Electric cables - Calculation of the current rating - Part 1-1: Current rating equations (100 % load factor) and calculation of losses - General

Applicable to the conditions of steady-state operation of cables at all alternating voltages, and direct voltages up to 5 kV, buried directly in the ground, in ducts, troughs or in steel pipes, both with and without partial drying-out of the soil, as well as cables in air. The term "steady state" is intended to mean a continuous constant current (100 % load factor) just sufficient to produce asymptotically the maximum conductor temperature, the surrounding ambient conditions being assumed constant. Provides formulae for current ratings and losses. The formulae given are essentially literal and designedly leave open the selection of certain important parameters. These may be divided into three groups: - parameters related to construction of a cable (for example, thermal resistivity of insulating material) for which representative values have been selected based on published work; - parameters related to the surrounding conditions, which may vary widely, the selection of which depends on the country in which the cables are used or are to be used; - parameters which result from an agreement between manufacturer and user and which involve a margin for security of service (for example, maximum conductor temperature).

Câbles électriques - Calcul du courant admissible - Partie 1-1: Equations de l'intensité du courant admissible (facteur de charge 100 %) et calcul des pertes - Généralités

Concerne uniquement le fonctionnement en régime permanent des câbles de toutes tensions alternatives et de tensions continues jusqu'à 5 kV, enterrés directement dans le sol, placés dans des fourreaux, caniveaux ou tubes d'acier, avec ou sans assèchement partiel du sol, ainsi que les câbles posés à l'air libre. On entend par "régime permanent" la circulation continue d'un courant constant (facteur de charge 100 %) juste suffisant pour atteindre asymptotiquement la température maximale de l'âme en supposant que les conditions du milieu ambiant restent inchangées. Fournit des formules pour l'intensité du courant et les pertes. Les formules proposées sont essentiellement littérales et laissent en principe libre le choix de certains paramètres importants. Ceux-ci peuvent être divisés en trois groupes: - les paramètres liés à la constitution du câble (par exemple résistance thermique de l'isolant) pour lesquels des valeurs représentatives ont été recueillies, à partir des travaux publiés; - les paramètres liés aux conditions du milieu, qui peuvent varier considérablement; le choix de ceux-ci dépend du pays où les câbles sont ou doivent être utilisés; - les paramètres résultant d'un accord entre fabricant et utilisateur et qui supposent une marge de sécurité en service (par exemple température maximale du conducteur).

General Information

Status
Published
Publication Date
12-Dec-2006
Technical Committee
TC 20 - Electric cables
Drafting Committee
WG 19 - TC 20/WG 19
Current Stage
DELPUB - Deleted Publication
Start Date
22-May-2023
Completion Date
29-Jan-2021

Relations

Effective Date
05-Sep-2023
Effective Date
05-Sep-2023
Effective Date
05-Sep-2023
Effective Date
05-Sep-2023

Overview

IEC 60287-1-1:2006 - Electric cables - Calculation of the current rating - Part 1‑1 - provides the general equations and loss‑calculation methods for determining steady‑state current ratings of electric cables (100% load factor). It applies to a.c. at all voltages and to d.c. up to 5 kV for cables buried directly in the ground, in ducts, troughs or steel pipes (with or without partial soil drying‑out), and for cables in air. The standard gives formulae for conductor resistance, losses and thermal resistances needed to compute the permissible current rating that asymptotically produces the maximum conductor temperature under constant ambient conditions.

Key topics

  • Current rating equations (100% load factor) for steady‑state operation, including conductor a.c./d.c. resistance and thermal relationships.
  • Loss calculations: conductor losses, dielectric losses (a.c.), sheath/screen and armour/reinforcement losses (power‑frequency a.c.).
  • Thermal modelling: thermal resistances between conductor, sheath, armour and surrounding medium; external thermal resistance adjusted for solar radiation.
  • Parameters and tables: representative values for electrical resistivities, temperature coefficients, skin/proximity factors, dielectric permittivities and loss factors, and solar absorption coefficients.
  • Open parameter selection: the formulae deliberately leave certain parameters (material and environment values, maximum conductor temperature) for selection by the user, manufacturer or national practice. The standard groups these into cable‑construction parameters, surrounding‑condition parameters, and manufacturer/user agreement parameters.

Practical applications

  • Cable designers and manufacturers use IEC 60287‑1‑1 to calculate permissible continuous current ratings and to size conductors and insulation for steady‑state loading.
  • Utilities and consulting engineers apply the equations when specifying underground or above‑ground cable systems, assessing thermal performance in soils, ducts and air, and determining derating for installation conditions.
  • Asset owners and planners use the loss and thermal data for network loss estimation, thermal planning and agreeing allowable conductor temperatures in procurement contracts.
  • Researchers and standards committees reference the tables and coefficients (skin/proximity, permittivity, resistivity) for modelling and harmonizing national rating practices.

Related standards

Normative references cited include: IEC 60027‑3, IEC 60028, IEC 60141 (all parts), IEC 60228, IEC 60502‑1, IEC 60502‑2, IEC 60889, and other parts of the IEC 60287 series (e.g., Part 3‑1 for national soil/ambient values).

IEC 60287‑1‑1 is essential reading for anyone involved in cable current rating, thermal analysis, loss calculation and specification of cable systems under steady‑state loading. Keywords: IEC 60287-1-1, current rating, electric cables, cable losses, steady-state operation, thermal resistivity, soil thermal resistivity.

Standard

IEC 60287-1-1:2006 - Electric cables - Calculation of the current rating - Part 1-1: Current rating equations (100 % load factor) and calculation of losses - General Released:12/13/2006

English language
33 pages
sale 15% off
Preview
sale 15% off
Preview
Standard

IEC 60287-1-1:2006 - Câbles électriques - Calcul du courant admissible - Partie 1-1: Equations de l'intensité du courant admissible (facteur de charge 100 %) et calcul des pertes - Généralités Released:12/13/2006

French language
33 pages
sale 15% off
Preview
sale 15% off
Preview
Standard

IEC 60287-1-1:2006 - Electric cables - Calculation of the current rating - Part 1-1: Current rating equations (100 % load factor) and calculation of losses - General

English and French language
65 pages
sale 15% off
Preview
sale 15% off
Preview
Standard

IEC 60287-1-1:2006+AMD1:2014 CSV - Electric cables - Calculation of the current rating - Part 1-1:Current rating equations (100 % load factor) and calculation of losses - General Released:11/13/2014 Isbn:9782832219263

English and French language
136 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

IEC 60287-1-1:2006 is a standard published by the International Electrotechnical Commission (IEC). Its full title is "Electric cables - Calculation of the current rating - Part 1-1: Current rating equations (100 % load factor) and calculation of losses - General". This standard covers: Applicable to the conditions of steady-state operation of cables at all alternating voltages, and direct voltages up to 5 kV, buried directly in the ground, in ducts, troughs or in steel pipes, both with and without partial drying-out of the soil, as well as cables in air. The term "steady state" is intended to mean a continuous constant current (100 % load factor) just sufficient to produce asymptotically the maximum conductor temperature, the surrounding ambient conditions being assumed constant. Provides formulae for current ratings and losses. The formulae given are essentially literal and designedly leave open the selection of certain important parameters. These may be divided into three groups: - parameters related to construction of a cable (for example, thermal resistivity of insulating material) for which representative values have been selected based on published work; - parameters related to the surrounding conditions, which may vary widely, the selection of which depends on the country in which the cables are used or are to be used; - parameters which result from an agreement between manufacturer and user and which involve a margin for security of service (for example, maximum conductor temperature).

Applicable to the conditions of steady-state operation of cables at all alternating voltages, and direct voltages up to 5 kV, buried directly in the ground, in ducts, troughs or in steel pipes, both with and without partial drying-out of the soil, as well as cables in air. The term "steady state" is intended to mean a continuous constant current (100 % load factor) just sufficient to produce asymptotically the maximum conductor temperature, the surrounding ambient conditions being assumed constant. Provides formulae for current ratings and losses. The formulae given are essentially literal and designedly leave open the selection of certain important parameters. These may be divided into three groups: - parameters related to construction of a cable (for example, thermal resistivity of insulating material) for which representative values have been selected based on published work; - parameters related to the surrounding conditions, which may vary widely, the selection of which depends on the country in which the cables are used or are to be used; - parameters which result from an agreement between manufacturer and user and which involve a margin for security of service (for example, maximum conductor temperature).

IEC 60287-1-1:2006 is classified under the following ICS (International Classification for Standards) categories: 29.060.20 - Cables. The ICS classification helps identify the subject area and facilitates finding related standards.

IEC 60287-1-1:2006 has the following relationships with other standards: It is inter standard links to IEC 60287-1-1:2006/AMD1:2014, IEC 60287-1-1:1994, IEC 60287-1-1:1994/AMD2:2001, IEC 60287-1-1:2023. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase IEC 60287-1-1:2006 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of IEC standards.

Standards Content (Sample)


INTERNATIONAL IEC
STANDARD 60287-1-1
Second edition
2006-12
Electric cables –
Calculation of the current rating –
Part 1-1:
Current rating equations (100 % load factor)
and calculation of losses – General
This English-language version is derived from the original
bilingual publication by leaving out all French-language
pages. Missing page numbers correspond to the French-
language pages.
Reference number
Publication numbering
As from 1 January 1997 all IEC publications are issued with a designation in the

60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions
The IEC is now publishing consolidated versions of its publications. For example,

edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the

base publication incorporating amendment 1 and the base publication incorporating

amendments 1 and 2.
Further information on IEC publications
The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:
x IEC Web Site (www.iec.ch)
x Catalogue of IEC publications
The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to
search by a variety of criteria including text searches, technical committees
and date of publication. On-line information is also available on recently issued
publications, withdrawn and replaced publications, as well as corrigenda.
x IEC Just Published
This summary of recently issued publications (www.iec.ch/online_news/ justpub)
is also available by email. Please contact the Customer Service Centre (see
below) for further information.
x Customer Service Centre
If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:
Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00
INTERNATIONAL IEC
STANDARD 60287-1-1
Second edition
2006-12
Electric cables –
Calculation of the current rating –
Part 1-1:
Current rating equations (100 % load factor)
and calculation of losses – General

” IEC 2006 Copyright - all rights reserved
No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying and microfilm, without permission in writing from the publisher.
International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
PRICE CODE
Commission Electrotechnique Internationale V
International Electrotechnical Commission
ɆɟɠɞɭɧɚɪɨɞɧɚɹɗɥɟɤɬɪɨɬɟɯɧɢɱɟɫɤɚɹɄɨɦɢɫɫɢɹ
For price, see current catalogue

60287-1-1 © IEC:2006 – 3 –
CONTENTS
FOREWORD.5

INTRODUCTION.9

1 General .11

1.1 Scope.11

1.2 Normative references .11

1.3 Symbols .13

1.4 Permissible current rating of cables.19
2 Calculation of losses .25
2.1 AC resistance of conductor.25
2.2 Dielectric losses (applicable to a.c. cables only).31
2.3 Loss factor for sheath and screen (applicable to power frequency a.c. cables
only).31
2.4 Loss factor for armour, reinforcement and steel pipes (applicable to power
frequency a.c. cables only).49
Table 1 – Electrical resistivities and temperature coefficients of metals used.59
Table 2 – Skin and proximity effects – Experimental values for the coefficients k and k .61
s p
Table 3 – Values of relative permittivity and loss factors for the insulation of high-
voltage and medium-voltage cables at power frequency.63
Table 4 – Absorption coefficient of solar radiation for cable surfaces .65

60287-1-1 © IEC:2006 – 5 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION

____________
ELECTRIC CABLES –
CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor)

and calculation of losses – General

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60287-1-1 has been prepared by IEC technical committee 20:
Electric cables.
This second edition cancels and replaces the first edition published in 1994, Amendment 1
(1995) and Amendment 2 (2001) The document 20/780/FDIS, circulated to the National
Committees as Amendment 3, led to the publication of this new edition.

60287-1-1 © IEC:2006 – 7 –
The text of this standard is based on the first edition, its Amendments 1 and 2, and the
following documents:
FDIS Report on voting
20/851/FDIS 20/867/RVD
Full information on the voting for the approval of this standard can be found in the report on

voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 60287 series, published under the general title: Electric cables –
Calculation of the current rating, can be found on the IEC website.
The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
60287-1-1 © IEC:2006 – 9 –
INTRODUCTION
This Part 1-1 contains formulae for the quantities R, W , λ and λ .
d 1 2
It contains methods for calculating the permissible current rating of cables from details of the

permissible temperature rise, conductor resistance, losses and thermal resistivities.

Formulae for the calculation of losses are also given.

The formulae in this standard contain quantities which vary with cable design and materials

used. The values given in the tables are either internationally agreed, for example, electrical
resistivities and resistance temperature coefficients, or are those which are generally
accepted in practice, for example, thermal resistivities and permittivities of materials. In this
latter category, some of the values given are not characteristic of the quality of new cables
but are considered to apply to cables after a long period of use. In order that uniform and
comparable results may be obtained, the current ratings should be calculated with the values
given in this standard. However, where it is known with certainty that other values are more
appropriate to the materials and design, then these may be used, and the corresponding
current rating declared in addition, provided that the different values are quoted.
Quantities related to the operating conditions of cables are liable to vary considerably from
one country to another. For instance, with respect to the ambient temperature and soil thermal
resistivity, the values are governed in various countries by different considerations.
Superficial comparisons between the values used in the various countries may lead to
erroneous conclusions if they are not based on common criteria: for example, there may be
different expectations for the life of the cables, and in some countries design is based on
maximum values of soil thermal resistivity, whereas in others average values are used.
Particularly, in the case of soil thermal resistivity, it is well known that this quantity is very
sensitive to soil moisture content and may vary significantly with time, depending on the soil
type, the topographical and meteorological conditions, and the cable loading.
The following procedure for choosing the values for the various parameters should, therefore,
be adopted.
Numerical values should preferably be based on results of suitable measurements. Often
such results are already included in national specifications as recommended values, so that
the calculation may be based on these values generally used in the country in question; a
survey of such values is given in Part 3-1.
A suggested list of the information required to select the appropriate type of cable is given in
Part 3-1.
60287-1-1 © IEC:2006 – 11 –
ELECTRIC CABLES –
CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor)

and calculation of losses – General

1 General
1.1 Scope
This part of IEC 60287 is applicable to the conditions of steady-state operation of cables at all
alternating voltages, and direct voltages up to 5 kV, buried directly in the ground, in ducts,
troughs or in steel pipes, both with and without partial drying-out of the soil, as well as cables
in air. The term "steady state" is intended to mean a continuous constant current (100 % load
factor) just sufficient to produce asymptotically the maximum conductor temperature, the
surrounding ambient conditions being assumed constant.
This part provides formulae for current ratings and losses.
The formulae given are essentially literal and designedly leave open the selection of certain
important parameters. These may be divided into three groups:
– parameters related to construction of a cable (for example, thermal resistivity of insulating
material) for which representative values have been selected based on published work;
– parameters related to the surrounding conditions, which may vary widely, the selection of
which depends on the country in which the cables are used or are to be used;
– parameters which result from an agreement between manufacturer and user and which
involve a margin for security of service (for example, maximum conductor temperature).
1.2 Normative references
The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.
IEC 60027-3, Letter symbols to be used in electrical technology – Part 3: Logarithmic and
related quantities, and their units

IEC 60028:1925, International standard of resistance for copper
IEC 60141 (all parts), Tests on oil-filled and gas-pressure cables and their accessories
IEC 60228, Conductors of insulated cables
IEC 60502-1, Power cables with extruded insulation and their accessories for rated voltages
from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) – Part 1: Cables for rated voltages of 1 kV
(Um = 1,2 kV) and 3 kV (Um = 3,6 kV)

60287-1-1 © IEC:2006 – 13 –
IEC 60502-2, Power cables with extruded insulation and their accessories for rated voltages
from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) – Part 2: Cables for rated voltages from 6
kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV)

IEC 60889, Hard-drawn aluminium wire for overhead line conductors

1.3 Symbols
The symbols used in this standard and the quantities which they represent are given in the

following list:
A cross-sectional area of the armour mm²
B
1 ½
coefficients (see 2.4.2)
¾
B
¿
C capacitance per core F/m
*
D external diameter of cable m
e
D diameter over insulation mm
i
D external diameter of metal sheath mm
s
D the diameter of the imaginary coaxial cylinder which just touches
oc
the crests of a corrugated sheath mm
D the diameter of the imaginary cylinder which just touches the
it
inside surface of the troughs of a corrugated sheath mm
F coefficient defined in 2.3.5
H intensity of solar radiation W/m²
H magnetizing force (see 2.4.2) ampere turns/m
H inductance of sheath H/m
s
H
1 ½
°
components of inductance due to the steel wires (see 2.4.2)
H H/m
¾
°
H
¿
I current in one conductor (r.m.s. value) A
½
M
coefficients defined in 2.3.5
¾
N
¿
P Ω/m
½
coefficients defined in 2.3.3
¾
Q
¿
R alternating current resistance of conductor at its maximum
operating temperature Ω/m
R a.c. resistance of armour at its maximum operating temperature Ω/m
A
R a.c. resistance of armour at 20 °C Ω/m
Ao
R equivalent a.c. resistance of sheath and armour in parallel Ω/m
e
R a.c. resistance of cable sheath or screen at their maximum operating
s
temperature Ω/m
R a.c. resistance of cable sheath or screen at 20 °C Ω/m
so
R′ d.c. resistance of conductor at maximum operating temperature Ω/m
R d.c. resistance of conductor at 20 °C Ω/m
o
T thermal resistance per core between conductor and sheath K.m/W
T thermal resistance between sheath and armour K.m/W
T thermal resistance of external serving K.m/W
T thermal resistance of surrounding medium (ratio of cable surface
temperature rise above ambient to the losses per unit length) K.m/W

60287-1-1 © IEC:2006 – 15 –
*
T external thermal resistance in free air, adjusted for solar radiation K.m/W
U voltage between conductor and screen or sheath V
o
W losses in armour per unit length W/m
A
W losses in conductor per unit length W/m
c
W dielectric losses per unit length per phase W/m
d
W losses dissipated in sheath per unit length W/m
s
W total losses in sheath and armour per unit length W/m
(s+A)
X reactance of sheath (two-core cables and three-core cables in trefoil) Ω/m

