SIST EN 1995-1-1:2005
(Main)Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings
Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings
General rules for the structural design of buildings and civil engineering works made of timber and/or wood-based panels, either singly or compositely with concrete, steel or other materials. Detailed rules for structural design of buildings.
Eurocode 5: Bemessung und Konstruktion von Holzbauten - Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für den Hochbau
(1)P EN 1995 gilt für die Bemessung und Konstruktion von Hochbauten und Ingenieurbauwerken aus Holz (Vollholz, gesägt, gehobelt oder als Rundholz, Brettschichtholz oder andere Bauprodukte aus Holz für tragende Zwecke, wie z. B. Furnierschichtholz) oder Holzwerkstoffen, die mit Klebstoffen oder mechanischen Verbindungsmitteln zusammengefügt sind. Er erfüllt die Grundsätze und Anforderungen nach EN 1990:2002 an die Sicherheit und die Gebrauchstauglichkeit der Bauwerke und die Bemessungs- und Nachweisverfahren.
(2)P EN 1995 behandelt nur die Anforderungen an die Tragfähigkeit, die Gebrauchstauglichkeit, die Dauerhaftigkeit und den Feuerwiderstand von Holzbauten. Andere Anforderungen, z. B. hinsichtlich des Wärme- und Schallschutzes, werden nicht behandelt.
(3) EN 1995 ist vorgesehen für die Verwendung in Verbindung mit den folgenden Normen:
EN 1990:2002, Grundlagen der Tragwerksplanung
EN 1991, Einwirkungen auf Tragwerke
ENs für Bauprodukte für Holzbauten
EN 1998, Auslegung von Bauwerken gegen Erdbeben, wenn die Bauten in Erdbebengebieten liegen.
(4) EN 1995 ist in mehrere Teile gegliedert:
EN 1995-1, Allgemeine Regeln
EN 1995-2, Brücken
(5) EN 1995-1, Allgemeine Regeln umfasst:
EN 1995-1-1, Allgemeines Allgemeine Regeln und Regeln für den Hochbau
EN 1995-1-2, Allgemeine Regeln Tragwerkbemessung für den Brandfall
(6) EN 1995-2 nimmt Bezug auf die Allgemeinen Regeln in EN 1995-1-1. Die Abschnitte in EN 1995-2 ergänzen die Abschnitte in EN 1995-1-1.
Eurocode 5: Conception et calcul des structures en bois - Partie 1-1 : Généralités - Regles communes et regles pour les bâtiments
1.1 Domaine d’application
1.1.1 Domaine d’application d’EN 1995
(1) EN 1995 s’applique au calcul des bâtiments et ouvrages de génie civil en bois (bois massif, scié, raboté ou sous forme de poteau, bois lamellé collé ou produits structuraux à base de bois, par exemple LVL) ou panneaux à base de bois assemblés avec des adhésifs ou des organes mécaniques. Il est conforme aux principes et exigences relatifs à la sécurité et l’aptitude au service des structures, ainsi qu’aux bases de calcul et vérification données dans EN 1990 :2002.
(2) EN 1995 traite uniquement des exigences relatives à la résistance mécanique, l’aptitude au service, la durabiblité et la résistance au feu des structures en bois. D’autres exigences, par exemple concernant l’isolation thermique ou acoustique, ne sont pas considérées.
(3) EN 1995 est destiné à être utilisé conjointement avec :
EN 1990 :2002 "Eurocode - Bases de calcul des structures"
EN 1991 "Actions sur les structures"
Les EN pour les produits de construction relatifs aux structures en bois
EN 1998 "Calcul des structures pour la résistance aux tremblements de terre », lorsque les structures en bois sont construites dans des régions sismiques.
(4) EN 1995 est divisé en deux parties :
- EN 1995-1 Généralités
- EN 1995-2 Ponts
(5) EN 1995-1 "Règles générales" comprend :
- EN 1995-1-1 Généralités - Règles communes et règles pour les bâtiments
- EN 1995-1-2 Généralités - Calcul des structures au feu
(6) EN 1995-2 se réfère aux règles communes de EN 1995-1-1. Les articles de EN 1995-2 sont complémentaires aux articles de EN 1995-1.
1.1.2 Domaine d’application d’EN 1995-1-1
(1) EN 1995-1-1 donne des règles générales de calcul pour les structures en bois ainsi que des règles de calcul spécifiques aux bâtiments.
(2) Les sujets suivants sont traités dans EN 1995-1-1:
- Section 1 : Généralités
- Section 2: Bases de calcul
- Section 3: Propriétés des matériaux
- Section 4: Durabilité
- Section 5 : Bases de l’analyse de structure
- Section 6 : Etats limites ultimes
- Section 7 : Etats limites de service
- Section 8: Assemblages par organes métalliques
- Section 9: Composants et sous-systèmes
- Section 10: Détails structuraux et contrôle
(3)P EN 1995-1-1 ne traite pas des structures exposées durablement à des températures supérieures à 60°C.
Evrokod 5: Projektiranje lesenih konstrukcij - 1-1. del: Splošna pravila in pravila za stavbe
1.1.1 Področje uporabe EN 1995-1-1
(1) EN 1995-1-1 podaja splošna pravila projektiranja za lesene konstrukcije skupaj z dodatnimi pravili projektiranja za stavbe.
