SIST EN 1992-1-2:2005
(Main)Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design
Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design
(1)P This Part 1-2 of EN 1992 deals with the design of concrete structures for the accidental situation of fire exposure and is intended to be used in conjunction with EN 1992-1-1 and EN 1991-1-2. This part 1-2 only identifies differences from, or supplements to, normal temperature design.
(2)P This Part 1-2 of EN 1992 deals only with passive methods of fire protection. Active methods are not covered.
(3)P This Part 1-2 of EN 1992 applies to concrete structures that are required to fulfil certain functions when exposed to fire, in terms of:
- avoiding premature collapse of the structure (load bearing function)
- limiting fire spread (flame, hot gases, excessive heat) beyond designated areas (separating function)
(4)P This Part 1-2 of EN 1992 gives principles and application rules (see EN 1991-1-2) for designing structures for specified requirements in respect of the aforementioned functions and the levels of performance.
(5)P This Part 1-2 of EN 1992 applies to structures, or parts of structures, that are within the scope of EN 1992-1-1 and are designed accordingly. However, it does not cover:
- structures with prestressing by external tendons
- shell structures
(6)P The methods given in this Part 1-2 of EN 1992 are applicable to normal weight concrete up to strength class C90/105 and for lightweight concrete up to strength class LC55/60. Additional and alternative rules for strength classes above C50/60 are given in section 6.
Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den Brandfall
(1)P EN 1992-1-2 behandelt die Bemessung von Betontragwerken für den Sonderlastfall Brandeinwirkung und ist in Verbindung mit EN 1992-1-1 und EN 1991-1-2 anzuwenden. EN 1992-1-2 enthält abweichende und zusätzliche Regelungen zu den Bemessungsregeln für Tragwerke bei Normaltemperatur.
(2)P EN 1992-1-2 enthält nur Methoden des passiven konstruktiven (baulichen) Brandschutzes. Methoden des aktiven Brandschutzes werden nicht erfasst.
(3)P EN 1992-1-2 gilt für Betontragwerke, die bei Brandeinwirkung bestimmte Kriterien erfüllen müssen:
- Vermeiden eines vorzeitigen Tragwerkeinsturzes (Tragfähigkeit)
- Begrenzung der Brandausbreitung (Flammen, heiße Gase, extreme Hitze) über festgelegte Flächen hinaus (raumabschließende Wirkung)
(4)P EN 1992-1-2 enthält Prinzipien und Anwendungsregeln (siehe EN 1991-1-2) im Hinblick auf die Tragwerksbemessung zur Erfüllung der vorher genannten Funktionen und Leistungskriterien.
(5)P EN 1992-1-2 gilt für Tragwerke oder Teilen von Tragwerken die zum Anwendungsbereich von EN 1992-1-1 gehören und entsprechend bemessen sind. Nicht behandelt werden dagegen:
- Tragwerke mit externer Vorspannung
- Schalentragwerke
(6)P Die Bemessungsverfahren in EN 1992-1-2 gelten für Normalbeton bis zur Festigkeitsklasse C90/105und für Leichtbeton bis zur Festigkeitsklasse LC55/60. Im Abschnitt 6 werden zusätzliche und alternative Regeln für die Festigkeitsklasse größer C50/60 gegeben.
Eurocode 2: Calcul des structures en béton - Partie 1-2: Regles générales - Calcul du comportement au feu
(1)P La Partie 1-2 de l'EN 1992 traite du calcul des structures en béton en situation accidentelle d'exposition au feu ; elle est destinée à être utilisée conjointement avec l'EN 1992-1-1 et l'EN 1991-1-2. Cette partie 1-2 identifie uniquement les différences, ou les éléments supplémentaires, par rapport au calcul aux températures normales.
(2)P La partie 1-2 de l'EN 1992 vise uniquement les méthodes passives de protection contre l'incendie. Les méthodes actives ne sont pas traitées.
(3)P La partie 1-2 de l'EN 1992 s'applique aux structures en béton requises pour remplir certaines fonctions lorsqu'elles sont exposées au feu, à savoir :
- éviter une ruine prématurée de la structure (fonction porteuse)
- limiter l'extension du feu (flammes, gaz chauds, chaleur excessive) en dehors des zones concernées (fonction séparative).
(4)P La partie 1-2 de l'EN 1992 donne des principes et des règles d'application (voir l'EN 1991-1-2) pour le calcul des structures en vue de satisfaire aux exigences spécifiées, selon les fonctions et niveaux de performance susmentionnés.
(5)P La partie 1-2 de l'EN 1992 s'applique aux structures ou aux parties de structures qui relèvent du domaine d'application de l'EN 1992-1-1 et sont calculées en conséquence. Toutefois, elle ne couvre pas :
- les structures à précontrainte extérieure,
- les structures en coque.
(6)P Les méthodes indiquées dans la partie 1-2 de l'EN 1992 sont applicables au béton de densité normale présentant une classe de résistance jusqu'à C90/105 et au béton léger présentant une classe de résistance jusqu'à LC55/60. Des règles complémentaires pour les classes de résistance supérieures à C50/60 sont données dans la section 6.
Evrokod 2: Projektiranje betonskih konstrukcij - 1-2. del: Splošna pravila - Projektiranje požarnovarnih konstrukcij
Ta 1-2. del standarda EN 1992 obravnava projektiranje betonskih konstrukcij pri nezgodnem projektnem stanju zaradi izpostavljenosti požaru in se uporablja v povezavi z EN 1992-1-1 in EN 1991-1-2. Podaja samo spremenjena in dodatna pravila glede na pravila za projektiranje konstrukcij pri normalni temperaturi.
Ta 1-2. del standarda EN 1992 obravnava samo metode pasivne požarne zaščite, metode aktivne zaščite v njem niso obravnavane.
Ta 1-2. del standarda EN 1992 se uporablja za betonske konstrukcije, ki morajo v primeru izpostavljenosti požaru izpolniti določene kriterije glede:
preprečitve prehitre porušitve konstrukcije (funkcija nosilnosti),
omejevanja širjenja požara (plamena, vročih plinov, čezmerne toplote) preko določenega območja (funkcija ločevanja).
Ta 1-2. del standarda EN 1992 podaja načela in pravila (glej EN 1991-1-2) za projektiranje konstrukcij po posebnih zahtevah glede na izpolnjevanje predhodno navedenih funkcij in ravni obnašanja.
Ta 1-2. del standarda EN 1992 se uporablja za ustrezno projektirane konstrukcije ali dele konstrukcij s področja uporabe standarda EN 1992-1-1. Ta del standarda pa ne obravnava:
z zunanjimi kabli prednapetih konstrukcij, lupinastih konstrukcij.
Metode, podane v tem 1-2. delu standarda EN 1992, so uporabne za betone običajne teže do trdnostnega razreda C90/105 in za lahke betone do trdnostnega razreda LC55/60. Dodatna in alternativna pravila za trdnostne razrede betona, višje od C50/60, so podana v poglavju 6.
General Information
Relations
Standards Content (Sample)
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire designEvrokod 2: Projektiranje betonskih konstrukcij - 1-2. del: Splošna pravila - Projektiranje požarnovarnih konstrukcijEurocode 2:
Calcul des structures en béton - Partie 1-2:
Regles générales - Calcul du comportement au feuEurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den BrandfallTa slovenski standard je istoveten z:EN 1992-1-2:2004SIST EN 1992-1-2:2005en91.080.40Betonske konstrukcijeConcrete structures91.010.30Technical aspects13.220.50Požarna odpornost gradbenih materialov in elementovFire-resistance of building materials and elementsICS:SIST ENV 1992-1-2:2004/AC:2004SIST ENV 1992-1-2:20041DGRPHãþDSLOVENSKI
STANDARDSIST EN 1992-1-2:200501-maj-2005
EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 1992-1-2
December 2004 ICS 13.220.50; 91.010.30; 91.080.40 Supersedes ENV 1992-1-2:1995 English version
Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design
Eurocode 2:
Calcul des structures en béton - Partie 1-2:
Règles générales - Calcul du comportement au feu
Eurocode 2: Planung von Stahlbeton- und Spannbetontragwerken - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den Brandfall This European Standard was approved by CEN on 8 July 2004.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
Management Centre: rue de Stassart, 36
B-1050 Brussels © 2004 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 1992-1-2:2004: E
Contents List
1 General 1.1 Scope
1.1.1 Scope of Eurocode 2
1.1.2 Scope of Part 1-2 of Eurocode 2 1.2 Normative references 1.3 Assumptions 1.4 Distinctions between principles and application rules 1.5 Definitions 1.6 Symbols
1.6.1 Supplementary symbols to EN 1992-1-1
1.6.2 Supplementary subscripts to EN 1992-1-1
2 Basis of design 2.1 Requirements
2.1.1 General
2.1.2 Nominal fire exposure
2.1.3 Parametric fire exposure 2.2
Actions
2.3
Design values of material properties
2.4
Verification methods 2.4.1 General 2.4.2
Member analysis
2.4.3
Analysis of part of the structure 2.4.4
Global structural analysis
3 Material properties 3.1 General
3.2 Strength and deformation properties at elevated temperatures 3.2.1 General 3.2.2 Concrete
3.2.2.1
Concrete under compression 3.2.2.2
Tensile strength 3.2.3 Reinforcing steel 3.2.4 Prestressing steel 3.3
Thermal and physical properties of concrete with siliceous and calcareous aggregates 3.3.1
Thermal elongation
3.3.2
Specific heat
3.3.3
Thermal conductivity 3.4
Thermal elongation of reinforcing and prestressing steel
Design
procedures 4.1
General
4.2
Simplified calculation method 4.2.1
General 4.2.2
Temperature profiles 4.2.3
Reduced cross-section 4.2.4 Strength reduction
4.2.4.1
General
4.2.4.2
Concrete
4.2.4.3
Steel 4.3 Advanced calculation methods
4.3.1 General
4.3.2 Thermal response
4.3.3 Mechanical response
4.3.4 Validation of advanced calculation models 4.4 Shear, torsion and anchorage 4.5 Spalling
4.5.1
Explosive spalling
4.5.2 Falling off of concrete 4.6 Joints 4.7 Protective layers
5 Tabulated data 5.1
Scope
5.2
General design rules
5.3 Columns
5.3.1 General 5.3.2 Method A for assessing fire resistance of columns 5.3.3 Method B for assessing fire resistance of columns 5.4
Walls 5.4.1
Non load-bearing walls (partitions) 5.4.2
Load-bearing solid walls
5.4.3
Fire walls 5.5
Tensile members
5.6
Beams 5.6.1 General
5.6.2
Simply supported beams
5.6.3
Continuous beams
5.6.4
Beams exposed on all sides
5.7 Slabs 5.7.1
General
5.7.2
Simply supported solid slabs
5.7.3
Continuous solid slabs
5.7.4
Flat slabs
5.7.5
Ribbed slabs
6 High strength concrete (HSC) 6.1 General 6.2 Spalling 6.3 Thermal properties 6.4 Structural design
6.4.1 Calculation of load-carrying capacity
6.4.2 Simplified calculation method
6.4.2.1
Columns and walls
6.4.2.2
Beams and slabs
6.4.3 Tabulated data
Informative annexes
A Temperature profiles
B Simplified calculation methods
C
Buckling of columns under fire conditions
D Calculation methods for shear, torsion and anchorage
E Simplified calculation method for beams and slabs
Foreword
This European Standard EN 1992-1-2 , “Design of concrete structures - Part 1-2 General rules - Structural fire design", has been prepared by Technical Committee CEN/TC250 ”Structural Eurocodes”, the Secretariat of which is held by BSI. CEN/TC250 is responsible for all Structural Eurocodes.
This European Standard shall be given the status of a National Standard, either by publication of an identical text or by endorsement, at the latest by June 2005, and conflicting National Standards shall be withdrawn at latest by March 2010.
This European standard supersedes ENV 1992-1-2: 1995.
According to the CEN-CENELEC Internal Regulations, the National Standard Organisations of the following countries are bound to implement these European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Background of the Eurocode programme
In 1975, the Commission of the European Community decided on an action programme in the field of construction, based on article 95 of the Treaty. The objective of the programme was the elimination of technical obstacles to trade and the harmonisation of technical specifications.
Within this action programme, the Commission took the initiative to establish a set of harmonised technical rules for the design of construction works which, in a first stage, would serve as an alternative to the national rules in force in the Member States and, ultimately, would replace them.
For fifteen years, the Commission, with the help of a Steering Committee with Representatives of Member States, conducted the development of the Eurocodes programme, which led to the first generation of European codes in the 1980s.
In 1989, the Commission and the Member States of the EU and EFTA decided, on the basis of an agreement1 between the Commission and CEN, to transfer the preparation and the
1 Agreement between the Commission of the European Communities and the European Committee for Standardisation (CEN) concerning the work on EUROCODES for the design of building and civil engineering works (BC/CEN/03/89).
publication of the Eurocodes to the CEN through a series of Mandates, in order to provide them with a future status of European Standard (EN). This links de facto the Eurocodes with the provisions of all the Council’s Directives and/or Commission’s Decisions dealing with European standards (e.g. the Council Directive 89/106/EEC on construction products - CPD - and Council Directives 93/37/EEC, 92/50/EEC and 89/440/EEC on public works and services and equivalent EFTA Directives initiated in pursuit of setting up the internal market).