X reactance of sheath (cables in flat formation) Ω/m
X mutual reactance between the sheath of one cable and the conductors
m
of the other two when cables are in flat information Ω/m
a shortest minor length in a cross-bonded electrical section having
unequal minor lengths
c distance between the axes of conductors and the axis of the cable for
three-core cables (= 0,55 r + 0,29 t for sector-shaped conductors) mm
d mean diameter of sheath or screen mm
d′ mean diameter of sheath and reinforcement mm
d mean diameter of reinforcement mm
d mean diameter of armour mm
A
d external diameter of conductor mm
c
d′ external diameter of equivalent round solid conductor having the
c
same central duct as a hollow conductor mm
d internal diameter of pipe mm
d
d diameter of a steel wire mm
f
d internal diameter of hollow conductor mm
i
d major diameter of screen or sheath of an oval conductor mm
M
d minor diameter of screen or sheath of an oval conductor mm
m
d diameter of an equivalent circular conductor having the same
x
cross-sectional area and degree of compactness as the shaped one mm
f system frequency Hz
g coefficient used in 2.3.6.1
s
k factor used in the calculation of hysteresis losses in armour or
reinforcement (see 2.4.2.4)
k factor used in calculating x (proximity effect)
p p
k factor used in calculating x (skin effect)
s s
l length of a cable section (general symbol, see 2.3 and 2.3.4) m
ln natural logarithm (logarithm to base e, see IEC 60027-3)
ω
–7
m 10
R
s
n number of conductors in a cable
n number of steel wires in a cable (see 2.4.2)
p length of lay of a steel wire along a cable (see 2.4.2)
p
½
coefficients used in 2.3.6.2
¾
q
¿
r circumscribing radius of two- or three-sector shaped conductors mm
60287-1-1 © IEC:2006 – 17 –
s axial separation of conductors mm

s axial separation of two adjacent cables in a horizontal group of three,

not touching mm
s axial separation of cables (see 2.4.2) mm

t insulation thickness between conductors mm

t thickness of the serving mm
t thickness of the sheath mm
s
v ratio of the thermal resistivities of dry and moist soils (v = ρ /ρ )

d w
x argument of a Bessel function used to calculate proximity effect
p
x argument of a Bessel function used to calculate skin effect
s
yp proximity effect factor
½
(see 2.1)
¾
ys skin effect factor
¿
α temperature coefficient of electrical resistivity at 20 °C, per kelvin I/K
β angle between axis of armour wires and axis of cable (see 2.4.2)
β coefficient used in 2.3.6.1
γ angular time delay (see 2.4.2)
Δ
½
coefficients used in 2.3.6.1
¾
Δ
¿
δ equivalent thickness of armour or reinforcement mm
tan δ loss factor of insulation
ε relative permittivity of insulation
θ maximum operating temperature of conductor °C
θ ambient temperature °C
a
θ maximum operating temperature of armour °C
ar
θ maximum operating temperature of cable screen or sheath °C
sc
θ critical temperature of soil; this is the temperature of the boundary
x
between dry and moist zones °C
Δθ permissible temperature rise of conductor above ambient temperature K
Δθ critical temperature rise of soil; this is the temperature rise of the boundary
x
between dry and moist zones above the ambient temperature of the soil K
λ coefficient used in 2.3.6.1
λ , λ ratio of the total losses in metallic sheaths and armour respectively to
1 2
the total conductor losses (or losses in one sheath or armour to
the losses in one conductor)

λ ratio of the losses in one sheath caused by circulating currents in
the sheath to the losses in one conductor
′′
λ ratio of the losses in one sheath caused by eddy currents to
the losses in one conductor
½

λ loss factor for the middle cable
°
1m
°
Three cables in flat forma-

λ loss factor for the outer cable with
°
tion without transposition,
¾
the greater losses °
with sheaths bonded at both
°
ends

λ loss factor for the outer cable with
12 °
¿
the least losses
60287-1-1 © IEC:2006 – 19 –
μ relative magnetic permeability of armour material

μ longitudinal relative permeability
e
μ transverse relative permeability
t
ρ conductor resistivity at 20 °C Ω·m

ρ thermal resistivity of dry soil K.m/W
d
ρ thermal resistivity of moist soil K.m/W
w
ρ sheath resistivity at 20 °C Ω·m
s
σ absorption coefficient of solar radiation for the cable surface

ω angular frequency of system (2πf)
1.4 Permissible current rating of cables
When the permissible current rating is being calculated under conditions of partial drying out
of the soil, it is also necessary to calculate a rating for conditions where drying out of the soil
does not occur. The lower of the two ratings shall be used.
1.4.1 Buried cables where drying out of the soil does not occur or cables in air
1.4.1.1 AC cables
The permissible current rating of an a.c. cable can be derived from the expression for the
temperature rise above ambient temperature:
2 2 2
Δθ = (I R + ½ W ) T + [I R (1 + λ ) + W ] n T + [I R (1 + λ + λ ) + W ] n (T + T )
d 1 1 d 2 1 2 d 3 4
where
I is the current flowing in one conductor (A);
Δθ is the conductor temperature rise above the ambient temperature (K);
NOTE  The ambient temperature is the temperature of the surrounding medium under normal conditions, at
a situation in which cables are installed, or are to be installed, including the effect of any local source of
heat, but not the increase of temperature in the immediate neighbourhood of the cables due to heat arising
therefrom.
R is the alternating current resistance per unit length of the conductor at maximum
operating temperature (Ω/m);
W is the dielectric loss per unit length for the insulation surrounding the conductor (W/m);
d
T is the thermal resistance per unit length between one conductor and the sheath
(K.m/W);
T is the thermal resistance per unit length of the bedding between sheath and armour
(K.m/W);
T is the thermal resistance per unit length of the external serving of the cable (K.m/W);
T is the thermal resistance per unit length between the cable surface and the surrounding
medium, as derived from 2.2 of Part 2 (K.m/W);
n is the number of load-carrying conductors in the cable (conductors of equal size and
carrying the same load);
λ is the ratio of losses in the metal sheath to total losses in all conductors in that cable;
λ is the ratio of losses in the armouring to total losses in all conductors in that cable.
60287-1-1 © IEC:2006 – 21 –
The permissible current rating is obtained from the above formula as follows:

0,5
ª Δθ − W[]0,5 T + n (T + T + T ) º
d 1 2 3 4
I =
« »
RT + nR (1 + λ )ȉ + nR (1 + λ + λ ) (T + T )
1 1 2 1 2 3 4
¬ ¼
Where the cable is exposed to direct solar radiation, the formulae given in 2.2.1.2 of Part 2

shall be used.
The current rating for a four-core low-voltage cable may be taken to be equal to the current

rating of a three-core cable for the same voltage and conductor size having the same

construction, provided that the cable is to be used in a three-phase system where the fourth

conductor is either a neutral conductor or a protective conductor. When it is a neutral
conductor, the current rating applies to a balanced load.
1.4.1.2 DC cables up to 5 kV
The permissible current rating of a d.c. cable is obtained from the following simplification of
the a.c. formula:
0,5
Δθ
ª º
I =
« »
′ ′ ′
R T + nR ȉ + nR (T + T )
¬ 1 2 3 4 ¼
where
R′ is the direct current resistance per unit length of the conductor at maximum operating
temperature (Ω/m).
Where the cable is exposed to direct solar radiation, the formulae given in 2.2.1.2 of Part 2
shall be used.
1.4.2 Buried cables where partial drying-out of the soil occurs
1.4.2.1 AC cables
The following method shall be applied to a single isolated cable or circuit only, laid at
conventional depths. The method is based on a simple two-zone approximate physical model
of the soil where the zone adjacent to the cable is dried out whilst the other zone retains the
1)
site's thermal resistivity, the zone boundary being on isotherm . This method is considered
to be appropriate for those applications in which soil behaviour is considered in simple terms
only.
NOTE  Installations of more than one circuit as well as the necessary spacing between circuits are under
consideration.
Changes in external thermal resistance, consequent to the formation of a dry zone around a

single isolated cable or circuit, shall be obtained from the following formula (compared with
the formula of 1.4.1.1):
0,5
ª º
[]
Δθ − W 0,5 T + n (T + T + vT ) + (v − 1) Δθ
d 1 2 3 4 x
I =
« »
R[]T + n (1 + λ )ȉ + n (1 + λ + λ ) (T + vT )
« »
¬ 1 1 2 1 2 3 4 ¼
where
v is the ratio of the thermal resistivities of the dry and moist soil zones (v = ρ /ρ );
d w
R is the a.c. resistance of the conductor at its maximum operating temperature (Ω/m);
________
1)
"Current ratings of cables buried in partially dried-out soil, Part 1": Electra No. 104, p. 11, January 1966
(in particular section 3 and Appendix 1).

60287-1-1 © IEC:2006 – 23 –
ρ is the thermal resistivity of the dry soil (K.m/W);
d
ρ is the thermal resistivity of the moist soil (K.m/W);
w
θ is the critical temperature of the soil and temperature of the boundary between dry and
x
moist zones (°C);
θ is the ambient temperature (°C);
a
Δθ is the critical temperature rise of the soil. This is the temperature rise of the boundary
x
between the dry and moist zones above the ambient temperature of the soil (θ – θ ) (K);
x a
NOTE  T is calculated using the thermal resistivity of the moist soil (ρ ) using 2.2.3.2 of Part 2. Mutual
4 w
heating by modification of the temperature rise as in 2.2.3.1 of Part 2 cannot be applied.
θ and ρ shall be determined from a knowledge of the soil conditions.
x d
NOTE  The choice of suitable soil parameters is under consideration. In the meantime, values may be agreed
between manufacturer and purchaser.
1.4.2.2 DC cables up to 5 kV
The permissible current rating of a d.c. cable is obtained from the following simplification of
the a.c. formula:
0,5
ª º
Δθ + (v − 1) Δθ
x
I =
« »
′[]
R T + nȉ + n (T + vT )
« »
¬ 1 2 3 4 ¼
where
R′ is the direct current resistance per unit length of the conductor at maximum operating
temperature (Ω/m).
1.4.3 Buried cables where drying-out of the soil is to be avoided
1.4.3.1 AC cables
Where it is desired that moisture migration be avoided by limiting the temperature rise of the
cable surface to not more than Δθ , the corresponding rating shall be obtained from:
x
0,5
ª º
Δθ + n W T
x d 4
I =
« »
nRT (1 + λ + λ )
« »
¬ 4 1 2 ¼
However, depending on the value of Δθ this may result in a conductor temperature which
x
exceeds the maximum permissible value. The current rating used shall be the lower of the two
values obtained, either from the above equation or from 1.4.1.1.
The conductor resistance R shall be calculated for the appropriate conductor temperature,
which may be less than the maximum permitted value. An estimate of the operating
temperature shall be made and, if necessary, subsequently amended.
NOTE For four-core low-voltage cables, see the final paragraph in 1.4.1.1.

60287-1-1 © IEC:2006 – 25 –
1.4.3.2 DC cables up to 5 kV
The permissible current rating of a d.c. cable shall be obtained from the following simpli-

fication of the a.c. formula:
0,5
ª º
Δθ
x
I =
« »
nR T

¬ 4 ¼
The conductor resistance R′ shall be modified as in 1.4.2.2.

1.4.4 Cables directly exposed to solar radiation
Permissible current ratings
Taking into account the effect of solar radiation on a cable, the permissible current rating is
given by the formulae:
1.4.4.1 AC cables
0,5
* * *
ª º
Δθ − W[]0,5 T + n (T + T + T ) − σ D H T
d 1 2 3 4 e 4
I =
« »
*
RT + nR (1 + λ )ȉ + nR (1 + λ + λ ) (T + T )
« »
1 1 2 1 2 3 4
¬ ¼
1.4.4.2 DC cables up to 5 kV
0,5
* *
ª º
Δθ − σ D H T
e 4
I =
« »
*
′ ′ ′
R T + nR ȉ + nR (T + T )
« »
1 2 3 4
¬ ¼
where
σ is the absorption coefficient of solar radiation for the cable surface (see Table 4);
H is the intensity of solar radiation which should be taken as 10 W/m² for most latitudes;
it is recommended that the local value should be obtained where possible;
*
T is the external thermal resistance of the cable in free air, adjusted to take account of
solar radiation (see part 2) (K.m/W);
* * –3
D is the external diameter of cable (m) for corrugated sheaths D = (d + 2t ) ⋅ 10 (m);
e e oc 3
t is the thickness of the serving (mm).
2 Calculation of losses
2.1 AC resistance of conductor
The a.c. resistance per unit length of the conductor at its maximum operating temperature is
given by the following formula, except in the case of pipe-type cables (see 2.1.5):
R = R′ (1 + y + y )
s p
where
R is the current resistance of conductor at maximum operating temperature (Ω/m);
R′ is the d.c. resistance of conductor at maximum operating temperature (Ω/m);
y is the skin effect factor;
s
y is the proximity effect factor.
p
60287-1-1 © IEC:2006 – 27 –
2.1.1 DC resistance of conductor

The d.c. resistance per unit length of the conductor at its maximum operating temperature θ is

given by:
R′ = R [1 + α (θ – 20)]
o 20
where
R is the d.c. resistance of the conductor at 20 °C (Ω/m);
o
The value of R shall be derived directly from IEC 60228. Where the conductor size is
o
outside the range covered by IEC 60228, the value of R may be chosen by agreement
o
between manufacturer and purchaser. The conductor resistance should then be
calculated using the values of resistivity given in Table 1.
α is the constant mass temperature coefficient at 20 °C per kelvin (see Table 1 for
standard values);
θ is the maximum operating temperature in degrees Celsius (this will be determined by
the type of insulation to be used); see appropriate IEC specification or national
standard.
2.1.2 Skin effect factor y
s
The skin effect factor y is given by:
s
x
s
y =
s
192 + 0,8 x
s
where
8πf
−7
x = 10 k
s s

R
f is the supply frequency in hertz.
Values for k are given in Table 2.
s
The above formula is accurate providing x does not exceed 2,8, and therefore applies to the
s
majority of practical cases.
In the absence of alternative formulae it is recommended that the above formula should be
used for sector and oval-shaped conductors.
2.1.3 Proximity effect factor y for two-core cables and for two single-core cables
p
The proximity effect factor is given by:
x
d
§ ·
p
c
y = ¨ ¸ × 2,9
p
¨ ¸
192 + 0,8 x s
© ¹
p
where
8πf
−7
x = 10 k
p p
R′
d is the diameter of conductor (mm);
c
s is the distance between conductor axes (mm).
Values for k are given in Table 2.
p
60287-1-1 © IEC:2006 – 29 –
The above formula is accurate providing x does not exceed 2,8, and therefore applies to the
p
majority of practical cases.
2.1.4 Proximity effect factor y for three-core cables and for three single-core cables
p
2.1.4.1 Circular conductor cables

The proximity effect factor is given by:

ª º
« »
2 2
x
§ d · § d · 1,18
p « »
c c
y = ¨ ¸ 0,312¨ ¸ +
p
¨ ¸ « ¨ ¸ »
4 4
192 + 0,8 x s s x
© ¹ © ¹ p
p
« »
+ 0,27
« »
192 + 0,8 x
p
¬ ¼
where
8πf
−7
x = 10 k
p p

R
d is the diameter of conductor (mm);
c
s is the distance between conductor axes (mm).
NOTE  For cables in flat formation, s is the spacing between adjacent phases. Where the spacing between
adjacent phases is not equal, the distance will be taken as s = s × s .
1 2
Values for k are given in Table 2.
p
The above formula is accurate provided x does not exceed 2,8, and therefore applies to the
p
majority of practical cases.
2.1.4.2 Shaped conductor cables
In the case of multicore cables with shaped conductors, the value of y shall be two-thirds of
p
the value calculated according to 2.1.4.1,
with:
d = d = diameter of an equivalent circular conductor of the same cross-sectional area, and
c x
degree of compaction (mm);
s = (d + t) (mm),
x
where
t is the thickness of insulation between conductors (mm).
Values for k are given in Table 2.
p
The above formula is accurate provided x does not exceed 2,8, and therefore applies to the
p
majority of practical cases.
2.1.5 Skin and proximity effects in pipe-type cables
For pipe-type cables, the skin and proximity effects calculated according to 2.1.2, 2.1.3
and 2.1.4 shall be increased by a factor of 1,5. For these cables,

[ ()]
R = R 1 + 1,5 y + y (Ω/m)
s p
60287-1-1 © IEC:2006 – 31 –
2.2 Dielectric losses (applicable to a.c. cables only)

The dielectric loss is voltage dependent and thus only becomes important at voltage levels

related to the insulation material being used. Table 3 gives, for the insulation materials in

common use, the value of U at which the dielectric loss should be taken into account where
o
three-core screened or single-core cables are used. It is not necessary to calculate the

dielectric loss for unscreened multicore or d.c. cables.

The dielectric loss per unit length in each phase is given by:

W = ω C U tan δ  (W/m)
d
o
where
ω = 2πf;
C is the capacitance per unit length (F/m);
U is the voltage to earth (V).
o
Values of tan δ, the loss factor of the insulation at power frequency and operating
temperature, are given in Table 3.
The capacitance for circular conductors is given by:
ε
–9
C = 10  (F/m)
D
§ ·
i
18ǿn¨ ¸
d
© c ¹
where
ε is the relative permittivity of the insulation;
D is the external diameter of the insulation (excluding screen) (mm);
i
d is the diameter of conductor, including screen, if any (mm).
c
The same formula can be used for oval conductors if the geometric mean of the appropriate
major and minor diameters is substituted for D and d .
i c
Values of ε are given in Table 3.
2.3 Loss factor for sheath and screen (applicable to power frequency a.c. cables only)
The power loss in the sheath or screen (λ ) consists of losses caused by circulating currents
′ ′′
( λ ) and eddy currents ( λ ),
1 1
thus:
λ = λ′ + λ′′
1 1
The formulae given in this section express the loss in terms of the total power loss in the
conductor(s) and for each particular case it is indicated which type of loss has to be
considered. The formulae for single-core cables apply to single circuits only and the effects of
earth return paths are neglected. Methods are given for both smooth-sided and corrugated
sheaths.
60287-1-1 © IEC:2006 – 33 –
For single-core cables with sheaths bonded at both ends of an electrical section, only the loss
due to circulating currents in the sheaths need be considered (see 2.3.1, 2.3.2 and 2.3.3). An
electrical section is defined as a portion of the route between points at which the sheaths or

screens of all cables are solidly bonded.

An allowance has usually also to be made for increased spacing at certain points on the route

(see 2.3.4).
For cables with large segmental conductors, the loss factor should be increased to take

account of the loss due to eddy currents in the sheaths (see 2.3.5).

