Refrigerating systems and heat pumps - Valves - Requirements, testing and marking (ISO 21922:2021)

This European Standard specifies safety requirements, safety factors, test methods, test pressures used and marking of refrigerating valves and other components with similar bodies, hereinafter called valves, for use in refrigerating systems.
It describes the procedure to be followed when designing (by calculation or by an experimental design method) valve parts subjected to pressure as well as the criteria to be used in the selection of materials.
The standard describes methods by which reduced impact values at low temperatures may be taken into account in a safe manner.
This standard applies to the design of bodies and bonnets for pressure relief devices, including bursting disc devices, with respect to pressure containment but it does not apply to any other aspects of the design or application of pressure relief devices.

Kälteanlagen und Wärmepumpen - Ventile - Anforderungen, Prüfung und Kennzeichnung (ISO 21922:2021)

Dieses Dokument legt die Sicherheitsanforderungen, bestimmte funktionale Anforderungen und die Kennzeichnung von Ventilen und anderen Bauteilen, im Folgenden kurz Ventile genannt, für die Verwendung in Kälteanlagen einschließlich Wärmepumpen fest.
Dieses Dokument enthält Anforderungen für Ventile mit Verlängerungsrohren.
Dieses Dokument beschreibt das Verfahren, das bei der Konstruktion von druckbeanspruchten Ventilen zugrunde zu legen ist, sowie die bei der Auswahl von Werkstoffen für Ventilteile zu berücksichtigenden Kriterien.
Dieses Dokument beschreibt Methoden, nach denen reduzierte Werte für die Kerbschlagarbeit bei niedriger Temperatur auf sichere Art und Weise berücksichtigt werden können.
Dieses Dokument gilt für die Konstruktion von Gehäusen und Oberteilen für Druckentlastungseinrichtungen, einschließlich Berstscheibeneinrichtungen, im Hinblick auf die Druckfestigkeit, sie gilt jedoch nicht für andere Aspekte der Konstruktion oder die Anwendung von Druckentlastungseinrichtungen.
Ferner gilt dieses Dokument für Ventile mit einer maximalen Betriebstemperatur von nicht mehr als 200 °C und einem maximal zulässigen Druck von nicht mehr als 160 bar.

Systèmes de réfrigération et pompes à chaleur - Robinetterie - Exigences, essais et marquage (ISO 21922:2021)

Le présent document spécifie les exigences de sécurité, certaines exigences fonctionnelles et le marquage des robinets et autres composants possèdant un corps similaire, ci-après appelés robinets, pour une utilisation dans les systèmes de réfrigération, y compris les pompes à chaleur.
Le présent document comprend des exigences pour les robinets avec des tuyaux d’extension.
Le présent document décrit la procédure à suivre lors de la conception des éléments de robinetterie soumis à une pression ainsi que les critères à utiliser dans le choix des matériaux.
Le présent document décrit des méthodes permettant de prendre en compte en toute sécurité les valeurs de résilience faibles à basse température.
Le présent document s'applique à la conception des corps et des chapeaux des dispositifs limiteurs de pression, y compris les dispositifs à disque de rupture, eu égard au confinement de la pression, mais elle ne s'applique à aucun autre aspect de la conception ou de l'application des dispositifs limiteurs de pression.
En outre, le présent document est applicable aux robinets dont la température maximale de fonctionnement ne dépasse pas 200 °C et dont la pression maximale admissible ne dépasse pas 160 bar[1].
[1] 1 bar = 0,1 MPa.

Hladilni sistemi in toplotne črpalke - Ventili - Zahteve, preskušanje in označevanje (ISO 21922:2021)

Ta evropski standard določa varnostne zahteve, varnostne faktorje, preskusne metode, uporabljene preskusne tlake in označevanje ventilov za hladilne naprave in drugih komponent s podobnim ohišjem (v nadaljevanju: ventili) za uporabo v hladilnih sistemih.
Opisuje postopek, ki ga je treba upoštevati pri konstruiranju delov ventila (z izračunom ali eksperimentalno metodo konstruiranja), izpostavljenih obremenitvam, in merila, ki se uporabljajo pri izbiri materialov.
Standard opisuje metode, s katerimi se lahko na varen način upošteva zmanjšane udarne vrednosti pri nizkih temperaturah.
Ta standard se uporablja pri konstruiranju ohišij in pokrovov za tlačne varnostne naprave, vključno z napravami z razpočnimi membranami, v zvezi s tlačnim skladiščenjem; vendar se ne uporablja za druge vidike konstruiranja ali uporabe tlačnih varnostnih naprav.