(2) EN 1995-1-1 vsebuje naslednja poglavja:
Poglavje 1: Splošno
Poglavje 2: Osnove projektiranja
Poglavje 3: Lastnosti materiala
Poglavje 4: Trajnost
Poglavje 5: Osnove analize konstrukcij
Poglavje 6: Mejna stanja nosilnosti
Poglavje 7: Mejna stanja uporabnosti
Poglavje 8: Zveze s kovinskimi veznimi sredstvi
Poglavje 9: Komponente in sestavi
Poglavje 10: Konstrukcijske zahteve in nadzor
(3)P EN 1995-1-1 ne obsega projektiranja konstrukcij, ki so dolgotrajno izpostavljene temperaturam nad 60 °C.
General Information
- Status
- Published In Revision
- Publication Date
- 30-Apr-2005
- Technical Committee
- KON - Structures
- Current Stage
- 6100 - Translation of adopted SIST standards (Adopted Project)
- Start Date
- 07-May-2007
- Due Date
- 05-May-2008
- Completion Date
- 19-Sep-2007
- Directive
- 89/106/EEC - Construction products
Relations
- Effective Date
- 01-Nov-2005
- Effective Date
- 31-Jul-2019
- Effective Date
- 01-Jul-2014
- Effective Date
- 22-Dec-2008
- Effective Date
- 22-Dec-2008
Frequently Asked Questions
SIST EN 1995-1-1:2005 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings". This standard covers: General rules for the structural design of buildings and civil engineering works made of timber and/or wood-based panels, either singly or compositely with concrete, steel or other materials. Detailed rules for structural design of buildings.
General rules for the structural design of buildings and civil engineering works made of timber and/or wood-based panels, either singly or compositely with concrete, steel or other materials. Detailed rules for structural design of buildings.
SIST EN 1995-1-1:2005 is classified under the following ICS (International Classification for Standards) categories: 91.010.30 - Technical aspects; 91.080.20 - Timber structures. The ICS classification helps identify the subject area and facilitates finding related standards.
SIST EN 1995-1-1:2005 has the following relationships with other standards: It is inter standard links to SIST ENV 1995-1-1:1998, kSIST FprEN 1995-1-1:2025, SIST EN 1995-1-1:2005/A2:2014, SIST EN 1995-1-1:2005/A1:2008, SIST EN 1995-1-1:2005/AC:2006. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
SIST EN 1995-1-1:2005 is associated with the following European legislation: EU Directives/Regulations: 2005-01-4408, 305/2011, 89/106/EEC; Standardization Mandates: M/265, M/BC/CEN/89/11. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.
You can purchase SIST EN 1995-1-1:2005 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.
Standards Content (Sample)
SLOVENSKI STANDARD
01-maj-2005
1DGRPHãþD
SIST ENV 1995-1-1:1998
Evrokod 5: Projektiranje lesenih konstrukcij - 1-1. del: Splošna pravila in pravila za
stavbe
Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for
buildings
Eurocode 5: Bemessung und Konstruktion von Holzbauten - Teil 1-1: Allgemeines -
Allgemeine Regeln und Regeln für den Hochbau
Eurocode 5: Conception et calcul des structures en bois - Partie 1-1 : Généralités -
Regles communes et regles pour les bâtiments
Ta slovenski standard je istoveten z: EN 1995-1-1:2004
ICS:
91.010.30 7HKQLþQLYLGLNL Technical aspects
91.080.20 Lesene konstrukcije Timber structures
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EUROPEAN STANDARD EN 1995-1-1
NORME EUROPÉENNE
EUROPÄISCHE NORM
November 2004
ICS 91.010.30; 91.080.20 Supersedes ENV 1995-1-1:1993
English version
Eurocode 5: Design of timber structures - Part 1-1: General -
Common rules and rules for buildings
Eurocode 5: Conception et calcul des structures en bois - Eurocode 5: Bemessung und Konstruktion von Holzbauten
Partie 1-1 : Généralités - Règles communes et règles pour - Teil 1-1: Allgemeines - Allgemeine Regeln und Regeln für
les bâtiments den Hochbau
This European Standard was approved by CEN on 16 April 2004.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European
Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national
standards may be obtained on application to the Central Secretariat or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official
versions.
CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia,
Slovenia, Spain, Sweden, Switzerland and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
Management Centre: rue de Stassart, 36 B-1050 Brussels
© 2004 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 1995-1-1:2004: E
worldwide for CEN national Members.