The Structural Eurocode programme comprises the following standards generally consisting of a number of Parts:
EN 1990 Eurocode: Basis of Structural Design
EN 1991 Eurocode 1: Actions on structures EN 1992 Eurocode 2: Design of concrete structures EN 1993 Eurocode 3: Design of steel structures EN 1994 Eurocode 4: Design of composite steel and concrete structures EN 1995 Eurocode 5: Design of timber structures EN 1996 Eurocode 6: Design of masonry structures EN 1997 Eurocode 7: Geotechnical design EN 1998 Eurocode 8: Design of structures for earthquake resistance EN 1999 Eurocode 9: Design of aluminium structures
Eurocode standards recognise the responsibility of regulatory authorities in each Member State and have safeguarded their right to determine values related to regulatory safety matters at national level where these continue to vary from State to State.
Status and field of application of Eurocodes
The Member States of the EU and EFTA recognise that Eurocodes serve as reference documents for the following purposes :
– as a means to prove compliance of building and civil engineering works with the essential requirements of Council Directive 89/106/EEC, particularly Essential Requirement N°1 – Mechanical resistance and stability – and Essential Requirement N°2 – Safety in case of fire ;
– as a basis for specifying contracts for construction works and related engineering services ;
– as a framework for drawing up harmonised technical specifications for construction products (ENs and ETAs)
The Eurocodes, as far as they concern the construction works themselves, have a direct relationship with the Interpretative Documents2 referred to in Article 12 of the CPD, although they are of a different nature from harmonised product standards3. Therefore, technical aspects arising from the Eurocodes work need to be adequately considered by CEN Technical
2 According to Art. 3.3 of the CPD, the essential requirements (ERs) shall be given concrete form in interpretative documents for the creation of the necessary links between the essential requirements and the mandates for harmonised ENs and ETAGs/ETAs. 3 According to Art. 12 of the CPD the interpretative documents shall : a) give concrete form to the essential requirements by harmonising the terminology and the technical bases and indicating classes or levels for each requirement where necessary ; b) indicate methods of correlating these classes or levels of requirement with the technical specifications, e.g. methods of calculation and of proof, technical rules for project design, etc. ; c) serve as a reference for the establishment of harmonised standards and guidelines for European technical approvals. The Eurocodes, de facto, play a similar role in the field of the ER 1 and a part of ER 2.
Committees and/or EOTA Working Groups working on product standards with a view to achieving full compatibility of these technical specifications with the Eurocodes.
The Eurocode standards provide common structural design rules for everyday use for the design of whole structures and component products of both a traditional and an innovative nature. Unusual forms of construction or design conditions are not specifically covered and additional expert consideration will be required by the designer in such cases.
National Standards implementing Eurocodes
The National Standards implementing Eurocodes will comprise the full text of the Eurocode (including any annexes), as published by CEN, which may be preceded by a National title page and National foreword, and may be followed by a National Annex.
The National Annex may only contain information on those parameters which are left open in the Eurocode for national choice, known as Nationally Determined Parameters, to be used for the design of buildings and civil engineering works to be constructed in the country concerned, i.e. : – values and/or classes where alternatives are given in the Eurocode, – values to be used where a symbol only is given in the Eurocode, – country specific data (geographical, climatic, etc.), e.g. snow map, – the procedure to be used where alternative procedures are given in the Eurocode, – decisions on the application of informative annexes, – references to non-contradictory complementary information to assist the user to apply the Eurocode.
Links between Eurocodes and products harmonised technical specifications (ENs and ETAs)
There is a need for consistency between the harmonised technical specifications for construction products and the technical rules for works4. Furthermore, all the information accompanying the CE Marking of the construction products which refer to Eurocodes should clearly mention which Nationally Determined Parameters have been taken into account.
Additional information specific to EN 1992-1-2
EN 1992- 1-2 describes the Principles, requirements and rules for the structural design of buildings exposed to fire, including the following aspects.
Safety requirements
EN 1992-1-2 is intended for clients (e.g. for the formulation of their specific requirements), designers, contractors and relevant authorities.
The general objectives of fire protection are to limit risks with respect to the individual and society, neighbouring property, and where required, environment or directly exposed property, in the case of fire.
4 see Art.3.3 and Art.12 of the CPD, as well as clauses 4.2, 4.3.1, 4.3.2 and 5.2 of ID 1.
Construction Products Directive 89/106/EEC gives the following essential requirement for the limitation of fire risks:
"The construction works must be designed and build in such a way, that in the event of an outbreak of fire - the load bearing resistance of the construction can be assumed for a specified period of time -
the generation and spread of fire and smoke within the works are limited -
the spread of fire to neighbouring construction works is limited
-
the occupants can leave the works or can be rescued by other means -
the safety of rescue teams is taken into consideration".
According to the Interpretative Document N° 2 "Safety in case of fire" the essential requirement may be observed by following various possibilities for fire safety strategies prevailing in the Member states like conventional fire scenarios (nominal fires) or “natural” (parametric) fire scenarios, including passive and/or active fire protection measures.
The fire parts of Structural Eurocodes deal with specific aspects of passive fire protection in terms of designing structures and parts thereof for adequate load bearing resistance and for limiting fire spread as relevant.
Required functions and levels of performance can be specified either in terms of nominal (standard) fire resistance rating, generally given in national fire regulations or by referring to fire safety engineering for assessing passive and active measures, see EN 1991-1-2.
Supplementary requirements concerning, for example: - the possible installation and maintenance of sprinkler systems, - conditions on occupancy of building or fire compartment, - the use of approved insulation and coating materials, including their maintenance,
are not given in this document, because they are subject to specification by the competent authority.
Numerical values for partial factors and other reliability elements are given as recommended values that provide an acceptable level of reliability. They have been selected assuming that an appropriate level of workmanship and of quality management applies.
Design procedures
A full analytical procedure for structural fire design would take into account the behaviour of the structural system at elevated temperatures, the potential heat exposure and the beneficial effects of active and passive fire protection systems, together with the uncertainties associated with these three features and the importance of the structure (consequences of failure).
At the present time it is possible to undertake a procedure for determining adequate performance which incorporates some, if not all, of these parameters and to demonstrate that the structure, or its components, will give adequate performance in a real building fire. However, where the procedure is based on a nominal (standard) fire the classification system, which call for specific periods of fire resistance, takes into account (though not explicitly), the features and uncertainties described above.
Application of design procedures is illustrated in Figure 0.1. The prescriptive approach and the performance-based approach are identified. The prescriptive approach uses nominal fires to generate thermal actions. The performance-based approach, using fire safety engineering, refers to thermal actions based on physical and chemical parameters. Additional information for alternative methods in this standard is given in Table 0.1.
For design according to this part, EN 1991-1-2 is required for the determination of thermal and mechanical actions to the structure.
Design aids
Where simple calculation models are not available, the Eurocode fire parts give design solutions in terms of tabulated data (based on tests or advanced calculation models), which may be used within the specified limits of validity.
It is expected, that design aids based on the calculation models given in EN 1992-1-2, will be prepared by interested external organisations.
The main text of EN 1992-1-2, together with informative Annexes A, B, C, D and E, includes most of the principal concepts and rules necessary for structural fire design of concrete structures.
National Annex for EN 1992-1-2
This standard gives alternative procedures, values and recommendations for classes with notes indicating where national choices may have to be made. Therefore the National Standard implementing EN 1992-1-2 should have a National Annex containing the Eurocode all Nationally Determined Parameters to be used for the design of buildings, and where required and applicable, for civil engineering works to be constructed in the relevant country.
National choice is allowed in EN 1992-1-2 through clauses:
- 2.1.3 (2) - 2.3 (2)P - 3.2.3 (5) - 3.2.4 (2) - 3.3.3 (1) - 4.1 (1)P - 4.5.1 (2) - 5.2 (3) - 5.3.2 (2) - 5.6.1 (1) - 5.7.3 (2) - 6.1 (5) - 6.2 (2) - 6.3.1 (1) - 6.4.2.1 (3) - 6.4.2.2 (2)
TabulatedDataSimpleCalculationModelsAdvancedCalculationModelsCalculation ofMechanical Actionsat BoundariesMemberAnalysisSimpleCalculationModels(if available)AdvancedCalculationModelsCalculation ofMechanical Actionsat BoundariesAnalysis of Partof the StructureAdvancedCalculationModelsSelection ofMechanicalActionsAnalysis ofEntire StructurePrescriptive Rules(Thermal Actions given by Nominal FireSimpleCalculationModels(if available)AdvancedCalculationModelsCalculation ofMechanical Actionsat BoundariesMemberAnalysisAdvancedCalculationModelsCalculation ofMechanicalActionsat BoundariesAnalysis ofPart of theStructureAdvancedCalculationModelsSelection ofMechanical ActionsAnalysis ofEntireStructureSelection of Simple or AdvancedFire Development ModelsPerformance-Based Code(Physically based Thermal Actions)Project Design
Figure 1 : Alternative design procedures
Table 0.1 Summary table showing alternative methods of verification for fire resistance
Tabulated data
Simplified calculation methods Advanced calculation models Member analysis The member is considered as isolated.
Indirect fire actions are not considered, except those resulting from thermal gradients YES - Data given for standard fire only,
5.1(1) - In principle data could be developed for other fire curves YES - standard fire and parametric fire, 4.2.1(1) - temperature profiles given for standard fire only, 4.2.2(1) - material models apply only to heating rates similar to standard fire, 4.2.4.1(2) YES,
4.3.1(1)P Only the principles are given Analysis of parts of the structure Analysis of parts of the structure Indirect fire actions within the sub-assembly are considered, but no time-dependent interaction with other parts of the structure. NO YES
- standard fire and parametric fire, 4.2.1(1) - temperature profiles given for standard fire only, 4.2.2(1) - material models apply only to heating rates similar to standard fire, 4.2.4.1(2) YES
4.3.1(1)P Only the principles are given Global structural analysis Analysis of the entire structure. Indirect fire actions are considered throughout the structure NO NO YES 4.3.1(1)P Only the principles are given
SECTION 1
GENERAL
1.1 Scope
1.1.1
Scope of Eurocode 2
(1)P
Eurocode 2 applies to the design of buildings and civil engineering works in concrete. It complies with the principles and requirements for the safety and serviceability of structures, the basis of their design and verification that are given in EN 1990 – Basis of structural design.
(2)P
Eurocode 2 is only concerned with requirements for resistance, serviceability, durability and fire resistance concrete structures. Other requirements, e.g. concerning thermal or sound insulation, are not considered.
(3)P
Eurocode 2 is intended to be used in conjunction with: – EN 1990 “Basis of structural design” – EN 1991 “Actions on structures” – hEN´s for construction products relevant for concrete structures – ENV 13670-1 “Execution of concrete structures . Part 1: Common rules” – EN 1998 “Design of structures for earthquake resistance”, when concrete structures are built in seismic regions
(4)P
Eurocode 2 is subdivided in various parts: - Part 1-1: General rules and rules for buildings - Part 1-2: General rules – Structural fire design - Part 2: Concrete bridges - Part 3: Liquid retaining and containment structures
1.1.2 Scope of Part 1-2 of Eurocode 2
(1)P
This Part 1-2 of EN 1992 deals with the design of concrete structures for the accidental situation of fire exposure and is intended to be used in conjunction with EN 1992-1-1 and EN 1991-1-2.
This part 1-2 only identifies differences from, or supplements to, normal temperature design.
(2)P
This Part 1-2 of EN 1992 deals only with passive methods of fire protection. Active methods are not covered.
(3)P
This Part 1-2 of EN 1992
applies to concrete structures
that are required to fulfil certain functions when exposed to fire, in terms of: - avoiding premature collapse of the structure (load bearing function) - limiting fire spread (flame, hot gases, excessive heat) beyond designated areas (separating function)
(4)P
This Part 1-2 of EN 1992 gives principles and application rules (see EN 1991-1-2) for designing structures for specified requirements in respect of the aforementioned functions and the levels of performance.
(5)P
This Part 1-2 of EN 1992 applies to structures, or parts of structures, that are within the scope of EN 1992-1-1 and are designed accordingly. However, it does not cover:
- structures with prestressing by external tendons - shell structures
(6)P
The methods given in this Part 1-2 of EN 1992 are applicable to normal weight concrete up to strength class C90/105 and for lightweight concrete up to strength class LC55/60. Additional and alternative rules for strength classes above C50/60 are given in section 6.
1.2
Normative references
The following normative documents contain provisions that, through reference in this text, constitute provisions of this European Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this European Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies.
EN 1363-2:
Fire resistance tests – Part 2: Alternatives and additional procedures;
EN 1990:
Eurocode: Basis of structural design;
EN 1991-1-2:
Eurocode 1 - Actions on structures - Part 1-2:
General actions - Actions on structures exposed to fire; EN 1992-1-1:
Eurocode 2.
Design of concrete structures - Part 1.1: General rules and rules for buildings EN 10080:
Steel for the reinforcement of concrete - Weldable reinforcing steel - General EN 10138-2: Prestressing steels - Part 2: Wire EN 10138-3: Prestressing steels - Part 3: Strand EN 10138-4: Prestressing steels - Part 4: Bar
1.3
Assumptions
The general assumptions given in EN 1990 and EN 1992-1-2 apply.
