Metallic industrial piping - Part 3: Design and calculation

This document specifies the design and calculation of industrial metallic piping systems, including supports, covered by EN 13480 series.

Metallische industrielle Rohrleitungen - Teil 3: Konstruktion und Berechnung

Dieses Dokument legt die Konstruktion und Berechnung von metallischen industriellen Rohrleitungen einschließlich ihrer Halterungen, soweit durch EN 13480 abgedeckt, fest.

Tuyauteries industrielles métalliques - Partie 3: Conception et calcul

Le présent document spécifie la conception et le calcul des réseaux de tuyauteries industrielles métalliques, supports inclus, couverts par la série EN 13480.

Kovinski industrijski cevovodi - 3. del: Konstruiranje in izračun

Ta dokument določa konstruiranje in izračun kovinskih industrijskih cevovodov, vključno z nosilci, iz skupine standardov EN 13480.

General Information

Status
Published
Publication Date
06-Nov-2024
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
03-Oct-2024
Due Date
08-Dec-2024
Completion Date
07-Nov-2024

Relations

Overview

EN 13480-3:2024 - Metallic industrial piping: Part 3 - Design and calculation (CEN) defines the principles, rules and calculation methods for the structural design of metallic industrial piping systems (including supports) covered by the EN 13480 series. Approved by CEN (9 July 2024) and adopted in national versions (e.g., Slovenia, December 2024), this part supersedes earlier editions of EN 13480-3. It is published in the three CEN languages (EN/FR/DE).

Key topics and technical requirements

EN 13480-3:2024 addresses the technical aspects required for safe, code-compliant piping design:

  • Scope, terms and symbols - definitions, notation and units used throughout the design rules.
  • Basic design criteria - design principles, load types and combinations, and design conditions.
  • Loadings - internal/external pressure, thermal loads, weight, seismic and wind effects, combination rules.
  • Thickness and tolerances - required wall thickness calculation, manufacturing tolerances and joint coefficients.
  • Design stresses - time-independent and time-dependent nominal design stresses for various metallic materials (steels, austenitic steels, nickel/chromium alloys, castings).
  • Components under internal pressure - detailed rules for straight pipes, bends/elbows, mitre bends, reducers, flexible components, bolted flanges and special forged items.
  • Ends and closures - design of dished, torispherical, ellipsoidal, and flat ends including reinforcement rules.
  • Openings and branches - limits, reinforcement methods, isolated and adjacent openings, and special branch geometries (Y-pieces, triforms).
  • External pressure design - methods for components subject to vacuum or external compression.
  • Supports - inclusion of piping supports within the scope of design and calculation rules.

Note: EN 13480-3 provides procedural requirements and calculation methods rather than specific fabrication instructions.

Practical applications

This standard is used to perform structural design and strength verification of process piping in industries such as oil & gas, chemical, petrochemical, power generation and heavy manufacturing. Typical uses:

  • Calculating wall thicknesses and reinforcing requirements for pressurized pipelines.
  • Verifying flange, reducer and branch connection integrity.
  • Assessing stresses for thermal expansion and combined loading cases.
  • Designing openings and reinforcements for vessels and piping assemblies.

Who should use this standard

  • Piping and mechanical engineers performing design and stress analysis
  • Plant designers and EPC contractors preparing piping specifications and drawings
  • Fabricators and welding inspectors for design verification and acceptance criteria
  • Asset owners and safety/maintenance teams for compliance and inspection planning

Related standards

  • Other parts of the EN 13480 series (material, fabrication, inspection) and national implementations. Use EN 13480-3 alongside applicable codes and project specifications for complete piping design compliance.

Keywords: EN 13480-3, metallic industrial piping, piping design and calculation, pipe stress, internal pressure, pipe supports, flange design, reducer calculation.

Standard
SIST EN 13480-3:2024
English language
383 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Frequently Asked Questions

SIST EN 13480-3:2024 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Metallic industrial piping - Part 3: Design and calculation". This standard covers: This document specifies the design and calculation of industrial metallic piping systems, including supports, covered by EN 13480 series.

This document specifies the design and calculation of industrial metallic piping systems, including supports, covered by EN 13480 series.

SIST EN 13480-3:2024 is classified under the following ICS (International Classification for Standards) categories: 23.040.01 - Pipeline components and pipelines in general; 23.040.10 - Iron and steel pipes; 77.140.75 - Steel pipes and tubes for specific use. The ICS classification helps identify the subject area and facilitates finding related standards.

