indication contraire.
Pour de plus amples informations sur la relation du présent document avec les autres normes et le modèle
de matrice GPS, voir l’Annexe C.
Le présent document comprend des termes et des définitions relatifs aux nstruments de variation de focale
pour le mesurage de la surface par topographie surfacique. L’Annexe A résume brièvement les instruments
et méthodes de variation de focale afin de clarifier les définitions et de servir de base à l’Annexe B, qui décrit
les sources d’incertitudes courantes et leur relation avec les caractéristiques métrologiques de la variation
de focale.
NOTE Certaines parties du présent document, en particulier les parties informatives, décrivent des systèmes et
méthodes brevetés. Cette information est uniquement fournie pour aider les utilisateurs à comprendre les principes
de fonctionnement de la variation de focale. Le présent document n’est ni destiné à privilégier un quelconque droit de
propriété intellectuelle, ni ne concède de licence d’utilisation de techniques brevetées décrites ici.

vi
PROJET FINAL Norme internationale ISO/FDIS 25178-606:2026(fr)
Spécification géométrique des produits (GPS) - État de
surface: Surfacique —
Partie 606:
Conception et caractéristiques des instruments sans contact
(à variation de focale)
1 Domaine d’application
Le présent document spécifie la conception et les caractéristiques des instruments à variation de focale pour
le mesurage surfacique de la topographie de surface. Comme les profils de surface peuvent être extraits des
données par topographie de surface surfacique, les méthodes décrites dans le présent document s'appliquent
également aux mesurages de prolifométrie.
Le présent document s'applique à la variation de focale sans motif d’éclairage ou avec un motif d’éclairage
fixe. Le présent document ne s'applique pas aux méthodes utilisant un motif d’éclairage variable pendant le
mesurage.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l’édition citée s’applique. Pour
les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels
amendements).
ISO 25178-600:2019, Spécification géométrique des produits (GPS) — État de surface: Surfacique — Partie 600:
Caractéristiques métrologiques pour les méthodes de mesure par topographie surfacique
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en normalisation,
consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l'adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l'adresse https:// www .electropedia .org/
3.1
variation de focale
FV
méthode de mesure par laquelle la netteté d'une série d'images de surface acquises au cours d'un balayage
axial dans un instrument optique est utilisée pour mesurer la topographie de surface
Note 1 à l'article: Dans le présent document, l'image de surface est une image d'une surface obtenue en capturant la
lumière réfléchie par la surface avec ou sans motif d’éclairage fixe.
Note 2 à l'article: Dans le présent document, la netteté est une grandeur de l'image de surface calculée par les
informations de voisinage indiquant la meilleure focalisation. D'autres noms pour la netteté sont par exemple le
contraste.
Note 3 à l'article: La variation de focale sans motif d’éclairage fixe ne fonctionne que sur les surfaces optiquement
rugueuses (voir l'ISO 25178-600:2019, 3.4.5). Si un motif d’éclairage fixe est utilisé, les surfaces optiquement lisses
(voir l'ISO 25178-600:2019, 3.4.4) peuvent également être mesurées.
3.2
capteur à variation de focale
dispositif convertissant la hauteur des points sur la surface en signaux pendant le mesurage, par la méthode
de variation de focale (3.1)
3.3
balayage axial
déplacement mécanique ou optique entre l'échantillon étudié et le système optique d'imagerie
Note 1 à l'article: L’axe optique du système optique d'imagerie est nominalement parallèle à l'axe de balayage axial du
microscope.
[SOURCE: ISO 25178-607:2019, 3.5, modifié — «système optique d'imagerie» remplacé par «axe optique du
système optique d'imagerie» dans la Note 1 à l'article.]
3.4
algorithme de mesure de la variation de focale
algorithme permettant d’analyser la variation de la focalisation afin de calculer les positions de balayage où
chaque point est le mieux focalisé
3.5
informations de focalisation
mesure permettant de quantifier le degré de focalisation sur la base de la netteté de l'image à une position
latérale donnée de l’image de la surface et à une position de balayage axial (3.3) donnée
3.6
courbe d'information de focalisation
signal enregistré pour une position latérale donnée de l’image de la surface comme fonction de la position de
balayage axial (3.3)
Note 1 à l'article: Voir Figure 1.
Note 2 à l'article: La surface est située à la position du balayage axial du pic de la courbe d'information de focalisation
(voir “c” à la Figure 1).
Note 3 à l'article: Pour améliorer la résolution dans la direction du balayage axial, le pic d’une courbe ajustée peut être
utilisé à la place de “c” à la Figure 1.