1.4
Distinction between principles and application rules
(1) The rules given in EN 1990 apply.
1.5
Definitions
For the purposes of this Part 1-2 of EN 1992, the definitions of EN 1990 and of EN 1991-1-2 apply with the additional definitions:
1.5.1
Critical temperature of reinforcement: The temperature of reinforcement at which failure of the member in fire situation (Criterion R) is expected to occur at a given steel stress level.
1.5.2 Fire wall: A wall separating two spaces (generally two buildings) that is designed for fire resistance and structural stability, and may include resistance to horizontal loading such that, in case of fire and failure of the structure on one side of the wall, fire spread beyond the wall is avoided.
1.5.3 Maximum stress level: For a given temperature, the stress level at which the stress-strain relationship of steel is truncated to provide a yield plateau. 1.5.4 Part of structure: isolated part of an entire structure with appropriate support and boundary conditions. 1.5.5 Protective layers: Any material or combination of materials applied to a structural member for the purpose of increasing its fire resistance.
1.5.6 Reduced cross section: Cross section of the member in structure fire design used in the reduced cross section method. It is obtained from the residual cross section by removing parts of the cross section with assumed zero strength and stiffness.
1.6 Symbols
1.6.1 Supplementary symbols to EN1992-1-1
(1)P
The following supplementary symbols are used:
Latin upper case letters
Ed,fi
design effect of actions in the fire situation
Ed design effect of actions for normal temperature design
Rd,fi
design resistance in the fire situation;
Rd,fi(t) at a given time
t.
R 30 or R 60,. fire resistance class for the load-bearing criterion for 30, or 60. minutes in standard fire exposure
E 30 or E 60,. fire resistance class for the integrity criterion for 30, or 60. minutes in standard fire exposure
I 30 or I 60,. fire resistance class for the insulation criterion for 30, or 60. minutes in standard fire exposure
T temperature
[K]
(cf
θ
temperature
[oC]);
Xk characteristic value of a strength or deformation property for normal temperature design
Xd,fi
design strength or deformation property in the fire situation
Latin lower case letters a axis distance of reinforcing or prestressing steel from the nearest exposed surface
cc specific heat of concrete [J/kgK]
fck(θ) characteristic value of compressive strength of concrete at temperature θ for a specified strain
fck,t(θ) characteristic value of tensile strength of concrete at temperature θ for a specified strain
fpk(θ) characteristic value of strength of prestressing steel at temperature θ for a specified strain
fsk(θ) characteristic strength of reinforcing steel at temperature θ for a specified strain
k(θ)= Xk(θ)/Xk
reduction factor for a strength or deformation property dependent on the material
temperature θ
n = N0Ed,fi /(0,7(Ac fcd + As fyd)) load level of a column at normal temperature conditions
t time of fire exposure (min)
Greek lower case letters γM,fi
partial safety factor for a material in fire design
ηfi
= Ed,fi/Ed reduction factor for design load level in the fire situation
µfi = NEd,fi /NRd degree of utilisation in fire situation
εc(θ) thermal strain of concrete
εp(θ) thermal strain of prestressing steel
εs(θ) thermal strain of reinforcing steel
εs,fi
strain of the reinforcing or prestressing steel at temperature
θ
λc thermal conductivity of concrete [W/mK]
λ0,fi slenderness of the column under fire conditions
σc,fi
compressive stress of concrete in fire situation
σs,fi
steel stress in fire situation
θ temperature [oC]
θcr critical temperature [oC]
1.6.2 Supplementary to EN 1992-1-1, the following subscripts are used:
fi value relevant for the fire situation
t dependent on the time
θ dependent on the temperature
SECTION 2
BASIS OF DESIGN
2.1 Requirements
2.1.1 General
(1)P
Where mechanical resistance in the case of fire is required, concrete structures shall be designed and constructed in such a way that they maintain their load bearing function during the relevant fire exposure.
(2)P
Where compartmentation is required, the elements forming the boundaries of the fire compartment, including joints, shall be designed and constructed in such a way that they maintain their separating function during the relevant fire exposure. This shall ensure, where relevant, that: -
integrity failure does not occur, see EN 1991-1-2 -
insulation failure does not occur, see EN 1991-1-2 -
thermal radiation from the unexposed side is limited.
Note 1: See EN 1991-1-2 for the definitions.
Note 2: For concrete structures considered in this Part 1-2 thermal radiation criteria are not relevant.
(3)P
Deformation criteria shall be applied where the means of protection, or the design criteria for separating elements, require consideration of the deformation of the load bearing structure.
(4)
Consideration of the deformation of the load bearing structure is not necessary in the following cases, as relevant:
- the efficiency of the means of protection has been evaluated according to 4.7,
- the separating elements have to fulfil requirements according to nominal fire exposure.
2.1.2
Nominal fire exposure
(1)P
For the standard fire exposure, members shall comply with criteria R, E and I as follows:
-
separating only: integrity (criterion E) and, when requested, insulation (criterion
I)
-
load bearing only: mechanical resistance (criterion R)
-
separating and load bearing: criteria R, E and, when requested I
(2)
Criterion “R” is assumed to be satisfied where the load bearing function is maintained during the required time of fire exposure.
(3)
Criterion “I” may be assumed to be satisfied where the average temperature rise over the whole of the non-exposed surface is limited to 140 K, and the maximum temperature rise at any point of that surface does not exceed 180 K (4)
With the external fire exposure curve the same criteria (R, E, I) should apply, however the reference to this specific curve should be identified by the letters "ef" (see EN 1991-1-2).
(5)
With the hydrocarbon fire exposure curve the same criteria (R, E, I) should apply, however the reference to this specific curve should be identified by the letters "HC", see EN 1991-1-2
(6)
Where a vertical separating element with or without load-bearing function has to comply with impact resistance requirement (criterion M), the element should resist a horizontal concentrated load as specified in EN 1363 Part 2.
2.1.3
Parametric fire exposure
(1)
The load-bearing function should be maintained during the complete endurance of the fire including the decay phase, or a specified period of time.
(2)
For the verification of the separating function the following applies, assuming that the normal temperature is 20°C: - the average temperature rise of the unexposed side of the construction should be limited to 140 K and the maximum temperature rise of the unexposed side should not exceed 180 K
during the heating phase until the maximum gas temperature in the fire compartment is reached; - the average temperature rise of the unexposed side of the construction should be limited to ∆θ1 and the maximum temperature rise of the unexposed side should not exceed ∆θ2 during the decay phase.
Note: The values of ∆θ1
and ∆θ2
for use in a Country may be found in its National Annex.
The recommended values are ∆θ1
= 200 K and ∆θ2
= 240 K.
2.2 Actions
(1)P
The thermal and mechanical actions shall be taken
from EN 1991-1-2.
(2)
In addition to EN 1991-1-2, the emissivity related to the concrete surface should be taken as 0,7.
2.3 Design values of material properties
(1)P
Design values of mechanical (strength and deformation) material properties Xd,fi are defined as follows:
Xd,fi =
kθ Xk / γM,fi
(2.1)
where: Xk is the characteristic value of a strength or deformation property (generally fk or Ek) for normal temperature design to EN 1992-1-1; kθ is the reduction factor for a strength or deformation property
(Xk,θ / Xk), dependent on the material temperature, see 3.2.; γM,fi is the partial safety factor for the relevant material property, for the fire situation.
(2)P
Design values of thermal material properties Xd,fi are defined as follows: - if an increase of the property is favourable for safety:
Xd,fi
=
Xk,θ /γM,fi
(2.2a)
- if an increase of the property is unfavourable for safety:
Xd,fi
=
γM,fi Xk,θ
(2.2b)
where:
Xk,θ is the value of a material property in fire design, generally dependent on the material temperature, see section 3; γM,fi is the partial safety factor for the relevant material property, for the fire situation.
Note 1:
The value of γM,fi
for use in a Country may be found in its National Annex. The recommended value is: For thermal properties of concrete and reinforcing and prestressing steel: γM,fi
= 1,0 For mechanical properties of concrete and reinforcing and prestressing steel: γM,fi = 1,0
Note 2:
If the recommended values are modified, the tabulated data may require modification.
2.4 Verification methods
2.4.1 General
(1)P
The model of the structural system adopted for design to this Part 1.2 of EN 1992 shall reflect the expected performance of the structure in fire.
(2)P
It shall be verified for the relevant duration of fire exposure t :
Ed,fi ≤ Rd,t,fi
(2.3)
where Ed,fi is the design effect of actions for the fire situation, determined in accordance with EN 1991-1-2, including effects of thermal expansions and deformations Rd,t,fi is the corresponding design resistance in the fire situation.
(3)
The structural analysis for the fire situation should be carried out according to Section 5 of
EN 1990.
Note:
For verifying standard fire resistance requirements, a member analysis is sufficient.
(4)
Where application rules given in this Part 1-2 are valid only for the standard temperature-time curve, this is identified in the relevant clauses
(5)
Tabulated data given in section 5 are based on the standard temperature-time curve.
(6)P
As an alternative to design by calculation, fire design may be based on the results of fire tests, or on fire tests in combination with calculations, see EN 1990, Section 5.
2.4.2 Member analysis
(1)
The effect of actions should be determined for time t = 0 using combination factors ψ 1,1 or ψ1,2 according to EN 1991-1-2 Section 4.
(2)
As a simplification to (1) the effects of actions may be obtained from a structural analysis for normal temperature design as:
Ed,fi
=
ηfi Ed
(2.4)
Where Ed is the design value of the corresponding force or moment for normal temperature design, for a fundamental combination of actions (see EN 1990); ηfi is the reduction factor for the design load level for the fire situation.
(3)
The reduction factor ηfi for load combination (6.10) in EN 1990 should be taken as:
ηfi
=
QGQGk,1Q,1kGk,1fik +
+ γγψ
(2.5)
or for load combination (6.10a) and (6.10b) in EN 1990 as the smaller value given by the two following expressions:
ηfi
=
QGQGk,11,0Q,1kGk,1fik +
+ ψγγψ
(2.5a)
ηfi
=
Q + GQ + Gfik,1Q,1kGk,1kγξγψ
(2.5b)
where Qk,1 is the principal variable load; Gk
is the characteristic value of a permanent action; γG is the partial factor for a permanent action; γQ,1 is the partial factor for variable action 1; ψfi is the combination factor for frequent or quasi-permanent values given either by ψ1,1 or ψ2,1, see EN1991-1-2 ξ is a reduction factor for unfavourable permanent action G
Note 1:
Regarding equation (2.5), examples of the variation of the reduction factor ηfi versus the load ratio Qk,1/Gk for Expression (2.4) and different values of the combination factor ψ1,1 are shown in Figure 2.1 with the following assumptions: γGA = 1,0, γG = 1,35 and γQ = 1,5. Expressions (2.5a) and (2.5b) give slightly higher values. Recommended values of partial factors are given in the relevant National Annexes of EN 1990.
Note 2:
As a simplification a recommended value of ηfi = 0,7 may be used.
Figure 2.1:
Variation of the reduction factor ηfi with the load ratio
Qk,1 / Gk
(4)
Only the effects of thermal deformations resulting from thermal gradients across the cross-section need be considered.
The effects of axial or in-plane thermal expansions may be neglected. 01122330001111Qk,1/Gkψ1,1 = 0,9ψ1,1 = 0,7ψ1,1 = 0,5ψ1,1 = 0,2ηfi0,00,51,01,52,03,02,50,50,70,80,20,30,40,6
(5)
The boundary conditions at supports and ends of member, applicable at time t = 0, are assumed to remain unchanged throughout the fire exposure.
(6)
Tabulated data, simplified or general calculation methods given in 5, 4.2 and 4.3 respectively are suitable for verifying members under fire conditions.
2.4.3 Analysis of part of the structure
(1)
2.4.2 (1) applies.
(2)
As an alternative to carrying out a global structural analysis for the fire situation at time t = 0 the reactions at supports and internal forces and moments at boundaries of part of the structure may be obtained from structural analysis for normal temperature as given in 2.4.2
(3)
The part of the structure to be analysed should be specified on the basis of the potential thermal expansions and deformations such, that their interaction with other parts of the structure can be approximated by time-independent support and boundary conditions during fire exposure.
(4)P
Within the part of the structure to be analysed, the relevant failure mode in fire exposure, the temperature-dependent material properties and member stiffnesses, effects of thermal expansions and deformations (indirect fire actions) shall be taken into account
(5)
The boundary conditions at supports and forces and moments at boundaries of part of the structure, applicable at time
t = 0,
are assumed to remain unchanged throughout the fire exposure
2.4.4 Global structural analysis
(1)P
When global structural analysis for the fire situation is carried out, the relevant failure mode in fire exposure, the temperature-dependent material properties and member stiffnesses, effects of thermal expansions and deformations (indirect fire actions) shall be taken into account.
19 SECTION 3 MATERIAL PROPERTIES
3.1 General
(1)P
The values of material properties given in this section shall be treated as characteristic values (see 2.3 (1)P).
(2)
The values may be used with the simplified (see 4.2) and the advanced calculation method (see 4.3).
Alternative formulations of material laws may be applied, provided the solutions are within the range of experimental evidence.
Note:
Material properties for lightweight aggregate concrete are not given in this Eurocode.