For a cross-bonded installation, it is considered unrealistic to assume that minor sections are
electrically identical and that the loss due to circulating currents in the sheaths is negligible.
Recommendations are made in 2.3.6 for augmenting the losses in the sheaths to take account
of this electrical unbalance.
The electrical resistivities and temperature coefficients of lead and aluminium, for use in
calculating the resistance of the sheath R are given in Table 1.
s
The formulae given in this subclause use the resistance of the sheath or screen at its
maximum operating temperature. The maximum operating temperature of the sheath or
screen is given by:
θ = θ − (I R + 0,5W )T (°C)
sc c d 1
where
θ is the maximum operating temperature of the cable screen or sheath (°C).
sc
Because the temperature of the sheath or screen is a function of the current, I, an iterative
method is used for the calculation.
The resistance of the sheath or screen at its maximum operating temperature is given by:
R = R[]1+ α()θ − 20 (Ω/m)
s so 20 sc
where
R is the resistance of the cable sheath or screen at 20 °C (Ω/m).
so
2.3.1 Two single-core cables, and three single-core cables (in trefoil formation),
sheaths bonded at both ends of an electrical section
For two single-core cables, and three single-core cables (in trefoil formation) with sheaths
bonded at both ends, the loss factor is given by:
R
s 1

λ =
R
R
§ ·
s
1+¨ ¸
X
© ¹
where
R is the resistance of sheath or screen per unit length of cable at its maximum operating
s
temperature (Ω/m);
60287-1-1 © IEC:2006 – 35 –
X is the reactance per unit length of sheath or screen per unit length of cable (Ω/m)

§ 2 s·
–7
= 2 ω 10 In ¨ ¸ (Ω/m);
¨ ¸
d
© ¹
ω = 2 π× frequency (1/s);
s is the distance between conductor axes in the electrical section being considered (mm);

d is the mean diameter of the sheath (mm);

– for oval-shaped cores, d is given by d ⋅ d ;
M m
where d and d are the major and minor mean diameters respectively of the sheath
M m
– for corrugated sheaths, d is given by ½ (D + D );
oc it
′′
λ = 0, i.e. eddy-current loss is ignored, except for cables having large conductors of
′′
segmental construction when λ is calculated by the method given in 2.3.5.
2.3.2 Three single-core cables in flat formation, with regular transposition,
sheaths bonded at both ends of an electrical section
For three single-core cables in flat formation, with the middle cable equidistant from the outer
cables, regular transposition of the cables and the sheaths bonded at every third
transposition, the loss factor is given by:
R
s 1

λ =
R
§ R ·
s
1+¨ ¸
X
© 1¹
where
X is the reactance per unit length of sheath (Ω/m)
­ s ½
§ ·
−7 3
= X = 2ω10 ln 2 2¨ ¸
® ¾
d
© ¹
¯ ¿
′′
λ = 0, i.e. eddy-current loss is ignored, except for cables having large conductors of
′′
segmental construction when λ is calculated by the method given in 2.3.5.
2.3.3 Three single-core cables in flat formation, without transposition,
sheaths bonded at both ends of an electrical section

For three single-core cables in flat formation, with the middle cable equidistant from the outer
cables, without transposition and with the sheaths bonded at both ends of an electrical
section, the loss factor for the cable which has the greatest loss (i.e. the outer cable carrying
the lagging phase) is given by:
ª º
2 2
R 0,75 P 0,25 Q 2 R P Q X
s s m
λ′ = « + + »
2 2 2 2
2 2 2 2
R « R + P R + Q »
3 (R + P ) (R + Q )
s s
s s
¬ ¼
For the other outer cable, the loss factor is given by:
2 2
ª º
R 0,75 P 0,25Q 2R P Q X
s s m
λ′ = « + − »
2 2 2 2 2 2 2 2
R
« »
R + P R + Q 3 (R + P ) (R + Q )
s s s s
¬ ¼
60287-1-1 © IEC:2006 – 37 –
For the middle cable, the loss factor is given by:

R
Q
s

λ =
1m
2 2
R R + Q
s
In these formulae:
P = X + X
m
X
m
Q = X –
where
X is the reactance of sheath or screen per unit length of cable for two adjacent single-core
cables (Ω/m)
2 s
§ ·
–7
= 2 ω 10 In ¨ ¸ (Ω/m);
¨ ¸
d
© ¹
X is the mutual reactance per unit length of cable between the sheath of an outer cable and
m
the conductors of the other two, when the cables are in flat formation (Ω/m)
–7
= 2 ω 10 ln (2) (Ω/m);
λ′′ = 0, i.e. eddy-current loss is ignored, except for cables having large conductors of
segmental construction when λ′′ is calculated by the method given in 2.3.5.
Ratings for cables in air should be based on the first formula given above, i.e. the loss for the
outer cable carrying the lagging phase.
2.3.4 Variation of spacing of single-core cables between sheath bonding points
For single-core cable circuits with sheaths solidly bonded at both ends and possibly at
intermediate points, the circulating currents and the consequent loss increase as the spacing
increases, and it is advisable to use as close a spacing as possible. The optimum spacing is
achieved by considering both losses and mutual heating between cables.
It is not always possible to install cables with one value of spacing all along a route. The
following recommendations relate to the calculation of sheath circulating current losses when
it is not possible to install cables with a constant value of spacing over the length of one
electrical section. A section is defined as a portion of the route between points at which
sheaths of all cables are solidly bonded. The recommendations below give values for loss
factors which apply to the whole of a section, but it should be noted that the appropriate
values of conductor resistance and external thermal resistance must be calculated on the
basis of the closest cable spacing at any place along the section.
a) Where spacing along a section is not constant but the various values are known, the value
for X in 2.3.1, 2.3.2 and 2.3.3 shall be derived from:
I X + I X + . + I X
a a b b n n
X =
I + I + . + I
a b n
where
l , l . l are lengths with different spacings along an electrical section;
a b n
60287-1-1 © IEC:2006 – 39 –
X , X . X are the reactances per unit length of cable, the relevant formulae being given
a b n
in 2.3.1, 2.3.2 or 2.3.3 where appropriate values of spacings s , s . s are
a b n
used.
b) Where in any section the spacing between cables and its variation along the route are not

known and cannot be anticipated
...


NORME CEI
INTERNATIONALE 60287-1-1
Deuxième édition
2006-12
Câbles électriques –
Calcul du courant admissible –
Partie 1-1:
Equations de l’intensité du courant admissible
(facteur de charge 100 %) et calcul des pertes –
Généralités
Cette version française découle de la publication d’origine
bilingue dont les pages anglaises ont été supprimées.
Les numéros de page manquants sont ceux des pages
supprimées.
Numéro de référence
CEI 60287-1-1:2006(F)
Numérotation des publications
Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de

60000. Ainsi, la CEI 34-1 devient la CEI 60034-1.

Editions consolidées
Les versions consolidées de certaines publications de la CEI incorporant les
amendements sont disponibles. Par exemple, les numéros d’édition 1.0, 1.1 et 1.2

indiquent respectivement la publication de base, la publication de base incorporant

l’amendement 1, et la publication de base incorporant les amendements 1 et 2

Informations supplémentaires sur les publications de la CEI
Le contenu technique des publications de la CEI est constamment revu par la CEI
afin qu'il reflète l'état actuel de la technique. Des renseignements relatifs à cette
publication, y compris sa validité, sont disponibles dans le Catalogue des
publications de la CEI (voir ci-dessous) en plus des nouvelles éditions, amende-
ments et corrigenda. Des informations sur les sujets à l’étude et l’avancement des
travaux entrepris par le comité d’études qui a élaboré cette publication, ainsi que la
liste des publications parues, sont également disponibles par l’intermédiaire de:
• Site web de la CEI (www.iec.ch)
• Catalogue des publications de la CEI
Le catalogue en ligne sur le site web de la CEI (www.iec.ch/searchpub) vous permet
de faire des recherches en utilisant de nombreux critères, comprenant des
recherches textuelles, par comité d’études ou date de publication. Des informations
en ligne sont également disponibles sur les nouvelles publications, les publications
remplacées ou retirées, ainsi que sur les corrigenda.
• IEC Just Published
Ce résumé des dernières publications parues (www.iec.ch/online_news/justpub)
est aussi disponible par courrier électronique. Veuillez prendre contact avec le
Service client (voir ci-dessous) pour plus d’informations.
• Service clients
Si vous avez des questions au sujet de cette publication ou avez besoin de
renseignements supplémentaires, prenez contact avec le Service clients:
Email: custserv@iec.ch
Tél: +41 22 919 02 11
Fax: +41 22 919 03 00
NORME CEI
INTERNATIONALE 60287-1-1
Deuxième édition
2006-12
Câbles électriques –
Calcul du courant admissible –
Partie 1-1:
Equations de l’intensité du courant admissible
(facteur de charge 100 %) et calcul des pertes –
Généralités
” IEC 2006 Droits de reproduction réservés
Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun
procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.
International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
CODE PRIX
Commission Electrotechnique Internationale V
International Electrotechnical Commission
ɆɟɠɞɭɧɚɪɨɞɧɚɹɗɥɟɤɬɪɨɬɟɯɧɢɱɟɫɤɚɹɄɨɦɢɫɫɢɹ
Pour prix, voir catalogue en vigueur

– 2 – 60287-1-1 © CEI:2006
SOMMAIRE
AVANT-PROPOS.4

INTRODUCTION.8

1 Généralités.10

1.1 Domaine d'application .10

1.2 Références normatives.10

1.3 Symboles .12

1.4 Evaluation de l'intensité admissible du courant dans les câbles.18
2 Calcul des pertes .24
2.1 Résistance de l'âme en courant alternatif .24
2.2 Pertes diélectriques (applicable uniquement aux câbles à courant alternatif).30
2.3 Facteur de pertes dans les gaines ou les écrans (applicable uniquement aux
câbles à courant alternatif à fréquence industrielle).30
2.4 Facteur de pertes dans les armures, les frettages et les tuyaux d'acier
(applicable uniquement aux câbles à courant alternatif à fréquence
industrielle) .48
Tableau 1 – Résistivités électriques et coefficients de variation de la résistivité avec la
température des métaux utilisés .58
Tableau 2 – Effets de peau et de proximité – Valeurs expérimentales pour les
coefficients k et k .60
s p
Tableau 3 – Valeurs numériques de la permittivité relative et du facteur de pertes pour
les isolants utilisés dans les câbles à haute tension et moyenne tension à fréquence
industrielle .62
Tableau 4 – Coefficient d'absorption des rayons solaires pour les surfaces de câbles
suivantes .64

– 4 – 60287-1-1 © CEI:2006
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

____________
CÂBLES ÉLECTRIQUES –
CALCUL DU COURANT ADMISSIBLE –

Partie 1-1: Equations de l'intensité du courant admissible

(facteur de charge 100 %) et calcul des pertes – Généralités

AVANT-PROPOS
1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation
composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a
pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les
domaines de l'électricité et de l'électronique. A cet effet, la CEI – entre autres activités – publie des Normes
internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au
public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des
comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les
organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent
également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO),
selon des conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure
du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI
intéressés sont représentés dans chaque comité d’études.
3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI
s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable
de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications
nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications
nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) La CEI n’a prévu aucune procédure de marquage valant indication d’approbation et n'engage pas sa
responsabilité pour les équipements déclarés conformes à une de ses Publications.
6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou
mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités
nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre
dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais
de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de
toute autre Publication de la CEI, ou au crédit qui lui est accordé.
8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire

l’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour
responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.
La Norme internationale CEI 60287-1-1 a été établie par le comité d'études 20 de la CEI:
Câbles électriques.
Cette seconde édition annule et remplace la première édition publiée en 1994,
l’amendement 1 (1995) et l’amendement 2 (2001). Le document 20/780/FDIS, qui a circulé
auprès des Comités nationaux en tant qu'amendement 3, a conduit à la publication de cette
nouvelle édition.
– 6 – 60287-1-1 © CEI:2006
Le texte de cette norme est basé sur la première édition, ses amendements 1 et 2, et les

documents suivants :
FDIS Rapport de vote
20/851/FDIS 20/867/RVD
Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant
abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.
Une liste de toutes les parties de la CEI 60287, sous le titre général: Câbles électriques –
calcul du courant admissible, est disponible sur le site web de la CEI.
Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de
maintenance indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les
données relatives à la publication recherchée. A cette date, la publication sera
• reconduite,
• supprimée,
• remplacée par une édition révisée, ou
• amendée.
– 8 – 60287-1-1 © CEI:2006
INTRODUCTION
La présente Partie 1-1 contient des formules relatives aux quantités R, W , λ et λ .
d 1 2
Elle contient des méthodes pour le calcul du courant admissible à partir des détails de

l'accroissement admissible de la température de la résistance des conducteurs, des pertes et

de la résistivité thermique.
Des formules pour le calcul des pertes s’y trouvent aussi.

Les formules de cette norme contiennent des paramètres variant avec la spécification du

câble et les matériaux utilisés. Les valeurs données dans les tableaux sont soit approuvées
internationalement, comme les résistivités électriques et la constante diélectrique des
matériaux, ou bien généralement acceptées dans la pratique, comme les résistivités
thermiques et les permittivités des matériaux. Certaines des valeurs de la dernière catégorie
ne sont pas caractéristiques de la qualité des câbles neufs mais de celle des câbles ayant
déjà subi une longue période d'utilisation. Dans le but d'obtenir des résultats comparables et
reproductibles, les régimes permanents doivent être calculés avec les valeurs indiquées dans
la présente norme. Toutefois, lorsqu'on sait avec certitude que d'autres valeurs sont plus
appropriées aux matériaux et à leur mise en œuvre, ces dernières peuvent alors être utilisées
en déclarant le régime permanent correspondant, pourvu que les différentes valeurs soient
indiquées.
Les données relatives aux conditions de service sont susceptibles de varier considérablement
d'un pays à l'autre. Par exemple, pour ce qui est de la température ambiante et de la
résistance thermique du sol, les valeurs sont régies dans les différents pays par diverses
considérations. Une comparaison hâtive entre les valeurs utilisées dans les différents pays
peut amener des conclusions erronées, si elle n'est pas faite sur des bases communes; par
exemple, on peut compter sur des espérances de vie du câble différentes; de même, dans
certains pays, la spécification est établie sur la valeur maximale de la résistance thermique
du sol, tandis que dans d'autres c'est la valeur moyenne qui est utilisée. En particulier, dans
le cas de la résistivité thermique du sol, il est bien connu que celle-ci est très sensible au taux
d'humidité et peut varier sensiblement dans le temps suivant le type de sol, les conditions
topographiques et météorologiques et la charge du câble.
Le choix des valeurs des différents paramètres sera dès lors effectué de la façon suivante.
Les valeurs numériques devront, de préférence, être basées sur des résultats de mesures
valables. De tels résultats sont déjà souvent inclus dans les spécifications nationales sous
forme de valeurs recommandées, de telle sorte que le calcul peut être exécuté sur la base de
ces valeurs, généralement utilisées dans le pays en question; un examen de ces valeurs est
fait dans la Partie 3-1.
On trouvera un choix d'informations nécessaires pour sélectionner le type de câble approprié
dans la Partie 3-1.
– 10 – 60287-1-1 © CEI:2006
CÂBLES ÉLECTRIQUES –
CALCUL DU COURANT ADMISSIBLE –

Partie 1-1: Equations de l'intensité du courant admissible

(facteur de charge 100 %) et calcul des pertes – Généralités

1 Généralités
1.1 Domaine d'application
La présente partie de la CEI 60287 concerne uniquement le fonctionnement en régime
permanent des câbles de toutes tensions alternatives et de tensions continues jusqu'à 5 kV,
enterrés directement dans le sol, placés dans des fourreaux, caniveaux ou tubes d'acier, avec
ou sans assèchement partiel du sol, ainsi que les câbles posés à l'air libre. On entend par
«régime permanent» la circulation continue d'un courant constant (facteur de charge 100 %)
juste suffisant pour atteindre asymptotiquement la température maximale de l'âme en
supposant que les conditions du milieu ambiant restent inchangées.
Cette partie fournit des formules pour l'intensité du courant et les pertes.
Les formules proposées sont essentiellement littérales et laissent en principe libre le choix de
certains paramètres importants. Ceux-ci peuvent être divisés en trois groupes:
– les paramètres liés à la constitution du câble (par exemple résistance thermique de
l'isolant) pour lesquels des valeurs représentatives ont été recueillies, à partir des travaux
publiés;
– les paramètres liés aux conditions du milieu, qui peuvent varier considérablement; le choix
de ceux-ci dépend du pays où les câbles sont ou doivent être utilisés;
– les paramètres résultant d'un accord entre fabricant et utilisateur et qui supposent une
marge de sécurité en service (par exemple température maximale du conducteur).
1.2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent
document. Pour les références datées, seule l'édition citée s'applique. Pour les références
non datées, la dernière édition du document de référence s'applique (y compris les éventuels
amendements).
CEI 60027-3, Symboles littéraux à utiliser en électrotechnique – Partie 3 : Grandeurs
logarithmiques et connexes, et leurs unités
CEI 60028:1925, Spécification internationale d'un cuivre-type recuit
CEI 60141 (toutes les parties), Essais de câbles à huile fluide, à pression de gaz et de leurs
dispositifs accessoires
CEI 60228, Ames des câbles isolés
CEI 60502-1, Câbles d'énergie à isolant extrudé et leurs accessoires pour des tensions
assignées de 1 kV (Um = 1,2 kV) à 30 kV (Um = 36 kV) – Partie 1: Câbles de tensions
assignées de 1 kV (Um = 1,2 kV) et 3 kV (Um = 3,6 kV)

– 12 – 60287-1-1 © CEI:2006
CEI 60502-2, Câbles d'énergie à isolant extrudé et leurs accessoires pour des tensions

assignées de 1 kV (Um = 1,2 kV) à 30 kV (Um = 36 kV) – Partie 2: Câbles de tensions

assignées de 6 kV (Um = 7,2 kV) à 30 kV (Um = 36 kV)

CEI 60889, Fils d'aluminium écroui dur pour conducteurs de lignes aériennes

1.3 Symboles
Les symboles utilisés dans la présente norme et les grandeurs qu'ils représentent sont

donnés dans la liste suivante:

A section droite de l'armure mm²
B
1 ½
coefficients (voir 2.4.2)
¾
B
¿
C capacité par phase F/m
*
D diamètre extérieur du câble m
e
D diamètre sur isolant mm
i
D diamètre extérieur de la gaine métallique mm
s
D diamètre du cylindre imaginaire coaxial à la gaine ondulée et tangent
oc
à la surface extérieure des crêtes mm
D diamètre du cylindre imaginaire coaxial à la gaine ondulée et tangent
it
à la surface intérieure des creux mm
F coefficient défini en 2.3.5
H intensité des radiations solaires W/m²
H force magnétisante (voir 2.4.2) ampère-tours/m
H inductance de la gaine H/m
s
H
½
°
H composants de l'inductance due aux fils d'acier (voir 2.4.2) H/m
¾
H
°
¿
I intensité du courant dans une âme (valeur efficace) A
½
M
coefficients définis en 2.3.5
¾
N
¿
P m
½
coefficients définis en 2.3.3
¾
Q
¿
R résistance électrique de l'âme en courant alternatif à sa température
maximale de service Ω/m
R résistance de l’armure en courant alternatif à sa température maximale de
A
fonctionnement Ω/m
R résistance de l’armure en courant alternatif à 20 °C Ω/m
Ao
R résistance équivalente en courant alternatif de la gaine et
e
de l'armure en parallèle Ω/m
R résistance de la gaine ou de l’écran du câble en courant alternatif
s
à sa température maximale de fonctionnement Ω/m
R résistance de la gaine ou de l’écran du câble en courant alternatif à 20 °C Ω/m
so
R′ résistance électrique de l'âme en courant continu à la température
maximale de service Ω/m
R résistance électrique de l'âme en courant continu à 20 °C Ω/m
o
T résistance thermique par phase entre âme et gaine métallique ou écran K.m/W
T résistance thermique entre gaine métallique ou écran et armure K.m/W
T résistance thermique du revêtement K.m/W
T résistance thermique du milieu extérieur (rapport de l'échauffement
de la surface du câble au-dessus de l'ambiante aux pertes totales
par unité de longueur) K.m/W
– 14 – 60287-1-1 © CEI:2006
*
T résistance thermique du milieu extérieur à l'air libre tenant compte
du rayonnement solaire K.m/W
U tension entre âme et écran ou gaine V
o
W pertes dissipées dans l'armure par unité de longueur W/m
A
W pertes dissipées dans l'âme par unité de longueur W/m
c
W pertes diélectriques par unité de longueur et par phase W/m
d
W pertes dissipées dans la gaine par unité de longueur W/m

s
W pertes totales dissipées dans la gaine et l'armure par unité de longueur W/m

(s+A)
X réactance de la gaine quand les câbles sont bipolaires ou tripolaires (en trèfle) Ω/m

