Water quality - Evaluation of the aerobic biodegradability of organic compounds at low concentrations - Part 1: Shake-flask batch test with surface water or surface water/sediment suspensions

ISO 14592-1:2002 specifies a test method for evaluating the biodegradability of organic test compounds by aerobic microorganisms in surface waters by means of a shake-flask batch test with suspended biomass. It is applicable to natural surface water, free from coarse particles to simulate a pelagic environment (pelagic test) or to surface water with suspended solids or sediments added to obtain a level of 0,1 g/l to 1 g/l dry mass (suspended sediment test) to simulate a water-to-sediment interface or a water body with resuspended sediment material.  
ISO 14592-1:2002 is applicable to organic test compounds present in lower concentrations (normally below 100 micrograms per litre) than those of natural carbon substrates also present in the system. Under these conditions, the test compounds serve as a secondary substrate and the kinetics for biodegradation would be expected to be first order (non-growth kinetics).  
This test method is not recommended for use as proof of ultimate biodegradation which is better assessed using other standardized tests. It is also not applicable to studies on metabolite formation and accumulation which require higher test concentrations.

Qualité de l'eau - Évaluation de la biodégradabilité aérobie des composés organiques présents en faibles concentrations - Partie 1: Essai en lots de flacons agités avec des eaux de surface ou des suspensions eaux de surface/sédiments

L'ISO 14592-1:2002 spécifie une méthode d'essai pour l'évaluation de la biodégradabilité de composés d'essai organiques par des micro-organismes aérobies au moyen d'un essai en lots de flacons agités. Elle s'applique à des eaux de surface naturelles exemptes de particules grossières pour simuler un environnement pélagique (essai pélagique), ou à des eaux de surface avec des sédiments en suspension ajoutés pour obtenir des concentrations de 0,1 g/l à 1 g/l en masse sèche, pour simuler une pièce d'eau avec sédiments en suspension (essai avec suspension de sédiments).  
L'ISO 14592-1:2002 s'applique aux composés d'essai organiques présents en concentrations plus faibles (normalement inférieures à 100 microgrammes/l) que celles des substrats carbonés naturels également présents dans le système. Dans ces conditions, les composés d'essai ont la fonction de substrat secondaire, et il est attendu que la cinétique de biodégradation soit du premier ordre (cinétique sans croissance).  
L'utilisation de cette méthode d'essai n'est pas recommandée comme preuve de la biodégradation ultime, qui peut s'évaluer de manière plus fiable en utilisant d'autres essais normalisés. Elle n'est pas recommandée non plus pour étudier la formation et l'accumulation de métabolites, ce qui requiert des concentrations d'essai plus élevées.

Kakovost vode - Vrednotenje aerobne biorazgradljivosti organskih spojin pri nizkih koncentracijah - 1. del: Šaržni preskus s stresanjem steklenic s površinsko vodo ali suspenzijami površinske vode in usedlin

Ta del ISO 14592 določa preskusno metodo za vrednotenje biorazgradljivosti organskih preskusnih spojin z aerobnih mikroorganizmov s šaržnim preskusom s stresanjem steklenic. Velja za naravno površinsko vodo brez grobih delcev za simulacijo pelagičnega okolja (»pelagični preskus«) ali za površinsko vodo z dodanimi odloženimi usedlinami za doseganje stopnje od 0.1 g/l do 1 g/l suhe mase za simulacijo vodnega telesa z odloženo usedlino (»preskus z odloženo usedlino»). Ta del ISO 14592 velja za organske preskusne spojine, prisotne pri nižjih koncentracijah (običajno pod 100 µg/l), kot so koncentracije naravnih substratov ogljika, ki so tudi prisotni v sistemu. Pod temi pogoji preskusne spojine služijo kot substrat drugotnega pomena, za kinetiko biorazgradljivosti pa se pričakuje, da je le-ta prva na vrsti (kinetika »ne rasti«). Ta preskusna metoda se ne priporoča za uporabo pri dokazovanju končne biorazgradljivosti, ki se jo lažje določi z drugimi standardiziranimi preskusi (glej ISO/TR 15462). Prav tako ni primerna za študije tvorbe in kopičenja metabolita, ki zahtevajo višje preskusne koncentracije.

General Information

Status
Published
Public Enquiry End Date
19-Jul-2009
Publication Date
16-Jun-2010
Technical Committee
KAV - Water quality
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
12-May-2010
Due Date
17-Jul-2010
Completion Date
17-Jun-2010

Overview

ISO 14592-1:2002 specifies a laboratory shake‑flask batch test to evaluate the aerobic biodegradability of organic compounds at low concentrations in natural surface waters, with or without suspended sediments. The method simulates either a pelagic environment (surface water free from coarse particles) or a water-to-sediment interface (surface water with added sediment at 0.1–1 g/L dry mass). It is intended for test compound concentrations normally below 100 µg/L, where the compound behaves as a secondary substrate and degradation follows first‑order (non‑growth) kinetics.

Key topics and requirements

  • Test system: Shake‑flask batch incubation of surface water or surface water/sediment suspensions under aerobic conditions with mechanical agitation at environmental temperature.
  • Concentration range: Designed for low concentrations (typically <100 µg/L), so the test compound does not serve as the primary carbon source.
  • Sediment loading: Optional suspended‑sediment tests use 0.1–1 g/L dry mass to simulate resuspended sediment or the water–sediment interface.
  • Kinetics and outputs: Focus on deriving first‑order degradation rate constants (k) and degradation half‑life (T1/2) for environmental fate modelling.
  • Limitations: Not recommended for proving ultimate biodegradation or for metabolite formation/accumulation studies, which require higher concentrations and other standardized tests.
  • Variants: A semi‑continuous procedural variant is available if adaptation of biomass to the test compound is required.
  • Quality and safety: Requires appropriate handling of environmental samples (potential pathogens) and any radiolabelled compounds used in specialised analyses.
  • Validity and reporting: Standard defines requirements for controls, blanks, reference compounds and reporting of conditions and calculated rate constants.

Applications and users

ISO 14592-1 is used by:

  • Environmental testing laboratories conducting biodegradability and environmental fate studies.
  • Chemical manufacturers and registrants preparing data for regulatory submissions (refinement of exposure and persistence assessments).
  • Ecotoxicologists and risk assessors needing first‑order degradation kinetics for models (PEC/PNEC, fugacity, riverine fate).
  • Consultants and researchers evaluating persistence of trace organic contaminants in natural waters. Practical uses include estimating in‑situ degradation rates, supporting environmental risk assessments, and informing monitoring strategies for low‑concentration contaminants.

Related standards

  • ISO 14592-2 - Continuous flow river model with attached biomass (complements Part 1 for different exposure scenarios).
  • ISO/TR 15462 - Guidance on selecting biodegradability tests (for choosing suitable tests such as those for ultimate biodegradation).

Keywords: ISO 14592-1, aerobic biodegradability, shake‑flask batch test, surface water, sediment suspensions, first‑order kinetics, low concentrations, water quality, environmental fate.

Standard

SIST ISO 14592-1:2010

English language
27 pages
Preview
Preview
e-Library read for
1 day
Standard

ISO 14592-1:2002 - Water quality — Evaluation of the aerobic biodegradability of organic compounds at low concentrations — Part 1: Shake-flask batch test with surface water or surface water/sediment suspensions Released:13. 08. 2003

English language
22 pages
sale 15% off
Preview
sale 15% off
Preview
Standard

ISO 14592-1:2002 - Qualité de l'eau — Évaluation de la biodégradabilité aérobie des composés organiques présents en faibles concentrations — Partie 1: Essai en lots de flacons agités avec des eaux de surface ou des suspensions eaux de surface/sédiments Released:3. 03. 2003

French language
24 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

SIST ISO 14592-1:2010 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Water quality - Evaluation of the aerobic biodegradability of organic compounds at low concentrations - Part 1: Shake-flask batch test with surface water or surface water/sediment suspensions". This standard covers: ISO 14592-1:2002 specifies a test method for evaluating the biodegradability of organic test compounds by aerobic microorganisms in surface waters by means of a shake-flask batch test with suspended biomass. It is applicable to natural surface water, free from coarse particles to simulate a pelagic environment (pelagic test) or to surface water with suspended solids or sediments added to obtain a level of 0,1 g/l to 1 g/l dry mass (suspended sediment test) to simulate a water-to-sediment interface or a water body with resuspended sediment material. ISO 14592-1:2002 is applicable to organic test compounds present in lower concentrations (normally below 100 micrograms per litre) than those of natural carbon substrates also present in the system. Under these conditions, the test compounds serve as a secondary substrate and the kinetics for biodegradation would be expected to be first order (non-growth kinetics). This test method is not recommended for use as proof of ultimate biodegradation which is better assessed using other standardized tests. It is also not applicable to studies on metabolite formation and accumulation which require higher test concentrations.

ISO 14592-1:2002 specifies a test method for evaluating the biodegradability of organic test compounds by aerobic microorganisms in surface waters by means of a shake-flask batch test with suspended biomass. It is applicable to natural surface water, free from coarse particles to simulate a pelagic environment (pelagic test) or to surface water with suspended solids or sediments added to obtain a level of 0,1 g/l to 1 g/l dry mass (suspended sediment test) to simulate a water-to-sediment interface or a water body with resuspended sediment material. ISO 14592-1:2002 is applicable to organic test compounds present in lower concentrations (normally below 100 micrograms per litre) than those of natural carbon substrates also present in the system. Under these conditions, the test compounds serve as a secondary substrate and the kinetics for biodegradation would be expected to be first order (non-growth kinetics). This test method is not recommended for use as proof of ultimate biodegradation which is better assessed using other standardized tests. It is also not applicable to studies on metabolite formation and accumulation which require higher test concentrations.

SIST ISO 14592-1:2010 is classified under the following ICS (International Classification for Standards) categories: 13.060.10 - Water of natural resources; 13.060.70 - Examination of biological properties of water. The ICS classification helps identify the subject area and facilitates finding related standards.

You can purchase SIST ISO 14592-1:2010 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-september-2010
Kakovost vode - Vrednotenje aerobne biorazgradljivosti organskih spojin pri
nizkih koncentracijah - 1. del: Šaržni preskus s stresanjem steklenic s površinsko
vodo ali suspenzijami površinske vode in usedlin
Water quality - Evaluation of the aerobic biodegradability of organic compounds at low
concentrations - Part 1: Shake-flask batch test with surface water or surface
water/sediment suspensions
Qualité de l'eau - Évaluation de la biodégradabilité aérobie des composés organiques
présents en faibles concentrations - Partie 1: Essai en lots de flacons agités avec des
eaux de surface ou des suspensions eaux de surface/sédiments
Ta slovenski standard je istoveten z: ISO 14592-1:2002
ICS:
13.060.10 Voda iz naravnih virov Water of natural resources
13.060.70 Preiskava bioloških lastnosti Examination of biological
vode properties of water
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 14592-1
First edition
2002-11-15
Corrected version
2003-08-01
Water quality — Evaluation of the aerobic
biodegradability of organic compounds at
low concentrations —
Part 1:
Shake-flask batch test with surface water or
surface water/sediment suspensions
Qualité de l'eau — Évaluation de la biodégradabilité aérobie des composés
organiques présents en faibles concentrations —
Partie 1: Essai en lots de flacons agités avec des eaux de surface ou
des suspensions eaux de surface/sédiments

Reference number
©
ISO 2002
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2002 – All rights reserved

Contents Page
Foreword . iv
Introduction. v
1 Scope. 1
2 Normative reference. 1
3 Terms, definitions and symbols . 1
4 Principle . 4
5 Reagents and media . 5
6 Apparatus. 7
7 Test environment and conditions. 7
8 Procedure. 8
9 Calculation . 11
10 Validity of the test . 13
11 Test report. 13
Annex A (informative) Guidance on the use of C-labelled compounds . 14
Bibliography. 22

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted
by the technical committees are circulated to the member bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this part of ISO 14592 may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 14592-1 was prepared by Technical Committee ISO/TC 147, Water quality, Subcommittee SC 5, Biological
methods.
ISO 14592 consists of the following parts, under the general title Water quality — Evaluation of the aerobic
biodegradability of organic compounds at low concentrations:
 Part 1: Shake-flask batch test with surface water or surface water/sediment suspensions
 Part 2: Continuous flow river model with attached biomass
This corrected version of ISO 14592-1:2002 incorporates corrections to
 the reference given in the third item of the list in 8.2.1;
 the reference given in the penultimate line of 8.2.1;
 the reference given in the last line of the second paragraph of 8.4.1.

iv © ISO 2002 – All rights reserved

Introduction
This International Standard consists of two parts. Part 1 describes a die-away batch test for either surface water
with or without added sediment in suspension simulating either a pelagic aquatic environment or a
water-to-sediment interface. Part 2 describes a continuous flow system simulating a river with biomass attached to
stationary surfaces.
This test has been specifically designed to provide information on the biodegradation behaviour and kinetics of test
compounds present in low concentrations, i.e. sufficiently low to ensure that they simulate the biodegradation
kinetics which would be expected to occur in natural environmental systems.
Before conducting this test, it is necessary to have information on the biodegradability behaviour of the test
compound at higher concentrations (e.g. in standard biodegradation tests), and, if possible, on abiotic degradability
or elimination from water, as well as relevant physico-chemical data. This information is necessary for proper
experimental planning and interpretation of results.
When this test method is used with a single environmental sample of surface water (either with or without the
addition of sediment), a laboratory-derived first-order biodegradation rate can be estimated for one single point in
time and space. The test system may be more consistent and provide more reliable biodegradation results if it is
adapted to the test compound at a specifically maintained concentration. This may be achieved using the optional
semi-continuous procedural variant of the method.