General Information

Status
Published
Public Enquiry End Date
09-Oct-2018
Publication Date
23-Nov-2021
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
10-Nov-2021
Due Date
15-Jan-2022
Completion Date
24-Nov-2021

Relations

Buy Standard

Standard
EN ISO 21922:2022
English language
100 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Draft
prEN ISO 21922:2018 - BARVE
English language
96 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN ISO 21922:2022
01-januar-2022
Nadomešča:
SIST EN 12284:2004
Hladilni sistemi in toplotne črpalke - Ventili - Zahteve, preskušanje in označevanje
(ISO 21922:2021)
Refrigerating systems and heat pumps - Valves - Requirements, testing and marking
(ISO 21922:2021)
Kälteanlagen und Wärmepumpen - Ventile - Anforderungen, Prüfung und
Kennzeichnung (ISO 21922:2021)
Systèmes de réfrigération et pompes à chaleur - Robinetterie - Exigences, essais et
marquage (ISO 21922:2021)
Ta slovenski standard je istoveten z: EN ISO 21922:2021
ICS:
23.060.20 Zapirni ventili (kroglasti in Ball and plug valves
pipe)
27.080 Toplotne črpalke Heat pumps
27.200 Hladilna tehnologija Refrigerating technology
SIST EN ISO 21922:2022 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
SIST EN ISO 21922:2022

---------------------- Page: 2 ----------------------
SIST EN ISO 21922:2022


EN ISO 21922
EUROPEAN STANDARD

NORME EUROPÉENNE

November 2021
EUROPÄISCHE NORM
ICS 27.080; 27.200 Supersedes EN 12284:2003
English Version

Refrigerating systems and heat pumps - Valves -
Requirements, testing and marking (ISO 21922:2021)
Systèmes de réfrigération et pompes à chaleur - Kälteanlagen und Wärmepumpen - Ventile -
Robinetterie - Exigences, essais et marquage (ISO Anforderungen, Prüfung und Kennzeichnung (ISO
21922:2021) 21922:2021)
This European Standard was approved by CEN on 23 May 2021.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.





EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2021 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN ISO 21922:2021 E
worldwide for CEN national Members.

---------------------- Page: 3 ----------------------
SIST EN ISO 21922:2022
EN ISO 21922:2021 (E)
Contents Page
European foreword . 3
Annex ZA (informative) Relationship between this European Standard and the essential
safety requirements of Directive 2014/68/EU . 4

2

---------------------- Page: 4 ----------------------
SIST EN ISO 21922:2022
EN ISO 21922:2021 (E)
European foreword
This document (EN ISO 21922:2021) has been prepared by Technical Committee ISO/TC 86
"Refrigeration and air-conditioning" in collaboration with Technical Committee CEN/TC 182
“Refrigerating systems, safety and environmental requirements” the secretariat of which is held by DIN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by May 2022, and conflicting national standards shall be
withdrawn at the latest by May 2022.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN 12284:2003.
This document has been prepared under a Standardization Request given to CEN by the European
Commission and the European Free Trade Association, and supports essential requirements of EU
Directive(s) / Regulation(s).
For the relationship with EU Directive(s) / Regulation(s), see informative Annex ZA, which is an integral
part of this document.
Any feedback and questions on this document should be directed to the users’ national standards
body/national committee. A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
Endorsement notice
The text of ISO 21922:2021 has been approved by CEN as EN ISO 21922:2021 without any modification.