X réactance de la gaine quand les câbles sont disposés en nappe Ω/m
X réactance mutuelle entre la gaine d'un câble et les âmes des deux autres
m
lorsque les câbles sont posés en nappe Ω/m
a plus petite longueur d'une section électrique à permutation d'écran ayant
des longueurs différentes
c distance entre les axes des âmes et l'axe du câble quand les câbles
sont tripolaires (= 0,55 r + 0,29 t pour les âmes sectorales) mm
d diamètre moyen de la gaine ou de l'écran mm
d′ diamètre moyen de la gaine et du frettage mm
d diamètre moyen du frettage mm
d diamètre moyen de l'armure mm
A
d diamètre extérieur de l'âme mm
c
d′ diamètre extérieur de l'âme massive ronde, ayant le même canal central
c
qu'une âme creuse mm
d diamètre intérieur du tuyau mm
d
d diamètre d'un fil d'acier mm
f
d diamètre intérieur d'une âme creuse mm
i
d plus grand diamètre d'écran ou de gaine d'une âme ovale mm
M
d plus petit diamètre d'écran ou de gaine d'une âme ovale mm
m
d diamètre d'une âme circulaire équivalente ayant la même section et
x
le même degré de rétreint que l'âme sectorale mm
f fréquence du réseau Hz
g coefficient utilisé en 2.3.6.1
s
k facteur utilisé pour le calcul des pertes par hystérésis dans les armures
ou frettages (voir 2.4.2.4)
k facteur utilisé dans le calcul de x (effet de proximité)
p p
k facteur utilisé dans le calcul de x (effet de peau)
s s
l longueur d'une section de câble (symbole général, voir 2.3 et 2.3.4) m
ln logarithme naturel (logarithme en base e, voir CEI 60027-3)
ω
–7
m 10
R
s
n nombre d'âmes dans un câble
n nombre de fils d'acier dans un câble (voir 2.4.2)
p pas d'assemblage d'un fil d'acier sur un câble (voir 2.4.2)
p
½
coefficients utilisés en 2.3.6.2
¾
q
¿
r rayon du cercle circonscrit aux deux ou trois âmes sectorales dans
un câble bipolaire ou tripolaire mm

– 16 – 60287-1-1 © CEI:2006
s distance entre axes et âmes mm

s distance entre axes de deux câbles adjacents dans une nappe horizontale
de trois câbles non jointifs mm

s séparation axiale des câbles (voir 2.4.2) mm
t épaisseur d'isolant entre âmes mm

t épaisseur du revêtement externe mm

t épaisseur de la gaine mm
s
v rapport des résistivités thermiques des zones de sol sec et humide (v = ρ /ρ )
d w
x argument de la fonction de Bessel, utilisé dans le calcul de l'effet de proximité
p
x argument de la fonction de Bessel, utilisé dans le calcul de l'effet de peau
s
y facteur d'effet de proximité ½
p
(voir 2.1)
¾
ys facteur d'effet de peau ¿
α coefficient de variation de la résistance électrique avec la température
à 20 °C, par kelvin I/K
β angle formé par l'axe d'un fil d'armure et l'axe du câble (voir 2.4.2)
β coefficient utilisé en 2.3.6.1
γ déphasage (voir 2.4.2)
Δ
½
coefficients utilisés en 2.3.6.1
¾
Δ
2 ¿
δ épaisseur équivalente de l'armure ou du frettage mm
tan δ facteur de pertes de l'isolant
ε permittivité relative de l'isolant
θ température maximale de service de l'âme °C
θ température ambiante °C
a
θ température maximale de fonctionnement de l’armure °C
ar
θ température maximale de fonctionnement de la gaine ou de l’écran du câble °C
sc
θ température critique du sol et température de la frontière entre zone
x
sèche ou zone humide °C
Δθ échauffement admissible à l'âme par rapport à la température ambiante K
Δθ échauffement critique du sol et échauffement de la frontière entre les
x
zones sèche et humide au-dessus de la température ambiante du sol K
λ coefficient utilisé en 2.3.6.1
λ , λ rapport utilisé des pertes totales dans les gaines métalliques et armures
1 2
respectivement aux pertes totales des âmes (ou pertes dans une gaine
ou armure aux pertes dans une âme)

λ rapport des pertes dans une gaine produites par les courants de circulation
dans la gaine aux pertes dans une âme
′′
λ rapport des pertes dans une gaine produites par les courants de Foucault
aux pertes dans une âme
½
°

λ facteur de perte du câble médian
1m
°
Trois câbles posés en nappe
°

non transposés avec gaines
λ facteur de perte du câble extérieur
¾
°
court-circuitées aux deux
ayant les pertes les plus importantes
°
extrémités
°

λ facteur de perte du câble extérieur
¿
ayant les pertes les plus faibles

– 18 – 60287-1-1 © CEI:2006
μ perméabilité magnétique relative du matériau constituant l'armure

μ perméabilité relative longitudinale
e
μ perméabilité relative transversale
t
ρ résistivité de l'âme à 20 °C Ω·m

ρ résistivité thermique du sol sec K.m/W
d
ρ résistivité thermique du sol humide K.m/W
w
ρ résistivité de la gaine à 20 °C Ω·m
s
σ coefficient d'absorption des rayons solaires par la surface du câble

ω pulsation (fréquence angulaire 2πf)
1.4 Evaluation de l'intensité admissible du courant dans les câbles
Lorsque l'intensité du courant admissible est calculée pour des conditions d'assèchement
partiel du sol, il est également nécessaire de calculer une capacité de transport pour des
conditions où l'assèchement du sol ne se produit pas. La plus faible des deux valeurs doit
être utilisée.
1.4.1 Câbles enterrés dans le cas où il n'y a pas d'assèchement du sol ou câbles
posés à l'air libre
1.4.1.1 Câbles à courant alternatif
L'intensité du courant admissible dans un câble à courant alternatif peut être déduite de
l'expression donnant l'échauffement de l'âme au-dessus de la température ambiante:
2 2 2
Δθ = (I R + ½ W ) T + [I R (1 + λ ) + W ] n T + [I R (1 + λ + λ ) + W ] n (T + T )
d 1 1 d 2 1 2 d 3 4

I est l'intensité du courant circulant dans une âme (A);
Δθ est l'échauffement de l'âme au-dessus de la température ambiante (K);
NOTE La température ambiante est la température du milieu environnant en régime normal à l'endroit où
les câbles sont posés ou doivent être posés. Elle comprend les effets de n'importe quelle source de chaleur
mais non pas l'élévation de température dans le voisinage immédiat des câbles provenant de la chaleur
s'en dégageant.
R est la résistance de l'âme en courant alternatif, par unité de longueur, à sa température
maximale de service (Ω/m);
W sont les pertes diélectriques, par unité de longueur, de l'isolant entourant l'âme (W/m);
d
T est la résistance thermique, par unité de longueur, entre l'âme et la gaine (K.m/W);
T est la résistance thermique, par unité de longueur, entre la gaine et l'armure (K.m/W);
T est la résistance thermique, par unité de longueur, du revêtement extérieur du câble
(K.m/W);
T est la résistance thermique, par unité de longueur, entre la surface du câble et le milieu
environnant, telle que déduite de 2.2 de la partie 2 (K.m/W);
n est le nombre d'âmes chargées dans le câble (âmes de même section et transportant la
même charge);
λ est le rapport des pertes dans la gaine métallique aux pertes totales dans toutes les
âmes de ce câble;
λ est le rapport des pertes dans l'armure aux pertes totales dans toutes les âmes de ce câble.
– 20 – 60287-1-1 © CEI:2006
L'intensité du courant admissible est obtenue de la formule ci-dessus par la formule suivante:

0,5
ª Δθ − W[]0,5 T + n (T + T + T ) º
d 1 2 3 4
I =
« »
RT + nR (1 + λ )ȉ + nR (1 + λ + λ ) (T + T )
1 1 2 1 2 3 4
¬ ¼
Lorsque le câble est exposé au rayonnement solaire direct, les formules données en 2.2.1.2

de la partie 2 doivent être utilisées.

L'intensité du courant pour un câble à quatre conducteurs basse tension peut être considérée

comme étant égale à l'intensité d'un câble tripolaire pour les mêmes tension et dimension et

construction des âmes, à condition que ce câble soit utilisé dans un système triphasé où le
quatrième conducteur est soit un conducteur neutre, soit un conducteur de protection. Lors-
qu'il s'agit d'un conducteur neutre, l'intensité du courant s'applique à une charge équilibrée.
1.4.1.2 Câbles à courant continu jusqu'à 5 kV
L'intensité du courant admissible dans un câble à courant continu s'obtient par la simpli-
fication suivante de la formule en courant alternatif:
0,5
ª Δθ º
I =
« »
R′ T + nR′ȉ + nR′ (T + T )
¬ 1 2 3 4 ¼

R′ est la résistance de l'âme en courant continu, par unité de longueur, à sa température
maximale de service (Ω/m).
Lorsque le câble est directement exposé au rayonnement solaire, les formules données
en 2.2.1.2 de la partie 2 doivent être utilisées.
1.4.2 Câbles enterrés dans le cas où se produit un assèchement partiel du sol
1.4.2.1 Câbles à courant alternatif
La méthode suivante doit être appliquée uniquement à un seul câble ou à un seul circuit,
posé à une profondeur normale. La méthode se fonde sur un modèle physique approximatif
simple de sol à deux zones dans lequel la zone adjacente au câble est asséchée alors que
l'autre zone présente la résistivité thermique du site, la limite entre ces deux zones étant
1)
isothermique . Cette méthode est estimée appropriée dans les applications où l'on simplifie
l'influence du sol.
NOTE Les cas d'installations comportant plus d'un circuit et l'espacement nécessaire entre circuits sont à l'étude.
Les modifications de la résistance thermique externe, dues à la formation d'une zone sèche

autour d'un seul câble ou d'un seul circuit, sont obtenues à partir de la formule suivante
(à comparer à la formule de 1.4.1.1):
0,5
ª º
Δθ − W[]0,5 T + n (T + T + vT ) + (v − 1) Δθ
d 1 2 3 4 x
I =
« »
[]
« R T + n (1 + λ )ȉ + n (1 + λ + λ ) (T + vT ) »
¬ 1 1 2 1 2 3 4 ¼

v est le rapport des résistivités thermiques des zones de sol sec et humide (v = ρ /ρ );
d w
R est la résistance de l'âme en courant alternatif à sa température maximale de service
(Ω/m);
________
1)
«Tenue en courant des câbles enterrés dans un sol partiellement asséché, Première partie»: Electra n° 104, p. 11,
Janvier 1966 (voir en particulier la section 3 et l'annexe 1).

– 22 – 60287-1-1 © CEI:2006
ρ est la résistivité thermique du sol sec (K.m/W);
d
ρ est la résistivité thermique du sol humide (K.m/W);
w
θ est la température critique du sol et la température de la frontière entre zone sèche et

x
zone humide (°C);
θ est la température ambiante (°C);
a
Δθ est l'échauffement critique du sol. C'est l'échauffement de la frontière entre les zones
x
sèche et humide au-dessus de la température ambiante du sol (θ – θ ) (K);
x a
NOTE T est calculé en utilisant 2.2.3.2 de la partie 2 et la résistivité thermique du sol humide (ρ ). La
4 w
méthode utilisée en 2.2.3.1 de la partie 2 pour le calcul de l'échauffement mutuel des câbles par modi-

fication de l'élévation de la température ne peut pas être utilisée.
θ et ρ doivent être déterminés à partir d'une connaissance des conditions du sol.
x d
NOTE Le choix de paramètres du sol appropriés est en cours d'étude. En attendant, des valeurs peuvent être
retenues par accord entre fabricant et client.
1.4.2.2 Câbles à courant continu jusqu'à 5 kV
L'intensité du courant admissible dans un câble à courant continu s'obtient par la simpli-
fication suivante de la formule en courant alternatif:
0,5
ª º
Δθ + (v − 1) Δθ
x
I =
« »
′[]
« R T + nȉ + n (T + vT ) »
¬ 1 2 3 4 ¼

R′ est la résistance de l'âme en courant continu, par unité de longueur, à sa température
maximale de service (Ω/m).
1.4.3 Câbles enterrés dans le cas où un assèchement du sol est à éviter
1.4.3.1 Câbles à courant alternatif
Lorsqu'on souhaite éviter toute migration d'humidité en limitant l'échauffement de la surface
externe du câble à une valeur inférieure ou égale à Δθ , l'intensité de courant correspondante
x
est obtenue à partir de:
0,5
ª º
Δθ + n W T
x d 4
I =
« »
nRT (1 + λ + λ )
« »
¬ 4 1 2 ¼
Cependant, pour certaines valeurs de Δθ , la température de l'âme peut dépasser la
x
température maximale admissible. Aussi, l'intensité de courant retenue doit être la plus faible
des deux valeurs obtenues, soit par l'équation ci-dessus, soit par celle de 1.4.1.1.
La résistance de l'âme R doit être calculée à la température appropriée, qui peut être plus
faible que la valeur maximale admissible. Une estimation de la température de service doit
être effectuée et, si nécessaire, celle-ci peut être modifiée ultérieurement.
NOTE Pour ce qui concerne les câbles basse tension à quatre conducteurs, voir le dernier alinéa de 1.4.1.1.

– 24 – 60287-1-1 © CEI:2006
1.4.3.2 Câbles à courant continu jusqu'à 5 kV

L'intensité du courant admissible dans un câble à courant continu s'obtient par la simpli-

fication suivante de la formule en courant alternatif:

0,5
ª Δθ º
x
I =
« »
nR ′ T
¬ 4 ¼
La résistance de l'âme R′ doit être modifiée comme en 1.4.2.2.

1.4.4 Câbles directement exposés au rayonnement solaire
Intensité admissible des courants
En tenant compte de l'effet que le rayonnement solaire produit sur un câble, le courant
admissible est donné par les formules:
1.4.4.1 Câbles à courant alternatif
0,5
* * *
ª º
Δθ − W[]0,5 T + n (T + T + T ) − σ D H T
d 1 2 3 4 e 4
I =
« »
*
« RT + nR (1 + λ )ȉ + nR (1 + λ + λ ) (T + T )»
¬ 1 1 2 1 2 3 4 ¼
1.4.4.2 Câbles à courant continu jusqu'à 5 kV
0,5
* *
ª º
Δθ − σ D H T
e 4
I =
« »
*
′ ′ ′
R T + nR ȉ + nR (T + T )
« »
¬ 1 2 3 4 ¼

σ est le coefficient d'absorption des rayons solaires par la surface du câble (voir Tableau 4);
H est l'intensité des radiations solaires que l'on prendra comme 10 W/m² dans la majorité
des latitudes; autant que possible il est recommandé de se procurer les valeurs locales;
*
T est la résistance thermique extérieure du câble à l'air libre, adaptée pour tenir compte
de la radiation solaire (voir partie 2) (K.m/W);
* * –3
D est le diamètre extérieur du câble (m) (pour les gaines ondulées) D = (d + 2t ) ⋅ 10 (m);
e e oc 3
t est l'épaisseur du revêtement (mm).
2 Calcul des pertes
2.1 Résistance de l'âme en courant alternatif
La résistance linéique de l'âme en courant alternatif et à la température maximale de service
est donnée par la formule suivante, sauf dans le cas des câbles en tuyau d'acier (voir 2.1.5):
R = R′ (1 + y + y )
s p

R est la résistance de l'âme en courant alternatif à la température maximale de service (Ω/m);
R′ est la résistance de l'âme en courant continu à la température maximale de service (Ω/m);
y est le facteur d'effet de peau;
s
y est le facteur d'effet de proximité.
p
– 26 – 60287-1-1 © CEI:2006
2.1.1 Résistance de l'âme en courant continu

La résistance linéique de l'âme, en courant continu et à la température maximale de service θ, est

donnée par:
R′ = R [1 + α (θ – 20)]
o 20

R est la résistance de l'âme en courant continu à 20 °C (Ω/m);
o
La valeur de R doit être tirée directement de la CEI 60228. Lorsque la dimension de
o
l'âme n'est pas comprise dans la liste donnée dans la CEI 60228, la valeur de R peut
o
être choisie par accord entre le constructeur et l'acheteur. Il convient de calculer la
résistance de l'âme en utilisant les valeurs des résistivités données au Tableau 1.
α est le coefficient de variation à 20 °C de la résistivité en fonction de la température, par
kelvin (voir le Tableau 1 pour les valeurs de référence);
θ est la température maximale de service en degrés Celsius (celle-ci est déterminée
d'après le type d'isolant utilisé), voir la spécification de la CEI appropriée ou les normes
nationales.
2.1.2 Facteur d'effet de peau y
s
Le facteur d'effet de peau y est donné par:
s
x
s
y =
s
192 + 0,8 x
s

8πf
−7
x = 10 k
s s

R
f est la fréquence du courant d'alimentation en hertz.
Les valeurs k
sont données dans le Tableau 2.
s
La formule ci-dessus est valable tant que x n'excède pas 2,8, ce qui est vrai dans la majorité
s
des cas.
En l'absence d'autres formules, il est recommandé d'utiliser les formules ci-dessus pour des
âmes sectorales ou ovales.
2.1.3 Facteur d'effet de proximité y dans le cas de câbles bipolaires
p
ou de deux câbles unipolaires
Le facteur d'effet de proximité est donné par:
x
§ d ·
p c
y = ¨ ¸ × 2,9
p
¨ ¸
192 + 0,8 x s
© ¹
p
8πf
−7
où x = 10 k
p p

R
d est le diamètre de l'âme (mm);
c
s est la distance entre axes des âmes (mm).
Les valeurs de k sont données dans le Tableau 2.
p
– 28 – 60287-1-1 © CEI:2006
La formule ci-dessus est valable tant que x n'excède pas 2,8, ce qui est vrai dans la majorité
p
des cas.
2.1.4 Facteur d'effet de proximité y dans le cas de câbles tripolaires
p
ou de trois câbles unipolaires

2.1.4.1 Câbles à âme circulaire

Le facteur d'effet de proximité est donné par:

ª º
« »
2 2
x
§ d · § d · 1,18
p « »
c c
y = ¨ ¸ 0,312¨ ¸ +
p
¨ ¸ « ¨ ¸ »
4 4
192 + 0,8 x s s x
© ¹ © ¹ p
p
« »
+ 0,27
« »
192 + 0,8 x
p
¬ ¼

8πf
−7
x = 10 k
p p

R
d est le diamètre de l'âme (mm);
c
s est la distance entre axes des âmes (mm).
NOTE Pour des câbles disposés en nappe, s est l'intervalle entre des phases adjacentes. Lorsque l'intervalle
entre des phases adjacentes n'est pas égal, la distance utilisée sera s = s × s .
1 2
Les valeurs de k sont données dans le Tableau 2.
p
La formule ci-dessus est valable tant que x n'excède pas 2,8, ce qui est vrai dans la majorité
p
des cas.
2.1.4.2 Câbles à âmes sectorales
Dans le cas de câbles à plusieurs conducteurs à âmes sectorales, la valeur de y doit être les
p
deux tiers de la valeur calculée en 2.1.4.1,
avec:
d = d = diamètre d'une âme circulaire équivalente de même section, et degré de rétreint (mm) ;
c x
s = (d + t) (mm),
x

t est l'épaisseur de l'isolant entre âmes (mm).