INTERNATIONAL STANDARD ISO 14592-1:2002(E)

Water quality — Evaluation of the aerobic biodegradability
of organic compounds at low concentrations —
Part 1:
Shake-flask batch test with surface water or surface
water/sediment suspensions
WARNING AND SAFETY PRECAUTIONS — Activated sludge, sewage and effluent contain potentially
pathogenic organisms. Therefore appropriate precautions should be taken when handling them. Toxic and
dangerous test compounds and those whose properties are unknown should be handled with care.
Radiolabelled compounds, if used, should be handled respecting existing rules and legislation.
1 Scope
This part of ISO 14592 specifies a test method for evaluating the biodegradability of organic test compounds by
aerobic microorganisms by means of a shake-flask batch test. It is applicable to natural surface water, free from
coarse particles to simulate a pelagic environment (“pelagic test”) or to surface water with suspended sediments
added to obtain a level of 0,1 g/l to 1 g/l dry mass to simulate a water body with suspended sediment (“suspended
sediment test”).
This part of ISO 14592 is applicable to organic test compounds present in lower concentrations (normally below
100 µg/l) than those of natural carbon substrates also present in the system. Under these conditions, the test
compounds serve as a secondary substrate and the kinetics for biodegradation would be expected to be first order
(“non-growth” kinetics).
This test method is not recommended for use as proof of ultimate biodegradation which is better assessed using
other standardized tests (see ISO/TR 15462). It is also not well suited to studies on metabolite formation and
accumulation which require higher test concentrations.
2 Normative reference
The following normative document contains provisions which, through reference in this text, constitute provisions of
this part of ISO 14592. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO 14592 are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.
ISO/TR 15462, Water quality — Selection of tests for biodegradability
3 Terms, definitions and symbols
3.1 Terms and definitions
For the purpose of this part of ISO 14592, the following terms and definitions apply.
3.1.1
ultimate aerobic biodegradation
breakdown of a chemical compound or organic matter by microorganisms, in the presence of oxygen, to carbon
dioxide (CO ), water and mineral salts of any other elements present (mineralization) and the production of new
biomass
NOTE Total mineralization may be different from ultimate aerobic biodegradation in that total mineralization includes
secondary mineralization of biosynthesis products. The kinetics may therefore deviate from first-order kinetics in particular
towards the end of the experiment. In this part of ISO 14592, primary aerobic biodegradation is determined when using
substance specific analysis and total mineralization when using radiolabelled compounds.
3.1.2
primary biodegradation
structural change (transformation) of a chemical compound by microorganisms resulting in the loss of a specific
property of that compound
3.1.3
dissolved organic carbon
DOC
part of the organic carbon in a sample of water which cannot be removed by specified phase separation
NOTE Phase separation may be obtained, for example, by centrifugation of the sample of test water at 40 000 m/s for
15 min or by membrane-filtration using membranes with pores of 0,45 µm diameter.
3.1.4
lag phase
t
lag
time from the start of a test until significant biodegradation (about 10 % of the maximum level) can be measured
NOTE Lag phase is expressed in days (d).
3.1.5
maximum level of biodegradation
degree of biodegradation of a chemical compound or organic matter in a test above which no further
biodegradation takes place during the test
NOTE The maximum level of biodegradation is expressed as a percentage.
3.1.6
primary substrate
major carbon and energy source which is essential for growth or maintenance of microorganisms
3.1.7
secondary substrate
substrate component present at such low concentrations, that by its degradation, only insignificant amounts of
carbon and energy are supplied to the competent microorganisms, as compared to the carbon and energy supplied
by their degradation of primary substrates
3.1.8
degradation rate constant
k
rate constant for first-order or pseudo first-order kinetics which indicates the rate at which degradation processes
occur
−1
NOTE 1 The degradation rate constant is expressed in inverse days (d ).
NOTE 2 For a batch experiment, k is estimated from the initial part of the degradation curve obtained after the end of the lag
phase. For a continuously operating test system, k can be estimated from a mass balance for the reactor using data collected
under steady-state conditions.
2 © ISO 2002 – All rights reserved

3.1.9
degradation half-life
T
1/2
characteristic of the rate of a first-order reaction and corresponds to the time interval necessary for the
concentration to decrease by a factor of two
NOTE 1 The degradation half-life is expressed in days (d).
NOTE 2 The degradation half-life and the degradation rate constant are related by the following equation:
T = ln2/k
1/2
NOTE 3 The degradation half-life T for first-order reactions should not be confused with the half-life time, T , which is
1/2 50
often used to describe the environmental behaviour of pesticides and which is simply the time to reach 50 % of total
biodegradation. The half-life time T may be derived from degradation curves without making assumptions about the kinetics.
3.2 Symbols
Symbol Description Units
1) 14
A activity of the C-radiolabelled test compound becquerels(Bq)
14 14
A inorganic C-activity ( CO evolved as a result of biodegradation) becquerels(Bq)
I 2
A total organic C-activity of the residual test compound, becquerels(Bq)
TO
metabolites, particulate microbial biomass and dissolved cell
constituents, measured in the liquid phase after stripping off CO
A dissolved organic C-activity of the residual test compound, becquerels(Bq)
DO
metabolites and dissolved cell constituents, measured in the
liquid phase after stripping off CO and separation of particles
by membrane filtration or centrifugation
14 14
A particulate organic C-activity of the sorbed C of the test becquerels(Bq)
PO
compound and particulate C-biomass measured in the particulate
residue after filtration or centrifugation
2)
a specific activity of the test compound or of a mixture becquerels per microgram
of radiolabelled and “cold” test compound (Bq/µg)
3)
c residual molar concentration of the test compound micromoles per litre (µmol/l)
c initial molar concentration of the test compound micromoles per litre (µmol/l)
1) A is the symbol for activity, expressed in bequerels, as specified in ISO 31-9-33:1992.
2) In accordance with ISO 31-9-34:1992, a is defined as the symbol for specific activity, expressed in bequerels per kilogram. It
may be common practice sometimes to use the symbol σ for specific activity, but this is not in accordance with
ISO 31-10-3:1992 where “σ ” is defined as the cross-section for a specified target entity and for a specified reaction or process
produced by incident charged or uncharged particles of specified type and energy.
3) In ISO 31-8-13:1992, c is defined as the symbol for “molar concentration”, expressed in moles per litre and in
ISO 31-8-11.2:1992, ρ is defined as the symbol for “mass concentration”, expressed in kilograms per litre. Note that in ISO 31,
“concentration” of the test compound in solution is expressed in two ways:
 “ρ” refers to the mass of the test compound per unit volume;
 “c” is specifically used to mean the number of moles of the test compound per unit volume.
4)
c residual activity concentration becquerels per millilitre
A
(Bq/ml)
c initially added activity concentration becquerels per millilitre
A
(Bq/ml)
c activity concentration at the plateau of the transition becquerels per millilitre
A
plateau
between the degradation curve and the subsequent “tailing” (Bq/ml)
F flasks containing the test compound examined
T
F flasks containing the blank sample
B
F flasks for check the test performance with a reference compound
C
F sterile flask for checking possible abiotic degradation or
S
other non-biological removal
−1
k biodegradation rate constant inverse days (d )
∗ −1
k pseudo first-order rate constant for disappearance of activity inverse days (d )
−1
k first-order rate constants and associated half-lives derived from inverse days (d )
non-adapted
portions of the curve showing no significant growth
−1
k pseudo first-order rate constants representing adapted environments inverse days (d )
adapted
t time days (d)
t lag phase days (d)
lag
T degradation half-life days (d)
1/2
V reaction volume in the reactor litres (l)
14 14
α fraction of C converted to CO
3)
ρ residual mass concentration of the test compound micrograms per litre (µg/l)
ρ initial mass concentration of the test compound micrograms per litre (µg/l)
4 Principle
The test is carried out by batch-wise incubation of the test compound with a sample of either surface water or
surface water and sediment. When surface water alone is used, the test is referred to as a “pelagic test” and when
sediment is added to obtain a suspension, the test is referred to as a “suspended sediment test”. Incubation takes
place at an environmental temperature under agitation by means of a system of flasks on a mechanical shaker.
Test compounds, present in lower concentrations than the natural carbon substrates also present in the system,
will serve as secondary substrates. Biodegrading microorganisms obtain the major part of their energy and carbon
from primary substrates and not from secondary substrates. Under these conditions, the kinetics for biodegradation
would be expected to be first order (“non-growth kinetics”). First-order kinetics implies that the specific rate of
degradation is constant and independent of the concentration of the test compound.

4) c is the symbol for volumetric activity, expressed in bequerels per cubic metre, as specified in ISO 31-9-35. a is sometimes
A
used for volumetric activity, but is not in accordance with ISO 31.
4 © ISO 2002 – All rights reserved

The test compound is added at two different concentration levels. The concentrations are chosen to be within the
microgram-per-litre range (preferably < 100 µg/l) so as to obtain first-order degradation kinetics and an estimated
half-life independent of the test concentration. Concentrations should normally be chosen to be as low as
practically possible with respect to the sensitivity of the available measurement techniques. These concentrations
need not be as low as those expected in the environment to ensure the same type of degradation kinetics.
The test mixture is transferred to closed flasks with an air headspace. Flasks are incubated in the dark or in diffuse
light at either the field temperature or at a temperature of 20 °C to 25 °C as commonly used in biodegradation tests.
Agitation by means of continuous shaking or stirring is provided to maintain particles, including microorganisms, in
free suspension.
The time-course of degradation is followed by the determination of the residual concentration of test compound at
appropriate intervals. The incubation time should be sufficiently long to be able to evaluate the degradation
behaviour. If the degradation is found to be significant, the extent of degradation should be sufficiently high
(normally greater than 15 % to 20 % degradation) to be able to estimate the first-order rate constant.
Measurement of the degradation of the test compound is carried out either by a radiotracer technique, normally
using C-labelling and liquid scintillation counting, or by specific chemical analysis, if a sufficiently sensitive
analytical method is available. Using the C technique and labelling the most persistent part of the molecule with
C, total mineralization or ultimate biodegradation can be assessed, while only primary biodegradation can be
measured with specific analysis.
5 Reagents and media
5.1 Reagents
Use only reagents of recognized analytical grade and radiolabelled compounds of high radiochemical purity.
5.1.1 Deionized water, for preparing stock solutions of the test compound and the reference substance.
This water shall have a DOC content of no more than 1 mg/l DOC (use e.g. ISO 8245 for determination) and be
free from inhibitory concentrations of toxic substances.
5.1.2 Volatile organic solvent (optional), for dissolving test compounds of low solubility.
5.1.3 Mercury(II) chloride (HgCl ) (optional), added to a mass concentration of 100 mg/l in the sample of test
water containing the test or reference compound and used for stopping all biological activity.
5.1.4 Sodium azide (NaN ), (optional), added to a mass concentration of 10 g/l in the sample of test water
containing the test or reference compound and used for stopping all biological activity.
5.2 Media
5.2.1 Surface water, for use in the “pelagic test”.
Collect a sample of suitable surface water in a thoroughly cleansed container. Remove coarse particles, for
example, by filtration through a nylon filter of about 100 µm mesh size, a coarse paper filter, or by sedimentation.
Keep the sample of surface water in an aerobic environment (e.g. by keeping sufficient headspace in the flask)
during the transport and until the start of the test in the laboratory. Start the test preferably within 1 d after
collection. During transportation and storage, the temperature of the sample of surface water should not be
permitted to exceed significantly the temperature to be used in the test. Cool to 4 °C if transportation times exceed
a few hours. Ensure this water does not freeze.
Identify the sampling location precisely and describe it in terms of its pollution and nutrient status. Provide the
following minimum information for the surface water taken for the test:
a) date and time of collection and delay between collection and use in the laboratory test;
b) depth of collection;
c) appearance of sample (e.g. turbidity);
d) temperature and pH at the place and time of collection;
e) in the case of sea water and brackish water, salinity or conductivity;
f) in the case of a turbid sample, the amount of suspended solids;
g) number of colony-forming microorganisms determined on a suitable growth medium according to standard
methods;
and optionally, in addition:
h) DOC and TOC concentration;
i) inorganic nutrients such as total phosphorus, dissolved orthophosphate, total nitrogen, nitrate, nitrite or
ammonium nitrogen;
j) chlorophyll-a concentration;
k) total microbial number using staining (e.g. by acridine orange) and epifluorescence microscopy after ultrasonic
treatment or dispersion by other means;
l) other characteristics relating to the microbial biomass and activity such as ATP (adenosine triphosphate),
protein, heterotrophic carbon assimilation activity, and determination of the number of organisms capable of
degrading the test compound (e.g. determined using a most probable number method).
5.2.2 Surface water and sediment, for use in the “suspended sediment test”.
Collect a sample of surface water as described in 5.2.1. In addition, collect a grab sample of aerobic surface
sediment using an appropriate sampling method. Sample, for example, a number of sediment cores using a tube of
transparent plastic and slice off the upper aerobic layer immediately after sampling. Transport the sample in a
container with sufficient air headspace to keep the sediment aerobic, and aerate the sample of surface water
following arrival at the laboratory until use. First determine the level of suspended solids in the sediment sample,
then choose a mass concentration level between 100 mg/l and 1 000 mg/l and adjust the level of suspended solids
of the sample to this predetermined level.
Identify the sampling location precisely and describe it in terms of its pollution and nutrient status. Provide the same
information for the sample of water medium as described for the pelagic test (5.2.1) and provide the following
information for the sediment:
a) date and time of collection and delay between collection and use in the laboratory test;
b) depth of collection;
c) appearance of the sample, such as coloured, muddy, silty, or sandy;
d) dry mass in grams per litre of the suspended solids;
e) TOC concentration or loss of ignition as a measure of the content of organic matter;
6 © ISO 2002 – All rights reserved