(3)P
The mechanical properties of concrete, reinforcing and prestressing steel at normal temperature (20°C) shall be taken as those given in EN 1992-1-1 for normal temperature design.
3.2 Strength and deformation properties at elevated temperatures
3.2.1 General
(1)P
Numerical values on strength and deformation properties given in this section are based on steady state as well as transient state tests and sometimes a combination of both. As creep effects are not explicitly considered, the material models in this Eurocode are applicable for heating rates between 2 and 50 K/min.
For heating rates outside the above range, the reliability of the strength and deformation properties shall be demonstrated explicitly.
3.2.2 Concrete
3.2.2.1
Concrete under compression
(1)P
The strength and deformation properties of uniaxially stressed concrete at elevated temperatures shall be obtained from the stress-strain relationships as presented in Figure 3.1.
(2)
The stress-strain relationships given in Figure 3.1 are defined by two parameters: -
the compressive strength fc,θ -
the strain εc1,θ corresponding to fc,θ.
(3)
Values for each of these parameters are given in Table 3.1 as a function of concrete temperatures. For intermediate values of the temperature, linear interpolation may be used.
(4)
The parameters specified in Table 3.1 may be used for normal weight concrete with siliceous or calcareous (containing at least 80% calcareous aggregate by weight) aggregates.
(5)
Values for εcu1,θ defining the range of the descending branch may be taken from Table 3.1, Column 4 for normal weight concrete with siliceous aggregates, Column 7 for normal weight concrete with calcareous aggregates.
20 Table 3.1: Values for the main parameters of the stress-strain relationships of normal weight concrete with siliceous or calcareous aggregates concrete at elevated temperatures.
ConcreteSiliceous aggregates Calcareous aggregates temp.θ fc,θ / fck εc1,θ εcu1,θ fc,θ / fckεc1,θ εcu1,θ =[°C] [-] [-] [-] [-] [-] [-] 1 2 3 4 5 6 7 20 1,00 0,0025 0,0200 1,00 0,0025 0,0200 100 1,00 0,0040 0,0225 1,00 0,0040 0,0225 200 0,95 0,0055 0,0250 0,97 0,0055 0,0250 300 0,85 0,0070 0,0275 0,91 0,0070 0,0275 400 0,75 0,0100 0,0300 0,85 0,0100 0,0300 500 0,60 0,0150 0,0325 0,74 0,0150 0,0325 600 0,45 0,0250 0,0350 0,60 0,0250 0,0350 700 0,30 0,0250 0,0375 0,43 0,0250 0,0375 800 0,15 0,0250 0,0400 0,27 0,0250 0,0400 900 0,08 0,0250 0,0425 0,15 0,0250 0,0425 1000 0,04 0,0250 0,0450 0,06 0,0250 0,0450 1100 0,01 0,0250 0,0475 0,02 0,0250 0,0475 1200 0,00 - - 0,00 - -
(6)
For thermal actions in accordance with EN 1991-1-2 Section 3 (natural fire simulation), particularly when considering the descending temperature branch, the mathematical model for stress-strain relationships of concrete specified in Figure 3.1 should be modified.
(7)
Possible strength gain of concrete in the cooling phase should not be taken into account.
σεc1,θεcu1,θεfc,θ
Range Stress σ(θ) c1,εε≤
⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛3,1c,1c,c230+0fεε
c1()cu1,εεε<≤ For numerical purposes a descending branch should be adopted.
Linear or non-linear models are permitted.
Figure 3.1: Mathematical model for stress-strain relationships of concrete under compression at elevated temperatures.
3.2.2.2
Tensile strength
(1)
The tensile strength of concrete should normally be ignored (conservative). If it is necessary to take account of the tensile strength, when using the simplified or advanced calculation method, this clause may be used.
(2)
The reduction of the characteristic tensile strength of concrete is allowed for by the coefficient kc,t(θ)=as given in Expression (3.1).
fck,t(θ) = kc,t(θ) fck,t
(3.1)
(3)
In absence of more accurate information the following kc,t(θ) values should be used (see Figure 3.2): kc,t(θ) = 1,0
for 20 °C ≤ θ ≤ 100 °C kc,t(θ) = 1,0 - 1,0 (θ=-100)/500
for 100 °C < θ ≤ 600 °C
22 0100200300400500600000111kc,t(θ)0,80,60,40,21,00,01002003004005000600 θ [°C]
Figure 3.2: Coefficient kc,t(θ) allowing for decrease of tensile strength (fck,t) of concrete at elevated temperatures
3.2.3 Reinforcing steel
(1)P
The strength and deformation properties of reinforcing steel at elevated temperatures shall be obtained from the stress-strain relationships specified in Figure 3.3 and Table 3.2 (a or b).
Table 3.2b may only be used if strength at elevated temperatures is tested.
(2)
The stress-strain relationships given in Figure 3.3 are defined by three parameters: - the slope of the linear elastic range Es,θ - the proportional limit fsp,θ - the maximum stress level fsy,θ
(3)
Values for the parameters in (2) for hot rolled and cold worked reinforcing steel at elevated temperatures are given in Table 3.2. For intermediate values of the temperature, linear interpolation may be used.
(4)
The formulation of stress-strain relationships may also be applied for reinforcing steel in compression.
(5)
In case of thermal actions according to EN 1991-1-2, Section 3 (natural fire simulation), particularly when considering the descending temperature branch, the values specified in Table 3.2 for the stress-strain relationships of reinforcing steel may be used as a sufficient approximation.
σεsp,Θεsy,Θεst,Θεsu,Θεfsy,Θfsp,ΘEs,θ
Range Stress σ(θ) Tangent modulus εsp,θ ε Es,θ Es,θ εsp,θ ≤ ε ≤ εsy,θ fsp,θ − c + (b/a)[a2 −(εsy,θ=− ε)2]0,5 ()b00aa00sy,0,522sy,()θθ−⎡⎤−−⎣⎦ εsy,θ ≤ ε ≤ εst,θ fsy,θ 0 εst,θ ≤ ε ≤ εsu,θ fsy,θ=[1−(ε=−=εst,θ)/(εsu,θ − εst,θ)]
- ε = εsu,θ 0,00 - Parameter *) εsp,θ = fsp,θ / E
...
6/29(16., 6,67(1
67$1'$5'
PDM
(YURNRG3URMHNWLUDQMHEHWRQVNLKNRQVWUXNFLM±GHO6SORãQDSUDYLOD±
3URMHNWLUDQMHSRåDUQRYDUQLKNRQVWUXNFLM
(XURFRGH'HVLJQRIFRQFUHWHVWUXFWXUHV±3DUW*HQHUDOUXOHV±6WUXFWXUDO
ILUHGHVLJQ
(XURFRGH&DOFXOGHVVWUXFWXUHVHQEpWRQ±3DUWLH5HJOHVJpQpUDOHV±
&DOFXOGXFRPSRUWHPHQWDXIHX
(XURFRGH%HPHVVXQJXQG.RQVWUXNWLRQYRQ6WDKOEHWRQXQG
6SDQQEHWRQWUDJZHUNHQ±7HLO$OOJHPHLQH5HJHOQ±7UDJZHUNVEHPHVVXQJIU
GHQ%UDQGIDOO
"!##" !$%’&)(*+"!!,-",#.0/123
*452678691:;<=>=":5?@50!A
BDCFEGEGHGIJGJGK-LMNPOPQR-SGTVUWURPXWYUYZVY8[-\SWY\RP]G\^]FU[-\8_GU‘NKPa\G[PbcRPNGdVQPOG\FR‘Q’_-QFMNPYQ’\FMUW]8QFMNPOcRGUe]8NPOGNFM‘QR-NK
6,67(1
1$&,21$/1,892'
6WDQGDUG6,67(1VO(YURNRG3URMHNWLUDQMHEHWRQVNLKNRQVWUXNFLM±GHO6SORãQD
SUDYLOD ± 3URMHNWLUDQMH SRåDUQRYDUQLK NRQVWUXNFLM LPD VWDWXV VORYHQVNHJD VWDQGDUGD LQ MH
LVWRYHWHQHYURSVNHPXVWDQGDUGX(1HQ(XURFRGH'HVLJQRIFRQFUHWHVWUXFWXUHV±3DUW
*HQHUDOUXOHV±6WUXFWXUDOILUHGHVLJQ
1$&,21$/1,35('*2925
(YURSVNL VWDQGDUG (1 MH SULSUDYLO WHKQLþQL RGERU (YURSVNHJD NRPLWHMD ]D
VWDQGDUGL]DFLMR&(17&.RQVWUXNFLMVNLHYURNRGLNDWHUHJDWDMQLãWYRMHYSULVWRMQRVWL%6,
6ORYHQVNLVWDQGDUG6,67(1MHSUHYRGHYURSVNHJDVWDQGDUGD(19
SULPHUXVSRUDJOHGHEHVHGLODVORYHQVNHJDSUHYRGDYWHPVWDQGDUGXMHRGORþLOHQL]YLUQLHYURSVNL
VWDQGDUGYDQJOHãNHPMH]LNX6ORYHQVNRL]GDMRVWDQGDUGDMHSULSUDYLOWHKQLþQLRGERU6,677&.21
.RQVWUXNFLMH
=9(=$=1$&,21$/1,0,67$1'$5',
9VWDQGDUGX6,67(1SRPHQLVNOLFHYDQMHQDHYURSVNHLQPHGQDURGQHVWDQGDUGHNLMH
YNOMXþHQRYWDHYURSVNLVWDQGDUGVNOLFHYDQMHQDHQDNRYUHGQHVORYHQVNHVWDQGDUGHQSU
(1SRPHQL6,67(1
1$&,21$/1,'2'$7(.