3

---------------------- Page: 5 ----------------------
SIST EN ISO 21922:2022
EN ISO 21922:2021 (E)
Annex ZA
(informative)

Relationship between this European Standard and the essential safety
requirements of Directive 2014/68/EU
This European Standard has been prepared under a Commission’s standardization request “M/071" to
provide one voluntary means of conforming to essential safety requirements of Directive2014/68/EU
on the harmonisation of the laws of the Member States relating to the making available on the market of
pressure equipment.
Once this standard is cited in the Official Journal of the European Union under that Directive
2014/68/EU, compliance with the normative clauses of this standard given in Table ZA.1 confers,
within the limits of the scope of this standard, a presumption of conformity with the corresponding
essential safety requirements of that Directive, and associated EFTA regulations.
Table ZA.1 — Correspondence between this European Standard and Directive 2014/68/EU
Essential Safety Requirements of Clause(s)/subclause(s) of Remarks/Notes
Directive 2014/68/EU this EN
4.3 6.11 Material documentation
3.1.4 6.1.1, 6.4, 6.6, 6.7, D.3.3 Heat treatment
2.2.2 7.3 Design for adequate strength
7.1.2 Annex A.2 Allowable stresses
2.6 7.12 Corrosion
3.1.1 8 Preparation of the component parts
3.2.2, 7.4 9.1 Proof test
3.3 10.2 Marking and labelling
3.4 11 Operating instructions
7.2 Table A.2 Joint coefficients
2.2.3 Annex A, C and D Design for adequate strength by calculation
2.2.4 Annex B, C and D Design for adequate strength by experimental
method
4.1 a) and 7.5 Annex D Requirements to avoid brittle fracture
WARNING 1 — Presumption of conformity stays valid only as long as a reference to this European
Standard is maintained in the list published in the Official Journal of the European Union. Users of this
standard should consult frequently the latest list published in the Official Journal of the European
Union.
WARNING 2 — Other Union legislation may be applicable to the product(s) falling within the scope of
this standard.
4

---------------------- Page: 6 ----------------------
SIST EN ISO 21922:2022
INTERNATIONAL ISO
STANDARD 21922
First edition
2021-08
Refrigerating systems and heat
pumps — Valves — Requirements,
testing and marking
Systèmes de réfrigération et pompes à chaleur — Robinetterie —
Exigences, essais et marquage
Reference number
ISO 21922:2021(E)
©
ISO 2021

---------------------- Page: 7 ----------------------
SIST EN ISO 21922:2022
ISO 21922:2021(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2021 – All rights reserved

---------------------- Page: 8 ----------------------
SIST EN ISO 21922:2022
ISO 21922:2021(E)

Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 List of symbols . 4
5 General requirements . 6
5.1 Installation and operation . 6
5.2 Components under pressure . 6
5.3 Excessive mechanical stress . 7
5.4 Tightness . 7
5.5 Functioning of hand-operated valves . 7
5.6 Functioning of actuator-operated valves. 7
6 Materials . 7
6.1 General . 7
6.1.1 Using metallic materials . 7
6.1.2 Using non-metallic materials . 7
6.2 Requirements for materials to be used for pressure bearing parts . 8
6.3 Compatibility of connections . 8
6.4 Ductility . 8
6.5 Ageing . 8
6.6 Castings . 8
6.7 Forged and welded components . . 8
6.8 Nuts, bolts and screws . 8
6.9 Spindles . 9
6.10 Glass materials . 9
6.11 Requirements for documentation . 9
6.12 Impact energy KV measurement on sub-sized specimens .10
7 Design .10
7.1 General .10
7.2 Maximum allowable pressure .11
7.3 Valve and valve assembly strength design .11
7.4 Bodies and bonnets .12
7.5 Nuts, bolts, screws, fasteners and seals .12
7.6 Seat tightness .12
7.6.1 General.12
7.6.2 Seat tightness: type test .13
7.7 Screwed spindles and shafts .14
7.8 Design of glands .14
7.9 Valve seats .15
7.10 Caps . .15
7.11 Hand operated valves .16
7.12 Corrosion protection .16
8 Appropriate manufacturing procedures .16
9 Production testing .17
9.1 Strength pressure testing .17
9.2 Tightness testing .17
9.3 Seat sealing capacity .18
9.4 Caps . .18
10 Marking and additional information .18
© ISO 2021 – All rights reserved iii

---------------------- Page: 9 ----------------------
SIST EN ISO 21922:2022
ISO 21922:2021(E)