and optionally:
f) sediment particulate characteristics (fractions of silt and sand);
g) inorganic nutrients such as total phosphorus, dissolved orthophosphate, total nitrogen, nitrate, nitrite, or
ammonium nitrogen in the pore water;
h) microbial colony count on an appropriate growth medium as obtained after gentle treatment with ultrasound;
i) total microbial number using staining (e.g. by acridine orange) and epifluorescence microscopy after treatment
with ultrasonic or dispersion by other means;
j) any other characteristic relating to the microbial biomass and activity.
A preliminary dry mass determination can conveniently be carried out by drying a portion of this sediment in a
microwave oven, e.g. for 15 min. The estimate so obtained can be used for the purpose of calculating the amount
of sediment to be added to the surface water in order to obtain a suspension with the desired content of solids dry
mass. The accurate solid content is calculated subsequently using a more precise dry mass determination, e.g.
obtained after drying overnight at 105 °C in a conventional oven.
6 Apparatus
Ordinary laboratory equipment and the following.
6.1 Conical or cylindrical flasks, of appropriate capacity, for example 0,5 l or 1 l, with silicone or rubber
stoppers, or serum flasks with CO -tight lids (e.g. with butyl rubber septa).
For non-volatile test compounds that are not radiolabelled, gas-tight stoppers or lids are not required. Thoroughly
clean test flasks and stoppers before use and ensure they contain no traces of detergents. To be sure that no
bacterial contamination occurs, the flasks may be sterilized by heating or autoclaving.
6.2 Shaking table or magnetic stirrers, for continuous agitation of the test flasks.
6.3 Centrifuge, capable of rotating at a rate of 40 000 m/s .
6.4 pH meter.
6.5 Oven or microwave oven, for dry-mass determinations.
6.6 Membrane filtration apparatus.
6.7 Autoclave or oven (optional), for heat-sterilization of glassware and for stopping all biological activity in the
aqueous media.
6.8 Radiotracer facilities and equipment, for handling and measuring C-labelled compounds if used, (see
also annex A).
6.9 Analytical equipment, for the determination of organic test compounds if specific chemical analysis is used
(e.g. gas chromatograph, high pressure liquid chromatograph).
7 Test environment and conditions
7.1 Semi-continuous incubation (optional)
Very long incubation times (several months) may be necessary if long lag times occur before significant
degradation can be measured. In such cases, the microbial community of the sample of surface water may
deteriorate and the similarity of the test system to natural environmental conditions decreases. Such deterioration
may affect the degradation of the test compound causing it to cease or to slow down. A likely explanation is the
disappearance of slowly growing competent microorganisms from the test system. These may die out due to
various loss processes, i.e. before degradation effectively starts or at a later stage if the pressure of selection
exerted by the test compound, present at a low concentration, is insufficient. The problem of sample deterioration is
greatest for pelagic tests. It can be remedied, however, by including a pre-adaptation period with semi-continuous
operation prior to the batch test. The basic principle of the semi-continuous pre-adaptation is to renew part of the
surface water periodically and make up with additional test compound to approximately the starting concentration.
It has been found adequate to replace, for example, one third of the volume every two weeks. The replacement
surface water should be freshly collected from the same site as the original sample. As the procedure comprises
both re-inoculation and compensation of any depleted primary substrates, the initial microbial diversity and
substrate availability are practically restored, and the feasible duration of the batch test thereby extended from
some weeks to much longer time periods. Once adaptation has taken place, the semi-continuous operation is
simply discontinued and the test system becomes a batch system with time zero being the time of the last renewal.
The degradation rate constant can be interpreted as a characteristic of an adapted system and is similar to rate
constants obtained in a batch system after a long lag phase.
7.2 Nutrient and sludge addition (optional)
It should be emphasized that the biodegradation potential of surface water may vary considerably in time and
space. For some purposes (e.g. for relative ranking of different test compounds), it may therefore be useful to
generate a rate constant representing standard conditions. In such a case, it is recommended to carry out an
optional test with nutrient-rich or nutrient-enriched surface water or with membrane-filtered secondary effluent of a
waste water treatment plant as the substrate amended with 3 mg/l (dry mass) of activated sludge as inoculum. The
sludge should be sampled from a treatment plant predominantly receiving domestic sewage and having no
significant inputs of the test compound.
7.3 Temperature and lighting
Incubation shall take place in the dark or in diffuse light at a controlled (± 2 °C) temperature which is either the field
temperature or a standard temperature of 20 °C to 25 °C. Field temperatures can represent either the actual
temperature of the sample as collected or represent an average field temperature at the sampling site.
8 Procedure
8.1 Preparation of test and reference compounds
8.1.1 Water-soluble test compounds
Prepare a stock solution in deionized water (5.1.1) and transfer the necessary volume of the stock solution to the
test flasks (6.1) in order to achieve the desired test concentration. If C-labelled compounds are used, see
annex A for details.
8.1.2 Poorly water-soluble test compounds
Dissolve test compounds of low volatility first in a minimum amount of volatile organic solvent. Add a small volume
of this solution to the test flasks. Strip off enough of the organic solvent so that it does not significantly increase the
DOC concentration of the sample of surface water. Check this by a substance-specific analysis or, if possible, by
DOC analysis (see e.g. ISO 8245). In certain cases, it may be feasible to prepare an intermediate solution first in
deionized water (5.1.1) or in surface water (5.2.1).
Also other techniques to introduce the test compound into the test flasks may be used as described in ISO 10634.
8 © ISO 2002 – All rights reserved

8.1.3 Reference compound (optional)
When inexperienced with either the test itself, the sample of surface water (5.2.1) used and/or the sediment (5.2.2),
it is recommendable to use a reference compound, preferably aniline in the same range of concentration as the test
compound.
8.2 Test set-up
8.2.1 Pelagic test
Set up the following flasks:
 at least two test flasks (symbolized F ) for each of the different concentrations (at least two) of the test
T
compound examined (see 8.1.1 or 8.1.2);
 at least one flask (symbolized F ) for the blank containing a sample of the surface water only;
B
 optionally, at least two test flasks (symbolized F ) to check the test performance with a reference compound
C
(see 8.1.3);
 optionally, at least one sterile flask for checking possible abiotic degradation or other non-biological removal
(symbolized F ).
S
Transfer a suitable volume of surface water (5.2.1) to the flasks and fill the flasks to about one-third of their volume
but no less than about 100 ml.
The biological activity is stopped by autoclaving (6.7) the sample of test water or by adding a toxicant, such as
mercury(II) chloride (see 5.1.3) or sodium azide (see 5.1.4).
8.2.2 Suspended sediment test
Set up a sufficient number of flasks in the same manner as described for a pelagic test (8.2.1). Use closed serum
bottles or similarly shaped flasks. Adjust the level of the suspended solids of the surface water sediment
suspension to the predetermined level (see 5.2.2) between 100 mg/l and 1 000 mg/l. Fill the flasks with this
suspension to about one-third of their volume.
With sediment added in high concentrations, sterile conditions are not obtained easily. In this case, repeated
autoclaving (e.g. three times) is recommended. Note that information on abiotic degradation behaviour will normally
be available before conducting the test and that the kinetics for abiotic degradation normally does not change at
low concentrations as does that of biodegradation. Therefore, tests in sterile units normally serve the purpose of
assessing sorption phenomena. Note that the sorptive properties of sediments will change by autoclaving. The
sorption data obtained can therefore only be used qualitatively, for example to ascertain whether sorption is
significant or not. Initial sorption may be studied quantitatively by using non-sterile sediment. If long-term studies on
sorption are required, sterilization should be performed, for instance by radiation or by chemical means.
8.3 Incubation
Close the test flasks prepared in 8.2 either with stoppers or lids which are impermeable to air and especially CO .
In the case of a non-volatile test compound when a specific analysis is used and no radiolabelled compounds are
added, a loose, cotton-wool plug may be used that prevents contamination from the atmosphere. Place the test
flasks on a shaking table, or supply them with magnetic bars and place them on magnetic stirrers. Maintain a
homogeneous suspension and aerobic conditions over the test period by continuous and sufficient agitation.
Operate the shaking tables at about 100 r/min.
For tests with sediment, preferably place the closed test flasks horizontally on the shaker. However, this position is
not feasible if sorption to the lid is significant or loose cotton-wool plugs are used. If magnetic stirring is applied to
sediments, note that ordinary magnetic bars are not durable. In this case, use bars coated with glass tubing. Make
sure that the stirring is vigorous enough to maintain aerobic conditions.
Place the test flasks in an environment with the selected incubation temperature (see 7.3). Withdraw samples for
analysis from each of the test flasks at the beginning of the test at day 0, i.e. before degradation begins, and at
suitable intervals in the course of the test. Usually, at least five sampling points in time are required to evaluate the
degradation behaviour and ideally the degradation phase should be represented by at least three data points in
order to estimate a reliable rate constant. No fixed time schedule for sampling can be stated, as the rate of
biodegradation varies. However, in general, it is recommended to sample once a week for test compounds
undergoing slow degradation and to sample once a day during the first three days and then every second or third
day for readily degradable test compounds. If test samples are preserved for a specific analysis at a later time, it is
advisable to take more test samples than the required minimum of five. In this case, analyse the test samples in the
inverse order that they were taken, i.e. from those taken at the end of the experiment, analysed first, to those taken
at beginning of the experiment, analysed last.
Keep all stored test samples cooled at 2 °C to 4 °C and keep them air-tight if analysis can be carried out within 1 d
to 2 d. For longer storage, deep freezing below −18 °C or chemical preservation is necessary (see 8.4 and annex
A). If it is known that the test compound will remain unaffected by acidification, acidify the test sample to pH 2
before storing. If the analytical method involves solvent extraction, perform the extraction immediately after
sampling or after storing the sample refrigerated for 1 d and store the extracts only.
8.4 Determination of the remaining test compound
8.4.1 Radiochemical measurements
The amount of CO evolved is determined indirectly by measuring the difference between the initial C-activity in
the sample of surface water or the suspension containing the test compound and the total residual activity at the
sampling time as measured after acidifying the sample and stripping off CO . Inorganic carbon is thus removed
and the residual activity measured is derived from non-degraded or partially degraded test compound. For details
see annex A.
With high degrees of mineralization of the test compound to CO , measured residual activities can be assumed to
be approximately proportional to residual test compound concentrations. If the mineralization is less complete a
considerable error can result if such proportionality is assumed. Therefore, if sufficient measurements have been
made to estimate the residual organic activity after complete degradation of the test compound, it is necessary to
make a correction to account for the fact that some carbon is not released as CO but incorporated into the
biomass or released as extra-cellular metabolites. For a simple correction procedure, see 9.1 and annex A.
It is recommended to make additional measurements, for example carried out at the end of the test after filtration,
of particulate C to provide an estimate of the incorporation of carbon into the microbial biomass. Furthermore, the
evolution of CO should be measured directly in one or more test flasks in order to check the mass balance and
to provide direct evidence of biodegradation as a further procedural check.
8.4.2 Specific chemical analysis
If a sensitive specific chemical analytical method is available, the primary biodegradation of the test compound may
be followed by measuring the total residual test compound concentration in samples of surface water or
suspensions with sediment using this method. If the test is carried out with radiolabelled test compounds, parallel
specific chemical analytical measurements of primary biodegradation may provide useful additional information and
serve as a further check of the procedure. For example, extract the samples for analysis with an organic solvent
following the directions given in the respective analytical procedure.
Depending on the sensitivity of the analytical method, use larger test volumes than those suggested in 6.1 and
8.2.1. The test can easily be carried out with test volumes of 1 l in flasks of 2 l to 3 l capacity, allowing a sample
size of for example 100 ml for analyses.
10 © ISO 2002 – All rights reserved

9 Calculation
9.1 Radiochemical measurements
14 14 14
When a C-labelled organic compound is biodegraded, part of the C is converted to CO , while another part is
used for synthesis of new microbial biomass and/or extra-cellular metabolites. A detailed interpretation of
radiochemical measurements can therefore be rather complicated. As time passes, some of the C built into the
biomass will be released again as CO and as extra-cellular metabolites or cell fragments, which in turn are
14 14
mineralized to CO or are reused for biosynthesis. For these reasons, simple plots of residual organic C activity
(measured after stripping off CO ) versus time will show “tailing” after degradation has been completed and the last
part of the curve will be difficult to interpret. Therefore, only the initial part of the curve (less than about 50 %
degradation) is used for direct estimation of a degradation rate constant.
The following simple procedure is suggested for converting activities to approximate concentrations. The procedure
is briefly outlined below and is described in more detail in annex A. It is assumed that a constant fraction, α, of C
is fully mineralized to CO during the course of degradation. The residual mass concentration, expressed in
micrograms per litre (µg/l), ρ [or in molar concentration, c, expressed in micromoles per litre (µmol/l)], of the test
compound can then be calculated from the measured residual activity using equation (1):
ρ=−cc (1− α )

AA0

a ⋅α

1cc−−(1 α )
AA0
= ρ (1)
 0
α c
A0
where
ρ is the initial concentration, expressed in micrograms per litre (µg/l), of the test compound;
a is the specific activity, expressed in becquerels per microgram (Bq/µg), of the test compound or of a
mixture of radiolabelled and “cold” test compound;
14 14
α is the fraction of C converted to CO (as
...