SIST EN 13480-3:2024 has the following relationships with other standards: It is inter standard links to SIST EN 13480-3:2018/A2:2020, SIST EN 13480-3:2018, SIST EN 13480-3:2018/A1:2021, SIST EN 13480-3:2018/A3:2020, SIST EN 13480-3:2018/A5:2023, SIST EN 13480-3:2018/A4:2021. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

SIST EN 13480-3:2024 is associated with the following European legislation: EU Directives/Regulations: 2014/68/EU; Standardization Mandates: M/071, M/601. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.

You can purchase SIST EN 13480-3:2024 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-december-2024
Nadomešča:
SIST EN 13480-3:2018
SIST EN 13480-3:2018/A1:2021
SIST EN 13480-3:2018/A2:2020
SIST EN 13480-3:2018/A3:2020
SIST EN 13480-3:2018/A4:2021
SIST EN 13480-3:2018/A5:2023
Kovinski industrijski cevovodi - 3. del: Konstruiranje in izračun
Metallic industrial piping - Part 3: Design and calculation
Metallische industrielle Rohrleitungen - Teil 3: Konstruktion und Berechnung
Tuyauteries industrielles métalliques - Partie 3: Conception et calcul
Ta slovenski standard je istoveten z: EN 13480-3:2024
ICS:
23.040.10 Železne in jeklene cevi Iron and steel pipes
77.140.75 Jeklene cevi in cevni profili Steel pipes and tubes for
za posebne namene specific use
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EN 13480-3
EUROPEAN STANDARD
NORME EUROPÉENNE
July 2024
EUROPÄISCHE NORM
ICS 23.040.01 Supersedes EN 13480-3:2017
English Version
Metallic industrial piping - Part 3: Design and calculation
Tuyauteries industrielles métalliques - Partie 3: Metallische industrielle Rohrleitungen - Teil 3:
Conception et calcul Konstruktion und Berechnung
This European Standard was approved by CEN on 9 July 2024.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 13480-3:2024 E
worldwide for CEN national Members.