10.1 General .18
10.2 Marking .19
10.3 Example how to mark the allowable limits of pressure and temperature .19
10.4 Hand-operated regulating valves .19
10.5 Caps . .19
11 Documentation .20
11.1 General .20
11.2 Documentation for valves .20
11.3 Additional documentation for valve assemblies .20
Annex A (normative) Procedure for the design of a valve by calculation .21
Annex B (normative) Experimental design method for valves .24
Annex C (normative) Determination of the allowable pressure at the maximum operating
temperature .28
Annex D (normative) Determination of the allowable pressure at minimum operating
temperature — Requirements to avoid brittle fracture .29
Annex E (informative) Compilation of material characteristics of frequently used materials .40
Annex F (informative) Justification of the individual methods .60
Annex G (normative) Pressure strength verification of valve assemblies .66
Annex H (normative) Determination of category for valves .67
Annex I (informative) DN system .72
Annex J (normative) Additional requirements — Sight glasses and indicators .75
Annex K (normative) Compatibility screening test .78
Annex L (informative) Stress corrosion cracking .82
Annex M (normative) Method for sizing the operating element of hand-operated valves .85
Bibliography .87
iv © ISO 2021 – All rights reserved

---------------------- Page: 10 ----------------------
SIST EN ISO 21922:2022
ISO 21922:2021(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO TC 86, Refrigeration and air-conditioning,
Subcomittee SC 1, Safety and environmental requirements for refrigerating systems, in collaboration with
the European Committee for Standardization (CEN) Technical Committee CEN/TC 182, Refrigerating
systems, safety and environmental requirements, in accordance with the Agreement on technical
cooperation between ISO and CEN (Vienna Agreement).
This first edition is based on EN 12284:2003.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
© ISO 2021 – All rights reserved v

---------------------- Page: 11 ----------------------
SIST EN ISO 21922:2022
ISO 21922:2021(E)

Introduction
This document is intended to describe the safety requirements, safety factors, test methods, test
pressures used, and marking of valves and other components with similar bodies for use in refrigerating
systems.
vi © ISO 2021 – All rights reserved

---------------------- Page: 12 ----------------------
SIST EN ISO 21922:2022
INTERNATIONAL STANDARD ISO 21922:2021(E)
Refrigerating systems and heat pumps — Valves —
Requirements, testing and marking
1 Scope
This document specifies safety requirements, certain functional requirements, and marking of valves
and other components with similar bodies, hereinafter called valves, for use in refrigerating systems
including heat pumps.
This document includes requirements for valves with extension pipes.
This document describes the procedure to be followed when designing valve parts subjected to
pressure as well as the criteria to be used in the selection of materials.
This document describes methods by which reduced impact values at low temperatures may be taken
into account in a safe manner.
This document applies to the design of bodies and bonnets for pressure relief devices, including
bursting disc devices, with respect to pressure containment but it does not apply to any other aspects
of the design or application of pressure relief devices.
In addition, this document is applicable to valves with a maximum operating temperature not exceeding
1)
200 °C and a maximum allowable pressure not exceeding 160 bar .
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 148-1, Metallic materials. Charpy pendulum impact test — Part 1: Test method
ISO 5149-1, Refrigerating systems and heat pumps — Safety and environmental requirements — Part 1:
Definitions, classification and selection criteria
ISO/TR 15608, Welding — Guidelines for a metallic material grouping system
EN 12516-2, Industrial valves — Shell design strength — Part 2: Calculation method for steel valve shells
EN 13445-3, Unfired pressure vessels — Part 3: Design
EN 14276-2:2020, Pressure equipment for refrigerating systems and heat pumps — Part 2: Piping —
General requirements
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 5149-1 and the following
apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
1) 1 bar = 0,1 MPa.
© ISO 2021 – All rights reserved 1

---------------------- Page: 13 ----------------------
SIST EN ISO 21922:2022
ISO 21922:2021(E)

3.1
valve
device with a pressure enclosure and an intended additional functionality, such as influencing the fluid
flow by opening, closing or partially obstructing the passage of the flow or by diverting or mixing the
fluid flow, indicating moisture content or filtering the fluid flow
Note 1 to entry: A device with a pressure enclosure and an intended additional functionality is designated as
pressure accessory according to the European Pressure Equipment Directive 2014/68/EU.
3.2
extension pipe
piping connected to a valve by the valve manufacturer, which does not influence the pressure strength
of the valve itself
Note 1 to entry: Extension pipes often have different diameters in two ends.
Note 2 to entry: The application of extension pipes is determined by the manufacturer and has the advantage
that the pressure strength verification of the extension pipes becomes independent of the safety factors used for
the verification of the valve.
3.3
valve assembly
combination of a valve and one or more extension pipes
EXAMPLE An example of a valve assembly is given in Clause H.6.
3.4
operating range
combination of
...