INTERNATIONAL ISO
STANDARD 14592-1
First edition
2002-11-15
Corrected version
2003-08-01
Water quality — Evaluation of the aerobic
biodegradability of organic compounds at
low concentrations —
Part 1:
Shake-flask batch test with surface water or
surface water/sediment suspensions
Qualité de l'eau — Évaluation de la biodégradabilité aérobie des composés
organiques présents en faibles concentrations —
Partie 1: Essai en lots de flacons agités avec des eaux de surface ou
des suspensions eaux de surface/sédiments

Reference number
©
ISO 2002
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2002 – All rights reserved

Contents Page
Foreword . iv
Introduction. v
1 Scope. 1
2 Normative reference. 1
3 Terms, definitions and symbols . 1
4 Principle . 4
5 Reagents and media . 5
6 Apparatus. 7
7 Test environment and conditions. 7
8 Procedure. 8
9 Calculation . 11
10 Validity of the test . 13
11 Test report. 13
Annex A (informative) Guidance on the use of C-labelled compounds . 14
Bibliography. 22

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted
by the technical committees are circulated to the member bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this part of ISO 14592 may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 14592-1 was prepared by Technical Committee ISO/TC 147, Water quality, Subcommittee SC 5, Biological
methods.
ISO 14592 consists of the following parts, under the general title Water quality — Evaluation of the aerobic
biodegradability of organic compounds at low concentrations:
 Part 1: Shake-flask batch test with surface water or surface water/sediment suspensions
 Part 2: Continuous flow river model with attached biomass
This corrected version of ISO 14592-1:2002 incorporates corrections to
 the reference given in the third item of the list in 8.2.1;
 the reference given in the penultimate line of 8.2.1;
 the reference given in the last line of the second paragraph of 8.4.1.

iv © ISO 2002 – All rights reserved

Introduction
This International Standard consists of two parts. Part 1 describes a die-away batch test for either surface water
with or without added sediment in suspension simulating either a pelagic aquatic environment or a
water-to-sediment interface. Part 2 describes a continuous flow system simulating a river with biomass attached to
stationary surfaces.
This test has been specifically designed to provide information on the biodegradation behaviour and kinetics of test
compounds present in low concentrations, i.e. sufficiently low to ensure that they simulate the biodegradation
kinetics which would be expected to occur in natural environmental systems.
Before conducting this test, it is necessary to have information on the biodegradability behaviour of the test
compound at higher concentrations (e.g. in standard biodegradation tests), and, if possible, on abiotic degradability
or elimination from water, as well as relevant physico-chemical data. This information is necessary for proper
experimental planning and interpretation of results.
When this test method is used with a single environmental sample of surface water (either with or without the
addition of sediment), a laboratory-derived first-order biodegradation rate can be estimated for one single point in
time and space. The test system may be more consistent and provide more reliable biodegradation results if it is
adapted to the test compound at a specifically maintained concentration. This may be achieved using the optional
semi-continuous procedural variant of the method.

INTERNATIONAL STANDARD ISO 14592-1:2002(E)

Water quality — Evaluation of the aerobic biodegradability
of organic compounds at low concentrations —
Part 1:
Shake-flask batch test with surface water or surface
water/sediment suspensions
WARNING AND SAFETY PRECAUTIONS — Activated sludge, sewage and effluent contain potentially
pathogenic organisms. Therefore appropriate precautions should be taken when handling them. Toxic and
dangerous test compounds and those whose properties are unknown should be handled with care.
Radiolabelled compounds, if used, should be handled respecting existing rules and legislation.
1 Scope
This part of ISO 14592 specifies a test method for evaluating the biodegradability of organic test compounds by
aerobic microorganisms by means of a shake-flask batch test. It is applicable to natural surface water, free from
coarse particles to simulate a pelagic environment (“pelagic test”) or to surface water with suspended sediments
added to obtain a level of 0,1 g/l to 1 g/l dry mass to simulate a water body with suspended sediment (“suspended
sediment test”).
This part of ISO 14592 is applicable to organic test compounds present in lower concentrations (normally below
100 µg/l) than those of natural carbon substrates also present in the system. Under these conditions, the test
compounds serve as a secondary substrate and the kinetics for biodegradation would be expected to be first order
(“non-growth” kinetics).
This test method is not recommended for use as proof of ultimate biodegradation which is better assessed using
other standardized tests (see ISO/TR 15462). It is also not well suited to studies on metabolite formation and
accumulation which require higher test concentrations.
2 Normative reference
The following normative document contains provisions which, through reference in this text, constitute provisions of
this part of ISO 14592. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO 14592 are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.
ISO/TR 15462, Water quality — Selection of tests for biodegradability
3 Terms, definitions and symbols
3.1 Terms and definitions
For the purpose of this part of ISO 14592, the following terms and definitions apply.
3.1.1
ultimate aerobic biodegradation
breakdown of a chemical compound or organic matter by microorganisms, in the presence of oxygen, to carbon
dioxide (CO ), water and mineral salts of any other elements present (mineralization) and the production of new
biomass
NOTE Total mineralization may be different from ultimate aerobic biodegradation in that total mineralization includes
secondary mineralization of biosynthesis products. The kinetics may therefore deviate from first-order kinetics in particular
towards the end of the experiment. In this part of ISO 14592, primary aerobic biodegradation is determined when using
substance specific analysis and total mineralization when using radiolabelled compounds.
3.1.2
primary biodegradation
structural change (transformation) of a chemical compound by microorganisms resulting in the loss of a specific
property of that compound
3.1.3
dissolved organic carbon
DOC
part of the organic carbon in a sample of water which cannot be removed by specified phase separation
NOTE Phase separation may be obtained, for example, by centrifugation of the sample of test water at 40 000 m/s for
15 min or by membrane-filtration using membranes with pores of 0,45 µm diameter.
3.1.4
lag phase
t
lag
time from the start of a test until significant biodegradation (about 10 % of the maximum level) can be measured
NOTE Lag phase is expressed in days (d).
3.1.5
maximum level of biodegradation
degree of biodegradation of a chemical compound or organic matter in a test above which no further
biodegradation takes place during the test
NOTE The maximum level of biodegradation is expressed as a percentage.
3.1.6
primary substrate
major carbon and energy source which is essential for growth or maintenance of microorganisms
3.1.7
secondary substrate
substrate component present at such low concentrations, that by its degradation, only insignificant amounts of
carbon and energy are supplied to the competent microorganisms, as compared to the carbon and energy supplied
by their degradation of primary substrates
3.1.8
degradation rate constant
k
rate constant for first-order or pseudo first-order kinetics which indicates the rate at which degradation processes
occur
−1
NOTE 1 The degradation rate constant is expressed in inverse days (d ).
NOTE 2 For a batch experiment, k is estimated from the initial part of the degradation curve obtained after the end of the lag
phase. For a continuously operating test system, k can be estimated from a mass balance for the reactor using data collected
under steady-state conditions.
2 © ISO 2002 – All rights reserved

3.1.9
degradation half-life
T
1/2
characteristic of the rate of a first-order reaction and corresponds to the time interval necessary for the
concentration to decrease by a factor of two
NOTE 1 The degradation half-life is expressed in days (d).
NOTE 2 The degradation half-life and the degradation rate constant are related by the following equation:
T = ln2/k
1/2
NOTE 3 The degradation half-life T for first-order reactions should not be confused with the half-life time, T , which is
1/2 50
often used to describe the environmental behaviour of pesticides and which is simply the time to reach 50 % of total
biodegradation. The half-life time T may be derived from degradation curves without making assumptions about the kinetics.
3.2 Symbols
Symbol Description Units
1) 14
A activity of the C-radiolabelled test compound becquerels(Bq)
14 14
A inorganic C-activity ( CO evolved as a result of biodegradation) becquerels(Bq)
I 2
A total organic C-activity of the residual test compound, becquerels(Bq)
TO
metabolites, particulate microbial biomass and dissolved cell
constituents, measured in the liquid phase after stripping off CO
A dissolved organic C-activity of the residual test compound, becquerels(Bq)
DO
metabolites and dissolved cell constituents, measured in the
liquid phase after stripping off CO and separation of particles
by membrane filtration or centrifugation
14 14
A particulate organic C-activity of the sorbed C of the test becquerels(Bq)
PO
compound and particulate C-biomass measured in the particulate
residue after filtration or centrifugation
2)
a specific activity of the test compound or of a mixture becquerels per microgram
of radiolabelled and “cold” test compound (Bq/µg)
3)
c residual molar concentration of the test compound micromoles per litre (µmol/l)
c initial molar concentration of the test compound micromoles per litre (µmol/l)
1) A is the symbol for activity, expressed in bequerels, as specified in ISO 31-9-33:1992.
2) In accordance with ISO 31-9-34:1992, a is defined as the symbol for specific activity, expressed in bequerels per kilogram. It
may be common practice sometimes to use the symbol σ for specific activity, but this is not in accordance with
ISO 31-10-3:1992 where “σ ” is defined as the cross-section for a specified target entity and for a specified reaction or process
produced by incident charged or uncharged particles of specified type and energy.
3) In ISO 31-8-13:1992, c is defined as the symbol for “molar concentration”, expressed in moles per litre and in
ISO 31-8-11.2:1992, ρ is defined as the symbol for “mass concentration”, expressed in kilograms per litre. Note that in ISO 31,
“concentration” of the test compound in solution is expressed in two ways:
 “ρ” refers to the mass of the test compound per unit volume;
 “c” is specifically used to mean the number of moles of the test compound per unit volume.
4)
c residual activity concentration becquerels per millilitre
A
(Bq/ml)
c initially added activity concentration becquerels per millilitre
A
(Bq/ml)
c activity concentration at the plateau of the transition becquerels per millilitre
A
plateau
between the degradation curve and the subsequent “tailing” (Bq/ml)
F flasks containing the test compound examined
T
F flasks containing the blank sample
B
F flasks for check the test performance with a reference compound
C
F sterile flask for checking possible abiotic degradation or
S
other non-biological removal
−1
k biodegradation rate constant inverse days (d )
∗ −1
k pseudo first-order rate constant for disappearance of activity inverse days (d )
−1
k first-order rate constants and associated half-lives derived from inverse days (d )
non-adapted
portions of the curve showing no significant growth
−1
k pseudo first-order rate constants representing adapted environments inverse days (d )
adapted
t time days (d)
t lag phase days (d)
lag
T degradation half-life days (d)
1/2
V reaction volume in the reactor litres (l)
14 14
α fraction of C converted to CO
3)
ρ residual mass concentration of the test compound micrograms per litre (µg/l)
ρ initial mass concentration of the test compound micrograms per litre (µg/l)
4 Principle
The test is carried out by batch-wise incubation of the test compound with a sample of either surface water or
surface water and sediment. When surface water alone is used, the test is referred to as a “pelagic test” and when
sediment is added to obtain a suspension, the test is referred to as a “suspended sediment test”. Incubation takes
place at an environmental temperature under agitation by means of a system of flasks on a mechanical shaker.
Test compounds, present in lower concentrations than the natural carbon substrates also present in the system,
will serve as secondary substrates. Biodegrading microorganisms obtain the major part of their energy and carbon
from primary substrates and not from secondary substrates. Under these conditions, the kinetics for biodegradation
would be expected to be first order (“non-growth kinetics”). First-order kinetics implies that the specific rate of
degradation is constant and independent of the concentration of the test compound.

4) c is the symbol for volumetric activity, expressed in bequerels per cubic metre, as specified in ISO 31-9-35. a is sometimes
A
used for volumetric activity, but is not in accordance with ISO 31.
4 © ISO 2002 – All rights reserved

The test compound is added at two different concentration levels. The concentrations are chosen to be within the
microgram-per-litre range (preferably < 100 µg/l) so as to obtain first-order degradation kinetics and an estimated
half-life independent of the test concentration. Concentrations should normally be chosen to be as low as
practically possible with respect to the sensitivity of the available measurement techniques. These concentrations
need not be as low as those expected in the environment to ensure the same type of degradation kinetics.
The test mixture is transferred to closed flasks with an air headspace. Flasks are incubated in the dark or in diffuse
light at either the field temperature or at a temperature of 20 °C to 25 °C as commonly used in biodegradation tests.
Agitation by means of continuous shaking or stirring is provided to maintain particles, including microorganisms, in
free suspension.
The time-course of degradation is followed by the determination of the residual concentration of test compound at
appropriate intervals. The incubation time should be sufficiently long to be able to evaluate the degradation
behaviour. If the degradation is found to be significant, the extent of degradation should be sufficiently high
(normally greater than 15 % to 20 % degradation) to be able to estimate the first-order rate constant.
Measurement of the degradation of the test compound is carried out either by a radiotracer technique, normally
using C-labelling and liquid scintillation counting, or by specific chemical analysis, if a sufficiently sensitive
analytical method is available. Using the C technique and labelling the most persistent part of the molecule with
C, total mineralization or ultimate biodegradation can be assessed, while only primary biodegradation can be
measured with specific analysis.
5 Reagents and media
5.1 Reagents
Use only reagents of recognized analytical grade and radiolabelled compounds of high radiochemical purity.
5.1.1 Deionized water, for preparing stock solutions of the test compound and the reference substance.
This water shall have a DOC content of no more than 1 mg/l DOC (use e.g. ISO 8245 for determination) and be
free from inhibitory concentrations of toxic substances.
5.1.2 Volatile organic solvent (optional), for dissolving test compounds of low solubility.
5.1.3 Mercury(II) chloride (HgCl ) (optional), added to a mass concentration of 100 mg/l in the sample of test
water containing the test or reference compound and used for stopping all biological activity.
5.1.4 Sodium azide (NaN ), (optional), added to a mass concentration of 10 g/l in the sample of test water
containing the test or reference compound and used for stopping all biological activity.
5.2 Media
5.2.1 Surface water, for use in the “pelagic test”.
Collect a sample of suitable surface water in a thoroughly cleansed container. Remove coarse particles, for
example, by filtration through a nylon filter of about 100 µm mesh size, a coarse paper filter, or by sedimentation.
Keep the sample of surface water in an aerobic environment (e.g. by keeping sufficient headspace in the flask)
during the transport and until the start of the test in the laboratory. Start the test preferably within 1 d after
collection. During transportation and storage, the temperature of the sample of surface water should not be
permitted to exceed significantly the temperature to be used in the test. Cool to 4 °C if transportation times exceed
a few hours. Ensure this water does not freeze.
Identify the sampling location precisely and describe it in terms of its pollution and nutrient status. Provide the
following minimum information for the surface water taken for the test:
a) date and time of collection and delay between collection and use in the laboratory test;
b) depth of collection;
c) appearance of sample (e.g. turbidity);
d) temperature and pH at the place and time of collection;
e) in the case of sea water and brackish water, salinity or conductivity;
f) in the case of a turbid sample, the amount of suspended solids;
g) number of colony-forming microorganisms determined on a suitable growth medium according to standard
methods;
and optionally, in addition:
h) DOC and TOC concentration;
i) inorganic nutrients such as total phosphorus, dissolved orthophosphate, total nitrogen, nitrate, nitrite or
ammonium nitrogen;
j) chlorophyll-a concentration;
k) total microbial number using staining (e.g. by acridine orange) and epifluorescence microscopy after ultrasonic
treatment or dispersion by other means;
l) other characteristics relating to the microbial biomass and activity such as ATP (adenosine triphosphate),
protein, heterotrophic carbon assimilation activity, and determination of the number of organisms capable of
degrading the test compound (e.g. determined using a most probable number method).
5.2.2 Surface water and sediment, for use in the “suspended sediment test”.
Collect a sample of surface water as described in 5.2.1. In addition, collect a grab sample of aerobic surface
sediment using an appropriate sampling method. Sample, for example, a number of sediment cores using a tube of
transparent plastic and slice off the upper aerobic layer immediately after sampling. Transport the sample in a
container with sufficient air headspace to keep the sediment aerobic, and aerate the sample of surface water
following arrival at the laboratory until use. First determine the level of suspended solids in the sediment sample,
then choose a mass concentration level between 100 mg/l and 1 000 mg/l and adjust the level of suspended solids
of the sample to this predetermined level.
Identify the sampling location precisely and describe it in terms of its pollution and nutrient status. Provide the same
information for the sample of water medium as described for the pelagic test (5.2.1) and provide the following
information for the sediment:
a) date and time of collection and delay between collection and use in the laboratory test;
b) depth of collection;
c) appearance of the sample, such as coloured, muddy, silty, or sandy;
d) dry mass in grams per litre of the suspended solids;
e) TOC concentration or loss of ignition as a measure of the content of organic matter;
6 © ISO 2002 – All rights reserved