Contents Page
Foreword 7
SECTION 1 GENERAL 10
1.1 SCOPE 10
1.1.1 Scope of EN 1995 10
1.1.2 Scope of EN 1995-1-1 10
1.2 NORMATIVE REFERENCES 11
1.3 ASSUMPTIONS 13
1.4 DISTINCTION BETWEEN PRINCIPLES AND APPLICATION RULES 13
1.5 TERMS AND DEFINITIONS 13
1.5.1 General 13
1.5.2 Additional terms and definitions used in this present standard 13
1.6 SYMBOLS USED IN EN 1995-1-1 14
SECTION 2 BASIS OF DESIGN 19
2.1 REQUIREMENTS 19
2.1.1 Basic requirements 19
2.1.2 Reliability management 19
2.1.3 Design working life and durability 19
2.2 PRINCIPLES OF LIMIT STATE DESIGN 19
2.2.1 General 19
2.2.2 Ultimate limit states 19
2.2.3 Serviceability limit states 20
2.3 BASIC VARIABLES 21
2.3.1 Actions and environmental influences 21
2.3.1.1 General 21
2.3.1.2 Load-duration classes 21
2.3.1.3 Service classes 22
2.3.2 Materials and product properties 22
2.3.2.1 Load-duration and moisture influences on strength 22
2.3.2.2 Load-duration and moisture influences on deformations 22
2.4 VERIFICATION BY THE PARTIAL FACTOR METHOD 24
2.4.1 Design value of material property 24
2.4.2 Design value of geometrical data 25
2.4.3 Design resistances 25
2.4.4 Verification of equilibrium (EQU) 25
SECTION 3 MATERIAL PROPERTIES 26
3.1 GENERAL 26
3.1.1 Strength and stiffness parameters 26
3.1.2 Stress-strain relations 26
3.1.3 Strength modification factors for service classes and load-duration classes 26
3.1.4 Deformation modification factors for service classes 26
3.2 SOLID TIMBER 26
3.3 GLUED LAMINATED TIMBER 27
3.4 LAMINATED VENEER LUMBER (LVL) 28
3.5 WOOD-BASED PANELS 29
3.6 ADHESIVES 29
3.7 METAL FASTENERS 29
SECTION 4 DURABILITY 30
4.1 RESISTANCE TO BIOLOGICAL ORGANISMS 30
4.2 RESISTANCE TO CORROSION 30
SECTION 5 BASIS OF STRUCTURAL ANALYSIS 31
5.1 GENERAL 31
5.2 MEMBERS 31
5.3 CONNECTIONS 31
5.4 ASSEMBLIES 32
5.4.1 General 32
5.4.2 Frame structures 32
5.4.3 Simplified analysis of trusses with punched metal plate fasteners 33
5.4.4 Plane frames and arches 34
SECTION 6 ULTIMATE LIMIT STATES 36
6.1 DESIGN OF CROSS-SECTIONS SUBJECTED TO STRESS IN ONE PRINCIPAL DIRECTION 36
6.1.1 General 36
6.1.2 Tension parallel to the grain 36
6.1.3 Tension perpendicular to the grain 36
6.1.4 Compression parallel to the grain 36
6.1.5 Compression perpendicular to the grain 36
6.1.6 Bending 41
6.1.7 Shear 41
6.1.8 Torsion 42
6.2 DESIGN OF CROSS-SECTIONS SUBJECTED TO COMBINED STRESSES 43
6.2.1 General 43
6.2.2 Compression stresses at an angle to the grain 43
6.2.3 Combined bending and axial tension 43
6.2.4 Combined bending and axial compression 43
6.3 STABILITY OF MEMBERS 44
6.3.1 General 44
6.3.2 Columns subjected to either compression or combined compression and bending44
6.3.3 Beams subjected to either bending or combined bending and compression 45
6.4 DESIGN OF CROSS-SECTIONS IN MEMBERS WITH VARYING CROSS-SECTION OR CURVED
SHAPE 47
6.4.1 General 47
6.4.2 Single tapered beams 47
6.4.3 Double tapered, curved and pitched cambered beams 48
6.5 NOTCHED MEMBERS 52
6.5.1 General 52
6.5.2 Beams with a notch at the support 52
6.6 SYSTEM STRENGTH 53
SECTION 7 SERVICEABILITY LIMIT STATES 55
7.1 JOINT SLIP 55
7.2 LIMITING VALUES FOR DEFLECTIONS OF BEAMS 55
7.3 VIBRATIONS 56
7.3.1 General 56
7.3.2 Vibrations from machinery 56
7.3.3 Residential floors 56
SECTION 8 CONNECTIONS WITH METAL FASTENERS 59
8.1 GENERAL 59
8.1.1 Fastener requirements 59
8.1.2 Multiple fastener connections 59
8.1.3 Multiple shear plane connections 59
8.1.4 Connection forces at an angle to the grain 59
8.1.5 Alternating connection forces 61
8.2 LATERAL LOAD-CARRYING CAPACITY OF METAL DOWEL-TYPE FASTENERS 61
8.2.1 General 61
8.2.2 Timber-to-timber and panel-to-timber connections 61
8.2.3 Steel-to-timber connections 63
8.3 NAILED CONNECTIONS 65
8.3.1 Laterally loaded nails 65
8.3.1.1 General 65
8.3.1.2 Nailed timber-to-timber connections 67
8.3.1.3 Nailed panel-to-timber connections 70
8.3.1.4 Nailed steel-to-timber connections 70
8.3.2 Axially loaded nails 70
8.3.3 Combined laterally and axially loaded nails 72
8.4 STAPLED CONNECTIONS 72
8.5 BOLTED CONNECTIONS 74
8.5.1 Laterally loaded bolts 74
8.5.1.1 General and bolted timber-to-timber connections 74
8.5.1.2 Bolted panel-to-timber connections 75
8.5.1.3 Bolted steel-to-timber connections 76
8.5.2 Axially loaded bolts 76
8.6 DOWELLED CONNECTIONS 76
8.7 SCREWED CONNECTIONS 77
8.7.1 Laterally loaded screws 77
8.7.2 Axially loaded screws 77
8.7.3 Combined laterally and axially loaded screws 78
8.8 CONNECTIONS MADE WITH PUNCHED METAL PLATE FASTENERS 78
8.8.1 General 78
8.8.2 Plate geometry 78
8.8.3 Plate strength properties 79
8.8.4 Plate anchorage strengths 80
8.8.5 Connection strength verification 80
8.8.5.1 Plate anchorage capacity 80
8.8.5.2 Plate capacity 82
8.9 SPLIT RING AND SHEAR PLATE CONNECTORS 83
8.10 TOOTHED-PLATE CONNECTORS 86
SECTION 9 COMPONENTS AND ASSEMBLIES 89
9.1 COMPONENTS 89
9.1.1 Glued thin-webbed beams 89
9.1.2 Glued thin-flanged beams 91
9.1.3 Mechanically jointed beams 92
9.1.4 Mechanically jointed and glued columns 93
9.2 ASSEMBLIES 93
9.2.1 Trusses 93
9.2.2 Trusses with punched metal plate fasteners 94
9.2.3 Roof and floor diaphragms 95
9.2.3.1 General 95
9.2.3.2 Simplified analysis of roof and floor diaphragms. 95