Contents Page
European foreword . 10
1 Scope . 12
2 Normative references . 12
3 Terms, definitions, symbols and units . 13
3.1 Terms and definitions . 13
3.2 Symbols and units . 13
4 Basic design criteria . 15
4.1 General . 15
4.2 Loadings. 15
4.2.1 General . 15
4.2.2 Combination of loads . 16
4.2.3 Loads for dimensioning . 16
4.2.4 Other loads to be taken into account . 18
4.2.5 Design conditions . 19
4.3 Thickness . 21
4.4 Tolerances . 24
4.5 Joint coefficient . 24
4.6 Dimensioning of piping components subject to pressure . 25
5 Design stresses . 25
5.1 General . 25
5.2 Time-independent nominal design stress . 26
5.2.1 Steels other than austenitic steels . 26
5.2.2 Austenitic steels . 26
5.2.3 Nickel and / or chromium alloy steels . 27
5.2.4 Steels castings . 27
5.2.5 Additional requirements for steels with no specific control . 27
5.3 Time-dependent nominal design stress . 28
5.3.1 General . 28
5.3.2 Steels . 28
5.3.3 Nickel and/or chromium alloy steels. 29
6 Design of piping components under internal pressure . 29
6.1 Straight pipes . 29
6.2 Pipe bends and elbows . 29
6.2.1 General . 29
6.2.2 Symbols . 30
6.2.3 Required wall thicknesses . 30
6.3 Mitre bends. 31
6.3.1 General . 31
6.3.2 Symbols . 31
6.3.3 Effective radius of mitre bend . 32
6.3.4 Multiple mitre bends . 32
6.3.5 Single mitre bends . 33
6.3.6 Adjacent straight pipe sections of mitre bends . 33
6.4 Reducers . 33
6.4.1 Conditions of applicability . 33
6.4.2 Specific definitions . 34
6.4.3 Specific symbols and abbreviations . 34
6.4.4 Conical shells . 36
6.4.5 Junctions - general . 36
6.4.6 Junction between the large end of a cone and a cylinder without a knuckle . 37
6.4.7 Junction between the large end of a cone and a cylinder with a knuckle . 39
6.4.8 Junction between the small end of a cone and a cylinder . 41
6.4.9 Offset reducers . 43
6.4.10 Special forged reducers . 43
6.5 Flexible piping components . 44
6.5.1 General . 44
6.5.2 Expansion joints . 44
6.5.3 Corrugated metal hose assemblies . 46
6.6 Bolted flange connections . 47
6.6.1 General . 47
6.6.2 Symbols . 47
6.6.3 Standard flange . 47
6.6.4 Non-standard flange . 48
7 Design of ends under internal pressure . 48
7.1 Dished ends . 48
7.1.1 Symbols . 48
7.1.2 Hemispherical ends . 49
7.1.3 Torispherical ends . 50
7.1.4 Ellipsoidal ends . 51
7.1.5 Calculation of β . 52
7.2 Circular flat ends . 56
7.2.1 General . 56
7.2.2 Symbols . 56
7.2.3 Unstayed flat circular ends welded to cylindrical shells/pipes . 58
7.2.4 Unstayed flat circular bolted ends . 65
7.2.5 Reinforcements of openings in unstayed flat ends. 71
8 Openings and branch connections . 74
8.1 General . 74
8.2 Symbols . 74
8.3 Limitations . 75
8.3.1 Thickness ratio . 75
8.3.2 Openings in the vicinity of discontinuities . 77
8.3.3 Types of reinforcement . 79
8.3.4 Calculation method . 79
8.3.5 Elliptical openings and oblique branch connections . 80
8.3.6 Reinforcing pads . 81
8.3.7 Dissimilar material of shell and reinforcements . 81
8.3.8 Extruded outlets . 82
8.3.9 Forged tee . 82
8.3.10 Branches in bends or elbows . 83
8.3.11 Screwed-in branches . 83
8.4 Isolated openings . 84
8.4.1 General . 84
8.4.2 Unreinforced openings . 87
8.4.3 Reinforced openings with d /D < 0,8 . 87
i i
8.4.4 Reinforced single openings with 0,8< d /D ≤ 1,0 . 93
i i
8.5 Adjacent openings . 93
8.5.1 Unreinforced openings. 93
8.5.2 Reinforced openings with d /D ≤ 0,8 . 93
i i
8.6 Design of special piping components . 94
8.6.1 Cylindrical Y-pieces . 94
8.6.2 Spherical Y-pieces . 95
8.6.3 Triform reinforced branches . 96
9 Design of piping components under external pressure . 97
9.1 General . 97
9.1.1 External calculation pressure . 97
9.1.2 Exception from verification against external pressure . 98
9.1.3 General acceptance criteria . 98
9.2 Symbols and elastic stress limits . 99
9.2.1 Symbols . 99
9.2.2 Stress limits . 101
9.3 Cylindrical pipes, elbows and mitre bends . 102
9.3.1 Determination of lengths . 102
9.3.2 Interstiffener collapse . 104
9.3.3 Overall collapse of stiffened pipes . 105
9.3.4 Stiffener stability . 106
9.3.5 Heating/cooling channels . 109
9.4 Reducers (conical shells) . 110
9.5 Dished ends . 112
9.5.1 Hemispherical ends . 112
9.5.2 Torispherical ends . 113
9.5.3 Ellipsoidal ends . 113
10 Design for cyclic loading . 113
10.1 General . 113
10.2 Exemption from detailed fatigue analysis . 113
10.3 Fatigue design for cyclic pressure . 114
10.3.1 Equivalent full load cycles. 114
10.3.2 Simplified fatigue analysis . 114
10.4 Fatigue design for thermal gradients. 129
10.4.1 General . 129
10.4.2 Design guidance . 129
10.5 Fatigue design for combined loads . 129
11 Integral attachments . 130
11.1 General . 130
11.2 Allowable stresses . 130
11.3 Symbols . 131
11.4 Hollow circular attachments . 133
11.4.1 Limitations . 133
11.4.2 Preliminary calculations . 133
11.4.3 Analysis of attachments welded to pipe with a full penetration weld . 135
11.4.4 Analysis of attachments welded to pipe with fillet or partial penetration weld . 136
11.5 Rectangular attachments . 136
11.5.1 Limitations . 136
11.5.2 Preliminary calculations . 136
11.5.3 Analysis of attachments welded to pipe with a full penetration weld . 138
11.5.4 Analysis of attachments welded to pipe with fillet or partial penetration weld . 139
11.6 Stress analysis of the run pipe . 139
11.7 Shear stress analysis in attachment . 141
11.7.1 Hollow circular attachments . 141
11.7.2 Rectangular attachments . 141
11.8 Alternative calculation methods . 141
12 Flexibility analysis and acceptance criteria . 142
12.1 Basic conditions . 142
12.1.1 General . 142
12.1.2 Loading conditions . 142
12.1.3 Allowable stresses . 142
12.2 Piping flexibility . 144
12.2.1 General . 144
12.2.2 Basic conditions . 144
12.2.3 Displacement strains . 144
12.2.4 Displacement stresses . 145
12.2.5 Stress range . 146
12.2.6 Cold pull . 146
12.2.7 Properties for flexibility analysis . 146
12.2.8 Supporting conditions. 147
12.2.9 Expansion joints . 148
12.2.10 Flexibility analysis . 149
12.3 Flexibility analysis. 151
12.3.1 General . 151
12.3.2 Stress due to sustained loads . 152
12.3.3 Stress due to sustained and occasional or exceptional loads . 153
12.3.4 Stress range due to thermal expansion and alternating loads. 155
12.3.5 Additional conditions for the creep range . 157
12.3.6 Stresses due to a single non-repeated support movement . 157
12.3.7 Determination of resultant moments . 158
12.3.8 Reactions . 160
12.4 Fatigue analysis . 160
12.5 Vibration . 160
13 Pipe Supports . 161
13.1 General requirements . 161
13.1.1 General . 161
13.1.2 Classification of supports . 162
13.1.3 Additional definitions . 162
13.1.4 Boundaries . 164
13.1.5 Pipe supports welded to the pipe . 166
13.2 Selection of pipe supports . 167
13.2.1 General . 167
13.2.2 Detail design of pipe supports . 168
13.2.3 Support location . 169
13.3 Constant hangers/base mounted (pedestal) constant supports . 169
13.3.1 General . 169
13.3.2 Load deviation from calibrated load . 169
13.3.3 Site adjustment of the calibrated load . 169
13.3.4 Travel reserve (Overtravel) . 169
13.3.5 Blocking . 169
13.3.6 Identification Marking/Name plate . 169
13.4 Variable load spring hangers and base mounted (pedestal) variable load spring
supports . 170
13.4.1 General . 170
13.4.2 Tolerance on spring rate . 171
13.4.3 Travel reserve (Overtravel) . 171
13.4.4 Blocking . 171
13.4.5 Name plate . 171
13.5 Rigid struts . 171
13.6 Shock arrestors, shock absorber (snubber) . 172
13.7 Sliding supports . 172
13.8 Anchors . 173
13.9 Documentation of supports . 173
13.10 Marking of supports . 173
13.11 Design and manufacture of pipe supports . 173
13.11.1 Material requirements . 173
13.11.2 Design temperatures for support components . 173
13.11.3 Design details . 175
13.11.4 Determination of component sizes . 175
13.11.5 Welded connections . 177
13.11.6 Bolted connections . 179
13.11.7 Additional requirements on springs . 182
13.11.8 Design details for rigid struts. 182
13.11.9 Design details for shock arrestors, shock absorbers (snubbers) . 182
13.11.10 Clamps for shock arrestors, rigid struts . 183
13.11.11 Alternative rules for design and manufacture of pipe supports. 184
Annex A (informative) Dynamic effect. 185
A.1 General . 185
A.1.1 Introduction . 185
A.1.2 Vibration design guidelines . 185
A.2 Analysis by calculation . 191
A.2.1 General . 191
A.2.2 Seismic events . 192
A.2.3 Rapid valve closure . 197
A.2.4 Flow induced vibration . 200
A.2.5 Safety valve discharge . 203
A.2.6 Allowable stresses . 205
A.2.7 Structural vibration properties . 205
A.3 Alternative means of design verification. 207
A.3.1 Comparative studies . 207
A.3.2 Full scale testing . 208
A.3.3 Reduced scale testing . 208
A.4 Validation (measuring) . 208
Annex B (normative) More accurate calculation of bends and elbows . 209
B.1 General . 209
B.2 Symbols and units . 209
B.3 Required wall thickness . 210
B.4 Calculation . 211
B.4.1 Calculation of wall thickness . 211
B.4.2 Stress calculation . 213
Annex C (informative) Expansion joints . 217
C.1 Incorporation of expansion joints into piping systems . 217
C.1.1 General . 217
C.1.2 Types of expansion joints . 218
C.1.3 Design of expansion joints . 218
C.1.4 Designing with expansion joints . 219
C.1.5 Analyses and calculation . 221
C.1.6 Cold pull . 221
C.2 Maximum spacing for unrestrained axially compensated straight runs . 222
C.2.1 General . 222
C.2.2 Calculation rules . 222
C.2.3 Maximum spacing for specified conditions . 223
C.3 Indication for the design of expansion joints . 224
C.3.1 General . 224
C.3.2 Information for the system analyst . 224
Annex D (normative) Flanges . 225
D.1 Purpose . 225
D.2 Specific terms and definitions . 225
D.3 Specific symbols and abbreviations .
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