Légende
X position de balayage axial
Y information de focalisation
1 information de focalisation la plus élevée à partir des positions de balayage axial capturées
Figure 1 — Courbe d'information de focalisation
3.7
système d'éclairage à variation de focale
source de lumière avec une distribution spectrale et spatiale prédéfinie
Note 1 à l'article: Les sources lumineuses possibles sont l’éclairage coaxial, la lumière annulaire et des sources
lumineuses externes.
Note 2 à l'article: Une variante de l'éclairage coaxial consiste à utiliser un motif fixe projeté sur la surface de
l'échantillon. Par exemple, ce motif peut être un damier.
3.8
plage angulaire d’éclairage
α
plage angulaire sous laquelle l’échantillon est éclairé
Note 1 à l'article: Voir Figure 2.
Note 2 à l'article: La plage angulaire d’éclairage influe sur la pente maximale mesurable sur les surfaces optiquement
lisses.
3.8.1
plage angulaire d’éclairage coaxial
α
I
plage angulaire sous laquelle l’échantillon est éclairé de manière coaxiale
Note 1 à l'article: La valeur de α peut être influencée par le choix de l’objectif.
I
Note 2 à l'article: La valeur de α est souvent liée à la plage angulaire de détection, voir Figure 3.
I
Note 3 à l'article: Dans les cas normaux, la valeur de α peut être déduite de l’ouverture numérique de l’objectif.
I
Note 4 à l'article: Lorsque des sources d’éclairage spéciales sont utilisées (lumière annulaire, sources lumineuses
externes, etc., voir Figure 2), la plage angulaire d’éclairage (3.8) peut être largement supérieure à α .
I
3.8.2
angle d’incidence minimal d’éclairage par la lumière annulaire
β
Imin
angle entre l'axe optique et les rayons de lumière de la lumière annulaire qui illuminent l’échantillon le plus
proche de l'axe optique
Note 1 à l'article: Voir Figure 2.
3.8.3
angle d’incidence maximal d’éclairage par la lumière annulaire
β
Imax
angle entre l'axe optique et les rayons de lumière de la lumière annulaire qui illuminent l’échantillon le plus
éloigné de l'axe optique
Note 1 à l'article: Voir Figure 2.
Légende
L lentille du système optique
RL lumière annulaire
α plage angulaire d’éclairage coaxial
I
β angle d’incidence minimal d’éclairage par la lumière annulaire
Imin
β angle d’incidence maximal d’éclairage par la lumière annulaire
Imax
S échantillon
Figure 2 — Plage angulaire d’éclairage
3.9
plage angulaire de détection
α
D
plage angulaire des rayons lumineux pouvant être focalisés par l’objectif
Note 1 à l'article: Voir Figure 3.

Légende
L lentille du système optique
RL lumière annulaire
α plage angulaire de détection
D
S échantillon
Figure 3 — Plage angulaire de détection
3.10
longueur de balayage axial
plage totale parcourue par le balayage axial (3.3) du microscope de variation de focale, habituellement le
déplacement total entre l'échantillon et l'objectif du microscope déplacé par translation le long de son axe
optique pendant l'acquisition de données
Note 1 à l'article: Ce paramètre peut être limité par le déplacement total du dispositif de balayage axial, mais il s'agit
généralement d'un paramètre choisi par l'opérateur en tenant compte de la plage de hauteurs de la topographie de
surface.
[SOURCE: ISO 25178-607:2019, 3.6, modifié — «balayage axial du microscope confocal» a été remplacé par
«balayage axial du microscope de variation de focale».]
3.11
mode de polarisation
méthode permettant de filtrer les ondes lumineuses à certains états de polarisation en utilisant des éléments
optiques spéciaux appelés polariseurs (3.13) ou analyseurs (3.12)
3.12
analyseur
élément optique servant à filtrer les rayons lumineux après qu’ils aient été réfléchis par l’échantillon et
focalisés par l’objectif avant d'attendre la caméra électronique
3.13
polariseur
élément optique servant à polariser les rayons de la source lumineuse avant qu’ils soient transmis à
l’échantillon
4 Exigences relatives aux instruments
Un instrument doit effectuer des mesurages de la topographie de surface surfacique d'un échantillon en
utilisant la variation de focale. L'instrument doit comprendre un capteur à variation de focale, des optiques,
un système d'éclairage à variation de focale et un dispositif de balayage axial. L'instrument doit acquérir des
données en éclairant la surface avec une plage angulaire d'éclairage et en capturant des données à partir de