9.2.4 Wall diaphragms 96
9.2.4.1 General 96
9.2.4.2 Simplified analysis of wall diaphragms – Method A 96
9.2.4.3 Simplified analysis of wall diaphragms – Method B 99
9.2.4.3.1 Construction of walls and panels to meet the requirements of the simplified analysis99
9.2.4.3.2 Design procedure 100
9.2.5 Bracing 102
9.2.5.1 General 102
9.2.5.2 Single members in compression 102
9.2.5.3 Bracing of beam or truss systems 103
SECTION 10 STRUCTURAL DETAILING AND CONTROL 105
10.1 GENERAL 105
10.2 MATERIALS 105
10.3 GLUED JOINTS 105
10.4 CONNECTIONS WITH MECHANICAL FASTENERS 105
10.4.1 General 105
10.4.2 Nails 105
10.4.3 Bolts and washers 105
10.4.4 Dowels 106
10.4.5 Screws 106
10.5 ASSEMBLY 106
10.6 TRANSPORTATION AND ERECTION 106
10.7 CONTROL 107
10.8 SPECIAL RULES FOR DIAPHRAGM STRUCTURES 107
10.8.1 Floor and roof diaphragms 107
10.8.2 Wall diaphragms 108
10.9 SPECIAL RULES FOR TRUSSES WITH PUNCHED METAL PLATE FASTENERS 108
10.9.1 Fabrication 108
10.9.2 Erection 108
ANNEX A (INFORMATIVE): BLOCK SHEAR AND PLUG SHEAR FAILURE AT
MULTIPLE DOWEL-TYPE STEEL-TO-TIMBER CONNECTIONS 110
ANNEX B (INFORMATIVE): MECHANICALLY JOINTED BEAMS 112
B.1 SIMPLIFIED ANALYSIS 112
B.1.1 Cross-sections 112
B.1.2 Assumptions 112
B.1.3 Spacings 112
B.1.4 Deflections resulting from bending moments 112
B.2 EFFECTIVE BENDING STIFFNESS 114
B.3 NORMAL STRESSES 114
B.4 MAXIMUM SHEAR STRESS 114
B.5 FASTENER LOAD 114
ANNEX C (INFORMATIVE): BUILT-UP COLUMNS 116
C.1 GENERAL 116
C.1.1 Assumptions 116
C.1.2 Load-carrying capacity 116
C.2 MECHANICALLY JOINTED COLUMNS 116
C.2.1 Effective slenderness ratio 116
C.2.2 Load on fasteners 116
C.2.3 Combined loads 117
C.3 SPACED COLUMNS WITH PACKS OR GUSSETS 117
C.3.1 Assumptions 117
C.3.2 Axial load-carrying capacity 118
C.3.3 Load on fasteners, gussets or packs 119
C.4 LATTICE COLUMNS WITH GLUED OR NAILED JOINTS 119
C.4.1 Assumptions 119
C.4.2 Load-carrying capacity 120
C.4.3 Shear forces 122
ANNEX D (INFORMATIVE): BIBLIOGRAPHY 123
Foreword
This European Standard EN 1995-1-1 has been prepared by Technical Committee CEN/TC250
“Structural Eurocodes”, the Secretariat of which is held by BSI.
This European Standard shall be given the status of a National Standard, either by publication
of an identical text or by endorsement, at the latest by May 2005, and conflicting national
standards shall be withdrawn at the latest by March 2010.
This European Standard supersedes ENV 1995-1-1:1993.
CEN/TC250 is responsible for all Structural Eurocodes.
According to the CEN/CENELEC Internal Regulations, the national standards organizations of
the following countries are bound to implement this European Standard: Austria, Belgium,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary,
Iceland, Ireland, Italy, Latvia, Lithuania, Luxemburg, Malta, Netherlands, Norway, Poland,
Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Background of the Eurocode programme
In 1975, the Commission of the European Community decided on an action programme in the
field of construction, based on article 95 of the Treaty. The objective of the programme was the
elimination of technical obstacles to trade and the harmonisation of technical specifications.
Within this action programme, the Commission took the initiative to establish a set of
harmonised technical rules for the design of construction works which, in a first stage, would
serve as an alternative to the national rules in force in the Member States and, ultimately, would
replace them.
For fifteen years, the Commission, with the help of a Steering Committee with Representatives
of Member States, conducted the development of the Eurocodes programme, which led to the
first generation of European codes in the 1980s.
In 1989, the Commission and the Member States of the EU and EFTA decided, on the basis of
an agreementTPPT between the Commission and CEN, to transfer the preparation and the
publication of the Eurocodes to CEN through a series of Mandates, in order to provide them
with a future status of European Standard (EN). This links de facto the Eurocodes with the
provisions of all the Council’s Directives and/or Commission’s Decisions dealing with European
standards (e.g. the Council Directive 89/106/EEC on construction products – CPD – and
Council Directives 93/37/EEC, 92/50/EEC and 89/440/EEC on public works and services and
equivalent EFTA Directives initiated in pursuit of setting up the internal market).
The Structural Eurocode programme comprises the following standards generally consisting of
a number of Parts:
EN 1990:2002 Eurocode: Basis of Structural Design
EN 1991 Eurocode 1: Actions on structures
EN 1992 Eurocode 2: Design of concrete structures
EN 1993 Eurocode 3: Design of steel structures
EN 1994 Eurocode 4: Design of composite steel and concrete structures
EN 1995 Eurocode 5: Design of timber structures
EN 1996 Eurocode 6: Design of masonry structures
EN 1997 Eurocode 7: Geotechnical design
TPPT Agreement between the Commission of the European Communities and the European Committee for
Standardisation (CEN) concerning the work on EUROCODES for the design of building and civil
engineering works (BC/CEN/03/89).