and optionally:
f) sediment particulate characteristics (fractions of silt and sand);
g) inorganic nutrients such as total phosphorus, dissolved orthophosphate, total nitrogen, nitrate, nitrite, or
ammonium nitrogen in the pore water;
h) microbial colony count on an appropriate growth medium as obtained after gentle treatment with ultrasound;
i) total microbial number using staining (e.g. by acridine orange) and epifluorescence microscopy after treatment
with ultrasonic or dispersion by other means;
j) any other characteristic relating to the microbial biomass and activity.
A preliminary dry mass determination can conveniently be carried out by drying a portion of this sediment in a
microwave oven, e.g. for 15 min. The estimate so obtained can be used for the purpose of calculating the amount
of sediment to be added to the surface water in order to obtain a suspension with the desired content of solids dry
mass. The accurate solid content is calculated subsequently using a more precise dry mass determination, e.g.
obtained after drying overnight at 105 °C in a conventional oven.
6 Apparatus
Ordinary laboratory equipment and the following.
6.1 Conical or cylindrical flasks, of appropriate capacity, for example 0,5 l or 1 l, with silicone or rubber
stoppers, or serum flasks with CO -tight lids (e.g. with butyl rubber septa).
For non-volatile test compounds that are not radiolabelled, gas-tight stoppers or lids are not required. Thoroughly
clean test flasks and stoppers before use and ensure they contain no traces of detergents. To be sure that no
bacterial contamination occurs, the flasks may be sterilized by heating or autoclaving.
6.2 Shaking table or magnetic stirrers, for continuous agitation of the test flasks.
6.3 Centrifuge, capable of rotating at a rate of 40 000 m/s .
6.4 pH meter.
6.5 Oven or microwave oven, for dry-mass determinations.
6.6 Membrane filtration apparatus.
6.7 Autoclave or oven (optional), for heat-sterilization of glassware and for stopping all biological activity in the
aqueous media.
6.8 Radiotracer facilities and equipment, for handling and measuring C-labelled compounds if used, (see
also annex A).
6.9 Analytical equipment, for the determination of organic test compounds if specific chemical analysis is used
(e.g. gas chromatograph, high pressure liquid chromatograph).
7 Test environment and conditions
7.1 Semi-continuous incubation (optional)
Very long incubation times (several months) may be necessary if long lag times occur before significant
degradation can be measured. In such cases, the microbial community of the sample of surface water may
deteriorate and the similarity of the test system to natural environmental conditions decreases. Such deterioration
may affect the degradation of the test compound causing it to cease or to slow down. A likely explanation is the
disappearance of slowly growing competent microorganisms from the test system. These may die out due to
various loss processes, i.e. before degradation effectively starts or at a later stage if the pressure of selection
exerted by the test compound, present at a low concentration, is insufficient. The problem of sample deterioration is
greatest for pelagic tests. It can be remedied, however, by including a pre-adaptation period with semi-continuous
operation prior to the batch test. The basic principle of the semi-continuous pre-adaptation is to renew part of the
surface water periodically and make up with additional test compound to approximately the starting concentration.
It has been found adequate to replace, for example, one third of the volume every two weeks. The replacement
surface water should be freshly collected from the same site as the original sample. As the procedure comprises
both re-inoculation and compensation of any depleted primary substrates, the initial microbial diversity and
substrate availability are practically restored, and the feasible duration of the batch test thereby extended from
some weeks to much longer time periods. Once adaptation has taken place, the semi-continuous operation is
simply discontinued and the test system becomes a batch system with time zero being the time of the last renewal.
The degradation rate constant can be interpreted as a characteristic of an adapted system and is similar to rate
constants obtained in a batch system after a long lag phase.
7.2 Nutrient and sludge addition (optional)
It should be emphasized that the biodegradation potential of surface water may vary considerably in time and
space. For some purposes (e.g. for relative ranking of different test compounds), it may therefore be useful to
generate a rate constant representing standard conditions. In such a case, it is recommended to carry out an
optional test with nutrient-rich or nutrient-enriched surface water or with membrane-filtered secondary effluent of a
waste water treatment plant as the substrate amended with 3 mg/l (dry mass) of activated sludge as inoculum. The
sludge should be sampled from a treatment plant predominantly receiving domestic sewage and having no
significant inputs of the test compound.
7.3 Temperature and lighting
Incubation shall take place in the dark or in diffuse light at a controlled (± 2 °C) temperature which is either the field
temperature or a standard temperature of 20 °C to 25 °C. Field temperatures can represent either the actual
temperature of the sample as collected or represent an average field temperature at the sampling site.
8 Procedure
8.1 Preparation of test and reference compounds
8.1.1 Water-soluble test compounds
Prepare a stock solution in deionized water (5.1.1) and transfer the necessary volume of the stock solution to the
test flasks (6.1) in order to achieve the desired test concentration. If C-labelled compounds are used, see
annex A for details.
8.1.2 Poorly water-soluble test compounds
Dissolve test compounds of low volatility first in a minimum amount of volatile organic solvent. Add a small volume
of this solution to the test flasks. Strip off enough of the organic solvent so that it does not significantly increase the
DOC concentration of the sample of surface water. Check this by a substance-specific analysis or, if possible, by
DOC analysis (see e.g. ISO 8245). In certain cases, it may be feasible to prepare an intermediate solution first in
deionized water (5.1.1) or in surface water (5.2.1).
Also other techniques to introduce the test compound into the test flasks may be used as described in ISO 10634.
8 © ISO 2002 – All rights reserved

8.1.3 Reference compound (optional)
When inexperienced with either the test itself, the sample of surface water (5.2.1) used and/or the sediment (5.2.2),
it is recommendable to use a reference compound, preferably aniline in the same range of concentration as the test
compound.
8.2 Test set-up
8.2.1 Pelagic test
Set up the following flasks:
 at least two test flasks (symbolized F ) for each of the different concentrations (at least two) of the test
T
compound examined (see 8.1.1 or 8.1.2);
 at least one flask (symbolized F ) for the blank containing a sample of the surface water only;
B
 optionally, at least two test flasks (symbolized F ) to check the test performance with a reference compound
C
(see 8.1.3);
 optionally, at least one sterile flask for checking possible abiotic degradation or other non-biological removal
(symbolized F ).
S
Transfer a suitable volume of surface water (5.2.1) to the flasks and fill the flasks to about one-third of their volume
but no less than about 100 ml.
The biological activity is stopped by autoclaving (6.7) the sample of test water or by adding a toxicant, such as
mercury(II) chloride (see 5.1.3) or sodium azide (see 5.1.4).
8.2.2 Suspended sediment test
Set up a sufficient number of flasks in the same manner as described for a pelagic test (8.2.1). Use closed serum
bottles or similarly shaped flasks. Adjust the level of the suspended solids of the surface water sediment
suspension to the predetermined level (see 5.2.2) between 100 mg/l and 1 000 mg/l. Fill the flasks with this
suspension to about one-third of their volume.
With sediment added in high concentrations, sterile conditions are not obtained easily. In this case, repeated
autoclaving (e.g. three times) is recommended. Note that information on abiotic degradation behaviour will normally
be available before conducting the test and that the kinetics for abiotic degradation normally does not change at
low concentrations as does that of biodegradation. Therefore, tests in sterile units normally serve the purpose of
assessing sorption phenomena. Note that the sorptive properties of sediments will change by autoclaving. The
sorption data obtained can therefore only be used qualitatively, for example to ascertain whether sorption is
significant or not. Initial sorption may be studied quantitatively by using non-sterile sediment. If long-term studies on
sorption are required, sterilization should be performed, for instance by radiation or by chemical means.
8.3 Incubation
Close the test flasks prepared in 8.2 either with stoppers or lids which are impermeable to air and especially CO .
In the case of a non-volatile test compound when a specific analysis is used and no radiolabelled compounds are
added, a loose, cotton-wool plug may be used that prevents contamination from the atmosphere. Place the test
flasks on a shaking table, or supply them with magnetic bars and place them on magnetic stirrers. Maintain a
homogeneous suspension and aerobic conditions over the test period by continuous and sufficient agitation.
Operate the shaking tables at about 100 r/min.
For tests with sediment, preferably place the closed test flasks horizontally on the shaker. However, this position is
not feasible if sorption to the lid is significant or loose cotton-wool plugs are used. If magnetic stirring is applied to
sediments, note that ordinary magnetic bars are not durable. In this case, use bars coated with glass tubing. Make
sure that the stirring is vigorous enough to maintain aerobic conditions.
Place the test flasks in an environment with the selected incubation temperature (see 7.3). Withdraw samples for
analysis from each of the test flasks at the beginning of the test at day 0, i.e. before degradation begins, and at
suitable intervals in the course of the test. Usually, at least five sampling points in time are required to evaluate the
degradation behaviour and ideally the degradation phase should be represented by at least three data points in
order to estimate a reliable rate constant. No fixed time schedule for sampling can be stated, as the rate of
biodegradation varies. However, in general, it is recommended to sample once a week for test compounds
undergoing slow degradation and to sample once a day during the first three days and then every second or third
day for readily degradable test compounds. If test samples are preserved for a specific analysis at a later time, it is
advisable to take more test samples than the required minimum of five. In this case, analyse the test samples in the
inverse order that they were taken, i.e. from those taken at the end of the experiment, analysed first, to those taken
at beginning of the experiment, analysed last.
Keep all stored test samples cooled at 2 °C to 4 °C and keep them air-tight if analysis can be carried out within 1 d
to 2 d. For longer storage, deep freezing below −18 °C or chemical preservation is necessary (see 8.4 and annex
A). If it is known that the test compound will remain unaffected by acidification, acidify the test sample to pH 2
before storing. If the analytical method involves solvent extraction, perform the extraction immediately after
sampling or after storing the sample refrigerated for 1 d and store the extracts only.
8.4 Determination of the remaining test compound
8.4.1 Radiochemical measurements
The amount of CO evolved is determined indirectly by measuring the difference between the initial C-activity in
the sample of surface water or the suspension containing the test compound and the total residual activity at the
sampling time as measured after acidifying the sample and stripping off CO . Inorganic carbon is thus removed
and the residual activity measured is derived from non-degraded or partially degraded test compound. For details
see annex A.
With high degrees of mineralization of the test compound to CO , measured residual activities can be assumed to
be approximately proportional to residual test compound concentrations. If the mineralization is less complete a
considerable error can result if such proportionality is assumed. Therefore, if sufficient measurements have been
made to estimate the residual organic activity after complete degradation of the test compound, it is necessary to
make a correction to account for the fact that some carbon is not released as CO but incorporated into the
biomass or released as extra-cellular metabolites. For a simple correction procedure, see 9.1 and annex A.
It is recommended to make additional measurements, for example carried out at the end of the test after filtration,
of particulate C to provide an estimate of the incorporation of carbon into the microbial biomass. Furthermore, the
evolution of CO should be measured directly in one or more test flasks in order to check the mass balance and
to provide direct evidence of biodegradation as a further procedural check.
8.4.2 Specific chemical analysis
If a sensitive specific chemical analytical method is available, the primary biodegradation of the test compound may
be followed by measuring the total residual test compound concentration in samples of surface water or
suspensions with sediment using this method. If the test is carried out with radiolabelled test compounds, parallel
specific chemical analytical measurements of primary biodegradation may provide useful additional information and
serve as a further check of the procedure. For example, extract the samples for analysis with an organic solvent
following the directions given in the respective analytical procedure.
Depending on the sensitivity of the analytical method, use larger test volumes than those suggested in 6.1 and
8.2.1. The test can easily be carried out with test volumes of 1 l in flasks of 2 l to 3 l capacity, allowing a sample
size of for example 100 ml for analyses.
10 © ISO 2002 – All rights reserved