9VNODGXVVWDQGDUGRP(1ERSULSUDYOMHQQDFLRQDOQLGRGDWHNNVWDQGDUGX6,67(1
1DFLRQDOQL GRGDWHN YVHEXMH DOWHUQDWLYQH SRVWRSNH YUHGQRVWL LQ SULSRURþLOD ]D UD]UHGH ]
RSRPEDPLNLNDåHMRNMHVHODKNRXYHOMDYLQDFLRQDOQDL]ELUD=DWRERQDFLRQDOQLGRGDWHN6,67(1
$YVHERYDOQDFLRQDOQRGRORþHQHSDUDPHWUHNLMLKMHWUHEDXSRUDELWLSULSURMHNWLUDQMXVWDYELQ
JUDGEHQLKLQåHQLUVNLKREMHNWRYNLERGR]JUDMHQLY5HSXEOLNL6ORYHQLML
1DFLRQDOQDL]ELUDMHY6,67(1GRYROMHQDY
3
3
3
3
35('+2'1$,='$-$
6,67(19 (XURFRGH 3URMHNWLUDQMH EHWRQVNLK NRQVWUXNFLM ± GHO
3URMHNWLUDQMHSRåDUQRYDUQLKNRQVWUXNFLM
,,
6,67(1
2320%(
± 3RYVRG NMHU VH Y EHVHGLOX VWDQGDUGD XSRUDEOMD L]UD] ³HYURSVNL VWDQGDUG´ Y
6,67(1WRSRPHQL³VORYHQVNLVWDQGDUG´
± 1DFLRQDOQLXYRGLQQDFLRQDOQLSUHGJRYRUQLVWDVHVWDYQLGHOVWDQGDUGD
± 7DQDFLRQDOQLGRNXPHQWMHLVWRYHWHQ(1LQMHREMDYOMHQ]GRYROMHQMHP
&(1
5XHGH6WDVVDUW
%UXVHOM
%HOJLMD
7KLVQDWLRQDOGRFXPHQWLVLGHQWLFDOZLWK(1DQGLVSXEOLVKHGZLWKWKHSHUPLVVLRQRI
&(1
5XHGH6WDVVDUW
%UX[HOOHV
%HOJLXP
,,,
6,67(1
3UD]QDVWUDQ
,9
(95236.,67$1'$5' (1
(8523($167$1'$5'
1250((8523e(11(
(8523b,6&+(1250 6HSWHPEHU
,&6 1DGRPHãþD(19
6ORYHQVNDL]GDMD
(YURNRG3URMHNWLUDQMHEHWRQVNLKNRQVWUXNFLM±
GHO6SORãQDSUDYLOD±3URMHNWLUDQMHSRåDUQRYDUQLKNRQVWUXNFLM
(XURFRGH'HVLJQRIFRQFUHWH (XURFRGH &DOFXO GHV (XURFRGH 3ODQXQJ YRQ
VWUXFWXUHV±3DUW*HQHUDO VWUXFWXUHVHQEpWRQ±3DUWLH 6WDKOEHWRQXQG6SDQQEHWRQWUDJ
UXOHV±6WUXFWXUDOILUHGHVLJQ 5qJOHVJpQpUDOHV±&DOFXO ZHUNHQ ± 7HLO $OOJHPHLQH
GXFRPSRUWHPHQWDXIHX 5HJHOQ ± 7UDJZHUNVEHPHVVXQJ
IUGHQ%UDQGIDOO
7DHYURSVNLVWDQGDUGMH&(1VSUHMHOMXOLMD
ýODQL&(1PRUDMRL]SROQMHYDWLQRWUDQMHSUHGSLVH&(1&(1(/(&VNDWHULPMHSUHGSLVDQRGDPRUDELWL
WDVWDQGDUGEUH]NDNUãQLKNROLVSUHPHPEVSUHMHWNRWQDFLRQDOQLVWDQGDUG1DMQRYHMãLVH]QDPLWHK
QDFLRQDOQLKVWDQGDUGRY]QMLKRYLPLELEOLRJUDIVNLPLSRGDWNLVHQD]DKWHYRODKNRGRELMRSUL&HQWUDOQHP
VHNUHWDULDWXDOLNDWHULNROLþODQLFL&(1
7DHYURSVNLVWDQGDUGREVWDMDYWUHKL]YLUQLKL]GDMDKDQJOHãNLIUDQFRVNLLQQHPãNL,]GDMHYGUXJLK
MH]LNLKNLMLKþODQL&(1QDODVWQRRGJRYRUQRVWSUHYHGHMRLQL]GDMRWHUSULMDYLMRSUL8SUDYQHPFHQWUX
&(1YHOMDMRNRWXUDGQHL]GDMH
ýODQL&(1 VRQDFLRQDOQL RUJDQL ]DVWDQGDUGH $YVWULMH %HOJLMH&LSUDýHãNHUHSXEOLNH'DQVNH
(VWRQLMH)LQVNH)UDQFLMH*UþLMH,VODQGLMH,UVNH,WDOLMH/DWYLMH/LWYH/XNVHPEXUJD0DGåDUVNH
0DOWH1HPþLMH1L]R]HPVNH1RUYHãNH3ROMVNH3RUWXJDOVNH6ORYDãNH6ORYHQLMHâSDQLMHâYHGVNH
âYLFHLQ=GUXåHQHJDNUDOMHVWYD
Ü
&(1
(YURSVNLNRPLWH]DVWDQGDUGL]DFLMR
(XURSHDQ&RPPLWWHHIRU6WDQGDUGL]DWLRQ
(XURSlLVFKHV.RPLWHHIU1RUPXQJ
&RPLWp(XURSpHQGH1RUPDOLVDWLRQ
fhg7>i":e.%j=50c:1"1:k#lm#,-"=m;j1"26
npoq"qFrtsuvGwx"yz8{@uF|Fw}~vFy~uF|yz4v}%|vF{~Fu|{ux"yz8{@{88w?F"o"e8ooq"q
6,67(1
9VHELQD 6WUDQ
6SORãQR
3RGURþMHXSRUDEH
3RGURþMHXSRUDEHHYURNRGD
3RGURþMHXSRUDEHGHODHYURNRGD
=YH]HVVWDQGDUGL
3UHGSRVWDYNH
5D]OLNRYDQMHPHGQDþHOLLQSUDYLOL]DXSRUDER
'HILQLFLMH
6LPEROL
'RGDWQLVLPEROLN(1
'RGDWQLLQGHNVLN(1
2VQRYHSURMHNWLUDQMD
=DKWHYH
6SORãQR
,]SRVWDYOMHQRVWQD]LYQHPXSRåDUX
,]SRVWDYOMHQRVWSDUDPHWULþQHPXSRåDUX
9SOLYL
3URMHNWQHYUHGQRVWLODVWQRVWLPDWHULDOD
0HWRGHGRND]RYDQMD
6SORãQR
$QDOL]DSRVDPH]QLKHOHPHQWRY
$QDOL]DGHORYNRQVWUXNFLMH
*OREDOQDDQDOL]DNRQVWUXNFLMH
/DVWQRVWLPDWHULDOD
6SORãQR
7UGQRVWLQGHIRUPDFLMVNHODVWQRVWLPDWHULDODSULSRYLãDQLKWHPSHUDWXUDK
6SORãQR
%HWRQ
7ODþQRREUHPHQMHQEHWRQ
1DWH]QDWUGQRVW
-HNOR]DDUPLUDQMH
-HNOR]DSUHGQDSHQMDQMH
7RSORWQHLQIL]LNDOQHODVWQRVWLEHWRQDL]NUHPHQDVWHJDLQDSQHQþDVWHJDDJUHJDWD
7HPSHUDWXUQLUD]WH]HN
6SHFLILþQDWRSORWD
7RSORWQDSUHYRGQRVW
7HPSHUDWXUQLUD]WH]HNMHNOD]DDUPLUDQMHLQMHNOD]DSUHGQDSHQMDQMH
3RVWRSNLSURMHNWLUDQMD
6SORãQR
6,67(1
3RHQRVWDYOMHQHUDþXQVNHPHWRGH
6SORãQR
7HPSHUDWXUQLSURILOL
=PDQMãDQSUHþQLSUHUH]
=PDQMãDQMHWUGQRVWL
6SORãQR
%HWRQ
-HNOR
1DSUHGQHUDþXQVNHPHWRGH
6SORãQR
7RSORWQLRG]LY
0HKDQVNLRG]LY
3UHVRMDQDSUHGQLKUDþXQVNLKPHWRG
6WULJWRU]LMDLQVLGUDQMHDUPDWXUH
/XãþHQMH
(NVSOR]LYQROXãþHQMH
2GSDGDQMHEHWRQD
6WLNL
=DãþLWQHSODVWL
7DEHOLUDQHYUHGQRVWL
3RGURþMHXSRUDEH
6SORãQDSUDYLOD]DSURMHNWLUDQMH
6WHEUL
6SORãQR
0HWRGD$
0HWRGD%
6WHQH
1HQRVLOQHVWHQHSUHGHOQHVWHQH
1RVLOQHSROQHVWHQH
3RåDUQHVWHQH
1DWH]QLHOHPHQWL
1RVLOFL
6SORãQR
3URVWROHåHþLQRVLOFL
1HSUHNLQMHQLQRVLOFL
1RVLOFLL]SRVWDYOMHQLSRåDUXQDYVHKVWUDQHK
3ORãþH
6SORãQR
3URVWROHåHþHSROQHSORãþH
1HSUHNLQMHQHSROQHSORãþH
*ODGNHSORãþHQDVWHEULK
6,67(1
5HEUDVWHSORãþH
%HWRQYLVRNHWUGQRVWL+6&
6SORãQR
/XãþHQMH
7RSORWQHODVWQRVWL
'LPHQ]LRQLUDQMHNRQVWUXNFLM
5DþXQQRVLOQRVWL
3RHQRVWDYOMHQHUDþXQVNHPHWRGH
6WHEULLQVWHQH
1RVLOFLLQSORãþH
7DEHOLUDQLSRGDWNL
'RGDWHN$LQIRUPDWLYQL7HPSHUDWXUQLSURILOL
'RGDWHN%LQIRUPDWLYQL3RHQRVWDYOMHQHUDþXQVNHPHWRGH
'RGDWHN&LQIRUPDWLYQL8NORQVWHEURYYSRJRMLKSRåDUD
'RGDWHN'LQIRUPDWLYQL5DþXQVNHPHWRGH]DVWULJWRU]LMRLQVLGUDQMHDUPDWXUH
'RGDWHN(LQIRUPDWLYQL3RHQRVWDYOMHQHUDþXQVNHPHWRGH]DQRVLOFHLQSORãþH
6,67(1
3UHGJRYRU
7DHYURSVNLVWDQGDUG(13URMHNWLUDQMHEHWRQVNLKNRQVWUXNFLM±GHO6SORãQDSUDYLOD±
3URMHNWLUDQMHSRåDUQRYDUQLKNRQVWUXNFLMMHSULSUDYLOWHKQLþQLRGERU&(17&.RQVWUXNFLMVNLHYURNRGL
NDWHUHJDVHNUHWDULDWMHQD%6,&(17&MHRGJRYRUHQ]DYVHNRQVWUXNFLMVNHHYURNRGH
7DHYURSVNLVWDQGDUGPRUDSRVWDWLQDFLRQDOQLVWDQGDUGDOL]REMDYRLVWRYHWQHJDEHVHGLODDOL]XUDGQR
UD]JODVLWYLMRQDMSR]QHMHGRMXQLMDQDFLRQDOQLVWDQGDUGLNLVR]QMLPYQDVSURWMXSDPRUDMRELWL
XPDNQMHQLQDMSR]QHMHPDUFD
7DHYURSVNLVWDQGDUGQDGRPHãþD(19
6NODGQR ] QRWUDQMLPL SUHGSLVL &(1&(1(/(& PRUDMR WD HYURSVNL VWDQGDUG XYHOMDYLWL QDFLRQDOQH
RUJDQL]DFLMH]DVWDQGDUGHQDVOHGQMLKGUåDY$YVWULMH%HOJLMH&LSUDýHãNHUHSXEOLNH'DQVNH(VWRQLMH
)LQVNH )UDQFLMH *UþLMH ,VODQGLMH ,UVNH ,WDOLMH /DWYLMH /LWYH /XNVHPEXUJD 0DGåDUVNH 0DOWH
1HPþLMH1L]R]HPVNH1RUYHãNH3ROMVNH3RUWXJDOVNH6ORYDãNH6ORYHQLMHâSDQLMHâYHGVNHâYLFH
LQ=GUXåHQHJDNUDOMHVWYD
2]DGMHSURJUDPDHYURNRGRY
.RPLVLMD(YURSVNHVNXSQRVWLVHMHYOHWXQDSRGODJLþOHQD5LPVNHSRJRGEHRGORþLODGD
VSUHMPHDNFLMVNLSURJUDPQDSRGURþMXJUDGEHQLãWYD&LOMSURJUDPDMHELORGVWUDQLWLWHKQLþQHRYLUHSUL
WUJRYDQMXLQXVNODGLWLWHKQLþQHVSHFLILNDFLMH
=QRWUDMWHJDSURJUDPDMH.RPLVLMDVSRGEXGLODSULSUDYRQL]DXVNODMHQLKWHKQLþQLKSUDYLO]DSURMHNWLUDQMH
JUDGEHQLK REMHNWRY NL EL VH VSUYD XSRUDEOMDOD NRW DOWHUQDWLYD UD]OLþQLP SUDYLORP YHOMDYQLP Y
SRVDPH]QLKGUåDYDKþODQLFDKNRQþQRSDELMLKQDGRPHVWLODYFHORWL
.RPLVLMDMHVSRPRþMRXSUDYQHJDRGERUDYNDWHUHPVRELOLSUHGVWDYQLNLGUåDYþODQLFSHWQDMVWOHWYRGLOD
UD]YRMSURJUDPDHYURNRGRYNDWHUHJDUH]XOWDWMHELODSUYDJHQHUDFLMDHYURNRGRYYRVHPGHVHWLKOHWLK