La norme SIST EN 13480-3:2024 traite de la conception et du calcul des systèmes de tuyauterie métallique industriels, y compris les supports, dans le cadre de la série EN 13480. Cette norme est essentielle pour garantir que les systèmes de tuyauterie respectent des critères de conception rigoureux, assurant à la fois la sécurité et l'efficacité des installations industrielles. L'une des principales forces de la norme est sa couverture exhaustive des méthodes de conception. En précisant les exigences et les bonnes pratiques pour le dimensionnement des tuyauteries, elle permet de standardiser les approches adoptées par les différents acteurs du secteur. Cela garantit une uniformité dans la qualité des installations et contribue à réduire les risques d'accidents dus à des défaillances techniques. De plus, la norme met l'accent sur les considérations relatives aux supports de tuyauterie, un aspect souvent négligé mais crucial pour la durabilité et la stabilité des systèmes. En intégrant des directives claires sur l'analyse des charges et les matériaux appropriés, elle renforce la fiabilité des infrastructures industrielles. La pertinence de SIST EN 13480-3:2024 est accentuée par son alignement avec les exigences réglementaires européennes, facilitant ainsi la conformité pour les entreprises qui opèrent sur le marché européen. En suivant cette norme, les concepteurs et les ingénieurs peuvent non seulement améliorer leurs processus, mais aussi s'assurer que leurs systèmes de tuyauterie respectent les normes de sécurité et de performance exigées au niveau international. En conclusion, la norme SIST EN 13480-3:2024 constitue un outil précieux pour les professionnels de l'industrie, leur offrant des guidelines claires pour la conception et le calcul des systèmes de tuyauterie métallique. Son adoption peut aider à améliorer la qualité des installations tout en garantissant la sécurité et la conformité réglementaire.