9 Calculation
9.1 Radiochemical measurements
14 14 14
When a C-labelled organic compound is biodegraded, part of the C is converted to CO , while another part is
used for synthesis of new microbial biomass and/or extra-cellular metabolites. A detailed interpretation of
radiochemical measurements can therefore be rather complicated. As time passes, some of the C built into the
biomass will be released again as CO and as extra-cellular metabolites or cell fragments, which in turn are
14 14
mineralized to CO or are reused for biosynthesis. For these reasons, simple plots of residual organic C activity
(measured after stripping off CO ) versus time will show “tailing” after degradation has been completed and the last
part of the curve will be difficult to interpret. Therefore, only the initial part of the curve (less than about 50 %
degradation) is used for direct estimation of a degradation rate constant.
The following simple procedure is suggested for converting activities to approximate concentrations. The procedure
is briefly outlined below and is described in more detail in annex A. It is assumed that a constant fraction, α, of C
is fully mineralized to CO during the course of degradation. The residual mass concentration, expressed in
micrograms per litre (µg/l), ρ [or in molar concentration, c, expressed in micromoles per litre (µmol/l)], of the test
compound can then be calculated from the measured residual activity using equation (1):
ρ=−cc (1− α )

AA0

a ⋅α

1cc−−(1 α )
AA0
= ρ (1)
 0
α c
A0
where
ρ is the initial concentration, expressed in micrograms per litre (µg/l), of the test compound;
a is the specific activity, expressed in becquerels per microgram (Bq/µg), of the test compound or of a
mixture of radiolabelled and “cold” test compound;
14 14
α is the fraction of C converted to CO (assumed to be constant);
c is the residual organic activity concentration, expressed in becquerels per millilitre (Bq/ml);
A
c is the initially added activity concentration, expressed in becquerels per millilitre (Bq/ml).
A
An approximate estimate of α can be obtained from the activity plateau at the transition between the degradation
curve and the subsequent “tailing” which reflects secondary mineralization of cell products. Assuming no residual
test compound left, α is simply:
cc−
AA0 plateau
α ≈
c
A0
Note that with first-order kinetics, the biodegradation rate constant, k, equals 1/α times the initial pseudo first-order

rate constant for disappearance of activity, k as follows:

k = k /α
If found to be independent of the added concentration, k can be interpreted as a first-order rate constant
characteristic of the test compound, the environmental sample or system, and of the test temperature. The extent
to which the results can be generalized or extrapolated to other systems shall be evaluated using expert
judgement.
If α cannot be estimated or measured, state this and report k as the initial pseudo first-order rate constant for
disappearance of activity.
9.2 Interpretation of specific chemical analytical measurements
Only primary biodegradation can be determined by a specific analysis and the proof of ultimate biodegradation can
only be obtained by other methods (see ISO/TR 15462).
9.3 Evaluation of biodegradation curves
Round sampling times to whole hours but not to whole days. Plot the
...


NORME ISO
INTERNATIONALE 14592-1
Première édition
2002-11-15
Qualité de l'eau — Évaluation de la
biodégradabilité aérobie des composés
organiques présents en faibles
concentrations —
Partie 1:
Essai en lots de flacons agités avec des
eaux de surface ou des suspensions
eaux de surface/sédiments
Water quality — Evaluation of the aerobic biodegradability of organic
compounds at low concentrations —
Part 1: Shake-flask batch test with surface water or surface water
sediment suspensions
Numéro de référence
©
ISO 2002
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier
peut être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence
autorisant l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées
acceptent de fait la responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute
responsabilité en la matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info
du fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir
l'exploitation de ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation,
veuillez en informer le Secrétariat central à l'adresse donnée ci-dessous.

©  ISO 2002
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax. + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Version française parue en 2003
Publié en Suisse
ii © ISO 2002 — Tous droits réservés

Sommaire Page
Avant-propos. iv
Introduction . v
1 Domaine d'application. 1
2 Référence normative. 1
3 Termes, définitions et symboles . 2
4 Principe . 5
5 Réactifs et milieux. 5
6 Appareillage. 7
7 Environnement et conditions d'essai . 8
8 Mode opératoire . 9
9 Calculs. 12
10 Validité de l'essai . 14
11 Rapport d'essai . 14
Annexe A (informative) Guide sur l'utilisation de composés marqués au C. 16
Bibliographie . 24

Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 3.
Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres
pour vote. Leur publication comme Normes internationales requiert l'approbation de 75 % au moins des
comités membres votants.
L'attention est appelée sur le fait que certains des éléments de la présente partie de l'ISO 14592 peuvent faire
l'objet de droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour
responsable de ne pas avoir identifié de tels droits de propriété et averti de leur existence.
La Norme internationale ISO 14592-1 a été élaborée par le comité technique ISO/TC 147, Qualité de l'eau,
sous-comité SC 5, Méthodes biologiques.
L'ISO 14592 comprend les parties suivantes, présentées sous le titre général Qualité de l'eau — Évaluation
de la biodégradabilité aérobie des composés organiques présents en faibles concentrations:
— Partie 1: Essai en lots de flacons agités avec des eaux de surface ou des suspensions eaux de
surface/sédiments
— Partie 2: Modèle de cours d'eau à courant continu avec biomasse associée
L'annexe A est donnée uniquement à titre d'information.
iv © ISO 2002 — Tous droits réservés

Introduction
La présente Norme internationale comprend deux parties. La Partie 1 décrit un essai de disparition par lots
avec des eaux de surface avec ou sans suspension de sédiments ajoutés, simulant soit un environnement
aquatique pélagique, soit une interface eau/sédiment. La Partie 2 décrit un système à courant continu
simulant un cours d'eau avec une biomasse associée à des surfaces stationnaires.
L'essai a été spécifiquement mis au point pour fournir des informations sur le comportement de
biodégradation et les cinétiques de dégradation de composés d'essai présents en faibles concentrations,
c'est-à-dire suffisamment basses pour assurer qu'elles simulent des cinétiques de biodégradation que l'on
rencontrerait dans des systèmes environnementaux naturels.
Avant de procéder à cet essai, il est nécessaire de disposer d'informations sur le comportement de
biodégradabilité du composé d'essai à des concentrations plus élevées (par exemple dans le cadre d'essais
normalisés de biodégradation) ainsi que, si possible, d'informations sur sa dégradabilité abiotique ou sur son
élimination dans l'eau, et des données physico-chimiques correspondantes. Ces informations sont
nécessaires afin de planifier l'expérience et d'interpréter les résultats convenablement.
Lorsque cette méthode d'essai est utilisée avec un échantillon unique d'eau de surface (avec ou sans
sédiment ajouté), elle peut fournir une estimation de laboratoire d'une vitesse de dégradation de premier ordre
pour un point spatio-temporel unique. Le système d'essai peut être plus cohérent et fournir des résultats de
biodégradation plus fiables s'il est adapté au composé d'essai maintenu à une concentration spécifique. Ceci
peut être obtenu en utilisant une variante facultative en semi-continu du mode opératoire de la présente
méthode.
NORME INTERNATIONALE ISO 14592-1:2002(F)

Qualité de l'eau — Évaluation de la biodégradabilité aérobie des
composés organiques présents en faibles concentrations —
Partie 1:
Essai en lots de flacons agités avec des eaux de surface
ou des suspensions eaux de surface/sédiments
AVERTISSEMENT ET PRÉCAUTIONS DE SÉCURITÉ — Les boues activées, les eaux usées et les
effluents contiennent des organismes potentiellement pathogènes. C'est pourquoi il convient de
prendre les mesures de précaution appropriées lors de leur manipulation. Il est recommandé de faire
preuve de prudence lors de la manipulation de composés d'essai toxiques et dangereux et de ceux
dont les propriétés sont inconnues. Il convient de respecter les règles et réglementations en vigueur
en cas de manipulation de composés radio-marqués.
1 Domaine d'application
La présente partie de l'ISO 14592 spécifie une méthode d'essai pour l'évaluation de la biodégradabilité de
composés d'essai organiques par des micro-organismes aérobies au moyen d'un essai en lots de flacons
agités. Elle s'applique à des eaux de surface naturelles exemptes de particules grossières pour simuler un
environnement pélagique («essai pélagique»), ou à des eaux de surface avec des sédiments en suspension
ajoutés pour obtenir des concentrations de 0,1 g/l à 1 g/l en masse sèche, pour simuler une pièce d'eau avec
sédiments en suspension («essai avec suspension de sédiments»).
La présente partie de l'ISO 14592 s'applique aux composés d'essai organiques présents en concentrations
plus faibles (normalement inférieures à 100 µg/l) que celles des substrats carbonés naturels également
présents dans le système. Dans ces conditions, les composés d'essai ont la fonction de substrat secondaire,
et il est attendu que la cinétique de biodégradation soit du premier ordre (cinétique «sans croissance»).
L'utilisation de cette méthode d'essai n'est pas recommandée comme preuve de la biodégradation ultime, qui
peut s'évaluer de manière plus fiable en utilisant d'autres essais normalisés (voir l'ISO/TR 15462). Elle n'est
pas recommandée non plus pour étudier la formation et l'accumulation de métabolites, ce qui requiert des
concentrations d'essai plus élevées.
2 Référence normative
Le document normatif suivant contient des dispositions qui, par suite de la référence qui y est faite,
constituent des dispositions valables pour la présente partie de l'ISO 14592. Pour les références datées, les
amendements ultérieurs ou les révisions de ces publications ne s'appliquent pas. Toutefois, les parties
prenantes aux accords fondés sur la présente partie de l'ISO 14592 sont invitées à rechercher la possibilité
d'appliquer l'édition la plus récente du document normatif indiqué ci-après. Pour les références non datées, la
dernière édition du document normatif en référence s'applique. Les membres de l'ISO et de la CEI possèdent
le registre des Normes internationales en vigueur.
ISO/TR 15462 , Qualité de l'eau — Sélection d'essais de biodégradabilité
3 Termes, définitions et symboles
3.1 Termes et définitions
Pour les besoins de la présente partie de l'ISO 14592, les termes et définitions suivants s'appliquent.
3.1.1
biodégradation aérobie ultime
décomposition d'un composé chimique ou d'une matière organique par des micro-organismes, en présence
d'oxygène, en dioxyde de carbone (CO ), eau et sels minéraux des autres éléments éventuellement présents
(minéralisation), et production d'une nouvelle biomasse
NOTE La minéralisation totale peut être différente de la biodégradation aérobie ultime car la minéralisation totale
inclut la minéralisation secondaire des produits de biosynthèse. En conséquence, la cinétique peut dévier de la cinétique
du premier ordre, en particulier vers la fin de l'essai. Dans la présente partie de l'ISO 14592, la biodégradation aérobie
primaire est déterminée lorsqu'une analyse spécifique de la substance est utilisée, et la minéralisation totale est
déterminée lorsque des composés radio-marqués sont utilisés.
3.1.2
biodégradation primaire
modification structurelle (transformation) d'un composé chimique par des micro-organismes résultant en la
perte d'une propriété spécifique de ce composé
3.1.3
carbone organique dissous
COD
partie du carbone organique présent dans un échantillon d'eau qui ne peut être éliminée par une séparation
spécifiée des phases
NOTE La séparation des phases peut être obtenue, par exemple, par centrifugation de l'échantillon d'eau à
40 000 m/s pendant 15 min ou par filtration sur membrane dont le diamètre des pores est de 0,45 µm.
3.1.4
phase de latence
t
latence
période entre le début d'un essai et le moment où une dégradation significative (environ 10 % du niveau
maximum de dégradation) peut être mesurée
NOTE La phase de latence est exprimée en jours (j).
3.1.5
niveau maximal de biodégradation
taux maximal de biodégradation d'un composé chimique ou d'une matière organique au cours d'un essai au-
delà duquel aucune biodégradation ne survient plus pendant l'essai
NOTE Le niveau maximal de biodégradation est exprimé en pourcentage.
3.1.6
substrat primaire
source majeure de carbone et d'énergie essentielle à la croissance ou au maintien des micro-organismes
3.1.7
substrat secondaire
élément de substrat présent à des concentrations si faibles que, par sa dégradation, seules des quantités
insignifiantes de carbone et d'énergie sont fournies aux micro-organismes, par comparaison avec le carbone
et l'énergie fournis par la dégradation des substrats primaires
2 © ISO 2002 — Tous droits réservés