VWROHWMD
/HWDVRVH.RPLVLMDLQGUåDYHþODQLFH(8LQ()7$RGORþLOHGDQDSRGODJLGRJRYRUDPHG
.RPLVLMRLQ&(1]YHþSRREODVWLOLSUHQHVHMRSULSUDYRLQREMDYOMDQMHHYURNRGRYQD&(1GDELHYURNRGL
YSULKRGQMHLPHOLVWDWXVHYURSVNLKVWDQGDUGRY(17RMHHYURNRGHGHMDQVNRSRYH]DOR]GRORþEDPL
YVHKGLUHNWLY6YHWDLQDOLRGORþEDPL.RPLVLMHNLVHQDQDãDMRQDHYURSVNHVWDQGDUGHQSU'LUHNWLYD
6YHWD (*6 R JUDGEHQLK SURL]YRGLK &3' LQ GLUHNWLYH 6YHWD (*6 (*6 WHU
(*6RMDYQLKGHOLKLQVWRULWYDKWHUXVWUH]QHGLUHNWLYH()7$NLVRELOHVSUHMHWH]DXYHOMDYLWHY
QRWUDQMHJDWUJD
3URJUDPNRQVWUXNFLMVNLKHYURNRGRYREVHJDQDVOHGQMHVWDQGDUGHNLLPDMRQDVSORãQRYHþGHORY
(1 (YURNRG 2VQRYHSURMHNWLUDQMD
(1 (YURNRG 9SOLYLQDNRQVWUXNFLMH
(1 (YURNRG 3URMHNWLUDQMHEHWRQVNLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMHVRYSUHåQLKMHNOHQLKLQEHWRQVNLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMHOHVHQLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMH]LGDQLKNRQVWUXNFLM
(1 (YURNRG *HRWHKQLþQRSURMHNWLUDQMH
}}|"}~{"+}yvy}+|"~}"vP{vF"x}vGwy%yx|"~}vFy8}yw{8{Fu¡v8wuxu"~yFu"zy}¢£⁄}+~y"~u8|y4{|"~}"8}}F|¥u
@
~}G{-wy~ux-{v8wuF|"ƒyx~uƒF{x"yyx88{xy~vFy}ƒV{Pw}F|¢§¤c¤q"'¤“£e
6,67(1
(1 (YURNRG 3URMHNWLUDQMHSRWUHVQRRGSRUQLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMHDOXPLQLMVNLKNRQVWUXNFLM
(YURNRGLSUL]QDYDMRRGJRYRUQRVWSULVWRMQLKREODVWLYYVDNLGUåDYLþODQLFLLQMLPGRSXãþDMRSUDYLFRGD
YUHGQRVWLSRYH]DQH]YDUQRVWMRGRORþDMRQDQDFLRQDOQLUDYQLRGGUåDYHGRGUåDYHUD]OLþQR
6WDWXVLQSRGURþMHYHOMDYQRVWLHYURNRGRY
ýODQLFH(8LQ()7$SUL]QDYDMRHYURNRGHNRWUHIHUHQþQHGRNXPHQWH]DQDVOHGQMHQDPHQH
± NRWQDþLQ]DGRND]RYDQMHXVWUH]QRVWLVWDYELQJUDGEHQLKLQåHQLUVNLKREMHNWRYELVWYHQLP]DKWHYDP
'LUHNWLYH6YHWD(*6]ODVWLELVWYHQL]DKWHYLãW0HKDQVNDRGSRUQRVWLQVWDELOQRVWLQ
ELVWYHQL]DKWHYLãW9DUQRVWSULSRåDUX
± NRW SRGODJR ]D VSHFLILNDFLMR SRJRGE ]D JUDGQMR JUDGEHQLK REMHNWRY LQ SULSDGDMRþH LQåHQLUVNH
VWRULWYH
± NRWRNYLU]DSULSUDYRKDUPRQL]LUDQLKWHKQLþQLKVSHFLILNDFLM]DJUDGEHQHSURL]YRGH(1LQ(7$
.MHUVHHYURNRGLQDQDãDMRQDJUDGEHQHREMHNWHVRQHSRVUHGQRSRYH]DQL]UD]ODJDOQLPLGRNXPHQWL«
QDYHGHQLPLYþOHQX'LUHNWLYHRJUDGEHQLKSURL]YRGLK&3'þHSUDYMHQMLKRYDQDUDYDGUXJDþQDRG
KDUPRQL]LUDQLKVWDQGDUGRY]DSURL]YRGH‹=DWRPRUDMRWHKQLþQLRGERUL&(1LQDOLGHORYQHVNXSLQH
(27$NLSULSUDYOMDMRVWDQGDUGH]DSURL]YRGHXSRãWHYDWLWHKQLþQHYLGLNHHYURNRGRYGDELVWHP
GRVHJOLSRSROQRXVNODMHQRVWWHKWHKQLþQLKVSHFLILNDFLM]HYURNRGL
(YURNRGL YVHEXMHMR VNXSQD SUDYLOD ]D YVDNGDQMR UDER SUL SURMHNWLUDQMX RELþDMQLK LQ LQRYDWLYQLK
NRQVWUXNFLMNRWFHORWHDOLSRVDPH]QLKNRQVWUXNFLMVNLKGHORY(YURNRGLQHYVHEXMHMRSRVHEQLKGRORþLO]D
QHQDYDGQHREOLNHNRQVWUXNFLMDOLQHQDYDGQHSURMHNWQHSRJRMH9WHKSULPHULKMHSRWUHEQRVRGHORYDQMH
]L]YHGHQFL
1DFLRQDOQHL]GDMHHYURNRGRY
1DFLRQDOQDL]GDMDHYURNRGDYVHEXMHSROHJFHORWQHJDEHVHGLODHYURNRGD]YVHPLGRGDWNLNRWJDMH
REMDYLO&(1WXGLPRUHELWQRQDFLRQDOQRQDVORYQLFRQDFLRQDOQLSUHGJRYRULQQDFLRQDOQLGRGDWHN
1DFLRQDOQLGRGDWHNODKNRYVHEXMH OHSRGDWNHRSDUDPHWULK]DNDWHUHMH YHYURNRGXSUHGYLGHQD
PRåQRVWL]ELUHQDQDFLRQDOQLUDYQL1'37LSDUDPHWULYHOMDMR]DSURMHNWLUDQMHNRQVWUXNFLMVWDYELQ
JUDGEHQLKLQåHQLUVNLKREMHNWRYYGUåDYLYNDWHULERGR]JUDMHQL7RVR
± YUHGQRVWLLQDOLUD]UHGLNMHUHYURNRGLGRSXãþDMRDOWHUQDWLYH
± YUHGQRVWLNMHUHYURNRGLQDYDMDMROHVLPEROH
± SRGDWNLVSHFLILþQL]DGUåDYRJHRJUDIVNLSRGQHEQLLWGNRWMHQSUNDUWDVQHJD
± SRVWRSHNþHMLKHYURNRGGRSXãþDYHþ
± RGORþLWYHRXSRUDELLQIRUPDWLYQLKGRGDWNRY
± QDSRWNHRGRGDWQLKLQIRUPDFLMDKNLQLVRYQDVSURWMX]HYURNRGL]DSRPRþXSRUDEQLNX
vFu⁄v''0{x}ficfl{w~{ƒu=ƒ"yv8w|{x{FuFw{|{|0~uu"ux"y}F"%{xFwy08}xF~{wyy~uwy"wu"8}–uvF{9"~yw{†|}vGwuF|y
«@›
G|{Fu@{ƒ"yv8w|{xyyPFuFw{F|"uy8yx}"}ƒ"uv8wyyPFu"~y"~uF|"}@u~}"x"yy~ux"y‡yxhv%{~xyz·’¶c¤·
v8u%8oFF{x}¡cfl}~uP}~uuu"x"yG}F{xFwy
‹@›
u£•G}x"F~{wyy~uwyƒyv8w|{x{‚FuFw{|{tv‚}{x}w{xP{„y~uF}F|”yx+w{x"yFx"yfi}u‚w{~0}}"yw|"y}fi~uF~{"}F|fiuyv8w}{x-
Fu"Fw{|x}vGwyPFu%|vu8}hFuFw{|}–8u"u"~{w}}w~{ƒ"x}»
ƒF£•xu8uFuwyc%{w}{…Fu)}|{Fu|"})~uF~{"}F|¥uyvGw}{xPhFuFw{|"x}v8wyv‡w{x"yx"yyv{"zyy8uzyu"y–4x"~4%{w}"{¡~u""xu¥yx
"}8uF}|–Pw{"x"yxu@"~u8|"yu%Fu@"~}G{Pwy~u"x-{@y»
zG£‰ƒywyF"}~uƒ"x"y88}Fw}uuFu"~y"~uF|}@u"~}xyy~ux"yv8wuxu~}F|u"yPv%{~xyzFu{|~}"v8u%w{"x"yxuv}uvVu
|~}"8}yFyu-}"{Gux8v8}}"}ƒ"x}h|"}}@~yFƒyvGw|{xy-u"Fw{|"yP8w"%yx{x}@"~yFƒ"yv8w|{x"yPFu"Fw{|yPGw8o
6,67(1
3RYH]DYHPHGHYURNRGLLQKDUPRQL]LUDQLPLWHKQLþQLPLVSHFLILNDFLMDPL(1LQ(7$
+DUPRQL]LUDQHWHKQLþQHVSHFLILNDFLMH]DJUDGEHQHSURL]YRGHPRUDMRELWLXVNODMHQHVWHKQLþQLPLSUDYLOL
]DREMHNWH1DGDOMHPRUDELWLL]QDYRGLOSRYH]DQLK]R]QDþHYDQMHP&(JUDGEHQLKSURL]YRGRYNLVH
VNOLFXMHMRQDHYURNRGHMDVQRUD]YLGQRQDNDWHULKQDFLRQDOQRGRORþOMLYLKSDUDPHWULKWHPHOMLMR
'RGDWQHLQIRUPDFLMHR(1
(1SRGDMDQDþHOD]DKWHYHLQSUDYLOD]DSURMHNWLUDQMHSRåDUQRRGSRUQLKNRQVWUXNFLMYNOMXþQR]
QDVOHGQMLPLYLGLNL
9DUQRVWQH]DKWHYH
(1MHQDPHQMHQLQYHVWLWRUMHPQSU]DGRORþLWHYQMLKRYLKSRVHEQLK]DKWHYSURMHNWDQWRP
L]YDMDOFHPLQSULVWRMQLPRUJDQRP
6SORãQLFLOMSRåDUQH]DãþLWHMHRPHMLWLWYHJDQMH]DSRVDPH]QLNDLQGUXåERVRVHGQMHREMHNWHLQNMHUMH
SRWUHEQRWXGL]DRNROMHDOLSRåDUXQHSRVUHGQRL]SRVWDYOMHQHREMHNWH
'LUHNWLYD6YHWD(*6RJUDGEHQLKSURL]YRGLKQDYDMDQDVOHGQMRELVWYHQR]DKWHYR]DRPHMLWHY
SRåDUQHJDWYHJDQMD
*UDGEHQLREMHNWLPRUDMRELWLSURMHNWLUDQLLQL]YHGHQLWDNRGDVHYSULPHUXL]EUXKDSRåDUD
± ODKNRSUHGSRVWDYLGDNRQVWUXNFLMDGRORþHQþDVRKUDQLQRVLOQRVW
± RPHMLWDQDVWDQHNWHUãLUMHQMHRJQMDLQGLPDSRREMHNWX
± RPHMLãLUMHQMHRJQMDQDVRVHGQMHJUDGEHQHREMHNWH
± RPRJRþLSUHELYDOFHPGD]DSXVWLMRREMHNWDOLVHODKNRUHãLMRQDNDNãHQGUXJDþHQQDþLQ
± XSRãWHYDYDUQRVWUHãHYDOQLKHNLS
6NODGQR]UD]ODJDOQLPGRNXPHQWRPãW9DUQRVWSULSRåDUXMHELVWYHQD]DKWHYDYVHERYDQDY
VWUDWHJLMDKSRåDUQHYDUQRVWLNLSUHYODGXMHMRYGUåDYDKþODQLFDKNRWVWDRELþDMQLSRåDUQLVFHQDULM
QD]LYQL SRåDU DOL QDUDYQL SDUDPHWULþQL SRåDUQL VFHQDULM NL YNOMXþXMHWD SDVLYQH LQDOL DNWLYQH
SRåDUQRYDUQRVWQHXNUHSH
'HOL NRQVWUXNFLMVNHJDHYURNRGDNL VH QDQDãDMR QDSRåDUQRLQåHQLUVWYRREUDYQDYDMRSRVDPH]QH
YLGLNH SDVLYQH SRåDUQH ]DãþLWH LQ VLFHU JOHGH SURMHNWLUDQMD NRQVWUXNFLM LQ QMLKRYLK GHORY ]D
]DJRWDYOMDQMHQRVLOQRVWLLQþHMHWRSRWUHEQRRPHMHYDQMHãLUMHQMDSRåDUD
=DKWHYDQHIXQNFLMHLQVWRSQMHREQDãDQMDVRODKNRGRORþHQHERGLVLVSRåDUQRRGSRUQRVWMRYSRJRMLK
VWDQGDUGQHJDSRåDUDNLMHSRQDYDGLQDYHGHQDYQDFLRQDOQLKSRåDUQLKSUHGSLVLKERGLVL]XNUHSL
SDVLYQHDOLDNWYQHSURWLSRåDUQH]DãþLWHYVNODGXVSRåDUQLPLQåHQLUVWYRPJOHM(1
'RGDWQH]DKWHYHNLREUDYQDYDMRQDSULPHU
± PRåQRVWYJUDGQMHLQY]GUåHYDQMDãNURSLOQLKVLVWHPRY