Les valeurs de k sont données dans le Tableau 2.
p
La formule ci-dessus est valable tant que x n'excède pas 2,8, ce qui est vrai dans la majorité
p
des cas.
2.1.5 Effets de peau et de proximité dans le cas des câbles en tuyau d'acier
Pour les câbles en tuyau, les effets de peau et de proximité calculés en 2.1.2, 2.1.3 et 2.1.4
doivent être multipliés par un facteur égal à 1,5. Pour ces câbles,

[ ()]
R = R 1 + 1,5 y + y (Ω/m)
s p
– 30 – 60287-1-1 © CEI:2006
2.2 Pertes diélectriques (applicable uniquement aux câbles à courant alternatif)

Les pertes diélectriques dépendent de la tension et ne deviennent donc importantes qu'à des

niveaux de tension correspondant au matériel isolant utilisé. Le Tableau 3 donne, pour les

matériaux isolants communément utilisés, la valeur U à partir de laquelle il convient que les
o
pertes diélectriques soient prises en considération, que les câbles soient tripolaires métallisés

ou unipolaires. Il n'est pas nécessaire de calculer les pertes diélectriques pour les câbles à

plusieurs conducteurs sans écran ou les câbles à courant continu.

Les pertes diélectriques par unité de longueur de chaque phase sont données par:

W = ω C U tan δ  (W/m)
d o

ω = 2πf;
C est la capacité par unité de longueur (F/m);
U est la tension par rapport à la terre (V).
o
Les valeurs de tan δ, facteur de perte de l'isolant à la fréquence et à la température de
service, sont données dans le Tableau 3.
La capacité pour des âmes circulaires est donnée par:
ε
–9
C = 10  (F/m)
D
§ ·
i
18ǿn¨ ¸
d
© c ¹

ε est la permittivité relative de l'isolant;
D est le diamètre extérieur de l'isolant, à l'exclusion de l'écran (mm);
i
d est le diamètre de l'âme y compris l'écran, s'il existe (mm).
c
La même formule peut être utilisée pour des âmes ovales en remplaçant D et d par la
i c
moyenne géométrique des grand et petit diamètres sur isolant et sur âme.
Les valeurs numériques de ε sont données dans le Tableau 3.
2.3 Facteur de pertes dans les gaines ou les écrans (applicable uniquement aux câbles

à courant alternatif à fréquence industrielle)
Les pertes dans les gaines ou les écrans (λ ) sont dues au passage de courants de
′ ′′
circulation ( λ ) et aux courants de Foucault ( λ ),
1 1
soit:
′ ′′
λ = λ + λ
1 1
Les formules indiquées donnent l'expression de ces pertes rapportées aux pertes totales dans
l'âme, de plus, on indique pour chaque cas particulier le type de pertes à considérer. Les
formules pour les câbles unipolaires s'appliquent à un seul circuit et les effets de retour par la
terre sont négligés. Des méthodes pour gaines lisses et ondulées sont données.

– 32 – 60287-1-1 © CEI:2006
Pour les câbles unipolaires avec gaines court-circuitées aux deux extrémités d'une section

électrique, seules les pertes dues aux courants de circulation sont à prendre en

considération (voir 2.3.1, 2.3.2 et 2.3.3). Une section électrique est définie comme la partie

située entre les points où les gaines de tous les câbles sont court-circuitées et mises à la

terre.
Il y a également lieu de prendre une certaine marge de sécurité pour tenir compte d'une

augmentation d'écartement en certains points de parcours (voir 2.3.4).

Pour les câbles à grosses âmes segmentées, il convient de majorer le facteur de pertes

pour tenir compte également des pertes dues aux courants de Foucault dans les gaines
(voir 2.3.5).
Pour une installation à permutation des écrans, il n'est pas réaliste d'admettre que les
longueurs élémentaires sont électriquement identiques et que les pertes dues aux courants
de circulation dans les gaines sont négligeables. Des recommandations sont faites en 2.3.6
pour tenir compte de ce déséquilibre électrique.
Le Tableau 1 donne les résistivités et coefficients de température du plomb et de l'aluminium,
pour le calcul de la résistance de la gaine R .
s
Les formules données dans ce paragraphe utilisent la résistance de la gaine ou de l’écran à
sa température maximale de fonctionnement. La température maximale de fonctionnement de
la gaine ou de l’écran est donnée par:
θ = θ − (I R + 0,5W )T  (°C)
sc c d 1

θ est la température de fonctionnement maximale de la gaine ou de l’écran du câble (°C).
sc
Comme la température de la gaine ou de l’écran est fonction du courant, I, une méthode de
calcul itérative est utilisée.
La résistance de la gaine ou de l’écran à sa température de fonctionnement maximale est
donnée par:
R = R[]1+ α()θ − 20 (Ω/m)
s so 20 sc

R est la résistance de la gaine ou de l’écran à 20 °C (Ω/m).
so
2.3.1 Deux câbles unipolaires et trois câbles unipolaires (disposés en trèfle), avec
gaines court-circuitées aux deux extrémités d'une section électrique
Pour deux câbles unipolaires et trois câbles unipolaires (disposés en trèfle), avec gaines
court-circuitées aux deux extrémités, le facteur de pertes est donné par:
R
s

λ =
R
R
§ ·
s
1+¨ ¸
X
© ¹

R est la résistance de la gaine ou de l'écran par unité de longueur de câble à sa température
s
de service maximale (Ω/m);
– 34 – 60287-1-1 © CEI:2006
X est la réactance de la gaine ou de l'écran par unité de longueur de câble (Ω/m)

§ 2 s·
–7
= 2 ω 10 In ¨ ¸ (Ω/m);
¨ ¸
d
© ¹
ω = 2 π× fréquence (1/s);
s est la distance entre axes des âmes de la section électrique considérée (mm);

d est le diamètre moyen de la gaine (mm);

– pour des conducteurs ovales, d est donné par d ⋅ d ;
M m
où d et d représentent respectivement les grand et petit diamètres de la gaine
M m
– pour les gaines ondulées, d est donné par ½ (D + D );
oc it
λ′′ = 0, c'est-à-dire que les pertes par courants de Foucault sont négligeables, sauf dans les
′′
câbles ayant de grosses âmes segmentées pour lesquels λ est calculé par la méthode
donnée en 2.3.5.
2.3.2 Trois câbles unipolaires disposés en nappe, régulièrement transposés,
avec gaines court-circuitées aux deux extrémités d'une section électrique
Pour les câbles unipolaires disposés en nappe et régulièrement transposés, le câble médi
...


IEC 60287-1-1
Edition 2.0 2006-12
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Electric cables – Calculation of the current rating –
Part 1-1: Current rating equations (100 % load factor) and calculation of losses –
General
Câbles électriques – Calcul du courant admissible –
Partie 1-1: Equations de l’intensité du courant admissible
(facteur de charge 100 %) et calcul des pertes – Généralités
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or
IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.
Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette
publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
ƒ Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
ƒ IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
ƒ Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
ƒ Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00
A propos de la CEI
La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des
normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI
Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez
l’édition la plus récente, un corrigendum ou amendement peut avoir été publié.
ƒ Catalogue des publications de la CEI: www.iec.ch/searchpub/cur_fut-f.htm
Le Catalogue en-ligne de la CEI vous permet d’effectuer des recherches en utilisant différents critères (numéro de référence,
texte, comité d’études,…). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.
ƒ Just Published CEI: www.iec.ch/online_news/justpub
Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles
publications parues. Disponible en-ligne et aussi par email.
ƒ Electropedia: www.electropedia.org
Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et
définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé
Vocabulaire Electrotechnique International en ligne.
ƒ Service Clients: www.iec.ch/webstore/custserv/custserv_entry-f.htm
Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du
Service clients ou contactez-nous:
Email: csc@iec.ch
Tél.: +41 22 919 02 11
Fax: +41 22 919 03 00
IEC 60287-1-1
Edition 2.0 2006-12
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Electric cables – Calculation of the current rating –
Part 1-1: Current rating equations (100 % load factor) and calculation of losses –
General
Câbles électriques – Calcul du courant admissible –
Partie 1-1: Equations de l’intensité du courant admissible
(facteur de charge 100 %) et calcul des pertes – Généralités

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
PRICE CODE
INTERNATIONALE
V
CODE PRIX
ICS 29.060.20 ISBN 2-8318-8938-3

– 2 – 60287-1-1 © IEC:2006
CONTENTS
FOREWORD.3
INTRODUCTION.5

1 General .6
1.1 Scope.6
1.2 Normative references .6
1.3 Symbols .7
1.4 Permissible current rating of cables.10
2 Calculation of losses .13
2.1 AC resistance of conductor.13
2.2 Dielectric losses (applicable to a.c. cables only).16
2.3 Loss factor for sheath and screen (applicable to power frequency
a.c. cables only) .16
2.4 Loss factor for armour, reinforcement and steel pipes
(applicable to power frequency a.c. cables only) .25

Table 1 – Electrical resistivities and temperature coefficients of metals used.30
Table 2 – Skin and proximity effects – Experimental values for the coefficients k and k .31
s p
Table 3 – Values of relative permittivity and loss factors for the insulation
of high-voltage and medium-voltage cables at power frequency.32
Table 4 – Absorption coefficient of solar radiation for cable surfaces .33

60287-1-1 © IEC:2006 – 3 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
ELECTRIC CABLES –
CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor)
and calculation of losses – General

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 60287-1-1 has been prepared by IEC technical committee 20:
Electric cables.
This second edition cancels and replaces the first edition published in 1994, Amendment 1
(1995) and Amendment 2 (2001) The document 20/780/FDIS, circulated to the National
Committees as Amendment 3, led to the publication of this new edition.

– 4 – 60287-1-1 © IEC:2006
The text of this standard is based on the first edition, its Amendments 1 and 2, and the
following documents:
FDIS Report on voting
20/851/FDIS 20/867/RVD
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
A list of all parts of the IEC 60287 series, published under the general title: Electric cables –
Calculation of the current rating, can be found on the IEC website.
The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
60287-1-1 © IEC:2006 – 5 –
INTRODUCTION
This Part 1-1 contains formulae for the quantities R, W , λ and λ .
d 1 2
It contains methods for calculating the permissible current rating of cables from details of the
permissible temperature rise, conductor resistance, losses and thermal resistivities.
Formulae for the calculation of losses are also given.
The formulae in this standard contain quantities which vary with cable design and materials
used. The values given in the tables are either internationally agreed, for example, electrical
resistivities and resistance temperature coefficients, or are those which are generally
accepted in practice, for example, thermal resistivities and permittivities of materials. In this
latter category, some of the values given are not characteristic of the quality of new cables
but are considered to apply to cables after a long period of use. In order that uniform and
comparable results may be obtained, the current ratings should be calculated with the values
given in this standard. However, where it is known with certainty that other values are more
appropriate to the materials and design, then these may be used, and the corresponding
current rating declared in addition, provided that the different values are quoted.
Quantities related to the operating conditions of cables are liable to vary considerably from
one country to another. For instance, with respect to the ambient temperature and soil thermal
resistivity, the values are governed in various countries by different considerations.
Superficial comparisons between the values used in the various countries may lead to
erroneous conclusions if they are not based on common criteria: for example, there may be
different expectations for the life of the cables, and in some countries design is based on
maximum values of soil thermal resistivity, whereas in others average values are used.
Particularly, in the case of soil thermal resistivity, it is well known that this quantity is very
sensitive to soil moisture content and may vary significantly with time, depending on the soil
type, the topographical and meteorological conditions, and the cable loading.
The following procedure for choosing the values for the various parameters should, therefore,
be adopted.
Numerical values should preferably be based on results of suitable measurements. Often
such results are already included in national specifications as recommended values, so that
the calculation may be based on these values generally used in the country in question; a
survey of such values is given in Part 3-1.
A suggested list of the information required to select the appropriate type of cable is given in
Part 3-1.
– 6 – 60287-1-1 © IEC:2006
ELECTRIC CABLES –
CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor)
and calculation of losses – General

1 General
1.1 Scope
This part of IEC 60287 is applicable to the conditions of steady-state operation of cables at all
alternating voltages, and direct voltages up to 5 kV, buried directly in the ground, in ducts,
troughs or in steel pipes, both with and without partial drying-out of the soil, as well as cables
in air. The term "steady state" is intended to mean a continuous constant current (100 % load
factor) just sufficient to produce asymptotically the maximum conductor temperature, the
surrounding ambient conditions being assumed constant.
This part provides formulae for current ratings and losses.
The formulae given are essentially literal and designedly leave open the selection of certain
important parameters. These may be divided into three groups:
– parameters related to construction of a cable (for example, thermal resistivity of insulating
material) for which representative values have been selected based on published work;
– parameters related to the surrounding conditions, which may vary widely, the selection of
which depends on the country in which the cables are used or are to be used;
– parameters which result from an agreement between manufacturer and user and which
involve a margin for security of service (for example, maximum conductor temperature).
1.2 Normative references
The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.
IEC 60027-3, Letter symbols to be used in electrical technology – Part 3: Logarithmic and
related quantities, and their units
IEC 60028:1925, International standard of resistance for copper
IEC 60141 (all parts), Tests on oil-filled and gas-pressure cables and their accessories
IEC 60228, Conductors of insulated cables
IEC 60502-1, Power cables with extruded insulation and their accessories for rated voltages
from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) – Part 1: Cables for rated voltages of 1 kV
(Um = 1,2 kV) and 3 kV (Um = 3,6 kV)

60287-1-1 © IEC:2006 – 7 –
IEC 60502-2, Power cables with extruded insulation and their accessories for rated voltages
from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) – Part 2: Cables for rated voltages from 6
kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV)
IEC 60889, Hard-drawn aluminium wire for overhead line conductors
1.3 Symbols
The symbols used in this standard and the quantities which they represent are given in the
following list:
A cross-sectional area of the armour mm²
B
1 ⎫
coefficients (see 2.4.2)

B
2 ⎭
C capacitance per core F/m
*
D external diameter of cable m
e
D diameter over insulation mm
i
D external diameter of metal sheath mm
s
the diameter of the imaginary coaxial cylinder which just touches
D
oc
the crests of a corrugated sheath mm
D the diameter of the imaginary cylinder which just touches the
it
inside surface of the troughs of a corrugated sheath mm
F coefficient defined in 2.3.5
H intensity of solar radiation W/m²
H magnetizing force (see 2.4.2) ampere turns/m
H inductance of sheath H/m
s
H
1 ⎫

components of inductance due to the steel wires (see 2.4.2)
H H/m


H

I current in one conductor (r.m.s. value) A
M ⎫
coefficients defined in 2.3.5

N

P ⎫ Ω/m
coefficients defined in 2.3.3

Q

R alternating current resistance of conductor at its maximum
operating temperature Ω/m
R a.c. resistance of armour at its maximum operating temperature Ω/m
A
R a.c. resistance of armour at 20 °C Ω/m
Ao
R equivalent a.c. resistance of sheath and armour in parallel Ω/m
e
R a.c. resistance of cable sheath or screen at their maximum operating
s
temperature Ω/m
R a.c. resistance of cable sheath or screen at 20 °C Ω/m
so
R′ d.c. resistance of conductor at maximum operating temperature Ω/m
R d.c. resistance of conductor at 20 °C Ω/m
o
T thermal resistance per core between conductor and sheath K.m/W
T thermal resistance between sheath and armour K.m/W
T thermal resistance of external serving K.m/W
T thermal resistance of surrounding medium (ratio of cable surface
temperature rise above ambient to the losses per unit length) K.m/W

– 8 – 60287-1-1 © IEC:2006
*
T external thermal resistance in free air, adjusted for solar radiation K.m/W
U voltage between conductor and screen or sheath V
o
W losses in armour per unit length W/m
A
W losses in conductor per unit length W/m
c
W dielectric losses per unit length per phase W/m
d
W losses dissipated in sheath per unit length W/m
s
W total losses in sheath and armour per unit length W/m
(s+A)
X reactance of sheath (two-core cables and three-core cables in trefoil) Ω/m
X reactance of sheath (cables in flat formation) Ω/m
X mutual reactance between the sheath of one cable and the conductors
m
of the other two when cables are in flat information Ω/m
a shortest minor length in a cross-bonded electrical section having
unequal minor lengths
c distance between the axes of conductors and the axis of the cable for
three-core cables (= 0,55 r + 0,29 t for sector-shaped conductors) mm
d mean diameter of sheath or screen mm
d′ mean diameter of sheath and reinforcement mm
d mean diameter of reinforcement mm
d mean diameter of armour mm
A
d external diameter of conductor mm
c
d′ external diameter of equivalent round solid conductor having the
c
same central duct as a hollow conductor mm
d internal diameter of pipe mm
d
d diameter of a steel wire mm
f
d internal diameter of hollow conductor mm
i
d major diameter of screen or sheath of an oval conductor mm
M
d minor diameter of screen or sheath of an oval conductor mm
m
d diameter of an equivalent circular conductor having the same
x
cross-sectional area and degree of compactness as the shaped one mm
f system frequency Hz
g coefficient used in 2.3.6.1
s
k factor used in the calculation of hysteresis losses in armour or
reinforcement (see 2.4.2.4)
k factor used in calculating x (proximity effect)
p p
k factor used in calculating x (skin effect)
s s
l length of a cable section (general symbol, see 2.3 and 2.3.4) m
ln natural logarithm (logarithm to base e, see IEC 60027-3)
ω
–7
m 10
R
s
n number of conductors in a cable
n number of steel wires in a cable (see 2.4.2)
p length of lay of a steel wire along a cable (see 2.4.2)
p

coefficients used in 2.3.6.2

q

r circumscribing radius of two- or three-sector shaped conductors mm
60287-1-1 © IEC:2006 – 9 –
s axial separation of conductors mm
s axial separation of two adjacent cables in a horizontal group of three,
not touching mm
s axial separation of cables (see 2.4.2) mm
t insulation thickness between conductors mm
t thickness of the serving mm
t thickness of the sheath mm
s
v ratio of the thermal resistivities of dry and moist soils (v = ρ /ρ )
d w
x argument of a Bessel function used to calculate proximity effect
p
x argument of a Bessel function used to calculate skin effect
s
yp proximity effect factor