3.1.8
constante de vitesse de dégradation
k
constante de vitesse pour cinétique de premier ordre ou de pseudo-premier ordre, qui indique la vitesse à
laquelle se produisent les processus de dégradation
−1
NOTE 1 La constante de vitesse de dégradation est exprimée en inverse de jours (j ).
NOTE 2 Dans le cadre d'une expérience par lots, k est estimée à partir de la partie initiale de la courbe de dégradation
obtenue après la fin de la phase de latence. Dans le cadre de systèmes d'essai fonctionnant en continu, k peut être
estimée à partir d'un bilan massique sur le réacteur en utilisant les données recueillies en conditions d'état permanent.
3.1.9
demi-vie de dégradation
T
1/2
caractéristique de la vitesse d'une réaction du premier ordre: intervalle de temps nécessaire à une réduction
de la concentration par un facteur de deux
NOTE 1 La demi-vie de dégradation est exprimée en jours (j).
NOTE 2 La demi-vie de dégradation et la constante de vitesse de dégradation sont liées par l'équation suivante:
T = ln2/k
1/2
NOTE 3 Il convient de ne pas confondre la demi-vie de dégradation T pour les réactions du premier ordre avec la
1/2
durée de demi-vie, T , qui est souvent utilisée pour décrire le comportement environnemental des pesticides, et qui
correspond simplement au temps nécessaire pour atteindre 50 % de la biodégradation totale. La durée de demi-vie T
peut être dérivée de courbes de dégradation sans faire d'hypothèses sur les cinétiques.
3.2 Symboles
Symbole Description Unité
1) 14
A activité du composé d'essai radio-marqué au C becquerels (Bq)
14 14
A activité du C inorganique ( CO dégagé suite à la becquerels (Bq)
I 2
biodégradation)
A activité du C organique total du composé d'essai résiduel, becquerels (Bq)
TO
des métabolites, de la biomasse microbienne particulaire
et des constituants cellulaires dissous, mesurée dans la phase
liquide après élimination du CO par entraînement
A activité du C organique dissous du composé d'essai résiduel, becquerels (Bq)
DO
des métabolites et des constituants cellulaires dissous,
mesurée dans la phase liquide après élimination du CO
par entraînement et séparation des particules par filtration
sur membrane ou centrifugation
14 14
A activité du C organique particulaire du C sorbé du becquerels (Bq)
PO
composé d'essai et de la biomasse du C particulaire,
mesurée dans le résidu particulaire après filtration ou
centrifugation
1) A est le symbole pour l'activité, exprimée en becquerels, comme spécifié dans l'ISO 31-9-33:1992.
2)
a activité spécifique du composé d'essai ou d'un mélange de becquerels par microgramme
composé d'essai radio-marqué et de composé d'essai «froid» (Bq/µg)
3)
c concentration molaire résiduelle du composé d'essai micromoles par litre (µmol/l)
c concentration molaire initiale du composé d'essai micromoles par litre (µmol/l)
4)
c concentration d'activité résiduelle becquerels par millilitre
A
(Bq/ml)
c concentration d'activité ajoutée initialement becquerels par millilitre
A
(Bq/ml)
c concentration d'activité au plateau de la transition entre la becquerels par millilitre
A
plateau
courbe de dégradation et la «queue résiduelle» qui la suit (Bq/ml)
F flacons contenant le composé d'essai analysé
T
F flacons contenant l'échantillon à blanc
B
F flacons pour contrôler la performance de l'essai avec une
C
substance de référence
F flacon stérile pour contrôler une éventuelle dégradation abiotique
S
ou toute autre forme d'élimination non biologique
−1
k constante de vitesse de biodégradation inverse de jours (j )
∗ −1
k constante de vitesse de pseudo-premier ordre pour  inverse de jours (j )
la disparition de l'activité
−1
k constantes de vitesse du premier ordre et demi-vies associées, inverse de jours (j )
non adapté
dérivées de parties de la courbe sans croissance significative
−1
k constantes de vitesse de pseudo-premier ordre représentant inverse de jours (j )
adapté
des environnements adaptés
t temps jours (j)
t phase de latence jours (j)
latence
T demi-vie de dégradation jours (j)
1/2
2) Conformément à l'ISO 31-9-34:1992, a est défini comme le symbole pour l'activité spécifique, exprimée en becquerels
par kilogramme. Il peut parfois être d'usage courant d'utiliser le symbole σ pour l'activité spécifique, mais cela n'est pas
conforme à l'ISO 31-10-3:1992 où «σ» est défini comme la coupe transversale pour une entité cible spécifiée et pour une
réaction ou un processus spécifié produit par des particules incidentes chargées ou non chargées d'un type et d'une
énergie spécifiés.
3) Dans l'ISO 31-8-13:1992, c est défini comme le symbole pour la «concentration molaire» exprimée en moles par litre,
et dans l'ISO 31-8-11.2:1992, ρ est défini comme le symbole pour la «concentration massique» exprimée en kilogrammes
par litre. On remarque que dans l'ISO 31, la «concentration» du composé d'essai dans la solution est exprimée de deux
manières:
 «ρ» est la masse du composé d'essai par unité de volume;
 «c» est utilisé spécifiquement pour le nombre de moles du composé d'essai par unité de volume.
4) cA est le symbole pour l'activité volumétrique, exprimée en becquerels par mètre cube, comme spécifié dans l'ISO 31-
9-35. a est parfois utilisé pour l'activité volumétrique, mais n'est pas conforme à l'ISO 31.
4 © ISO 2002 — Tous droits réservés

V volume réactionnel dans le réacteur litres (l)
14 14
α fraction de C convertie en CO
3)
ρ concentration massique résiduelle du composé d'essai microgrammes par litre (µg/l)
ρ concentration massique initiale du composé d'essai microgrammes par litre (µg/l)
4 Principe
L'essai est conduit en procédant par incubation de lots du composé d'essai avec un échantillon d'eau de
surface avec ou sans sédiments. Lorsque de l'eau de surface seule est utilisée, l'essai est dit «essai
pélagique»; lorsque des sédiments sont ajoutés pour obtenir une suspension, l'essai est dit «essai avec
suspension de sédiments». L'incubation a lieu sous agitation à température ambiante, en utilisant en pratique
un système de flacons placés sur un agitateur.
Les composés d'essai, présents en concentrations plus faibles que celles des substrats carbonés naturels
également présents dans le système, ont la fonction de substrats secondaires. Les micro-organismes de
dégradation reçoivent la majeure partie de leur énergie et du carbone des substrats primaires et non des
substrats secondaires. Dans ces conditions, il est attendu que la cinétique de biodégradation soit du premier
ordre (cinétique «sans croissance»). Une cinétique du premier ordre implique que la vitesse spécifique de
dégradation est constante et indépendante de la concentration du composé d'essai.
Le composé d'essai est ajouté à deux concentrations différentes. Les concentrations sont choisies de l'ordre
du µg/l (de préférence < 100 µg/l) afin d'obtenir une cinétique de dégradation du premier ordre et une demi-vie
estimée indépendante de la concentration d'essai. Normalement, il convient de choisir les concentrations les
plus faibles possible en tenant compte de la sensibilité des techniques de mesurage disponibles. Il n'est pas
nécessaire que ces concentrations soient aussi faibles que celles escomptées dans l'environnement pour
assurer le même type de cinétique de dégradation.
Le mélange d'essai est transféré dans des flacons fermés avec un espace de tête constitué d'air. Les flacons
sont incubés à l'abri de la lumière ou sous éclairage diffus à la température environnementale ambiante ou à
une température comprise entre 20 °C et 25 °C, comme couramment utilisée pour les essais de
biodégradation. Une agitation est assurée en secouant ou en remuant en continu les flacons afin de maintenir
les particules, y compris les micro-organismes, à l'état de suspension libre.
La dégradation est suivie au cours du temps par la détermination de la concentration résiduelle du composé
d'essai à une fréquence appropriée. Il convient que la durée d'incubation soit suffisamment longue pour
pouvoir évaluer le comportement de dégradation. Si la dégradation est considérée comme significative, le
niveau devrait être suffisant (normalement supérieur à environ 15 % à 20 % de dégradation) pour permettre
l'estimation de la constante de vitesse du premier ordre.
Le mesurage de la dégradation du composé d'essai s'effectue soit par la technique du traceur radioactif, en
utilisant normalement le C marqué et le comptage de scintillations en phase liquide, soit par analyse
chimique spécifique si une méthode suffisamment sensible est disponible. En utilisant la technique au C et
le marquage au C de la partie la plus persistante de la molécule, la minéralisation totale ou la
biodégradation ultime peut être évaluée, tandis qu'une analyse spécifique permet uniquement de mesurer la
biodégradation primaire.
5 Réactifs et milieux
5.1 Réactifs
Utiliser exclusivement des réactifs de qualité analytique reconnue et des composés radio-marqués de grande
pureté radiochimique.
5.1.1 Eau déionisée, pour préparer les solutions mères du composé d'essai et de la substance de
référence.
Cette eau doit avoir une teneur en COD d'au plus 1 mg/l (utiliser par exemple l'ISO 8245 pour sa
détermination), et être exempte de concentrations inhibitrices de substances toxiques.
5.1.2 Solvant organique volatil (facultatif), pour dissoudre les composés d'essai peu solubles.
5.1.3 Chlorure mercurique (HgCl ) (facultatif), ajouté à une concentration massique de 100 mg/l à
l'échantillon d'eau d'essai contenant le composé d'essai ou la substance de référence afin de stopper toute
activité biologique.
5.1.4 Azoture de sodium (NaN ) (facultatif), ajouté à une concentration massique de 10 g/l à l'échantillon
d'eau d'essai contenant le composé d'essai ou la substance de référence afin de stopper toute activité
biologique.
5.2 Milieux
5.2.1 Eau de surface pour l'«essai pélagique».
Prélever un échantillon d'eau de surface appropriée et le transférer dans un récipient parfaitement propre.
Éliminer les particules grossières, par exemple en procédant par filtration sur un filtre nylon d'environ 100 µm
d'ouverture de maille, un filtre papier à gros grain, ou encore par sédimentation. Conserver l'échantillon d'eau
de surface dans des conditions aérobies (par exemple en laissant un espace de tête suffisant dans le flacon)
durant le transport et jusqu'au démarrage de l'essai en laboratoire. Commencer l'essai de préférence dans les
24 h qui suivent le prélèvement. Pendant le transport et le stockage, il convient que la température de
l'échantillon d'eau de surface ne dépasse pas de manière significative la température à utiliser pour l'essai.
Refroidir à 4 °C si le temps de transport dépasse quelques heures. S'assurer que l'eau ne gèle pas.
Identifier précisément le lieu d'échantillonnage et le décrire en termes de pollution et d'état nutritif. Fournir au
minimum les informations suivantes pour l'eau de surface prélevée pour l'essai:
a) la date et l'heure du prélèvement et le délai entre le prélèvement et l'utilisation dans le cadre de l'essai en
laboratoire;
b) la profondeur du prélèvement;
c) l'aspect de l'échantillon (turbidité, par exemple);
d) la température et le pH sur le lieu et à l'heure de prélèvement;
e) en cas de prélèvement d'eau de mer ou d'eau saumâtre, la salinité ou la conductivité;
f) en cas de prélèvement d'échantillon turbide, la quantité de matières solides en suspension;
g) le nombre de micro-organismes formant colonies déterminé sur un milieu de croissance approprié selon
des méthodes normalisées;
et, facultativement:
h) les concentrations en COD et en carbone organique total (COT);
i) les nutriments inorganiques, comme le phosphore total, les orthophosphates dissous, l'azote total, le
nitrate, le nitrite ou l'azote ammoniacal;
j) la concentration de chlorophylle-a;
k) le nombre microbien total, déterminé par coloration (avec de l'acridine orange, par exemple) et par
microscopie à épifluorescence après traitement par ultrasons ou dispersion par d'autres moyens;
l) les autres caractéristiques se rapportant à la biomasse et à l'activité microbiennes, comme l'ATP
(adénosine triphosphate), les protéines, l'activité d'assimilation du carbone hétérotrophe, et la
détermination du nombre d'organismes capables de dégrader le composé d'essai (en utilisant la méthode
du nombre le plus probable, par exemple).
6 © ISO 2002 — Tous droits réservés