EN 1998 Eurocode 8: Design of structures for earthquake resistance
EN 1999 Eurocode 9: Design of aluminium structures
Eurocode standards recognise the responsibility of regulatory authorities in each Member State
and have safeguarded their right to determine values related to regulatory safety matters at
national level where these continue to vary from State to State.
Status and field of application of Eurocodes
The Member States of the EU and EFTA recognise that Eurocodes serve as reference
documents for the following purposes:
– as a means to prove compliance of building and civil engineering works with the essential
requirements of Council Directive 89/106/EEC, particularly Essential Requirement N°1 –
Mechanical resistance and stability – and Essential Requirement N°2 – Safety in case of fire ;
– as a basis for specifying contracts for construction works and related engineering services ;
– as a framework for drawing up harmonised technical specifications for construction products
(ENs and ETAs)
The Eurocodes, as far as they concern the construction works themselves, have a direct
relationship with the Interpretative DocumentsTPPT referred to in Article 12 of the CPD, although
they are of a different nature from harmonised product standardsTPPT . Therefore, technical aspects
arising from the Eurocodes work need to be adequately considered by CEN Technical
Committees and/or EOTA Working Groups working on product standards with a view to
achieving full compatibility of these technical specifications with the Eurocodes.
The Eurocode standards provide common structural design rules for everyday use for the
design of whole structures and component products of both a traditional and an innovative
nature. Unusual forms of construction or design conditions are not specifically covered and
additional expert consideration will be required by the designer in such cases.
National Standards implementing Eurocodes
The National Standards implementing Eurocodes will comprise the full text of the Eurocode
(including any annexes), as published by CEN, which may be preceded by a National title page
and National foreword, and may be followed by a National annex.
The National annex may only contain information on those parameters which are left open in
the Eurocode for national choice, known as Nationally Determined Parameters, to be used for
the design of buildings and civil engineering works to be constructed in the country concerned,
i.e.:
– values and/or classes where alternatives are given in the Eurocode;
– values to be used where a symbol only is given in the Eurocode;
– country specific data (geographical, climatic, etc.), e.g. snow map;
TPPT According to Art. 3.3 of the CPD, the essential requirements (ERs) shall be given concrete form in
interpretative documents for the creation of the necessary links between the essential requirements and
the mandates for harmonised ENs and ETAGs/ETAs.
TPPT According to Art. 12 of the CPD the interpretative documents shall:
give concrete form to the essential requirements by harmonising the terminology and the technical bases
and indicating classes or levels for each requirement where necessary ;
indicate methods of correlating these classes or levels of requirement with the technical specifications, e.g.
methods of calculation and of proof, technical rules for project design, etc. ;
serve as a reference for the establishment of harmonised standards and guidelines for European technical
approvals.
The Eurocodes, de facto, play a similar role in the field of the ER 1 and a part of ER 2.
– the procedure to be used where alternative procedures are given in the Eurocode;
– decisions on the application of informative annexes;
– references to non-contradictory complementary information to assist the user to apply the
Eurocode.
Links between Eurocodes and harmonised technical specifications (ENs and ETAs) for
products
There is a need for consistency between the harmonised technical specifications for
construction products and the technical rules for worksTPPT . Furthermore, all the information
accompanying the CE Marking of the construction products which refer to Eurocodes shall
clearly mention which Nationally Determined Parameters have been taken into account.
Additional information specific to EN 1995-1-1
EN 1995 describes the Principles and requirements for safety, serviceability and durability of
timber structures. It is based on the limit state concept used in conjunction with a partial factor
method.
For the design of new structures, EN 1995 is intended to be used, for direct application,
together with EN 1990:2002 and relevant Parts of EN 1991.
Numerical values for partial factors and other reliability parameters are recommended as basic
values that provide an acceptable level of reliability. They have been selected assuming that an
appropriate level of workmanship and of quality management applies. When EN 1995-1-1 is
used as a base document by other CEN/TCs the same values need to be taken.
National annex for EN 1995-1-1
This standard gives alternative procedures, values and recommendations with notes indicating
where national choices may have to be made. Therefore the National Standard implementing
EN 1995-1-1 should have a National annex containing all Nationally Determined Parameters to
be used for the design of buildings and civil engineering works to be constructed in the relevant
country.
National choice is allowed in EN 1995-1-1 through clauses:
2.3.1.2(2)P Assignment of loads to load-duration classes;
2.3.1.3(1)P Assignment of structures to service classes;
2.4.1(1)P Partial factors for material properties;
6.4.3(8) Double tapered, curved and pitched cambered beams;
7.2(2) Limiting values for deflections;
7.3.3(2) Limiting values for vibrations;
8.3.1.2(4) Nailed timber-to-timber connections: Rules for nails in end grain;
8.3.1.2(7) Nailed timber-to-timber connections: Species sensitive to splitting;
9.2.4.1(7) Design method for wall diaphragms;
9.2.5.3(1) Bracing modification factors for beam or truss systems;
10.9.2(3) Erection of trusses with punched metal plate fasteners: Maximum bow;
10.9.2(4) Erection of trusses with punched metal plate fasteners: Maximum deviation.
TPPT see Art.3.3 and Art.12 of the CPD, as well as clauses 4.2, 4.3.1, 4.3.2 and 5.2 of ID 1.