(see 2.1)

ys skin effect factor

α temperature coefficient of electrical resistivity at 20 °C, per kelvin I/K
β angle between axis of armour wires and axis of cable (see 2.4.2)
β coefficient used in 2.3.6.1
γ angular time delay (see 2.4.2)
Δ

coefficients used in 2.3.6.1

Δ

δ equivalent thickness of armour or reinforcement mm
tan δ loss factor of insulation
ε relative permittivity of insulation
θ maximum operating temperature of conductor °C
θ ambient temperature °C
a
θ maximum operating temperature of armour °C
ar
θ maximum operating temperature of cable screen or sheath °C
sc
θ critical temperature of soil; this is the temperature of the boundary
x
between dry and moist zones °C
Δθ permissible temperature rise of conductor above ambient temperature K
Δθ critical temperature rise of soil; this is the temperature rise of the boundary
x
between dry and moist zones above the ambient temperature of the soil K
λ coefficient used in 2.3.6.1
, λ ratio of the total losses in metallic sheaths and armour respectively to
λ
1 2
the total conductor losses (or losses in one sheath or armour to
the losses in one conductor)

λ ratio of the losses in one sheath caused by circulating currents in
the sheath to the losses in one conductor
′′
λ ratio of the losses in one sheath caused by eddy currents to
the losses in one conductor


λ loss factor for the middle cable


1m

Three cables in flat forma-

λ loss factor for the outer cable with
11 ⎪
tion without transposition,

the greater losses ⎪
with sheaths bonded at both

ends

λ loss factor for the outer cable with
12 ⎪

the least losses
– 10 – 60287-1-1 © IEC:2006
μ relative magnetic permeability of armour material
μ longitudinal relative permeability
e
μ transverse relative permeability
t
ρ conductor resistivity at 20 °C Ω·m
ρ thermal resistivity of dry soil K.m/W
d
ρ thermal resistivity of moist soil K.m/W
w
ρ sheath resistivity at 20 °C Ω·m
s
σ absorption coefficient of solar radiation for the cable surface
ω angular frequency of system (2πf)
1.4 Permissible current rating of cables
When the permissible current rating is being calculated under conditions of partial drying out
of the soil, it is also necessary to calculate a rating for conditions where drying out of the soil
does not occur. The lower of the two ratings shall be used.
1.4.1 Buried cables where drying out of the soil does not occur or cables in air
1.4.1.1 AC cables
The permissible current rating of an a.c. cable can be derived from the expression for the
temperature rise above ambient temperature:
2 2 2
Δθ = (I R + ½ W ) T + [I R (1 + λ ) + W ] n T + [I R (1 + λ + λ ) + W ] n (T + T )
d 1 1 d 2 1 2 d 3 4
where
I is the current flowing in one conductor (A);
Δθ is the conductor temperature rise above the ambient temperature (K);
NOTE  The ambient temperature is the temperature of the surrounding medium under normal conditions, at
a situation in which cables are installed, or are to be installed, including the effect of any local source of
heat, but not the increase of temperature in the immediate neighbourhood of the cables due to heat arising
therefrom.
R is the alternating current resistance per unit length of the conductor at maximum
operating temperature (Ω/m);
W is the dielectric loss per unit length for the insulation surrounding the conductor (W/m);
d
T is the thermal resistance per unit length between one conductor and the sheath
(K.m/W);
T is the thermal resistance per unit length of the bedding between sheath and armour
(K.m/W);
T is the thermal resistance per unit length of the external serving of the cable (K.m/W);
T is the thermal resistance per unit length between the cable surface and the surrounding
medium, as derived from 2.2 of Part 2 (K.m/W);
n is the number of load-carrying conductors in the cable (conductors of equal size and
carrying the same load);
λ is the ratio of losses in the metal sheath to total losses in all conductors in that cable;
λ is the ratio of losses in the armouring to total losses in all conductors in that cable.
60287-1-1 © IEC:2006 – 11 –
The permissible current rating is obtained from the above formula as follows:
0,5
Δθ − W[]0,5 T + n (T + T + T )
⎡ ⎤
d 1 2 3 4
I =
⎢ ⎥
RT + nR (1 + λ )Τ + nR (1 + λ + λ ) (T + T )
1 1 2 1 2 3 4
⎣ ⎦
Where the cable is exposed to direct solar radiation, the formulae given in 2.2.1.2 of Part 2
shall be used.
The current rating for a four-core low-voltage cable may be taken to be equal to the current
rating of a three-core cable for the same voltage and conductor size having the same
construction, provided that the cable is to be used in a three-phase system where the fourth
conductor is either a neutral conductor or a protective conductor. When it is a neutral
conductor, the current rating applies to a balanced load.
1.4.1.2 DC cables up to 5 kV
The permissible current rating of a d.c. cable is obtained from the following simplification of
the a.c. formula:
0,5
⎡ Δθ ⎤
I =
⎢ ⎥
R′ T + nR′Τ + nR′ (T + T )
⎣ 1 2 3 4 ⎦
where
R′ is the direct current resistance per unit length of the conductor at maximum operating
temperature (Ω/m).
Where the cable is exposed to direct solar radiation, the formulae given in 2.2.1.2 of Part 2
shall be used.
1.4.2 Buried cables where partial drying-out of the soil occurs
1.4.2.1 AC cables
The following method shall be applied to a single isolated cable or circuit only, laid at
conventional depths. The method is based on a simple two-zone approximate physical model
of the soil where the zone adjacent to the cable is dried out whilst the other zone retains the
1)
site's thermal resistivity, the zone boundary being on isotherm . This method is considered
to be appropriate for those applications in which soil behaviour is considered in simple terms
only.
NOTE  Installations of more than one circuit as well as the necessary spacing between circuits are under
consideration.
Changes in external thermal resistance, consequent to the formation of a dry zone around a
single isolated cable or circuit, shall be obtained from the following formula (compared with
the formula of 1.4.1.1):
0,5
⎡ ⎤
Δθ − W[]0,5 T + n (T + T + vT ) + (v − 1) Δθ
d 1 2 3 4 x
I =
⎢ ⎥
R[]T + n (1 + λ )Τ + n (1 + λ + λ ) (T + vT )
⎢ ⎥
1 1 2 1 2 3 4
⎣ ⎦
where
v is the ratio of the thermal resistivities of the dry and moist soil zones (v = ρ /ρ );
d w
R is the a.c. resistance of the conductor at its maximum operating temperature (Ω/m);
________
1)
"Current ratings of cables buried in partially dried-out soil, Part 1": Electra No. 104, p. 11, January 1966
(in particular section 3 and Appendix 1).

– 12 – 60287-1-1 © IEC:2006
ρ is the thermal resistivity of the dry soil (K.m/W);
d
ρ is the thermal resistivity of the moist soil (K.m/W);
w
θ is the critical temperature of the soil and temperature of the boundary between dry and
x
moist zones (°C);
θ is the ambient temperature (°C);
a
Δθ is the critical temperature rise of the soil. This is the temperature rise of the boundary
x
between the dry and moist zones above the ambient temperature of the soil (θ – θ ) (K);
x a
NOTE  T is calculated using the thermal resistivity of the moist soil (ρ ) using 2.2.3.2 of Part 2. Mutual
4 w
heating by modification of the temperature rise as in 2.2.3.1 of Part 2 cannot be applied.
θ and ρ shall be determined from a knowledge of the soil conditions.
x d
NOTE  The choice of suitable soil parameters is under consideration. In the meantime, values may be agreed
between manufacturer and purchaser.
1.4.2.2 DC cables up to 5 kV
The permissible current rating of a d.c. cable is obtained from the following simplification of
the a.c. formula:
0,5
⎡ ⎤
Δθ + (v − 1) Δθ
x
I =
⎢ ⎥
R′[]T + nΤ + n (T + vT )
⎢ ⎥
⎣ 1 2 3 4 ⎦
where
R′ is the direct current resistance per unit length of the conductor at maximum operating
temperature (Ω/m).
1.4.3 Buried cables where drying-out of the soil is to be avoided
1.4.3.1 AC cables
Where it is desired that moisture migration be avoided by limiting the temperature rise of the
cable surface to not more than Δθ , the corresponding rating shall be obtained from:
x
0,5
⎡ ⎤
Δθ + n W T
x d 4
I =
⎢ ⎥
nRT (1 + λ + λ )
⎢ ⎥
⎣ 4 1 2 ⎦
However, depending on the value of Δθ this may result in a conductor temperature which
x
exceeds the maximum permissible value. The current rating used shall be the lower of the two
values obtained, either from the above equation or from 1.4.1.1.
The conductor resistance R shall be calculated for the appropriate conductor temperature,
which may be less than the maximum permitted value. An estimate of the operating
temperature shall be made and, if necessary, subsequently amended.
NOTE For four-core low-voltage cables, see the final paragraph in 1.4.1.1.

60287-1-1 © IEC:2006 – 13 –
1.4.3.2 DC cables up to 5 kV
The permissible current rating of a d.c. cable shall be obtained from the following simpli-
fication of the a.c. formula:
0,5
⎡ Δθ ⎤
x
I =
⎢ ⎥
nR′ T
⎣ 4 ⎦
The conductor resistance R′ shall be modified as in 1.4.2.2.
1.4.4 Cables directly exposed to solar radiation
Permissible current ratings
Taking into account the effect of solar radiation on a cable, the permissible current rating is
given by the formulae:
1.4.4.1 AC cables
0,5
* * *
⎡ ⎤
Δθ − W[]0,5 T + n (T + T + T ) − σ D H T
d 1 2 3 4 e 4
I =
⎢ ⎥
*
RT + nR (1 + λ )Τ + nR (1 + λ + λ ) (T + T )
⎢ ⎥
⎣ 1 1 2 1 2 3 4 ⎦
1.4.4.2 DC cables up to 5 kV
0,5
* *
⎡ ⎤
Δθ − σ D H T
e 4
I =
⎢ ⎥
*
′ ′ ′
R T + nR Τ + nR (T + T )
⎢ ⎥
1 2 3 4
⎣ ⎦
where
σ is the absorption coefficient of solar radiation for the cable surface (see Table 4);
H is the intensity of solar radiation which should be taken as 10 W/m² for most latitudes;
it is recommended that the local value should be obtained where possible;
*
T is the external thermal resistance of the cable in free air, adjusted to take account of
solar radiation (see part 2) (K.m/W);
–3
* *
is the external diameter of cable (m) for corrugated sheaths D = (d + 2t ) ⋅ 10 (m);
D
e e oc 3
t is the thickness of the serving (mm).
2 Calculation of losses
2.1 AC resistance of conductor
The a.c. resistance per unit length of the conductor at its maximum operating temperature is
given by the following formula, except in the case of pipe-type cables (see 2.1.5):
R = R′ (1 + y + y )
s p
where
R is the current resistance of conductor at maximum operating temperature (Ω/m);
R′ is the d.c. resistance of conductor at maximum operating temperature (Ω/m);
y is the skin effect factor;
s
y is the proximity effect factor.
p
– 14 – 60287-1-1 © IEC:2006
2.1.1 DC resistance of conductor
The d.c. resistance per unit length of the conductor at its maximum operating temperature θ is
given by:
R′ = R [1 + α (θ – 20)]
o 20
where
R is the d.c. resistance of the conductor at 20 °C (Ω/m);
o
The value of R shall be derived directly from IEC 60228. Where the conductor size is
o
outside the range covered by IEC 60228, the value of R may be chosen by agreement
o
between manufacturer and purchaser. The conductor resistance should then be
calculated using the values of resistivity given in Table 1.
α is the constant mass temperature coefficient at 20 °C per kelvin (see Table 1 for
standard values);
θ is the maximum operating temperature in degrees Celsius (this will be determined by
the type of insulation to be used); see appropriate IEC specification or national
standard.
2.1.2 Skin effect factor y
s
The skin effect factor y is given by:
s
x
s
=
y
s
192 + 0,8 x
s
where
8πf
−7
x = 10 k
s s

R
f is the supply frequency in hertz.
Values for k are given in Table 2.
s
The above formula is accurate providing x does not exceed 2,8, and therefore applies to the
s
majority of practical cases.
In the absence of alternative formulae it is recommended that the above formula should be
used for sector and oval-shaped conductors.
2.1.3 Proximity effect factor y for two-core cables and for two single-core cables
p
The proximity effect factor is given by:
x
⎛ d ⎞
p
c
y = ⎜ ⎟ × 2,9
p
⎜ ⎟
192 + 0,8 x s
⎝ ⎠
p
where
8πf
−7
x = 10 k
p p

R
d is the diameter of conductor (mm);
c
s is the distance between conductor axes (mm).
Values for k are given in Table 2.
p
60287-1-1 © IEC:2006 – 15 –
The above formula is accurate providing x does not exceed 2,8, and therefore applies to the
p
majority of practical cases.
2.1.4 Proximity effect factor y for three-core cables and for three single-core cables
p
2.1.4.1 Circular conductor cables
The proximity effect factor is given by:
⎡ ⎤
⎢ ⎥
2 2
x d d 1,18
⎛ ⎞ ⎢ ⎛ ⎞ ⎥
p
c c
y = ⎜ ⎟ 0,312⎜ ⎟ +
p
⎢ ⎥
⎜ ⎟ ⎜ ⎟
x
192 + 0,8 x s s
⎝ ⎠ ⎝ ⎠ p
p
⎢ ⎥
+ 0,27
⎢ ⎥
192 + 0,8 x
p
⎣ ⎦
where
8πf
−7
x = 10 k
p p
R′
d is the diameter of conductor (mm);
c
s is the distance between conductor axes (mm).
NOTE  For cables in flat formation, s is the spacing between adjacent phases. Where the spacing between
adjacent phases is not equal, the distance will be taken as s = s × s .
1 2
Values for k are given in Table 2.
p
The above formula is accurate provided x does not exceed 2,8, and therefore applies to the
p
majority of practical cases.
2.1.4.2 Shaped conductor cables
In the case of multicore cables with shaped conductors, the value of y shall be two-thirds of
p
the value calculated according to 2.1.4.1,
with:
d = d = diameter of an equivalent circular conductor of the same cross-sectional area, and
c x
degree of compaction (mm);
s = (d + t) (mm),
x
where
t is the thickness of insulation between conductors (mm).
Values for k are given in Table 2.
p
The above formula is accurate provided x does not exceed 2,8, and therefore applies to the
p
majority of practical cases.
2.1.5 Skin and proximity effects in pipe-type cables
For pipe-type cables, the skin and proximity effects calculated according to 2.1.2, 2.1.3
and 2.1.4 shall be increased by a factor of 1,5. For these cables,

[ ()]
R = R 1 + 1,5 y + y (Ω/m)
s p
– 16 – 60287-1-1 © IEC:2006
2.2 Dielectric losses (applicable to a.c. cables only)
The dielectric loss is voltage dependent and thus only becomes important at voltage levels
related to the insulation material being used. Table 3 gives, for the insulation materials in
common use, the value of U at which the dielectric loss should be taken into account where
o
three-core screened or single-core cables are used. It is not necessary to calculate the
dielectric loss for unscreened multicore or d.c. cables.
The dielectric loss per unit length in each phase is given by:
W = ω C U tan δ  (W/m)
d o
where
ω = 2πf;
C is the capacitance per unit length (F/m);
U is the voltage to earth (V).
o
Values of tan δ, the loss factor of the insulation at power frequency and operating
temperature, are given in Table 3.
The capacitance for circular conductors is given by:
ε
–9
C = 10  (F/m)
D
⎛ ⎞
i
18Ιn⎜ ⎟
d
⎝ c ⎠
where
ε is the relative permittivity of the insulation;
D is the external diameter of the insulation (excluding screen) (mm);
i
d is the diameter of conductor, including screen, if any (mm).
c
The same formula can be used for oval conductors if the geometric mean of the appropriate
major and minor diameters is substituted for D and d .
i c
Values of ε are given in Table 3.
2.3 Loss factor for sheath and screen (applicable to power frequency a.c. cables only)
The power loss in the sheath or screen (λ ) consists of losses caused by circulating currents
′ ′′
( λ ) and eddy currents ( λ ),
1 1
thus:
λ = λ′ + λ′′
1 1
The formulae given in this section express the loss in terms of the total power loss in the
conductor(s) and for each particular case it is indicated which type of loss has to be
considered. The formulae for single-core cables apply to single circuits only and the effects of
earth return paths are neglected. Methods are given for both smooth-sided and corrugated
sheaths.
60287-1-1 © IEC:2006 – 17 –
For single-core cables with sheaths bonded at both ends of an electrical section, only the loss
due to circulating currents in the sheaths need be considered (see 2.3.1, 2.3.2 and 2.3.3). An
electrical section is defined as a portion of the route between points at which the sheaths or
screens of all cables are solidly bonded.
An allowance has usually also to be made for increased spacing at certain points on the route
(see 2.3.4).
For cables with large segmental conductors, the loss factor should be increased to take
account of the loss due to eddy currents in the sheaths (see 2.3.5).
For a cross-bonded installation, it is considered unrealistic to assume that minor sections are
electrically identical and that the loss due to circulating currents in the sheaths is negligible.
Recommendations are made in 2.3.6 for augmenting the losses in the sheaths to take account
of this electrical unbalance.
The electrical resistivities and temperature coefficients of lead and aluminium, for use in
calculating the resistance of the sheath R are given in Table 1.
s
The formulae given in this subclause use the resistance of the sheath or screen at its
maximum operating temperature. The maximum operating temperature of the sheath or
screen is given by:
θ = θ − (I R + 0,5W )T (°C)
sc c d 1
where
θ is the maximum operating temperature of the cable screen or sheath (°C).
sc
Because the temperature of the sheath or screen is a function of the current, I, an iterative
method is used for the calculation.
The resistance of the sheath or screen at its maximum operating temperature is given by:
R = R[]1+ α()θ − 20 (Ω/m)
s so 20 sc
where
R is the resistance of the cable sheath or screen at 20 °C (Ω/m).
so
2.3.1 Two single-core cables, and three single-core cables (in trefoil formation),
sheaths bonded at both ends of an electrical section
For two single-core cables, and three single-core cables (in trefoil formation) with sheaths
bonded at both ends, the loss factor is given by:
R
s 1

λ =
R
R
⎛ ⎞
s
1+⎜ ⎟
X
⎝ ⎠
where
R is the resistance of sheath or screen per unit length of cable at its maximum operating
s
temperature (Ω/m);
– 18 – 60287-1-1 © IEC:2006
X is the reactance per unit length of sheath or screen per unit length of cable (Ω/m)
⎛ 2 s⎞
–7
= 2 ω 10 In ⎜ ⎟ (Ω/m);
⎜ ⎟
d
⎝ ⎠
ω = 2 π × frequency (1/s);
s is the distance between conductor axes in the electrical section being considered (mm);
d is the mean diameter of the sheath (mm);
– for oval-shaped cores, d is given by d ⋅ d ;
M m
where d and d are the major and minor mean diameters respectively of the sheath
M m
– for corrugated sheaths, d is given by ½ (D + D );
oc it
λ′′ = 0, i.e. eddy-current loss is ignored, except for cables having large conductors of
segmental construction when λ′′ is calculated by the method given in 2.3.5.
2.3.2 Three single-core cables in flat formation, with regular transposition,
sheaths bonded at both ends of an electrical section
For three single-core cables in flat formation, with the middle cable equidistant from the outer
cables, regular transposition of the cables and the sheaths bonded at every third
transposition, the loss factor is given by:
R
s 1