± SRJRMHUDEHVWDYEHDOLSRåDUQHJDVHNWRUMDWHU
± XSRUDERRGREUHQLKL]RODFLMVNLKLQSUHNULYQLKPDWHULDORYYNOMXþQR]QMLKRYLPY]GUåHYDQMHP
YWHPGRNXPHQWXQLVRQDYHGHQHNHUMLKGRORþDSULVWRMQLRUJDQ
¶h{P''{xyx@8o8{xflw{~wyPw}G{%ro–Pr'"–Pr'oyxo%|"~|{~uuux{)}F{x8w¢¿8£;
6,67(1
âWHYLOþQHYUHGQRVWLGHOQLKIDNWRUMHYLQGUXJLKHOHPHQWRY]DQHVOMLYRVWLVRQDYHGHQHNRWSULSRURþHQH
YUHGQRVWLNL]DJRWDYOMDMRVSUHMHPOMLYRVWRSQMR]DQHVOMLYRVWL,]EUDQHVRELOHRESUHGSRVWDYNLGDREVWDMD
SULPHUQDVWRSQMDVWURNRYQRVWLL]YHGEHLQ]DJRWDYOMDQMDNDNRYRVWL
3RVWRSNLSURMHNWLUDQMD
&HORWHQ DQDOLWLþQL SRVWRSHN SRåDUQHJD SURMHNWLUDQMD NRQVWUXNFLMH QDM EL XSRãWHYDO REQDãDQMH
NRQVWUXNFLMVNHJDVLVWHPDSULSRYLãDQLWHPSHUDWXULSRWHQFLDOQRL]SRVWDYOMHQRVWYURþLQLLQXJRGQHXþLQNH
DNWLYQLKLQSDVLYQLKSURWLSRåDUQLK]DãþLWQLKVLVWHPRYVNXSDM]QH]DQHVOMLYRVWPLSRYH]DQLPLVWHPL
WUHPLGHMDYQLNLWHUSRPHPEQRVWREMHNWDJOHGHQDSRVOHGLFHSRUXãLWYH
7UHQXWQRMH]DGRORþLWHYXVWUH]QHJDREQDãDQMDPRJRþHSULY]HWLSRVWRSHNNLYNOMXþXMHQHNDWHUHþHQH
YVHKQDYHGHQLKSDUDPHWURYLQSRND]DWLGDVHERNRQVWUXNFLMDDOLQMHQLVHVWDYQLGHOLSULUHDOQHP
SRåDUX XVWUH]QR REQDãDOD ýH SD SRVWRSHN WHPHOML QD QD]LYQHP VWDQGDUGQHP SRåDUX VLVWHP
UD]YUãþDQMDNL]DKWHYDGRORþHQRWUDMDQMHSRåDUQHRGSRUQRVWLXSRãWHYDþHSUDYQHHNVSOLFLWQR]JRUDM
RSLVDQHGHMDYQLNH
8SRUDEDSRVWRSNRYSURMHNWLUDQMDMHSULND]DQDQDVOLNL3ULND]DQDVWDGRORþHYDOHQSULVWRSLQSULVWRS
QD SRGODJL REQDãDQMD 3UL GRORþHYDOQHP SULVWRSX MH ]D RSLV WRSORWQHJD YSOLYD XSRUDEOMHQ PRGHO
QD]LYQHJDSRåDUD3ULVWRSQDSRGODJLREQDãDQMDVHQDQDãDQD]XSRUDERSRåDUQHJDLQåHQLUVWYD
GRORþHQH WRSORWQH YSOLYH NL WHPHOMLMR QD IL]LNDOQLK LQ NHPLþQLK SDUDPHWULK 'RGDWQL SRGDWNL ]D
DOWHUQDWLYQHPHWRGHSRWHPVWDQGDUGXVRSRGDQLYSUHJOHGQLFL
3ULSURMHNWLUDQMXYVNODGXVWHPGHORPHYURNRGDMH]DGRORþLWHYWRSORWQLKLQPHKDQVNLKYSOLYRYQD
NRQVWUXNFLMRWUHEDXSRãWHYDWL(1
3ULSRPRþNL]DSURMHNWLUDQMH
.DGDUHQRVWDYQLUDþXQVNLPRGHOLQLVRQDYROMRSRåDUQLGHOLHYURNRGDSRGDMDMRXVWUH]QHSRGDWNHY
REOLNLSUHJOHGQLFNLWHPHOMLMRQDSUHVNXVLKDOLQDSUHGQLKUDþXQVNLKPRGHOLKNLVH]QRWUDMGRORþHQLK
PHMYHOMDYQRVWLODKNRXSRUDELMR]DSURMHNWLUDQMH
3ULþDNXMHVHGDERGRSULSRPRþNH]DSURMHNWLUDQMHNLERGRWHPHOMLOLQDUDþXQVNLKPRGHOLKSRGDQLKY
(1SULSUDYLOH]DLQWHUHVLUDQH]XQDQMHRUJDQL]DFLMH
*ODYQREHVHGLOR(1VNXSDM]LQIRUPDWLYQLPLGRGDWNL$%&'LQ(YVHEXMHYHþLQRNOMXþQLK
NRQFHSWRYLQSUDYLOSRWUHEQLK]DSURMHNWLUDQMHEHWRQVNLKNRQVWUXNFLM
1DFLRQDOQLGRGDWHNN(1
7DVWDQGDUGYVHEXMHDOWHUQDWLYQHSRVWRSNHYUHGQRVWLLQSULSRURþLOD]DUD]UHGH]RSRPEDPLNLQDYDMDMR
NMHVHODKNRXYHOMDYLQDFLRQDOQDL]ELUD=DWRQDMELQDFLRQDOQHL]GDMH(1LPHOHQDFLRQDOQL
GRGDWHN]YVHPLQDFLRQDOQRGRORþHQLPLSDUDPHWULNLMLKMHWUHEDXSRUDELWLSULSURMHNWLUDQMXVWDYELQNDGDU
MHWR]DKWHYDQRLQSULPHUQRWXGLSULSURMHNWLUDQMXJUDGEHQLKLQåHQLUVNLKREMHNWRYNLVHJUDGLMRYWHMGUåDYL
1DFLRQDOQDL]ELUDSDUDPHWURYMHY(1GRYROMHQDY
± ±
± 3 ±
± ±
± ±
± ±
± 3 ±
± ±
± ±
6,67(1
3RWHNSURMHNWLUDQMD
}}8{|"u{x"~yvGw}
¢·}"}wxy-|"y|"y–}"ux"yPxuFy|xy¡}u"~}£
cxuyFu’xuyFu{ucxuyFuz8{}wxF{
{{%{xFwu8}xvGw~"Gzy{8}xvGw~"Gzy{
}"}Fux-{
}}"Fux-{@{uxFv8y¿ƒ"y~u@{uxvFy
{uxv8yh|"y|}8|
|""y|}F|xu@~}ƒ}F|y|""y|}F|
xu~}ƒ}8|y
fl~{~}v8w{u"~{x{·uƒF{y~ux"yfl~{"~}v8w{u""~{"x{u~{"xF{
~u"xvG{~u"xvG{~u""xFvG{~u""xvG{~u"xvG{}"uwFy
{w}"{{w}{{w}{{w}"{%{w}{
¢8{v}xu
|}}£
fl~yvGw}xu}uyG}y|"u
¢yy8ux}}}8{x"y-w}}Fwx"yV|y|"y£
¿ƒ"y~u{x}v8wuF|x{uuy8xu"~{"x{"u
}{u@~uF8|}Pu@}Fu"~u
’xuyFu’xuyFu"{u’xuyFuz8{}wx{
{{{xFwu8}"xvGw~"Gzy{8}xFvGw~"Gzy{
}}"Fux-{}}"FuxV{¿ƒ"y~u
%{uxv8y4|""y|}F|{u"xv8yh|""y|}F|{uxv8y
xu~}ƒ}F|yxu@~}"ƒ}F|y|""y|}F|
fl~{"~}v8w{u"~{"x{u"~{"x{u"~{"x{
~u""xvG{@{w}"{~u""xFvG{~u""xFvG{~u""xFvG{
¢G{v}@xuh|}}£{w}"{{w}"{{w}"{
6OLND$OWHUQDWLYQHPHWRGHSURMHNWLUDQMD
6,67(1
3UHJOHGQLFD=ELUQLNDOWHUQDWLYQLKPHWRGGRND]RYDQMDSRåDUQHRGSRUQRVWL
˛’˚˜¨˚ˇ;´—¯V˜¨˜9˙e´¨ˇ˝˜´˙e˜¸c¨˜
`´ˆ˜¯˘˙;´¨#˘˚¸´W˝˘
˜;˚¸#˜˙e´¨ˇ#˝"˜˜;˚#¸˜
@¨´¯˘"´=˚ˇ´˜¨˜´ıcıcı’
˜¯˜˜¨;´#ªŒŁªŁ"ªªŁ"ªŁ#łøWł"œW
c""=ƪªªªªªŁªª;ŁŁ"ª;"#łøełœW#ªªª
"09"ªŁØ⁄ª;łøWł"œVªª
=ªºŁ;ŁV=ª
Œ"";ºŒŁ##ŁFŁŁ
ª‡ªŒ"ªª"ªªŁ"ªe
ߪª9Ł=ºæ"ªŁª
"=ŁªŁŁ#øWł"œW
Ł"ŁØŒ"ŁŁŁª=Ł
;º"ŁFª0º
ŁªŁªªªF⁄ª
0ª;ºŁØªŁ"ª9ŒŁº#
ØŁ;"Łª8ªŒ"Ł
Æ=Œ"Ł
ª"ªª;º
#’łøœW
@¨´¯˘"´¸˜¯˚—=˝˚#¨ˇW˙V˝˘W˜ıcı’
hæ"ªŁ"9ŁFŁŁªªŁ"ªŁ#łøWł"œW
ªª;ªFªªª;ŁŁ"ª;"#łøełœW#ªªª
Œ"";ºŒŁ#ªÆªª
=ªºŁ;ŁV=ª
"ª";Ł9ŁªŒŁ
"ªª"ªªŁ"ªe
ºŁ9Ł8Ł"Œ""ºŒŁ
#øWł"œW
ŁªŁªªªF⁄ª
ØŁ;"Łª8ªŒ"Ł
Æ=Œ"Ł
ª"ªª;º
#’łøœW
¯˚#ˆ´¯¨´´¨´¯˘´ı’
˝˚#¨ˇW˙W˝˘W˜
#łøWł"œW
@ªŁª";9Œ";ºŒ"Ł#ªªª
#Ł8ŁŁ"ªªªª
ºæªŁ"ª";Ł
Œ"";ºŒŁ;Ł
6SORãQR
3RGURþMHXSRUDEH
3RGURþMHXSRUDEHHYURNRGD
3 (YURNRGVHXSRUDEOMD]DSURMHNWLUDQMHVWDYELQJUDGEHQLKLQåHQLUVNLKREMHNWRYL]EHWRQD
6WDQGDUGXVWUH]DQDþHORPLQ]DKWHYDP]DYDUQRVWLQXSRUDEQRVWNRQVWUXNFLMWHUYVHEXMHRVQRYH
SURMHNWLUDQMDLQGRND]RYDQMDNLVRSRGDQHY(12VQRYHSURMHNWLUDQMD
3 (YURNRGREUDYQDYDVDPR]DKWHYH]DRGSRUQRVWXSRUDEQRVWWUDMQRVWLQSRåDUQRRGSRUQRVW
EHWRQVNLKNRQVWUXNFLM'UXJH]DKWHYHQSUJOHGHWRSORWQHDOL]YRþQHL]RODFLMHQLVRREUDYQDYDQH
3 (YURNRGVHXSRUDEOMDYSRYH]DYL]
± (1 2VQRYHSURMHNWLUDQMD
± (1 9SOLYLQDNRQVWUXNFLMH
± K(1 ]DJUDGEHQHSURL]YRGHNLVRPHURGDMQL]DEHWRQVNHNRQVWUXNFLMH
± (19,]YDMDQMHEHWRQVNLKNRQVWUXNFLM±GHO6SORãQR
± (1 3URMHNWLUDQMH SRWUHVQRRGSRUQLK NRQVWUXNFLM NDGDU VR EHWRQVNH NRQVWUXNFLMH
]JUDMHQHQDSRWUHVQLKREPRþMLK
6,67(1
3 (YURNRGMHUD]GHOMHQQDUD]OLþQHGHOH
± GHO6SORãQDSUDYLODLQSUDYLOD]DVWDYEH
± GHO6SORãQDSUDYLOD±3URMHNWLUDQMHSRåDUQRYDUQLKNRQVWUXNFLM
± GHO%HWRQVNLPRVWRYL
± GHO=DGUåHYDOQLNLWHNRþLQ
3RGURþMHXSRUDEHGHODHYURNRGD
3 7DGHOVWDQGDUGD(1REUDYQDYDSURMHNWLUDQMHEHWRQVNLKNRQVWUXNFLMSULQH]JRGQHP
SURMHNWQHPVWDQMX]DUDGLL]SRVWDYOMHQRVWLSRåDUXLQVHXSRUDEOMDYSRYH]DYL](1LQ
(13RGDMDVDPRVSUHPHQMHQDLQGRGDWQDSUDYLODJOHGHQDSUDYLOD]DSURMHNWLUDQMH
NRQVWUXNFLMSULQRUPDOQLWHPSHUDWXUL
3 7DGHOVWDQGDUGD(1REUDYQDYDVDPRPHWRGHSDVLYQHSRåDUQH]DãþLWHPHWRGH
DNWLYQH]DãþLWHYQMHPQLVRREUDYQDYDQH
3 7DGHOVWDQGDUGD(1VHXSRUDEOMD]DEHWRQVNHNRQVWUXNFLMHNLPRUDMRYSULPHUX
L]SRVWDYOMHQRVWLSRåDUXL]SROQLWLGRORþHQHNULWHULMHJOHGH
± SUHSUHþLWYHSUHKLWUHSRUXãLWYHNRQVWUXNFLMHIXQNFLMDQRVLOQRVWL
± RPHMHYDQMDãLUMHQMDSRåDUDSODPHQDYURþLKSOLQRYþH]PHUQHWRSORWHSUHNRGRORþHQHJD
REPRþMDIXQNFLMDORþHYDQMD
3 7DGHOVWDQGDUGD(1SRGDMDQDþHODLQSUDYLODJOHM(1]DSURMHNWLUDQMH
NRQVWUXNFLMSRSRVHEQLK]DKWHYDKJOHGHQDL]SROQMHYDQMHSUHGKRGQRQDYHGHQLKIXQNFLMLQUDYQL
REQDãDQMD
3 7DGHOVWDQGDUGD(1VHXSRUDEOMD]DXVWUH]QRSURMHNWLUDQHNRQVWUXNFLMHDOLGHOH
NRQVWUXNFLMVSRGURþMDXSRUDEHVWDQGDUGD(17DGHOVWDQGDUGDSDQHREUDYQDYD