Section 1 General
1.1 Scope
1.1.1 Scope of EN 1995
(1)P EN 1995 applies to the design of buildings and civil engineering works in timber (solid
timber, sawn, planed or in pole form, glued laminated timber or wood-based structural products,
e.g. LVL) or wood-based panels jointed together with adhesives or mechanical fasteners. It
complies with the principles and requirements for the safety and serviceability of structures and
the basis of design and verification given in EN 1990:2002.
(2)P EN 1995 is only concerned with requirements for mechanical resistance, serviceability,
durability and fire resistance of timber structures. Other requirements, e.g concerning thermal or
sound insulation, are not considered.
(3) EN 1995 is intended to be used in conjunction with:
EN 1990:2002 Eurocode – Basis of design
EN 1991 “Actions on structures”
EN´s for construction products relevant to timber structures
EN 1998 “Design of structures for earthquake resistance”, when timber structures are built in
seismic regions
(4) EN 1995 is subdivided into various parts:
EN 1995-1 General
EN 1995-2 Bridges
(5) EN 1995-1 “General” comprises:
EN 1995-1-1 General – Common rules and rules for buildings
EN 1995-1-2 General rules – Structural Fire Design
(6) EN 1995-2 refers to the common rules in EN 1995-1-1. The clauses in EN 1995-2
supplement the clauses in EN 1995-1.
1.1.2 Scope of EN 1995-1-1
(1) EN 1995-1-1 gives general design rules for timber structures together with specific design
rules for buildings.
(2) The following subjects are dealt with in EN 1995-1-1:
Section 1: General
Section 2: Basis of design
Section 3: Material properties
Section 4: Durability
Section 5: Basis of structural analysis
Section 6: Ultimate limit states
Section 7: Serviceability limit states
Section 8: Connections with metal fasteners
Section 9: Components and assemblies
Section 10: Structural detailing and control.
(3)P EN 1995-1-1 does not cover the design of structures subject to prolonged exposure to
temperatures over 60°C.
1.2 Normative references
(1) This European Standard incorporates by dated or undated reference, provisions from other
publications. These normative references are cited at the appropriate places in the text and the
publications are listed hereafter. For dated references, subsequent amendments to or revisions
of any of these publications apply to this European Standard only when incorporated in it by
amendment or revision. For undated references the latest edition of the publication referred to
applies (including amendments).
ISO standards:
ISO 2081:1986 Metallic coatings. Electroplated coatings of zinc on iron or steel
ISO 2631-2:1989 Evaluation of human exposure to whole-body vibration. Part 2:
Continuous and shock-induced vibrations in buildings (1 to 80 Hz)
European Standards:
EN 300:1997 Oriented Strand Board (OSB) – Definition, classification and
specifications
EN 301:1992 Adhesives, phenolic and aminoplastic for load-bearing timber structures;
classification and performance requirements
EN 312-4:1996 Particleboards – Specifications. Part 4: Requirements for load-bearing
boards for use in dry conditions
EN 312-5:1997 Particleboards – Specifications. Part 5: Requirements for load-bearing
boards for use in humid conditions
EN 312-6:1996 Particleboards – Specifications. Part 6: Requirements for heavy duty
load-bearing boards for use in dry conditions
EN 312-7:1997 Particleboards – Specifications. Part 7: Requirements for heavy duty
load-bearing boards for use in humid conditions
EN 335-1:1992 Durability of wood and wood-based products – definition of hazard
classes of biological attack. Part 1: General
EN 335-2:1992 Durability of wood and wood-based products – definition of hazard
classes of biological attack. Part 2: Application to solid wood
EN 335-3:1995 Durability of wood and wood-based products – Definition of hazard
classes of biological attack. Part 3: Application to wood-based panels
EN 350-2:1994 Durability of wood and wood-based products – Natural durability of solid
wood. Part 2: Guide to natural durability and treatability of selected wood
species of importance in Europe
EN 351-1:1995 Durability of wood and wood-based products – Preservative treated solid
wood. Part 1: Classification of preservative penetration and retention
EN 383:1993 Timber structures – Test methods. Determination of embedding strength
and foundation values for dowel type fasteners
EN 385:2001 Finger jointed structural timber. Performance requirements and minimum
production requirements
EN 387:2001 Glued laminated timber – Production requirements for large finger joints.