λ =
R
⎛ R ⎞
s
1+
⎜ ⎟
X
⎝ 1⎠
where
X is the reactance per unit length of sheath (Ω/m)
⎧ s ⎫
⎛ ⎞
−7 3
= X =2 ω10 ln 2 2⎜ ⎟
1 ⎨ ⎬
d
⎝ ⎠
⎩ ⎭
′′
λ = 0, i.e. eddy-current loss is ignored, except for cables having large conductors of
′′
segmental construction when λ is calculated by the method given in 2.3.5.
2.3.3 Three single-core cables in flat formation, without transposition,
sheaths bonded at both ends of an electrical section
For three single-core cables in flat formation, with the middle cable equidistant from the outer
cables, without transposition and with the sheaths bonded at both ends of an electrical
section, the loss factor for the cable which has the greatest loss (i.e. the outer cable carrying
the lagging phase) is given by:
⎡ ⎤
2 2
R 0,75 P 0,25 Q 2 R P Q X
s s m

λ = ⎢ + + ⎥
2 2 2 2
2 2 2 2
R ⎢ R + P R + Q ⎥
3 (R + P ) (R + Q )
s s
s s
⎣ ⎦
For the other outer cable, the loss factor is given by:
2 2
⎡ ⎤
R 0,75 P 0,25Q 2R P Q X
s s m
λ′ = ⎢ + − ⎥
2 2 2 2 2 2 2 2
R


R + P R + Q 3 (R + P ) (R + Q )
s s s s
⎣ ⎦
60287-1-1 © IEC:2006 – 19 –
For the middle cable, the loss factor is given by:
R
Q
s
λ′ =
1m
2 2
R R + Q
s
In these formulae:
P = X + X
m
X
m
Q = X –
where
X is the reactance of sheath or screen per unit length of cable for two adjacent single-core
cables (Ω/m)
⎛ 2 s⎞
–7
= 2 ω 10 In ⎜ ⎟ (Ω/m);
⎜ ⎟
d
⎝ ⎠
X is the mutual reactance per unit length of cable between the sheath of an outer cable and
m
the conductors of the other two, when the cables are in flat formation (Ω/m)
–7
= 2 ω 10 ln (2) (Ω/m);
′′
λ = 0, i.e. eddy-current loss is ignored, except for cables having large conductors of
segmental construction when λ′′ is calculated by the method given in 2.3.5.
Ratings for cables in air should be based on the first formula given above, i.e. the loss for the
outer cable carrying the lagging phase.
2.3.4 Variation of spacing of single-core cables between sheath bonding points
For single-core cable circuits with sheaths solidly bonded at both ends and possibly at
intermediate points, the circulating currents and the consequent loss increase as the spacing
increases, and it
...


IEC 60287-1-1 ®
Edition 2.1 2014-11
CONSOLIDATED VERSION
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Electric cables – Calculation of the current rating –
Part 1-1: Current rating equations (100 % load factor) and calculation of losses –
General
Câbles électriques – Calcul du courant admissible –
Partie 1-1: Equations de l’intensité du courant admissible (facteur de charge
100 %) et calcul des pertes – Généralités

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form

or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from

either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or

your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie

et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des

questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé Fax: +41 22 919 03 00
CH-1211 Geneva 20 info@iec.ch
Switzerland www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue Electropedia - www.electropedia.org
The stand-alone application for consulting the entire The world's leading online dictionary of electronic and
bibliographical information on IEC International Standards, electrical terms containing more than 30 000 terms and
Technical Specifications, Technical Reports and other definitions in English and French, with equivalent terms in 14
documents. Available for PC, Mac OS, Android Tablets and additional languages. Also known as the International
iPad. Electrotechnical Vocabulary (IEV) online.

IEC publications search - www.iec.ch/searchpub IEC Glossary - std.iec.ch/glossary
The advanced search enables to find IEC publications by a More than 55 000 electrotechnical terminology entries in
variety of criteria (reference number, text, technical English and French extracted from the Terms and Definitions
committee,…). It also gives information on projects, replaced clause of IEC publications issued since 2002. Some entries
and withdrawn publications. have been collected from earlier publications of IEC TC 37,

77, 86 and CISPR.
IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published IEC Customer Service Centre - webstore.iec.ch/csc
details all new publications released. Available online and If you wish to give us your feedback on this publication or
also once a month by email. need further assistance, please contact the Customer Service
Centre: csc@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue IEC - webstore.iec.ch/catalogue Electropedia - www.electropedia.org
Application autonome pour consulter tous les renseignements
Le premier dictionnaire en ligne de termes électroniques et
bibliographiques sur les Normes internationales,
électriques. Il contient plus de 30 000 termes et définitions en
Spécifications techniques, Rapports techniques et autres
anglais et en français, ainsi que les termes équivalents dans
documents de l'IEC. Disponible pour PC, Mac OS, tablettes
14 langues additionnelles. Egalement appelé Vocabulaire
Android et iPad.
Electrotechnique International (IEV) en ligne.

Recherche de publications IEC - www.iec.ch/searchpub
Glossaire IEC - std.iec.ch/glossary
La recherche avancée permet de trouver des publications IEC Plus de 55 000 entrées terminologiques électrotechniques, en
en utilisant différents critères (numéro de référence, texte, anglais et en français, extraites des articles Termes et
comité d’études,…). Elle donne aussi des informations sur les Définitions des publications IEC parues depuis 2002. Plus
projets et les publications remplacées ou retirées. certaines entrées antérieures extraites des publications des

CE 37, 77, 86 et CISPR de l'IEC.
IEC Just Published - webstore.iec.ch/justpublished

Service Clients - webstore.iec.ch/csc
Restez informé sur les nouvelles publications IEC. Just
Published détaille les nouvelles publications parues. Si vous désirez nous donner des commentaires sur cette
Disponible en ligne et aussi une fois par mois par email. publication ou si vous avez des questions contactez-nous:
csc@iec.ch.
IEC 60287-1-1 ®
Edition 2.1 2014-11
CONSOLIDATED VERSION
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Electric cables – Calculation of the current rating –

Part 1-1: Current rating equations (100 % load factor) and calculation of losses –

General
Câbles électriques – Calcul du courant admissible –

Partie 1-1: Equations de l’intensité du courant admissible (facteur de charge

100 %) et calcul des pertes – Généralités

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 29.060.20 ISBN 978-2-8322-1926-3

IEC 60287-1-1 ®
Edition 2.1 2014-11
CONSOLIDATED VERSION
REDLINE VERSION
VERSION REDLINE
colour
inside
Electric cables – Calculation of the current rating –
Part 1-1: Current rating equations (100 % load factor) and calculation of losses –
General
Câbles électriques – Calcul du courant admissible –
Partie 1-1: Equations de l’intensité du courant admissible (facteur de charge
100 %) et calcul des pertes – Généralités

– 2 – IEC 60287-1-1:2006
+AMD1:2014 CSV  IEC 2014
CONTENTS
FOREWORD . 3

INTRODUCTION . 5

1 General . 6

1.1 Scope . 6

1.2 Normative references . 6

1.3 Symbols . 7

1.4 Permissible current rating of cables . 10
2 Calculation of losses . 13
2.1 AC resistance of conductor. 13
2.2 Dielectric losses (applicable to a.c. cables only) . 16
2.3 Loss factor for sheath and screen (applicable to power frequency a.c. cables
only) . 16
2.4 Loss factor for armour, reinforcement and steel pipes (applicable to power
frequency a.c. cables only) . 25

Table 1 – Electrical resistivities and temperature coefficients of metals used . 30
Table 2 – Skin and proximity effects – Experimental values for the coefficients k and k . 31
s p
Table 3 – Values of relative permittivity and loss factors for the insulation
of high-voltage and medium-voltage cables at power frequency . 33
Table 4 – Absorption coefficient of solar radiation for cable surfaces . 34

+AMD1:2014 CSV  IEC 2014
INTERNATIONAL ELECTROTECHNICAL COMMISSION

____________
ELECTRIC CABLES –
CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor)

and calculation of losses – General

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of the official IEC Standard and its amendment has been prepared
for user convenience.
IEC 60287-1-1 edition 2.1 contains the second edition (2006-12) [documents 20/851/FDIS and
20/867/RVD] and its amendment 1 (2014-11) [documents 20/1499/FDIS and 20/1547/RVD].
In this Redline version, a vertical line in the margin shows where the technical content is
modified by amendment 1. Additions and deletions are displayed in red, with deletions being
struck through. A separate Final version with all changes accepted is available in this
publication.
– 4 – IEC 60287-1-1:2006
+AMD1:2014 CSV  IEC 2014
International Standard IEC 60287-1-1 has been prepared by IEC technical committee 20:
Electric cables.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 60287 series, published under the general title: Electric cables –
Calculation of the current rating, can be found on the IEC website.

The committee has decided that the contents of the base publication and its amendment will
remain unchanged until the stability date indicated on the IEC web site under
"http://webstore.iec.ch" in the data related to the specific publication. At this date, the

publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
IMPORTANT – The “colour inside” logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this publication using a colour printer.

+AMD1:2014 CSV  IEC 2014
INTRODUCTION
This Part 1-1 contains formulae for the quantities R, W , λ and λ .

d 1 2
It contains methods for calculating the permissible current rating of cables from details of the

permissible temperature rise, conductor resistance, losses and thermal resistivities.

Formulae for the calculation of losses are also given.

The formulae in this standard contain quantities which vary with cable design and materials

used. The values given in the tables are either internationally agreed, for example, electrical
resistivities and resistance temperature coefficients, or are those which are generally
accepted in practice, for example, thermal resistivities and permittivities of materials. In this
latter category, some of the values given are not characteristic of the quality of new cables
but are considered to apply to cables after a long period of use. In order that uniform and
comparable results may be obtained, the current ratings should be calculated with the values
given in this standard. However, where it is known with certainty that other values are more
appropriate to the materials and design, then these may be used, and the corresponding
current rating declared in addition, provided that the different values are quoted.
Quantities related to the operating conditions of cables are liable to vary considerably from
one country to another. For instance, with respect to the ambient temperature and soil thermal
resistivity, the values are governed in various countries by different considerations.
Superficial comparisons between the values used in the various countries may lead to
erroneous conclusions if they are not based on common criteria: for example, there may be
different expectations for the life of the cables, and in some countries design is based on
maximum values of soil thermal resistivity, whereas in others average values are used.
Particularly, in the case of soil thermal resistivity, it is well known that this quantity is very
sensitive to soil moisture content and may vary significantly with time, depending on the soil
type, the topographical and meteorological conditions, and the cable loading.
The following procedure for choosing the values for the various parameters should, therefore,
be adopted.
Numerical values should preferably be based on results of suitable measurements. Often
such results are already included in national specifications as recommended values, so that
the calculation may be based on these values generally used in the country in question; a
survey of such values is given in Part 3-1.
A suggested list of the information required to select the appropriate type of cable is given in
Part 3-1.
– 6 – IEC 60287-1-1:2006
+AMD1:2014 CSV  IEC 2014
ELECTRIC CABLES –
CALCULATION OF THE CURRENT RATING –

Part 1-1: Current rating equations (100 % load factor)

and calculation of losses – General

1 General
1.1 Scope
This part of IEC 60287 is applicable to the conditions of steady-state operation of cables at all
alternating voltages, and direct voltages up to 5 kV, buried directly in the ground, in ducts,
troughs or in steel pipes, both with and without partial drying-out of the soil, as well as cables
in air. The term "steady state" is intended to mean a continuous constant current (100 % load
factor) just sufficient to produce asymptotically the maximum conductor temperature, the
surrounding ambient conditions being assumed constant.
This part provides formulae for current ratings and losses.
The formulae given are essentially literal and designedly leave open the selection of certain
important parameters. These may be divided into three groups:
– parameters related to construction of a cable (for example, thermal resistivity of insulating
material) for which representative values have been selected based on published work;
– parameters related to the surrounding conditions, which may vary widely, the selection of
which depends on the country in which the cables are used or are to be used;
– parameters which result from an agreement between manufacturer and user and which
involve a margin for security of service (for example, maximum conductor temperature).
1.2 Normative references
The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.
IEC 60027-3, Letter symbols to be used in electrical technology – Part 3: Logarithmic and
related quantities, and their units

IEC 60028:1925, International standard of resistance for copper
IEC 60141 (all parts), Tests on oil-filled and gas-pressure cables and their accessories
IEC 60228, Conductors of insulated cables
IEC 60502-1, Power cables with extruded insulation and their accessories for rated voltages
from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) – Part 1: Cables for rated voltages of 1 kV
(Um = 1,2 kV) and 3 kV (Um = 3,6 kV)

+AMD1:2014 CSV  IEC 2014
IEC 60502-2, Power cables with extruded insulation and their accessories for rated voltages
from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) – Part 2: Cables for rated voltages from 6

kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV)

IEC 60889, Hard-drawn aluminium wire for overhead line conductors

1.3 Symbols
The symbols used in this standard and the quantities which they represent are given in the

following list:
A cross-sectional area of the armour mm²
B
1 
coefficients (see 2.4.2)

B
2 
C capacitance per core F/m
*
D external diameter of cable m
e
D diameter over insulation mm
i
D external diameter of metal sheath mm
s
D the diameter of the imaginary coaxial cylinder which just touches
oc
the crests of a corrugated sheath mm
D the diameter of the imaginary cylinder which just touches the
it
inside surface of the troughs of a corrugated sheath mm
F coefficient defined in 2.3.5
H intensity of solar radiation W/m²
H magnetizing force (see 2.4.2) ampere turns/m
H inductance of sheath H/m
s
H
1 

H c omponents of inductance due to the steel wires (see 2.4.2) H/m


H

I current in one conductor (r.m.s. value) A
M 
coefficients defined in 2.3.5

N

P  Ω/m
coefficients defined in 2.3.3

Q

R alternating current resistance of conductor at its maximum
operating temperature Ω/m
R a.c. resistance of armour at its maximum operating temperature Ω/m
A
R a.c. resistance of armour at 20 °C Ω/m
Ao
R equivalent a.c. resistance of sheath and armour in parallel Ω/m
e
R a.c. resistance of cable sheath or screen at their maximum operating
s
temperature Ω/m
R a.c. resistance of cable sheath or screen at 20 °C Ω/m
so
R′ d.c. resistance of conductor at maximum operating temperature Ω/m
R d.c. resistance of conductor at 20 °C Ω/m
o
T thermal resistance per core between conductor and sheath K.m/W
T thermal resistance between sheath and armour K.m/W
T thermal resistance of external serving K.m/W
T thermal resistance of surrounding medium (ratio of cable surface
temperature rise above ambient to the losses per unit length) K.m/W

– 8 – IEC 60287-1-1:2006
+AMD1:2014 CSV  IEC 2014
*
T external thermal resistance in free air, adjusted for solar radiation K.m/W
U voltage between conductor and screen or sheath V
o
W losses in armour per unit length W/m
A
W losses in conductor per unit length W/m
c
W dielectric losses per unit length per phase W/m

d
W losses dissipated in sheath per unit length W/m
s
W total losses in sheath and armour per unit length W/m
(s+A)
X reactance of sheath (two-core cables and three-core cables in trefoil) Ω/m

X reactance of sheath (cables in flat formation) Ω/m
X mutual reactance between the sheath of one cable and the conductors
m
of the other two when cables are in flat information Ω/m
a shortest minor length in a cross-bonded electrical section having
unequal minor lengths
c distance between the axes of conductors and the axis of the cable for
three-core cables (= 0,55 r + 0,29 t for sector-shaped conductors) mm
d mean diameter of sheath or screen mm
d′ mean diameter of sheath and reinforcement mm
d mean diameter of reinforcement mm
d mean diameter of armour mm
A
d external diameter of conductor mm
c
d′ external diameter of equivalent round solid conductor having the
c
same central duct as a hollow conductor mm
d internal diameter of pipe mm
d
d diameter of a steel wire mm
f
d internal diameter of hollow conductor mm
i
d major diameter of screen or sheath of an oval conductor mm
M
d minor diameter of screen or sheath of an oval conductor mm
m
d diameter of an equivalent circular conductor having the same
x
cross-sectional area and degree of compactness as the shaped one mm
f system frequency Hz
g coefficient used in 2.3.6.1
s
k factor used in the calculation of hysteresis losses in armour or
reinforcement (see 2.4.2.4)
k factor used in calculating x (proximity effect)
p p
k factor used in calculating x (skin effect)
s s
l length of a cable section (general symbol, see 2.3 and 2.3.4) m
ln natural logarithm (logarithm to base e, see IEC 60027-3)
ω
–7
m 10
R
s
n number of conductors in a cable
n number of steel wires in a cable (see 2.4.2)
p length of lay of a steel wire along a cable (see 2.4.2)
p

coefficients used in 2.3.6.2

q

r circumscribing radius of two- or three-sector shaped conductors mm
+AMD1:2014 CSV  IEC 2014
s axial separation of conductors mm

s axial separation of two adjacent cables in a horizontal group of three,

not touching mm
s axial separation of cables (see 2.4.2) mm
t insulation thickness between conductors mm

t thickness of the serving mm
t thickness of the sheath mm
s
v ratio of the thermal resistivities of dry and moist soils (v = ρ /ρ )

d w
x argument of a Bessel function used to calculate proximity effect
p
x argument of a Bessel function used to calculate skin effect
s
yp proximity effect factor

(see 2.1)

ys skin effect factor

α temperature coefficient of electrical resistivity at 20 °C, per kelvin I/K
β angle between axis of armour wires and axis of cable (see 2.4.2)
β coefficient used in 2.3.6.1
γ angular time delay (see 2.4.2)


coefficients used in 2.3.6.1



δ equivalent thickness of armour or reinforcement mm
tan δ loss factor of insulation
ε relative permittivity of insulation
θ maximum operating temperature of conductor °C
θ ambient temperature °C
a
θ maximum operating temperature of armour °C
ar
θ maximum operating temperature of cable screen or sheath °C
sc
θ critical temperature of soil; this is the temperature of the boundary
x
between dry and moist zones °C
∆θ permissible temperature rise of conductor above ambient temperature K
∆θ critical temperature rise of soil; this is the temperature rise of the boundary
x
between dry and moist zones above the ambient temperature of the soil K
λ coefficient used in 2.3.6.1
λ , λ ratio of the total losses in metallic sheaths and armour respectively to
1 2
the total conductor losses (or losses in one sheath or armour to
the losses in one conductor)

λ ratio of the losses in one sheath caused by circulating currents in
the sheath to the losses in one conductor
′′
ratio of the losses in one sheath caused by eddy currents to
λ
the losses in one conductor


λ loss factor for the middle cable


1m

Three cables in flat forma-

λ loss factor for the outer cable with

tion without transposition,

the greater losses 
with sheaths bonded at both

ends

loss factor for the outer cable with
λ
12 

the least losses
– 10 – IEC 60287-1-1:2006
+AMD1:2014 CSV  IEC 2014
µ relative magnetic permeability of armour material