la plage angulaire de détection à plusieurs positions axiales le long de l'axe optique en effectuant un balayage
axial sur une longueur de balayage axiale. Pour améliorer les performances de la réflexion spéculaire,
l'application du mode de polarisation peut s'avérer utile. Un polariseur et un analyseur sont donc utilisés.
L'instrument doit convertir les données acquises en topographie surfacique à l'aide d'un algorithme de
mesure de la variation de focale qui calcule l'information de focalisation pour obtenir la courbe d'information
de focalisation.
La Figure 4 montre le flux d'informations entre ces éléments pour un instrument FV, de la surface réelle à
une surface à échelle limitée. Les Annexes A et B présentent des exemples de matériel, de techniques et de
sources d'erreur pour les FV.
Légende
measurande
opérateur avec modification voulue
opérateur sans modification voulue
Figure 4 — Diagramme conceptuel de flux d'information des instruments à variation de focale
5 Caractéristiques métrologiques
Les caractéristiques métrologiques normalisées des instruments de mesure d’état de surface surfacique
spécifiées dans l'ISO 25178-600 doivent être prises en compte lors de la conception et de l'étalonnage de
l'instrument.
L'Annexe B décrit les sources d'erreur de mesure qui peuvent influencer le résultat de l'étalonnage.
6 Caractéristiques de conception
Les caractéristiques de conception normalisées spécifiées dans l’ISO 25178-600 doivent être prises en
compte dans la conception.
L'Annexe A fournit des exemples de caractéristiques de conception spécifiques aux instruments FV.

7 Informations générales
La relation entre le présent document et le modèle de matrice GPS est donnée à l’Annexe C.

Annexe A
(informative)
Composants d’un instrument à variation de focale
A.1 Introduction
La présente annexe donne un bref aperçu du principe de la variation de focale et des composants d'un
instrument à variation de focale. D'autres documents peuvent être consultés dans les spécifiées dans les
Références [8] à [24].
A.2 Configuration type
La Figure A.1 représente la configuration type d’un instrument à variation de focale.

Légende
1 caméra électronique
2 composants optiques
3 source de lumière blanche
4 séparateur de faisceau d’éclairage
5 objectif
6 échantillon
7 balayage axial (le long de l'axe optique)
8 courbe d'information de focalisation
9 faisceau lumineux
10 analyseur
11 polariseur (optionnel)
12 axe optique (alterner longue et courte ligne de trait)
13 lumière annulaire (optionnel)
14 motif d'éclairage (optionnel)
15 lumière réfléchie
Figure A.1 — Représentation schématique d’un instrument à variation de focale
A.3 Principe de fonctionnement
La variation de focale combine la faible profondeur de focalisation d’un système optique par balayage axial le
long de l’axe optique pour obtenir des informations topographiques à partir de la variation de la focalisation.
Le principe de fonctionnement décrit ci-après concerne un instrument type à variation de focale, représenté
schématiquement à la Figure A.1. Le principal composant du système est l’instrument optique qui contient
différentes lentilles et qui peut être équipé de différents objectifs afin de réaliser des mesurages à des
résolutions différentes. Avec un miroir séparateur de faisceau, la lumière émise par une source de lumière
blanche est insérée dans le trajet optique du système et focalisée sur l’échantillon au travers de l’objectif.
En fonction de la topographie de l’échantillon, la lumière est dispersée dans plusieurs directions dès qu’elle
atteint l’échantillon au travers de l’objectif. Si la topographie présente des propriétés de réflexion diffuse,
la lumière est largement dispersée dans toutes les directions. En cas de réflexion spéculaire, la lumière est

réfléchie principalement suivant une direction. Tous les rayons qui partent de l’échantillon et atteignent la
lentille de l’objectif sont collectés dans le système optique et accumulés par un capteur photosensible placé
derrière le miroir séparateur de faisceau. Du fait de la faible profondeur de champ du système optique, seules
des régions réduites de l’objet sont nettes. Pour réaliser une détection complète de la surface plein champ,
le système optique se déplace le long de l’axe optique tout en capturant en continu des données provenant
de la surface. Chaque région de l’objet est nette à l’une des positions axiales du dipositif d
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...