Performance requirements and minimum production requirements
EN 409:1993 Timber structures – Test methods. Determination of the yield moment of
dowel type fasteners – Nails
EN 460:1994 Durability of wood and wood-based products – Natural durability of solid
wood – Guide of the durability requirements for wood to be used in
hazard classes
EN 594:1995 Timber structures – Test methods – Racking strength and stiffness of
timber frame wall panels
EN 622-2:1997 Fibreboards – Specifications. Part 2: Requirements for hardboards
EN 622-3:1997 Fibreboards – Specifications. Part 3: Requirements for medium boards
EN 622-4:1997 Fibreboards – Specifications. Part 4: Requirements for softboards
EN 622-5:1997 Fibreboards – Specifications. Part 5: Requirements for dry process
boards (MDF)
EN 636-1:1996 Plywood – Specifications. Part 1: Requirements for plywood for use in dry
conditions
EN 636-2:1996 Plywood – Specifications. Part 2: Requirements for plywood for use in
humid conditions
EN 636-3:1996 Plywood – Specifications. Part 3: Requirements for plywood for use in
exterior conditions
EN 912:1999 Timber fasteners – Specifications for connectors for timber
EN 1075:1999 Timber structures – Test methods. Testing of joints made with punched
metal plate fasteners
EN 1380:1999 Timber structures – Test methods – Load bearing nailed joints
EN 1381:1999 Timber structures – Test methods – Load bearing stapled joints
EN 1382:1999 Timber structures – Test methods – Withdrawal capacity of timber
fasteners
EN 1383:1999 Timber structures – Test methods – Pull through testing of timber
fasteners
EN 1990:2002 Eurocode – Basis of structural design
EN 1991-1-1:2002 Eurocode 1: Actions on structures – Part 1-2: General actions –
Densities, self-weight and imposed loads
EN 1991-1-3 Eurocode 1: Actions on structures – Part 1-3: General actions – Snow
loads
EN 1991-1-4 Eurocode 1: Actions on structures – Part 1-4: General actions – Wind
loads
EN 1991-1-5 Eurocode 1: Actions on structures – Part 1-5: General actions – Thermal
actions
EN 1991-1-6 Eurocode 1: Actions on structures – Part 1-6: General actions – Actions
during execution
EN 1991-1-7 Eurocode 1: Actions on structures – Part 1-7: General actions –
Accidental actions due to impact and explosions
EN 10147:2000 Specification for continuously hot-dip zinc coated structural steel sheet
and strip – Technical delivery conditions
EN 13271:2001 Timber fasteners – Characteristic load-carrying capacities and slip moduli
for connector joints
EN 13986 Wood-based panels for use in construction – Characteristics, evaluation
of conformity and marking
EN 14080 Timber structures – Glued laminated timber – Requirements
EN 14081-1 Timber structures – Strength graded structural timber with rectangular
cross-section – Part 1, General requirements
EN 14250 Timber structures. Production requirements for fabricated trusses using
punched metal plate fasteners
EN 14279 Laminated veneer lumber (LVL) – Specifications, definitions,
classification and requirements
EN 14358 Timber structures – Fasteners and wood-based products – Calculation of
characteristic 5-percentile value and acceptance criteria for a sample
EN 14374 Timber structures – Structural laminated veneer lumber – Requirements
EN 14544 Strength graded structural timber with round cross-section –
Requirements
EN 14545 Timber structures – Connectors – Requirements
EN 14592 Timber structures – Fasteners – Requirements
EN 26891:1991 Timber structures. Joints made with mechanical fasteners. General
principles for the determination of strength and deformation
characteristics
EN 28970:1991 Timber structures. Testing of joints made with mechanical fasteners;
requirements for wood density (ISO 8970:1989)
NOTE: As long as EN 14250, EN 14081-1, EN 14080, EN 13986, EN 14374, EN 14358, EN 14544, EN
14545 and EN 14592 are not available as European standards, more information may be given in the
National annex.
1.3 Assumptions
(1)P The general assumptions of EN 1990:2002 apply.
(2) Additional requirements for structural detailing and control are given in section 10.
1.4 Distinction between Principles and Application Rules
(1)P The rules in EN 1990:2002 clause 1.4 apply.
1.5 Terms and definitions
1.5.1 General
(1)P The terms and definitions of EN 1990:2002 clause 1.5 apply.
1.5.2 Additional terms and definitions used in this present standard
1.5.2.1
Characteristic value
Refer to EN 1990:2002 subclause 1.5.4.1.
1.5.2.2
Dowelled connection
Connection made with a circular cylindrical rod usually of steel, with or without a head, fitting
tightly in prebored holes and used for transferring loads perpendicular to the dowel axis.
1.5.2.3
Equilibrium moisture content
The moisture content at which wood neither gains nor loses moisture to the surrounding air.
1.5.2.4
Fibre saturation point
Moisture content at which the wood cells are completely saturated.
1.5.2.5
LVL
Laminated veneer lumber, defined according to EN 14279 and EN 14374
1.5.2.6
Laminated timber deck
A plate made of abutting parallel and solid laminations connected together by nails or screws or
prestressing or gluing.
1.5.2.7
Moisture content
The mass of water in wood expressed as a proportion of its oven-dry mass.
1.5.2.8
Racking
Effect caused by horizontal actions in the plane of a wall.
1.5.2.9
Stiffness property
A property used in the calculation of the deformation of the structure, such as modulus of
elasticity, shear modulus, slip modulus.
1.5.2.10
Slip modulus
A property used in the calculation of the deformation between two members of a structure.
1.6 Symbols used in EN 1995-1-1
For the purpose of EN 1995-1-1, the following symbols apply.