SLOVENSKI STANDARD
oSIST prEN ISO 21922:2018
01-oktober-2018
+ODGLOQLVLVWHPLLQWRSORWQHþUSDONH9HQWLOL=DKWHYHSUHVNXãDQMHLQR]QDþHYDQMH
,62',6
Refrigerating systems and heat pumps - Valves - Requirements, testing and marking
(ISO/DIS 21922:2018)
Kälteanlagen und Wärmepumpen - Ventile - Anforderungen, Prüfung und
Kennzeichnung (ISO/DIS 21922:2018)
Système de réfrigération et pompes à chaleur - Robinetterie - Exigences, essais et
marquage (ISO/DIS 21922:2018)
Ta slovenski standard je istoveten z: prEN ISO 21922
ICS:
23.060.20 Zapirni ventili (kroglasti in Ball and plug valves
pipe)
27.080 7RSORWQHþUSDONH Heat pumps
27.200 Hladilna tehnologija Refrigerating technology
oSIST prEN ISO 21922:2018 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
oSIST prEN ISO 21922:2018

---------------------- Page: 2 ----------------------
oSIST prEN ISO 21922:2018
DRAFT INTERNATIONAL STANDARD
ISO/DIS 21922
ISO/TC 86/SC 1 Secretariat: ANSI
Voting begins on: Voting terminates on:
2018-07-18 2018-10-10
Refrigerating systems and heat pumps — Valves —
Requirements, testing and marking
Titre manque
ICS: 27.200; 27.080
THIS DOCUMENT IS A DRAFT CIRCULATED
This document is circulated as received from the committee secretariat.
FOR COMMENT AND APPROVAL. IT IS
THEREFORE SUBJECT TO CHANGE AND MAY
NOT BE REFERRED TO AS AN INTERNATIONAL
STANDARD UNTIL PUBLISHED AS SUCH.
IN ADDITION TO THEIR EVALUATION AS
ISO/CEN PARALLEL PROCESSING
BEING ACCEPTABLE FOR INDUSTRIAL,
TECHNOLOGICAL, COMMERCIAL AND
USER PURPOSES, DRAFT INTERNATIONAL
STANDARDS MAY ON OCCASION HAVE TO
BE CONSIDERED IN THE LIGHT OF THEIR
POTENTIAL TO BECOME STANDARDS TO
WHICH REFERENCE MAY BE MADE IN
Reference number
NATIONAL REGULATIONS.
ISO/DIS 21922:2018(E)
RECIPIENTS OF THIS DRAFT ARE INVITED
TO SUBMIT, WITH THEIR COMMENTS,
NOTIFICATION OF ANY RELEVANT PATENT
RIGHTS OF WHICH THEY ARE AWARE AND TO
©
PROVIDE SUPPORTING DOCUMENTATION. ISO 2018

---------------------- Page: 3 ----------------------
oSIST prEN ISO 21922:2018
ISO/DIS 21922:2018(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2018
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2018 – All rights reserved

---------------------- Page: 4 ----------------------
oSIST prEN ISO 21922:2018
ISO/DIS 21922:2018(E)

Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 List of symbols . 3
5 General requirements . 5
5.1 Installation and operation . 5
5.2 Components under pressure . 5
5.3 Excessive mechanical stress . 5
5.4 Tightness . 6
5.5 Functioning of hand-operated valves . 6
5.6 Functioning of actuator-operated valves. 6
6 Materials . 6
6.1 General . 6
6.1.1 Using metallic materials . 6
6.1.2 Using non-metallic materials . 6
6.2 Requirements for materials to be used for pressure bearing parts . 6
6.3 Compatibility of connections . 7
6.4 Ductility . 7
6.5 Ageing . 7
6.6 Castings . 7
6.7 Forged and welded components . . 7
6.8 Nuts, bolts and screws . 7
6.9 Spindles . 8
6.10 Glass materials . 8
6.11 Requirements for documentation . 8
6.12 Impact energy KV measurement on sub-sized specimens. 9
7 Design . 9
7.1 General . 9
7.2 Maximum allowable pressure .10
7.3 Valve strength design .10
7.4 Bodies and bonnets .11
7.5 Nuts, bolts, screws, fasteners and seals .11
7.6 Seat tightness .11
7.6.1 General.11
7.6.2 Seat tightness: type test .12
7.7 Screwed spindles and shafts .13
7.8 Design of glands .13
7.9 Valve seats .14
7.10 Caps . .14
7.11 Hand operated valves .15
7.12 Corrosion protection .15
8 Workmanship .15
9 Production testing .16
9.1 Strength pressure testing .16
9.2 Tightness testing .16
9.3 Seat sealing capacity .17
9.4 Caps . .17
10 Marking and additional information .17
© ISO 2018 – All rights reserved iii

---------------------- Page: 5 ----------------------
oSIST prEN ISO 21922:2018
ISO/DIS 21922:2018(E)

10.1 General .17
10.2 Marking .17
10.3 Hand-operated regulating valves .18
10.4 Caps . .18
11 Documentation .18
11.1 Documentation for small valves .18
11.2 Documentation for large valves .19
Annex A (normative) Procedure for the design of a valve by calculation .20
Annex B (normative) Experimental design method for valves .23
Annex C (normative) Determination of the allowable pressure at the maximum operating
temperature .27
Annex D (normative) Determination of the allowable pressure at minimum operating
temperature (Requirements to avoid brittle fracture) .28
Annex E (informative) Compilation of material characteristics of often used materials .38
Annex F (informative) Justification of the individual methods .62
Annex G (normative) Determination of category for valves .68
Annex H (informative) Stress corrosion cracking .71
Annex I (informative) DN System .74
Annex J (normative) Additional requirements sight glasses and indicators.77
Annex K (normative) Compatibility screening test .80
Annex L (normative) Method for sizing the operating element of hand-operated valves .84
Bibliography .87
iv © ISO 2018 – All rights reserved

---------------------- Page: 6 ----------------------
oSIST prEN ISO 21922:2018
ISO/DIS 21922:2018(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following
URL: www .iso .org/iso/foreword .html.
This document was prepared by ISO Technical Committee TC 86, Refrigeration and air-conditioning,
Subcommittee SC 1, Safety and environmental requirements for refrigerating systems and by Technical
Committee CEN/TC 182, Refrigerating systems, safety and environmental requirements in collaboration
in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
© ISO 2018 – All rights reserved v

---------------------- Page: 7 ----------------------
oSIST prEN ISO 21922:2018
ISO/DIS 21922:2018(E)

Introduction
This International Standard is intended to describe the safety requirements, safety factors, test
methods, test pressures used, and marking of valves and other components with similar bodies for use
in refrigerating systems.
vi © ISO 2018 – All rights reserved

---------------------- Page: 8 ----------------------
oSIST prEN ISO 21922:2018
DRAFT INTERNATIONAL STANDARD ISO/DIS 21922:2018(E)
Refrigerating systems and heat pumps — Valves —
Requirements, testing and marking
1 Scope
This International standard specifies safety requirements, certain functional requirements, and
marking of valves and other components with similar bodies, hereinafter called valves, for use in
refrigerating systems including heat pumps.
Valves in the sense of this standard include extension pipes.
The standard describes the procedure to be followed when designing valve parts subjected to pressure
as well as the criteria to be used in the selection of materials.
The standard describes methods by which reduced impact values at low temperatures may be taken
into account in a safe manner.
This standard applies to the design of bodies and bonnets for pressure relief devices, including bursting
disc devices, with respect to pressure containment but it does not apply to any other aspects of the
design or application of pressure relief devices.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
I EC 6 053 4 -2-1:2011/COR 1: 2014, Industrial-process control valves — Part 2-1: Industrial-process control
valves — Part 2-1: Flow capacity — Sizing equations for fluid flow under installed conditions
ISO 148-1:2009, Metallic materials. Charpy pendulum impact test — Part 1: Test method
ISO 6708:1995, Pipework components — Definition and selection of DN (nominal size)
ISO 7268:1983/Amd.1:1984, Pipe components — Definition of nominal pressure / Amendment 1
ISO 10474:2013, Steel and steel products — Inspection documents
ISO/TR 15608:2013, Welding — Guidelines for a metallic material grouping system
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply / the terms and definitions
given in [external document reference] and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http: //www .electropedia .org/
— ISO Online browsing platform: available at http: //www .iso .org/obp
3.1
valve
component with a pressure enclosure and an intended additional functionality, such as influencing the
fluid flow by opening, closing or partially obstructing the passage of the flow or by diverting or mixing
the fluid flow, or indicating moisture content
© ISO 2018 – All rights reserved 1