± ]]XQDQMLPLNDEOLSUHGQDSHWLKNRQVWUXNFLM
± OXSLQDVWLKNRQVWUXNFLM
3 0HWRGHSRGDQHYWHPGHOXVWDQGDUGD(1VRXSRUDEQH]DEHWRQHRELþDMQHWHåHGR
WUGQRVWQHJDUD]UHGD&LQ]DODKNHEHWRQHGRWUGQRVWQHJDUD]UHGD/&'RGDWQDLQ
DOWHUQDWLYQDSUDYLOD]DWUGQRVWQHUD]UHGHEHWRQDYLãMHRG&VRSRGDQDYSRJODYMX
=YH]HVVWDQGDUGL
9QDGDOMHYDQMXQDYHGHQLQRUPDWLYQLGRNXPHQWLYVHEXMHMRGRORþLODNLVVNOLFHYDQMHPYWHPEHVHGLOX
SUHGVWDYOMDMR GRORþLOD WHJD HYURSVNHJD VWDQGDUGD 3UL GDWLUDQHP VNOLFHYDQMX VH SUL XSRUDEL WHJD
HYURSVNHJDVWDQGDUGDXSRãWHYDMRSR]QHMãDGRSROQLODDOLVSUHPHPEHNDWHUHNROLRGWHKSXEOLNDFLMOHþH
VR]GRSROQLORPDOLVSUHPHPERWHJDVWDQGDUGDYNOMXþHQHYDQM3ULQHGDWLUDQHPVNOLFHYDQMXSDVH
XSRUDEOMD]DGQMDL]GDMDSXEOLNDFLMHQDNDWHURVHVNOLFXMH
(1 3UHVNXVLSRåDUQHRGSRUQRVWL±GHO$OWHUQDWLYQLLQGRGDWQLSRVWRSNL
(1 (YURNRG2VQRYHSURMHNWLUDQMD
(1 (YURNRG 9SOLYL QD NRQVWUXNFLMH ± GHO 6SORãQL YSOLYL ± 9SOLYL SRåDUD QD
NRQVWUXNFLMH
(1 (YURNRG3URMHNWLUDQMHEHWRQVNLKNRQVWUXNFLM±GHO6SORãQDSUDYLODLQSUDYLOD]D
VWDYEH
(1 -HNOR]DDUPLUDQMHEHWRQD±9DULYRDUPDWXUQRMHNOR±6SORãQR
6,67(1
(1 -HNOR]DSUHGQDSHQMDQMH±GHOäLFH
(1 -HNOR]DSUHGQDSHQMDQMH±GHO9UYL
(1 -HNOR]DSUHGQDSHQMDQMH±GHO3DOLFH
3UHGSRVWDYNH
9HOMDMRVSORãQHSUHGSRVWDYNHNLVRSRGDQHY(1LQ(1
5D]OLNRYDQMHPHGQDþHOLLQSUDYLOL]DXSRUDER
9HOMDMRSUDYLODQDYHGHQDY(1
'HILQLFLMH
9GHOXVWDQGDUGD(1YHOMDMRGHILQLFLMHL](1LQ (1VNXSDM] GRGDWQLPL
GHILQLFLMDPL
.ULWLþQDWHPSHUDWXUDDUPDWXUH7HPSHUDWXUDDUPDWXUHSULNDWHULVHSULSRGDQLUDYQLQDSHWRVWL
MHNODSULþDNXMHSRUXãLWHYHOHPHQWDSULSRåDUXNULWHULM5
3RåDUQDVWHQD/RþLOQDVWHQDGYHKSURVWRURYVSORãQRGYHKVWDYESURMHNWLUDQDQDSRåDUQR
RGSRUQRVW LQ VWDELOQRVW NRQVWUXNFLMH WHU RGSRUQD SURWL YRGRUDYQL REWHåEL NL Y SULPHUX SRåDUD LQ
SRUXãLWYHNRQVWUXNFLMHQDHQLVWUDQLVWHQHSUHSUHþXMHãLUMHQMHSRåDUDQDGUXJRVWUDQVWHQH
1DMYHþMDUDYHQQDSHWRVWL5DYHQQDSHWRVWLVNDWHURMHSULSRGDQLWHPSHUDWXULRPHMHQD]YH]D
PHGQDSHWRVWMRLQGHIRUPDFLMRMHNODWHUSUHGVWDYOMDSODWRWHþHQMD
'HONRQVWUXNFLMH/RþHQGHOFHORWQHNRQVWUXNFLMH]XVWUH]QLPLSRGSRUDPLLQUREQLPLSRJRML
=DãþLWQH SODVWL 9VDN PDWHULDO DOL NRPELQDFLMD PDWHULDORY NL VR XSRUDEOMHQL ]D SRYHþDQMH
SRåDUQHRGSRUQRVWLNRQVWUXNFLMVNHJDHOHPHQWD
=PDQMãDQL SUHþQL SUHUH] 3UHþQL SUHUH] HOHPHQWD NL VH XSRUDEOMD SUL SURMHNWLUDQMX
SRåDUQRRGSRUQLKNRQVWUXNFLMSRPHWRGL]PDQMãDQHJDSUHþQHJDSUHUH]D'RORþLVHWDNRGDVHSUYRWQL
SUHþQLSUHUH]]PDQMãD]DWLVWHGHOHSUHUH]D]DNDWHUHVHSULY]DPHGDVWDQMLKRYDWUGQRVWLQWRJRVW
HQDNL
6LPEROL
'RGDWQLVLPEROLN(1
3 8SRUDEOMHQLVRQDVOHGQMLGRGDWQLVLPEROL
9HOLNHODWLQVNHþUNH
( SURMHNWQLXþLQHNYSOLYDSULSRåDUQHPSURMHNWQHPVWDQMX
( SURMHNWQLXþLQHNYSOLYD]DSURMHNWLUDQMHSULRELþDMQLWHPSHUDWXUL
5 SURMHNWQDRGSRUQRVWYSRåDUQHPSURMHNWQHPVWDQMX5WSULSRGDQHPþDVXW
5R]LURPD5 UD]UHGSRåDUQHRGSRUQRVWLJOHGHQDNULWHULMQRVLOQRVWLSULL]SRVWDYOMHQRVWL
VWDQGDUGQHPXSRåDUXR]LURPDPLQXW
(R]LURPD( UD]UHGSRåDUQHRGSRUQRVWLJOHGHQDNULWHULMFHORYLWRVWLSULL]SRVWDYOMHQRVWL
VWDQGDUGQHPXSRåDUXR]LURPDPLQXW
,R]LURPD, UD]UHGSRåDUQHRGSRUQRVWLJOHGHQDNULWHULML]RODWLYQRVWLSULL]SRVWDYOMHQRVWL
VWDQGDUGQHPXSRåDUXR]LURPDPLQXW
6,67(1
7 WHPSHUDWXUD>.@SULPHUMDMTWHPSHUDWXUD> &@
; NDUDNWHULVWLþQDYUHGQRVWWUGQRVWLDOLGHIRUPDFLMVNHODVWQRVWL]DSURMHNWLUDQMHSULRELþDMQL
WHPSHUDWXUL
; SURMHNWQDWUGQRVWDOLGHIRUPDFLMVNDODVWQRVWYSRåDUQHPSURMHNWQHPVWDQMX
0DOHODWLQVNHþUNH
D RVQDRGGDOMHQRVWMHNOD]DDUPLUDQMHR]LURPDSUHGQDSHQMDQMHRGQDMEOLåMHL]SRVWDYOMHQH
SRYUãLQH
F VSHFLILþQDWRSORWDEHWRQD>-NJ.@
IT NDUDNWHULVWLþQDYUHGQRVWWODþQHWUGQRVWLEHWRQDSULWHPSHUDWXULTLQGRORþHQLGHIRUPDFLML
IT NDUDNWHULVWLþQDYUHGQRVWQDWH]QHWUGQRVWLEHWRQDSULWHPSHUDWXULTLQGRORþHQLGHIRUPDFLML
IT NDUDNWHULVWLþQDYUHGQRVWWUGQRVWLMHNOD]DSUHGQDSHQMDQMHSULWHPSHUDWXULTLQGRORþHQL
GHIRUPDFLML
IT NDUDNWHULVWLþQDWUGQRVWMHNOD]DDUPLUDQMHSULWHPSHUDWXULTLQGRORþHQLGHIRUPDFLML
NT ;T;UHGXNFLMVNL IDNWRU WUGQRVWL R]LURPD GHIRUPDFLMVNLK ODVWQRVWL RGYLVHQ RG
WHPSHUDWXUHPDWHULDODT
Q 1 $I$I!UDYHQREWHåEHVWHEUDYSRJRMLKRELþDMQHWHPSHUDWXUH
W þDVL]SRVWDYOMHQRVWLSRåDUX>PLQ@
*UãNHPDOHþUNH
J"# GHOQLYDUQRVWQLIDNWRUPDWHULDODSULSRåDUQHPSURMHNWLUDQMX
K ((UHGXNFLMVNLIDNWRUSURMHNWQHUDYQLREWHåEHYSRåDUQHPSURMHNWQHPVWDQMX
P 1$1%VWRSQMDL]NRULãþHQRVWLYSRåDUQHPSURMHNWQHPVWDQMX
HT WHPSHUDWXUQDGHIRUPDFLMDEHWRQD
HT WHPSHUDWXUQDGHIRUPDFLMDMHNOD]DSUHGQDSHQMDQMH
HT WHPSHUDWXUQDGHIRUPDFLMDMHNOD]DDUPLUDQMH
H& GHIRUPDFLMDMHNOD]DDUPLUDQMHR]LURPDSUHGQDSHQMDQMHSULWHPSHUDWXULT
O WRSORWQDSUHYRGQRVWEHWRQD>:P.@
O YLWNRVWVWHEUDYSRJRMLKSRåDUD
V WODþQDQDSHWRVWEHWRQDYSRåDUQHPSURMHNWQHPVWDQMX
V QDSHWRVWMHNODYSRåDUQHPSURMHNWQHPVWDQMX
T WHPSHUDWXUD> &@
T’ NULWLþQDWHPSHUDWXUD> &@
'RGDWQRN(1VRXSRUDEOMHQLQDVOHGQMLLQGHNVL
IL YUHGQRVWNLXVWUH]DSRåDUQHPXSURMHNWQHPXVWDQMX
W RGYLVQRVWRGþDVD
T RGYLVQRVWRGWHPSHUDWXUH
6,67(1
2VQRYHSURMHNWLUDQMD
=DKWHYH
6SORãQR
3 .DGDUMHYSULPHUXSRåDUD]DKWHYDQDPHKDQVNDRGSRUQRVWPRUDELWLEHWRQVNDNRQVWUXNFLMD
SURMHNWLUDQDLQ ]JUDMHQD WDNR GDPHG L]SRVWDYOMHQRVWMR XVWUH]QHPXSRåDUX RKUDQLIXQNFLMR
QRVLOQRVWL
3 .DGDUMH]DKWHYDQDUD]GHOLWHYQDSRåDUQHRGVHNHPRUDMRELWLHOHPHQWLNLREGDMDMRWHRGVHNH
YNOMXþQR V VWLNL SURMHNWLUDQL LQ ]JUDMHQL WDNR GD PHG L]SRVWDYOMHQRVWMR XVWUH]QHPX SRåDUX
RKUDQLMRORþHYDOQRIXQNFLMR3ULWHPMHWUHED]DJRWRYLWLGD
± QHSULGHGRL]JXEHFHORYLWRVWLJOHM(1
± QHSULGHGRL]JXEHL]RODWLYQRVWLJOHM(1
± MHWRSORWQRVHYDQMHQDSRåDUXQHL]SRVWDYOMHQLVWUDQLRPHMHQR
(%fl(*)§{yxyzFy{{P|‡8P;Go
(%fl(*)§0ofl~yGƒF{Fw}"xFv8yG}"xFvPw~GzFyu–8}"ƒ~u8|"xuF|u"xy|4w{"¥{hvPwuxF"u"~"u–F8~yw{~yyVw}"}FwxF{"u%v8{|uxVuxyvF}%{~}"uPxy
3 .ULWHULMHGHIRUPDFLMMHWUHEDXSRãWHYDWLNDGDUQDþLQLSRåDUQH]DãþLWHDOLSURMHNWQLSRJRML]D
ORþLOQHHOHPHQWH]DKWHYDMRXSRãWHYDQMHGHIRUPDFLMQRVLOQHNRQVWUXNFLMH
8SRãWHYDQMHGHIRUPDFLMQRVLOQHNRQVWUXNFLMHQLSRWUHEQRYQDVOHGQMLKSULPHULK
± XþLQNRYLWRVWQDþLQD]DãþLWHMHGRND]DQDYVNODGXV
± ORþLOQLHOHPHQWLL]SROQMXMHMR]DKWHYHJOHGHQDL]SRVWDYOMHQRVWQD]LYQHPXSRåDUX
,]SRVWDYOMHQRVWQD]LYQHPXSRåDUX
3 3ULL]SRVWDYOMHQRVWLVWDQGDUGQHPXSRåDUXPRUDMRHOHPHQWLXVWUH]DWLNULWHULMHP5(LQ,QD
QDVOHGQMLQDþLQ
± VDPRORþHYDQMHFHORYLWRVWNULWHULM(LQNDGDUMH]DKWHYDQRL]RODFLMDNULWHULM,
± VDPRQRVLOQRVWPHKDQVNDRGSRUQRVWNULWHULM5
± ORþHYDQMHLQQRVLOQRVWNULWHULMD(LQ5WHUNDGDUMH]DKWHYDQRNULWHULM,
3UHGSRVWDYOMDVHGDMHNULWHULM5L]SROQMHQþHY]DKWHYDQHPþDVXL]SRVWD
...










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...