5.2.2 Eau de surface et sédiments pour l'«essai avec suspension de sédiments».
Prélever un échantillon d'eau de surface comme décrit au 5.2.1. Prélever de plus un échantillon de sédiments
de surface aérobie en appliquant une méthode d'échantillonnage appropriée. Prélever, par exemple, plusieurs
carottes de sédiments à l'aide d'un tube de plastique transparent et trancher la couche aérobie supérieure
immédiatement après le prélèvement. Transporter l'échantillon dans un récipient avec un espace de tête
suffisant pour maintenir l'état aérobie du sédiment, et, une fois arrivé au laboratoire, aérer l'échantillon d'eau
de surface jusqu'à son utilisation. Déterminer d'abord la quantité de matières solides en suspension dans
l'échantillon de sédiment, puis choisir une concentration massique entre 100 mg/l et 1 000 mg/l et ajuster la
quantité de matières solides en suspension de l'échantillon de manière à atteindre cette concentration
prédéterminée.
Identifier précisément le lieu d'échantillonnage et le décrire en termes de pollution et d'état nutritif. Pour
l'échantillon de milieu aqueux, fournir les mêmes informations que celles décrites pour l'essai pélagique
(5.2.1) et, pour le sédiment, indiquer les informations suivantes:
a) la date et l'heure du prélèvement et le délai entre le prélèvement et l'utilisation dans le cadre de l'essai en
laboratoire;
b) la profondeur du prélèvement;
c) l'aspect de l'échantillon (coloré, fangeux, vaseux ou sableux);
d) la masse sèche, en grammes de matières solides en suspension par litre;
e) la concentration en COT ou la perte à la calcination comme mesure de la teneur en matière organique;
et, facultativement:
f) les caractéristiques des particules sédimentaires (fractions de limon et de sable);
g) les nutriments inorganiques comme le phosphore total, les orthophosphates dissous, l'azote total, le
nitrate, le nitrite ou l'azote ammoniacal de l'eau interstitielle;
h) le comptage de colonies microbiennes sur un milieu de croissance approprié obtenu après un traitement
modéré par ultrasons;
i) le nombre microbien total, déterminé par coloration (avec de l'acridine orange, par exemple) et par
microscopie à épifluorescence après traitement par ultrasons ou dispersion par d'autres moyens;
j) toute autre caractéristique se rapportant à la biomasse et à l'activité microbiennes.
Une détermination préliminaire de la masse sèche peut être conduite par séchage d'une portion de ce
sédiment dans un four à micro-ondes, pendant 15 min par exemple. L'estimation ainsi obtenue peut être
utilisée pour calculer la quantité de sédiment à ajouter à l'eau de surface de manière à obtenir une
suspension ayant la teneur souhaitée en masse sèche de matières solides. La teneur exacte en matières
solides est calculée ensuite en utilisant une méthode de détermination plus précise de masse sèche, comme
par exemple après séchage pendant la nuit dans un four traditionnel à 105 °C.
6 Appareillage
Matériel courant de laboratoire, et ce qui suit.
6.1 Flacons coniques ou cylindriques, de capacité appropriée, de 0,5 l ou 1 l par exemple, munis de
bouchons en silicone ou en caoutchouc, ou des flacons à sérum munis de bouchons ou de capsules étanches
au CO (avec des septa en caoutchouc butyle, par exemple).
Pour les composés à analyser non volatils et non radio-marqués, il n'est pas nécessaire d'utiliser des
bouchons ou des couvercles étanches aux gaz. Nettoyer soigneusement les flacons d'essai et les bouchons
avant usage, et s'assurer qu'ils ne contiennent pas de traces de détergent. Afin d'éviter tout risque de
contamination bactérienne, les flacons peuvent être stérilisés par chauffage ou passage à l'autoclave.
6.2 Table d'agitation ou agitateurs magnétiques, pour maintenir une agitation continue des flacons
d'essai.
6.3 Centrifugeuse, capable de produire une accélération de 40 000 m/s .
6.4 pH-mètre.
6.5 Four ou four à micro-ondes, pour la détermination des masses sèches.
6.6 Appareillage de filtration sur membrane.
6.7 Autoclave ou four (facultatif), pour la stérilisation à chaud de la verrerie et pour stopper toute activité
biologique dans les milieux aqueux.
6.8 Installations et matériel de traçage radioactif, pour la manipulation et la mesure de composés
marqués au C, si ces derniers sont utilisés (voir également l'annexe A).
6.9 Matériel d'analyse, pour la détermination des composés d'essai organiques si une analyse chimique
spécifique est employée (par exemple, chromatographie en phase gazeuse, chromatographie en phase
liquide à haute pression).
7 Environnement et conditions d'essai
7.1 Incubation semi-continue (facultative)
Des temps d'incubation très longs (plusieurs mois) peuvent s'avérer nécessaires si des temps de latence
importants se produisent avant qu'une dégradation significative puisse être mesurée. Dans ce cas, la
communauté microbienne de l'échantillon d'eau de surface peut se détériorer et la similitude entre le système
d'essai et les conditions environnementales naturelles peut diminuer. Cette détérioration peut affecter la
dégradation du composé d'essai, qui peut cesser ou ralentir. Une explication probable de ce phénomène est
la disparition des micro-organismes à croissance lente du système d'essai. Ceux-ci peuvent disparaître en
raison de divers processus de perte, avant que la dégradation ne commence effectivement ou à un stade
ultérieur si la pression de sélection exercée par le composé d'essai, présent en faible concentration, est
insuffisante. Le problème de la détérioration de l'échantillon est encore plus sensible pour les essais
pélagiques. Il est cependant possible d'y remédier en incluant une période de préadaptation en mode semi-
continu avant de procéder à l'essai par lots. Le principe de base de la préadaptation semi-continue consiste à
renouveler périodiquement une partie de l'eau de surface et à compléter en ajoutant du composé d'essai
jusqu'à la concentration de départ environ. L'expérience a démontré qu'il était judicieux de remplacer, par
exemple, un tiers du volume toutes les deux semaines. Il convient que l'eau de remplacement soit
fraîchement prélevée du même site que l'échantillon initial. Étant donné que le mode opératoire comprend à
la fois un réensemencement et une compensation de tout substrat primaire appauvri, la diversité microbienne
initiale et la disponibilité des substrats sont en pratique restaurées, et la durée de faisabilité de l'essai par lots
peut donc être prolongée de quelques semaines à des périodes de temps beaucoup plus longues. Une fois
l'adaptation effectuée, le mode semi-continu est simplement interrompu et le système d'essai devient un
système par lots, l'instant zéro étant l'instant du dernier renouvellement. La constante de vitesse de
dégradation peut être interprétée comme une caractéristique d'un système adapté et est identique aux
constantes de vitesse obtenues dans un système par lots après une phase de latence de longue durée.
7.2 Ajout de nutriments et de boue (facultatif)
Il convient de souligner que le potentiel de biodégradation de l'eau de surface peut varier considérablement
dans le temps et l'espace. Pour certains objectifs (par exemple, pour le classement relatif de différents
8 © ISO 2002 — Tous droits réservés

composés d'essai), il peut par conséquent être utile de générer une constante de vitesse représentant les
conditions types. Dans un tel cas, il est recommandé d'effectuer un essai facultatif avec des eaux de surface
riches ou enrichies en nutriments, ou avec des effluents secondaires d'une usine de traitement des eaux,
filtrés sur membrane, utilisés comme substrat et amendés avec 3 mg/l (en masse sèche) de boues activées,
utilisées comme inoculum. Il convient que la boue soit issue d'une usine de traitement des eaux d'origine
principalement domestique et n'ayant aucun apport significatif au composé d'essai.
7.3 Température et éclairage
L'incubation doit avoir lieu à l'abri de la lumière ou sous lumière diffuse, à une température régulée (± 2 °C)
correspondant à la température environnementale ambiante ou à une température normalisée comprise entre
20 °C et 25 °C. La température environnementale ambiante peut représenter la température effective de
l'échantillon au moment de son prélèvement ou une température ambiante moyenne prise sur le site
d'échantillonnage.
8 Mode opératoire
8.1 Préparation des composés d'essai et de la substance de référence
8.1.1 Composés d'essai solubles dans l'eau
Préparer une solution mère dans l'eau déionisée (5.1.1) et transférer le volume nécessaire de la solution mère
dans les flacons d'essai (6.1) afin d'obtenir la concentration d'essai souhaitée. En cas d'utilisation de
composés marqués au C, voir l'annexe A pour plus de détails.
8.1.2 Composés d'essai peu solubles dans l'eau
Dissoudre d'abord les composés d'essai faiblement volatils dans une quantité minimale de solvant organique
volatil. Ajouter une petite quantité de cette solution dans les flacons d'essai. Éliminer une quantité suffisante
de solvant organique pour qu'il n'augmente pas de manière significative la concentration en COD de
l'échantillon de l'eau de surface. Contrôler cela par une analyse spécifique de la substance ou, si possible, par
analyse du COD (voir par exemple l'ISO 8245). Dans certains cas, il peut s'avérer opportun de préparer
d'abord une solution intermédiaire dans de l'eau déionisée (5.1.1) ou dans l'eau de surface (5.2.1).
Il est également possible d'utiliser d'autres techniques pour introduire le composé d'essai dans les flacons
d'essai, comme décrit dans l'ISO 10634.
8.1.3 Substance de référence (facultative)
En cas d'inexpérience de l'essai lui-même, de l'échantillon d'eau de surface (5.2.1) utilisé et/ou du sédiment
(5.2.2), il est recommandé d'utiliser une substance de référence, de préférence l'aniline dans la même gamme
de concentrations que celle du composé d'essai.
8.2 Préparation de l'essai
8.2.1 Essai pélagique
Préparer les flacons suivants:
 au moins deux flacons d'essai (symbolisés par F ) pour chacune des différentes concentrations (au
T
moins deux) du composé d'essai analysé (voir 8.1.1 ou 8.1.2);
 au moins un flacon (symbolisé par F ) pour l'essai à blanc contenant seulement un échantillon de l'eau
B
de surface;
 facultativement, au moins deux flacons d'essai (symbolisés par F ) pour contrôler la performance de
C
l'essai avec une substance de référence (voir 8.1.3);
 facultativement, au moins un flacon stérile (symbolisé par F ) pour contrôler une éventuelle dégradation
s
abiotique ou toute autre forme d'élimination non biologique.
Transférer un volume approprié d'eau d'essai (5.2.1) dans les flacons, en remplissant les flacons environ au
tiers de leur volume et avec au minimum 100 ml.
L'activité biologique est stoppée en passant à l'autoclave (6.7) l'échantillon d'eau d'essai ou en ajoutant un
produit toxique, comme du chlorure mercurique (voir 5.1.3) ou de l'azoture de sodium (voir 5.1.4).
8.2.2 Essai avec suspension de sédiments
Préparer un nombre suffisant de flacons de la manière décrite pour l'essai pélagique (8.2.1). Utiliser des
flacons à sérum fermés ou des fioles de forme similaire. Ajuster la quantité de matières solides en suspension
à la suspension eau de surface/sédiments pour atteindre la concentration prédéterminée (voir 5.2.2) comprise
entre 100 mg/l et 1 000 mg/l. Emplir les flacons à environ un tiers de leur volume avec cette suspension.
Lorsque des sédiments sont ajoutés en fortes concentrations, il est difficile d'obtenir des conditions stériles.
Dans ce cas, il est recommandé de procéder à plusieurs passages successifs à l'autoclave (trois, par
exemple). Il est à noter que des informations sur le comportement de dégradation abiotique doivent
normalement être disponibles avant de procéder à l'essai et que la cinétique applicable à la dégradation
abiotique ne varie généralement pas à de faibles concentrations, à la différence de la biodégradation. C'est
pourquoi les essais conduits dans des unités stériles servent normalement à évaluer les phénomènes de
sorption. Il est à noter que les propriétés de sorption des sédiments changent après passage à l'autoclave.
Les données relatives à la sorption obtenues peuvent donc être utilisées uniquement à des fins qualitatives,
comme par exemple pour vérifier si ce phénomène est significatif ou non. La sorption initiale peut être étudiée
quantitativement en utilisant des sédiments non stériles. Si des études à long terme sur la sorption sont
requises, il convient de procéder à la stérilisation, par exemple par rayonnement ou par des procédés
chimiques.
8.3 Incubation
Fermer les flacons d'essai préparés au 8.2 à l'aide de bouchons ou de couvercles étanches à l'air et surtout
au CO . Dans le cas d'un composé d'essai non volatil avec utilisation d'une analyse spécifique et lorsque
aucun composé radio-marqué n'est ajouté, un bouchon en coton cardé peut être utilisé pour éviter la
contamination par l'atmosphère. Placer les flacons d'essai sur une table d'agitation, ou leur appliquer des
barreaux magnétiques et les placer sur des agitateurs magnétiques. Maintenir une suspension homogène et
des conditions aérobies durant la période d'essai au moyen d'une agitation continue et suffisante. Faire
fonctionner la table d'agitation à 100 r/min environ.
Pour effectuer les essais avec sédiments, il est préférable de placer les flacons d'essai fermés
horizontalement sur l'agitateur. Toutefois, cette position n'est pas réalisable en cas de sorption significative au
niveau du couvercle ou lorsque des bouchons en coton cardé sont utilisés. En cas d'application de la
méthode par agitation magnétique à des sédiments, noter que les barreaux magnétiques ordinaires ne sont
pas durables. Dans ce cas, utiliser des barreaux gainés de verre. S'assurer que l'agitation est suffisamment
forte pour maintenir des conditions aérobies.
Placer les flacons d'essai dans un environnement à la température d'incubation sélectionnée (voir 7.3).
Prélever des échantillons pour analyse de chacun des flacons d'essai au début de l'essai au jour 0, c'est-à-
dire avant que la dégradation ne commence, et à des intervalles de temps appropriés au cours de l'essai.
Généralement, il est nécessaire de procéder à au moins cinq échantillonnages pour évaluer le comportement
de dégradation, et il convient, dans l'idéal, que la phase de dégradation soit représentée par au moins
trois points de mesure pour pouvoir estimer une constante de vitesse fiable. Il est impossible de définir un
programme de prélèvement, puisque la vitesse de biodégradation varie. Néanmoins, il est généralement
recommandé de prélever un échantillon chaque semaine pour les composés d'essai dont la dégradation est
lente, et une fois par jour au cours des trois premiers jours, puis une fois tous les deux ou trois jours ensuite
pour les composés d'essai facilement dégradables. Si des échantillons d'essai sont conservés en vue d'une
10 © ISO 2002 — Tous droits réservés

analyse spécifique ultérieure, il est recommandé de prélever plus d'échantillons d'essai que le minimum
nécessaire de cinq. Dans ce cas, analyser les échantillons d'essai dans l'ordre inverse de leur sélection, c'est-
à-dire en analysant en premier ceux pris à la fin de l'expérience, et en dernier ceux pris au début de
l'expérience.
Conserver tous les échantillons d'essai stockés à une température entre 2 °C et 4 °C de façon qu'il n'y ait pas
d'échange avec l'air si l'analyse peut être conduite en 1 j à 2 j. En cas de stockage plus long, il est nécessaire
de procéder à la congélation à une température inférieure à −18 °C ou à une conservation chimique (voir 8.4
et l'annexe A). Si l'on sait que le composé d'essai ne sera pas affecté par l'acidification, acidifier l'échantillon
d'essai à pH 2 avant de le stocker. Si la méthode d'analyse implique une extraction par solvant, procéder à
l'extraction juste après l'échantillonnage ou après avoir stocké l'échantillon réfrigéré pendant 1 j, et conserver
uniquement les extraits.
8.4 Détermination du composé d'essai résiduel
8.4.1 Mesurages radiochimiques
La quantité de CO dégagé est déterminée indirectement en mesurant la différence entre l'activité du C
initial dans l'échantillon d'eau de surface ou dans la suspension contenant le composé d'essai et l'activité
résiduelle totale au moment de l'échantillonnage telle que mesurée après avoir acidifié l'échantillon et éliminé
le CO par entraînement. Le carbone inorganique est ainsi éliminé et l'activité résiduelle mesurée est dérivée
du composé d'essai non dégradé ou partiellement dégradé. Pour plus de détails, voir l'annexe A.
Avec de hauts degrés de minéralisation du composé d'essai
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...