---------------------- Page: 9 ----------------------
oSIST prEN ISO 21922:2018
ISO/DIS 21922:2018(E)

3.2
operating range
combination of temperature and pressure conditions at which the valve can safely be operated
3.3
nominal size (DN)
an alphanumeric designation of size for components of a pipework system, which is used for reference
purposes. It comprises the letters DN followed by a dimensionless whole number which is indirectly
related to the physical size, in millimetres, of the bore or outside diameter of the end connections
[SOURCE: ISO 6708:1995, definition 2.1]
Note 1 to entry: The number following the letters DN does not represent a measurable value and should not be
used for calculation purposes except where specified in this standard.
Note 2 to entry: Where the nominal size is not specified, for the purpose of this standard it is assumed to be the
internal diameter of the pipe or component in mm (DN/ID).
Note 3 to entry: Nominal size is not the same as port size which is commonly used for the size of the valve seat
opening.
3.4
nominal pressure (PN)
a numerical designation which is a convenient rounded number for reference purposes. All equipment
of the same nominal size (DN) designated by the same PN number shall have compatible mating
dimensions
[SOURCE: ISO 7268:1983/A1: 1984]
3.5
corrosion
all forms of material wastage (e. g. oxidation, erosion, wear and abrasion)
3.6
maximum operating temperature
highest temperature that can occur during operation or standstill of the refrigerating system or during
testing under test conditions
3.7
minimum operating temperature
lowest temperature that can occur during operation or standstill of the refrigerating system or during
testing under test conditions
3.8
pressure bearing parts
part, which is subject to a minimum positive internal pressure of 50 kPa (0,5 bar) during normal
operating conditions
3.9
seat tightness class
letter from A to G indicating the internal tightness of the valve across the valve seat(s)
3.10
competent body
third party organisation which has recognized competence in the assessment of quality systems for the
manufacture of materials and in the technology of the materials concerned
Note 1 to entry: National legislation may place additional requirements on the competent body depending on the
market which the valve is intended for.
2 © ISO 2018 – All rights reserved

---------------------- Page: 10 ----------------------
oSIST prEN ISO 21922:2018
ISO/DIS 21922:2018(E)