µ longitudinal relative permeability
e
µ transverse relative permeability
t
ρ conductor resistivity at 20 °C Ω·m

ρ thermal resistivity of dry soil K.m/W
d
ρ thermal resistivity of moist soil K.m/W
w
ρ sheath resistivity at 20 °C Ω·m
s
σ absorption coefficient of solar radiation for the cable surface

ω angular frequency of system (2πf)
1.4 Permissible current rating of cables
When the permissible current rating is being calculated under conditions of partial drying out
of the soil, it is also necessary to calculate a rating for conditions where drying out of the soil
does not occur. The lower of the two ratings shall be used.
1.4.1 Buried cables where drying out of the soil does not occur or cables in air
1.4.1.1 AC cables
The permissible current rating of an a.c. cable can be derived from the expression for the
temperature rise above ambient temperature:
2 2 2
R + ½ W ) T + [I R (1 + λ ) + W ] n T + [I R (1 + λ + λ ) + W ] n (T + T )
∆θ = (I
d 1 1 d 2 1 2 d 3 4
where
I is the current flowing in one conductor (A);
∆θ is the conductor temperature rise above the ambient temperature (K);
NOTE  The ambient temperature is the temperature of the surrounding medium under normal conditions, at
a situation in which cables are installed, or are to be installed, including the effect of any local source of
heat, but not the increase of temperature in the immediate neighbourhood of the cables due to heat arising
therefrom.
R is the alternating current resistance per unit length of the conductor at maximum
operating temperature (Ω/m);
W is the dielectric loss per unit length for the insulation surrounding the conductor (W/m);
d
T is the thermal resistance per unit length between one conductor and the sheath
(K.m/W);
T is the thermal resistance per unit length of the bedding between sheath and armour
(K.m/W);
T is the thermal resistance per unit length of the external serving of the cable (K.m/W);
T is the thermal resistance per unit length between the cable surface and the surrounding
medium, as derived from 2.2 of Part 2 (K.m/W);
n is the number of load-carrying conductors in the cable (conductors of equal size and
carrying the same load);
λ is the ratio of losses in the metal sheath to total losses in all conductors in that cable;
λ is the ratio of losses in the armouring to total losses in all conductors in that cable.
+AMD1:2014 CSV  IEC 2014
The permissible current rating is obtained from the above formula as follows:

0,5
∆θ − W [0,5 T + n (T + T + T )]
 
1 2 3 4
d
I =
 
RT + nR (1 + λ )Τ + nR (1 + λ + λ ) (T + T )
1 1 2 1 2 3 4
 
Where the cable is exposed to direct solar radiation, the formulae given in 2.2.1.2 of Part 2

shall be used.
The current rating for a four-core low-voltage cable may be taken to be equal to the current

rating of a three-core cable for the same voltage and conductor size having the same

construction, provided that the cable is to be used in a three-phase system where the fourth

conductor is either a neutral conductor or a protective conductor. When it is a neutral
conductor, the current rating applies to a balanced load.
1.4.1.2 DC cables up to 5 kV
The permissible current rating of a d.c. cable is obtained from the following simplification of
the a.c. formula:
0,5
 ∆θ 
I =
 
R′ T nR′Τ nR′ T T
+ + ( + )
 1 2 3 4 
where
R′ is the direct current resistance per unit length of the conductor at maximum operating
temperature (Ω/m).
Where the cable is exposed to direct solar radiation, the formulae given in 2.2.1.2 of Part 2
shall be used.
1.4.2 Buried cables where partial drying-out of the soil occurs
1.4.2.1 AC cables
The following method shall be applied to a single isolated cable or circuit only, laid at
conventional depths. The method is based on a simple two-zone approximate physical model
of the soil where the zone adjacent to the cable is dried out whilst the other zone retains the
1)
site's thermal resistivity, the zone boundary being on isotherm . This method is considered
to be appropriate for those applications in which soil behaviour is considered in simple terms
only.
NOTE  Installations of more than one circuit as well as the necessary spacing between circuits are under
consideration.
Changes in external thermal resistance, consequent to the formation of a dry zone around a

single isolated cable or circuit, shall be obtained from the following formula (compared with
the formula of 1.4.1.1):
0,5
 
∆θ − W [0,5 T + n (T + T + vT )] + (v − 1) ∆θ
d 1 2 3 4 x
I =
 
R [T + n (1 + λ )Τ + n (1 + λ + λ ) (T + vT )]
 
1 1 2 1 2 3 4
 
where
/ρ );
v is the ratio of the thermal resistivities of the dry and moist soil zones (v = ρ
d w
R is the a.c. resistance of the conductor at its maximum operating temperature (Ω/m);
________
1)
"Current ratings of cables buried in partially dried-out soil, Part 1": Electra No. 104, p. 11, January 1966
(in particular section 3 and Appendix 1).

– 12 – IEC 60287-1-1:2006
+AMD1:2014 CSV  IEC 2014
ρ is the thermal resistivity of the dry soil (K.m/W);
d
ρ is the thermal resistivity of the moist soil (K.m/W);
w
θ is the critical temperature of the soil and temperature of the boundary between dry and
x
moist zones (°C);
θ is the ambient temperature (°C);
a
∆θ is the critical temperature rise of the soil. This is the temperature rise of the boundary
x
between the dry and moist zones above the ambient temperature of the soil (θ – θ ) (K);
x a
NOTE  T is calculated using the thermal resistivity of the moist soil (ρ ) using 2.2.3.2 of Part 2. Mutual
4 w
heating by modification of the temperature rise as in 2.2.3.1 of Part 2 cannot be applied.
θ and ρ shall be determined from a knowledge of the soil conditions.
x d
NOTE  The choice of suitable soil parameters is under consideration. In the meantime, values may be agreed
between manufacturer and purchaser.
1.4.2.2 DC cables up to 5 kV
The permissible current rating of a d.c. cable is obtained from the following simplification of
the a.c. formula:
0,5
 
∆θ + (v − 1) ∆θ
x
I =
 

R [T + nΤ + n (T + vT )]
 
 1 2 3 4 
where
R′ is the direct current resistance per unit length of the conductor at maximum operating
temperature (Ω/m).
1.4.3 Buried cables where drying-out of the soil is to be avoided
1.4.3.1 AC cables
Where it is desired that moisture migration be avoided by limiting the temperature rise of the
cable surface to not more than ∆θ , the corresponding rating shall be obtained from:
x
0,5
 
∆θ + n W T
x d 4
I =
 
nRT (1 + λ + λ )
 
4 1 2
 
0,5
 
∆θ − nW T
x d 4
I =
 
nRT (1+ λ + λ )
4 1 2
 
However, depending on the value of ∆θ this may result in a conductor temperature which
x
exceeds the maximum permissible value. The current rating used shall be the lower of the two
values obtained, either from the above equation or from 1.4.1.1.
The conductor resistance R shall be calculated for the appropriate conductor temperature,
which may be less than the maximum permitted value. An estimate of the operating
temperature shall be made and, if necessary, subsequently amended.
NOTE For four-core low-voltage cables, see the final paragraph in 1.4.1.1.

+AMD1:2014 CSV  IEC 2014
1.4.3.2 DC cables up to 5 kV
The permissible current rating of a d.c. cable shall be obtained from the following simpli-

fication of the a.c. formula:
0,5
 ∆θ 
x
I =
 
nR′ T
 
The conductor resistance R′ shall be modified as in 1.4.2.2.

1.4.4 Cables directly exposed to solar radiation
Permissible current ratings
Taking into account the effect of solar radiation on a cable, the permissible current rating is
given by the formulae:
1.4.4.1 AC cables
0,5
* * *
 
∆θ − W [0,5 T + n (T + T + T )] − σ D H T
d 1 2 3 4 e 4
I =
 
*
RT + nR (1 + λ )Τ + nR (1 + λ + λ ) (T + T )
 
 1 1 2 1 2 3 4 
1.4.4.2 DC cables up to 5 kV
0,5
* *
 
∆θ − σ D H T
e 4
I =
 
*
R′ T + nR′Τ + nR′ (T + T )
 
 1 2 3 4 
where
σ is the absorption coefficient of solar radiation for the cable surface (see Table 4);
H is the intensity of solar radiation which should be taken as 10 W/m² for most latitudes;
it is recommended that the local value should be obtained where possible;
*
T is the external thermal resistance of the cable in free air, adjusted to take account of
solar radiation (see part 2) (K.m/W);
* * –3
D is the external diameter of cable (m) for corrugated sheaths D = (d + 2t ) ⋅ 10 (m);
e e oc 3
t is the thickness of the serving (mm).
2 Calculation of losses
2.1 AC resistance of conductor
The a.c. resistance per unit length of the conductor at its maximum operating temperature is
given by the following formula, except in the case of pipe-type cables (see 2.1.5):
R = R′ (1 + y + y )
s p
where
R is the current resistance of conductor at maximum operating temperature (Ω/m);
R′ is the d.c. resistance of conductor at maximum operating temperature (Ω/m);
y is the skin effect factor;
s
y is the proximity effect factor.
p
– 14 – IEC 60287-1-1:2006
+AMD1:2014 CSV  IEC 2014
2.1.1 DC resistance of conductor

The d.c. resistance per unit length of the conductor at its maximum operating temperature  is

given by:
R = R [1 +  ( – 20)]
o 20
where
R is the d.c. resistance of the conductor at 20 °C (/m);
o
The value of R shall be derived directly from IEC 60228. Where the conductor size is
o
outside the range covered by IEC 60228, the value of R may be chosen by agreement
o
between manufacturer and purchaser. The conductor resistance should then be
calculated using the values of resistivity given in Table 1.
 is the constant mass temperature coefficient at 20 °C per kelvin (see Table 1 for
standard values);
 is the maximum operating temperature in degrees Celsius (this will be determined by
the type of insulation to be used); see appropriate IEC specification or national
standard.
2.1.2 Skin effect factor y
s
The skin effect factor y is given by the following equations:
s
x
s
For 0  x 2,8  y 
s
s
192 0,8 x
s
For 2,8  x 3,8 y 0,136 0,017 7x  0,056 3x
s s s s
For x 3,8 y  0,354x  0,733
s s
s
where
8f
2 7
x  10 k
s s

R
f is the supply frequency in hertz.
Values for k are given in Table 2.
s
The above formula is accurate providing x does not exceed 2,8, and therefore applies to the

s
majority of practical cases.
In the absence of alternative formulae, it is recommended that the above formula should be
used for sector and oval-shaped conductors.
2.1.3 Proximity effect factor y for two-core cables and for two single-core cables
p
The proximity effect factor is given by:
x
 d 
p
c
y     2,9
p
 
192 0,8 x s
 
p
where
8f
7
x  10 k
p p

R
d is the diameter of conductor (mm);
c
+AMD1:2014 CSV  IEC 2014
s is the distance between conductor axes (mm).

Values for k are given in Table 2.
p
The above formula is accurate providing x does not exceed 2,8, and therefore applies to the
p
majority of practical cases.
2.1.4 Proximity effect factor y for three-core cables and for three single-core cables
p
2.1.4.1 Circular conductor cables

The proximity effect factor is given by:
 
 
2 2
x
 d   d  1,18
 
p c c
y =   0,312   +
p
     
x
192 + 0,8 x s s
    p
p
 
+ 0,27
 
192 + 0,8 x
p
 
where
8πf
−7
x = 10 k
p p
R′
d is the diameter of conductor (mm);
c
s is the distance between conductor axes (mm).
NOTE  For cables in flat formation, s is the spacing between adjacent phases. Where the spacing between
adjacent phases is not equal, the distance will be taken as s = s × s .
1 2
Values for k are given in Table 2.
p
The above formula is accurate provided x does not exceed 2,8, and therefore applies to the
p
majority of practical cases.
2.1.4.2 Shaped conductor cables
In the case of multicore cables with shaped conductors, the value of y shall be two-thirds of
p
the value calculated according to 2.1.4.1,
with:
d = d = diameter of an equivalent circular conductor of the same cross-sectional area, and
c x
degree of compaction (mm);
s = (d + t) (mm),
x
where
t is the thickness of insulation between conductors (mm).
Values for k are given in Table 2.
p
The above formula is accurate provided x does not exceed 2,8, and therefore applies to the
p
majority of practical cases.
2.1.5 Skin and proximity effects in pipe-type cables
For pipe-type cables, the skin and proximity effects calculated according to 2.1.2, 2.1.3
and 2.1.4 shall be increased by a factor of 1,5. For these cables,

R = R [1+ 1,5(y + y )] (Ω/m)
s p
– 16 – IEC 60287-1-1:2006
+AMD1:2014 CSV  IEC 2014
2.2 Dielectric losses (applicable to a.c. cables only)

The dielectric loss is voltage dependent and thus only becomes important at voltage levels

related to the insulation material being used. Table 3 gives, for the insulation materials in

common use, the value of U at which the dielectric loss should be taken into account where
o
three-core screened or single-core cables are used. It is not necessary to calculate the

dielectric loss for unscreened multicore or d.c. cables.

The dielectric loss per unit length in each phase is given by:

W = ω C U tan δ  (W/m)
d o
where
ω = 2πf;
C is the capacitance per unit length (F/m);
U is the voltage to earth (V).
o
Values of tan δ, the loss factor of the insulation at power frequency and operating
temperature, are given in Table 3.
The capacitance for circular conductors is given by:
ε
–9
C = 10  (F/m)
D
 
i
18Ιn 
d
c
 
where
ε is the relative permittivity of the insulation;
D is the external diameter of the insulation (excluding screen) (mm);
i
d is the diameter of conductor, including screen, if any (mm).
c
The same formula can be used for oval conductors if the geometric mean of the appropriate
major and minor diameters is substituted for D and d .
i c
Values of ε are given in Table 3.
2.3 Loss factor for sheath and screen (applicable to power frequency a.c. cables only)

The power loss in the sheath or screen (λ ) consists of losses caused by circulating currents
′ ′′
( λ ) and eddy currents ( λ ),
1 1
thus:
λ = λ′ + λ′′
1 1
The formulae given in this section express the loss in terms of the total power loss in the
conductor(s) and for each particular case it is indicated which type of loss has to be
considered. The formulae for single-core cables apply to single circuits only and the effects of
earth return paths are neglected. Methods are given for both smooth-sided and corrugated
sheaths.
+AMD1:2014 CSV  IEC 2014
For single-core cables with sheaths bonded at both ends of an electrical section, only the loss
due to circulating currents in the sheaths need be considered (see 2.3.1, 2.3.2 and 2.3.3). An

electrical section is defined as a portion of the route between points at which the sheaths or

screens of all cables are solidly bonded.

An allowance has usually also to be made for increased spacing at certain points on the route

(see 2.3.4).
For cables with large segmental Milliken conductors, the loss factor should be increased to

take account of the loss due to eddy currents in the sheaths (see 2.3.5).

For a cross-bonded installation, it is considered unrealistic to assume that minor sections are
electrically identical and that the loss due to circulating currents in the sheaths is negligible.
Recommendations are made in 2.3.6 for augmenting the losses in the sheaths to take account
of this electrical unbalance.
The electrical resistivities and temperature coefficients of lead and aluminium, for use in
calculating the resistance of the sheath R are given in Table 1.
s
The formulae given in this subclause use the resistance of the sheath or screen at its
maximum operating temperature. The maximum operating temperature of the sheath or
screen is given by:
θ = θ − (I R + 0,5W )T (°C)
sc c d 1
θ = θ − (I R + 0,5W )T (°C)
sc d 1
where
θ is the maximum operating temperature of the cable screen or sheath (°C).
sc
Because the temperature of the sheath or screen is a function of the current, I, an iterative
method is used for the calculation.
The resistance of the sheath or screen at its maximum operating temperature is given by:
R = R [1+ α (θ − 20)] (Ω/m)
s so 20 sc
where
R is the resistance of the cable sheath or screen at 20 °C (Ω/m).
so
2.3.1 Two single-core cables, and three single-core cables (in trefoil formation),
s
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

The article discusses IEC 60287-1-1:2006, a standard that provides guidelines for calculating the current rating and losses of electric cables. The standard is applicable to cables operating under steady-state conditions at all alternating voltages and direct voltages up to 5 kV. It covers cables buried in the ground, in ducts, troughs, or steel pipes, with or without partial drying-out of the soil, as well as cables in the air. The term "steady state" refers to a continuous constant current with a load factor of 100% that produces the maximum conductor temperature. The standard provides formulae for current ratings and losses, but it allows for the selection of certain parameters. These parameters are related to the cable's construction, surrounding conditions, and agreements between the manufacturer and user regarding security of service.

IEC 60287-1-1:2006は、電気ケーブルの電流容量と損失の計算のためのガイドラインを提供する規格です。この規格は、すべての交流電圧および直流電圧5 kVまでの定常状態の条件下でケーブルを運転する場合に適用されます。ケーブルが地中に直接埋設されたり、配管やトラフ、鋼管に設置されたり、土壌の一部が乾燥しているか否かに関係なく、空中に設置されたケーブルも含まれます。 "定常状態"という用語は、周囲の環境条件が一定であると仮定し、漸近的に最大導体温度を得るのに十分な連続的な定常電流(100%負荷係数)を指します。この規格は、電流容量と損失のための数式を提供しますが、特定の重要なパラメータの選択は自由に行うことができます。これらのパラメータは、以下の3つのグループに分けられます:ケーブルの構造に関連するパラメータ(例:絶縁材の熱抵抗値)は、公表された研究に基づいて代表的な値が選択されています。周囲の条件に関連するパラメータは大きく異なる可能性があり、その選択はケーブルを使用する国または使用する国に依存します。製造業者と利用者の合意によって決まる、安全性を考慮した余裕のあるパラメータ(例:最大導体温度)も含まれます。

IEC 60287-1-1:2006는 전기 케이블의 전류 평가와 손실에 대한 계산을 위한 지침을 제공하는 표준이다. 이 표준은 모든 교류 전압과 직류 전압 최대 5 kV에서 안정 상태 운전 조건에서 케이블에 적용된다. 이는 지하에 직접 묻히거나 단열재의 일부가 건조되었거나, 또는 공중에 위치한 케이블을 포함한다. "안정 상태"라는 용어는 주위 환경 조건이 일정하다고 가정하고 최대 전도체 온도를 비교적으로 얻을 수 있는 지속적인 일정한 전류(100% 부하 계수)를 의미한다. 이 표준은 전류 평가와 손실을 위한 수식을 제공하지만, 중요한 매개 변수의 선택을 개방적으로 남겨둔다. 이 매개 변수는 세 가지 그룹으로 나눌 수 있다: 전선 구조와 관련된 매개 변수(예: 단열 재료의 열 저항성)는 출판 물을 기반으로 대표적인 값을 선택하였다; 주변 환경과 관련된 매개 변수는 다양할 수 있으며 선택은 케이블을 사용하거나 사용할 국가에 따라 달라진다; 제조업자와 사용자 간의 합의에 따라 선택되는 매개 변수로서 서비스의 안정성을 위한 여유(예: 최대 전도체 온도)를 포함한다.