Die SIST EN 13480-3:2024 ist ein umfassendes Dokument, das sich mit dem Design und der Berechnung von metallischen industriellen Rohrleitungssystemen befasst. Der Umfang dieser Norm ist klar definiert und konzentriert sich insbesondere auf die Anforderungen und Verfahren, die für die Konstruktion solcher Systeme erforderlich sind. Dies umfasst auch die relevanten Stützsysteme, die unabdingbar für die Stabilität und Funktionalität der Rohrleitungen sind. Ein herausragendes Merkmal dieser Norm ist ihre Präzision in den Designvorgaben. Sie bieten Ingenieuren und Planern eine verlässliche Grundlage, die sicherstellt, dass die Rohrleitungen sowohl sicher als auch effizient sind. Diese Klarheit in der Struktur und den Berechnungsverfahren unterstützt die Einhaltung von Sicherheitsstandards und erleichtert die Implementierung der roten Linien in Projekten in verschiedenen industriellen Sektoren. Ein weiterer Vorteil der SIST EN 13480-3:2024 ist ihre Relevanz in der heutigen Industrie. Angesichts der ständigen technischen Weiterentwicklungen und der Notwendigkeit, den Umweltschutz und die Energieeffizienz zu maximieren, stellt diese Norm sicher, dass metallische Rohrleitungssysteme auf dem neuesten Stand der Technik sind. Darüber hinaus wird durch die Berücksichtigung von unterschiedlichen Materialien und deren Eigenschaften sichergestellt, dass die Norm für eine breite Palette von Anwendungen anwendbar bleibt. Zusammengefasst liefert die SIST EN 13480-3:2024 nicht nur wichtige Informationen zur Auslegung und Berechnung von metallischen Rohrleitungen, sondern trägt auch entscheidend dazu bei, die Effizienz und Sicherheit in der Industrie zu erhöhen. Ihre umfassenden und klaren Vorgaben machen sie zu einem unverzichtbaren Dokument für Fachleute in diesem Bereich.