3.11
type of valve connection
standard and size for the valve connection to other equipment directly fixed to the valves end
Note 1 to entry: Possible types of valve connection are e.g.:
a) NPS 2 inch which means a butt-welding connection to ANSI B 36.10 2 inch steel pipe,
b) NPT ½ inch which means a screwed connection with ½ inch male end according to ANSI B 1.20.1,
c) EN 1092-1/11/C/DN 200 x 6,3/PN 40 which means a flange type 11 with facing type C (tongue) of nominal
size DN 200, wall thickness 6,3 mm, PN 40.
3.12
pressure sensitive part
part of a valve which will not have a reliable function after exposure to the greater of 1,5 times PS and
1,25 times PS
0
Note 1 to entry: Examples include bellows, diaphragms or float balls.
4 List of symbols
Symbols used in this Standard are given in Table 1:
Table 1 — List of symbols
A Elongation after fracture where the measured length is equal or greater than mm
L
0,4 times of diameter of the rod
A Elongation after fracture where the measured length is equal to 5 times of diame- %
5
ter of the rod
A Lifetime in years for calculating effect of corrosion; typically 20 years anno
C Factor to compensate for the quality of a casting —
Q
δ Negative wall thickness tolerance mm
e
e Actual wall thickness at given measuring points of the valve to be tested mm
act
e Reference thickness is the minimum material thickness needed to give adequate
B
strength to pressure bearing parts
e Reduction in wall thickness caused by occurrence of corrosion mm
c
e Component wall thickness as specified in the design drawing mm
con
KV Impact rupture energy J
KV Threshold value of impact rupture energy, where the impact rupture energy is J
0
defined as independent of the temperature
t
KV Standard value of impact rupture energy at standard temperature of the material J
0
KV Impact rupture energy at minimum operating temperature TS J
TS min min
3
K is the rate of flow of water in cubic metres per hour for a differential pressure Δp of m /h
VS
1 bar (0,1 MPa) at the rated full opening
L the leakage in percent of K %
VS
N is 31,6 according to Table 1 of IEC 60534-2-1:2011/COR1: 2014 —
6
P Maximum allowable design test pressure bar
F
PS Maximum allowable pressure in common sense, without regarding any influence bar
of temperature
PS Maximum allowable pressure at ambient temperature (− 10 °C to + 50 °C) accord- bar
0
ing to strength design (without temperature correction)
PS Maximum allowable pressure at maximum operating temperature bar
TS max
NOTE  1 MPa = 10 bar
© ISO 2018 – All rights reserved 3

---------------------- Page: 11 ----------------------
oSIST prEN ISO 21922:2018
ISO/DIS 21922:2018(E)

Table 1 (continued)
PS Maximum allowable pressure at minimum operating temperature bar
TS min
P Minimum burst test pressure (greater than P ) bar
Test F
p Upstream pressure bar
1
p Downstream pressure bar
2
Δp Differential pressure bar
p' Testing pressure of each valve after production bar
Q Mass flow rate kg/h
M
3
Q Downstream volume flow rate m /h
V
2
R Yield strength, 1,0 % offset MPa, N/mm
e 1,0
2
R Yield strength, 1,0 % offset at maximum operating temperature MPa, N/mm
e 1,0 TS max
2
R Yield strength, 0,2 % offset at ambient temperature MPa, N/mm
e 0,2
2
R Proof strength, 0,2 % offset at ambient temperature MPa, N/mm
p 0,2
2
R Proof strength, 0,2 % offset at minimum operating temperature MPa, N/mm
p 0,2 TS min
2
R Proof strength, 0,2 % offset at temperature t MPa, N/mm
p 0,2/t
2
R Proof strength, 0,2 % offset at maximum operating temperature MPa, N/mm
p 0,2 TS max
2
R Proof strength, 1,0 % offset at ambient temperature MPa, N/mm
p 1,0
2
R Upper yield strength MPa, N/mm
eH
2
R Upper yield strength at maximum operating temperature MPa, N/mm
eH TS max
2
R Tensile strength MPa, N/mm
m
2
R Tensile strength at maximum operating temperature MPa, N/mm
m TS max
2
R Actual tensile strength of the material of the valve to be tested MPa, N/mm
m act
2
R Tensile strength used for the design MPa, N/mm
m con
3
ρ Density of the actual fluid kg/m
3
ρ Density of water at 15,5°C kg/m
0
3
ρ Upstream density kg/m
1
3
ρ Downstream density kg/m
2
S Factor to compensate effects of corrosion —
C
S Factor for the calculation of the burst test pressure taking into account the tensile —
con
strength according to Table A.1
S Factor to allow for forming —
F
S Factor taking into consideration the impact rupture energy reduction due to mini- —
TS min
mum operating temperature
S Factor to allow for the reduction in strength due to the maximum operating tem- —
TS max
perature
S Factor to allow for the test pressure —
σ
2
σ Initial design stress MPa, N/mm
con
2
σ Allowable stress values derived from σ MPa, N/mm
corr con
t Lowest temperature at which pressure bearing parts can be used, if their load °C
min 25
amounts to 25 % of the allowable design stress at 20 °C, taking the safety factors
according to Table A.1 into account
t Lowest temperature at which pressure bearing parts can be used, if their load °C
min 75
amounts to 75 % of the allowable design stress at 20 °C, taking the sa
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.