SIST EN 13480-3:2024는 산업 금속 배관 시스템의 설계 및 계산에 관한 명확한 기준을 제시하고 있으며, 특히 EN 13480 시리즈의 지원 요소를 포함합니다. 이 표준은 금속 배관의 설계 및 계산 방식을 체계적으로 규명하여, 공정 안전성과 신뢰성을 높이는 데 기여하고자 합니다. 이 표준의 강점은 복잡한 산업 환경에서도 적용 가능한 유연성을 제공하는 동시에, 배관 시스템의 구조적 무결성을 확보하는 데 도움이 되는 철저한 가이드라인을 포함하고 있다는 점입니다. 설계 시 고려해야 할 여러 가지 요소들, 예를 들어 하중, 압력, 온도 등을 상세히 다루며, 이는 엔지니어들이 세밀한 계산을 통해 보다 안전하고 효율적인 시스템을 구축할 수 있도록 지원합니다. SIST EN 13480-3:2024는 또한 최신 기술 및 산업 동향을 반영하여 지속적으로 업데이트되고 있으며, 이는 사용자가 최신 정보를 바탕으로 설계 작업을 수행할 수 있도록 돕습니다. 이 표준의 중요성은 특히 금속 산업 및 관련 분야에서 더욱 부각되며, 이를 통해 엔지니어들은 예기치 않은 실패를 예방하고 자원의 낭비를 최소화할 수 있습니다. 이러한 측면에서 SIST EN 13480-3:2024는 산업 금속 배관 설계 및 계산에 있어 필수적인 기준이라고 할 수 있으며, 관련 업계 종사자들에게 큰 도움이 되는 표준으로 자리매김하고 있습니다.

The SIST EN 13480-3:2024 standard is a critical document in the realm of metallic industrial piping, specifically focusing on the design and calculation aspects of these systems. Its scope extends to the comprehensive guidelines necessary for ensuring the structural integrity and safety of industrial metallic piping, including the essential requirements for supports. One of the key strengths of SIST EN 13480-3:2024 is its thorough approach to design considerations. It provides a clear framework that assists engineers and designers in creating reliable piping systems that can withstand various operational conditions. The standard emphasizes a risk-based approach to design, ensuring that critical factors such as temperature, pressure, and material properties are meticulously evaluated. This focus on safety and reliability makes the standard highly relevant for industries that depend on the effective functioning of metallic piping systems. Additionally, the standard's inclusion of calculation methodologies enhances its usability for practitioners. By detailing the required calculations for different scenarios, it lays out a path for engineers to follow, thus minimizing the potential for errors in design. The methodologies accommodate a variety of materials and configurations, making it versatile across different industrial applications. Another notable strength is the standard’s alignment with the broader EN 13480 series, providing a seamless integration of guidelines for various components of metallic piping systems. This consistency across the series allows for a holistic approach to the design and construction of piping systems, reinforcing the importance of standardization in industrial processes. In conclusion, the SIST EN 13480-3:2024 standard stands out for its comprehensive coverage of the design and calculation of metallic industrial piping systems. Its strengths lie in its rigorous safety focus and practical application in real-world engineering scenarios, making it an essential reference for professionals in the field. The relevance of this standard cannot be overstated, as it is fundamental for ensuring the efficiency and safety of metallic piping systems across various industrial sectors.

SIST EN 13480-3:2024は、産業用金属配管システムの設計および計算に関する標準を提供しており、その範囲は非常に広いです。この標準は、EN 13480シリーズに含まれる支持構造を含む金属配管の設計と計算手法を詳細に定義しています。このため、産業界における配管システムの安全性と信頼性を確保するための重要な指針となります。 この標準の強みは、多様な産業に対応している点です。特に、プロセスパイプラインや高温高圧システムに必要な設計基準を網羅しており、エンジニアや設計者がリスクを評価し、適切な材料と合わせて設計するためのクリアなガイドラインを提供しています。また、計算手法の明確な指定は、構造的な健全性を確認する際の信頼性を高めます。 さらに、SIST EN 13480-3:2024は国際的な標準に準拠しているため、世界中のさまざまな市場においても適用可能です。これにより、企業が国際的なプロジェクトで競争力を持ち、法規制に遵守するための必須のツールとなります。実際、金属産業の持続可能な発展を目的とする上でも、この標準が提供する価値は非常に高いです。 このように、SIST EN 13480-3:2024は、産業用金属配管の設計と計算の分野において、実務者にとっての必要不可欠な標準として位置付けられています。その包括的なガイドラインは、配管の安全性と効率を向上させるための強力な支援を提供します。