Latin upper case letters
A Cross-sectional area
ABB Effective area of the total contact surface between a punched metal plate fastener
ef
and the timber
ABB Cross-sectional area of flange
f
AB Net cross-sectional area perpendicular to the grain
net,tB
AB Net shear area parallel to the grain
net,vB
C Spring stiffness
EB Fifth percentile value of modulus of elasticity;
0,05B
EBB Design value of modulus of elasticity;
d
EB Mean value of modulus of elasticity;
meanB
EB Final mean value of modulus of elasticity;
mean,finB
F Force
FB Design force acting on a punched metal plate fastener at the centroid of the
A,EdB
effective area
FB Minimum design force acting on a punched metal plate fastener at the centroid of
A,min,dB
the effective area
FB Design axial force on fastener;
ax,EdB
FB Design value of axial withdrawal capacity of the fastener;
ax,RdB
FB Characteristic axial withdrawal capacity of the fastener;
ax,RkB
FB Compressive force
cB
FBBDesign force
d
FB Design force at the serviceability limit state
d,serB
FB Design load-carrying capacity per fastener in wall diaphragm
f,RdB
FBBDesign compressive reaction force at end of shear wall
i,c,Ed
FBBDesign tensile reaction force at end of shear wall
i,t,Ed
FB Vertical load on wall
i,vert,EdB
FB Design racking resistance of panel i (in 9.2.4.2)or wall i (in 9.2.4.3)
i,v,RdB
FB Lateral load
laB
FBBDesign force from a design moment
M,Ed
FB Tensile force
tB
FB Characteristic load-carrying capacity of a connector along the grain;
v,0,RkB
FB Design shear force per shear plane of fastener; Horizontal design effect on wall
v,EdB
diaphragm
FB Design load-carrying capacity per shear plane per fastener; Design racking load
v,RdB
capacity
FB Characteristic load-carrying capacity per shear plane per fastener
v,RkB
FB Design shear force acting on web;
v,w,EdB
FBBDesign value of a force in x-direction
x,Ed
FBBDesign value of a force in y-direction
y,Ed
FB Design value of plate capacity in x-direction;
x,RdB
FB Design value of plate capacity in y-direction;
y,RdB
FB Characteristic plate capacity in x-direction;
x,RkB
FB Characteristic plate capacity in y-direction;
y,RkB
GBB Fifth percentile value of shear modulus
0,05
GB Design value of shear modulus
dB
GB Mean value of shear modulus
meanB
H Overall rise of a truss
IBB Second moment of area of flange
f
IBB Torsional moment of inertia
tor
IBB Second moment of area about the weak axis
z
KBB Slip modulus
ser
KB Final slip modulus
ser,finB
KBB Instantaneous slip modulus for ultimate limit states
u
L Net width of the cross-section perpendicular to the grain Bnet,tB
L Net length of the fracture area in shear Bnet,vB
MB Design moment acting on a punched metal plate fastener
A,EdB
MB Design moment at apex zone
ap,dB
MBB Design moment
d
MB Characteristic yield moment of fastener
y,RkB
N Axial force
RBB Design splitting capacity
90,d
RB Characteristic splitting capacity
90,kB
RB Design load-carrying capacity of an axially loaded connection
ax,dB
RB,B Characteristic load-carrying capacity of an axially loaded connection
axBBk
RBB Characteristic load-carrying capacity at an angle to grain
ax,α,k
RBB Design value of a load-carrying capacity
d
RB Effective characteristic load-carrying capacity of a connection
ef,kB
RB Design racking racking capacity of a wall
iv,dB
RB Characteristic load-carrying capacity
kB
RBB Characteristic splitting capacity
sp,k
RB Characteristic load-carrying capacity of a toothed plate connector
to,kB
RBB Design racking capacity of a wall diaphragm
v,d
V Shear force; Volume
VBB, VB Shear forces in upper and lower part of beam with a holeB
u lBB
WB Section modulus about axis y
yB
XBB Design value of a strength property
d
XBB Characteristic value of a strength property
k
Latin lower case letters
a Distance
aB Spacing, parallel to grain, of fasteners within one row
1B
aBB Spacing, perpendicular to grain, between rows of fasteners
aBB Distance between fastener and unloaded end
3,c
aB Distance between fastener and loaded end
3,tB
aBB Distance between fastener and unloaded edge
4,c
aB Distance between fastener and loaded edge
4,tB
aBB Maximum bow of truss member
bow
aB Maximum permitted bow of truss member
bow,permB
aB Maximum deviation of truss
devB
aB Maximum permitted deviation of truss
dev,permB
b Width
bB Width of panel i (in 9.2.4.2)or wall i (in 9.2.4.3)
iB
bB Clear distance between studs
netB
bBB Web width
w
d Diameter
dBB Diameter of centre hole of connector
dB Connector diameter
cB
dBB Effective diameter
ef
f B Characteristic embedment strength of timber member i
h,i,kB
fBB Characteristic anchorage capacity per unit area for α = 0° and β = 0°
a,0,0
fB Characteristic anchorage capacity per unit area for α = 90° and β = 90°
a,90,90B
fBB Characteristic anchorage strength
a,α,β,k
fB Characteristic withdrawal parameter for nails
ax,kB
fBB Design compressive strength along the grain
c,0,d
fB Design compressive strength of web
c,w,dB
fB Design compressive strength of flange
f,c,dB
fB Characteristic compressive strength perpendicular to grain
c,90,kB
fB Design tensile strength of flange
f,t,dB
fB Characteristic embedment strength
h,kB
fB Characteristic pull through parameter for nails
head,kB
fBB Fundamental frequency
fB Characteristic bending strength
m,kB
fB Design bending strength about the principal y-axis
m,y,dB
fB Design bending strength about the principal z-axis
m,z,dB
fB Design bending strength at an angle α to the grain
m,α,dB
fB Design tensile strength along the grain
t,0,dB
fB Characteristic tensile strength along the grain
t,0,kB
fB Design tensile strength perpendicular to the grain
t,90,dB
fBB Design tensile strength of the web
t,w,d
fB Characteristic tensile strength of bolts
u,kB
fBB Design panel shear strength
v,0,d
fB Characteristic withdrawal strength at an angle to grain
v,ax,α,kB
fB Characteristic withdrawal strength perpendicular to grain
v,ax,90,kB
fBB Design shear strength
v,d
h Depth; Height of wall
hB Depth of the apex zone
apB
hBB Hole depth
d
hB Embedment depth
eB
hB Loaded edge distance
eB
hBB Effective depth
ef
hBB Depth of compression flange
f,c
hB Depth of tension flange
f,tB
hB Distance from lower edge of hole to bottom of member
rlB
hBB Distance from upper edge of hole to top of member
ru
hBB Web depth
w
i Notch inclination
kBor kBB Instability factor
c,y Bc,z
kB Factor used for lateral buckling
critB
kBB Dimension factor for panel
d
kBB Deformation factor
def
kB Factor taking into account the distribution of stresses in an apex zone
disB
kB, kB, kB Modification factors for bracing resistance
f,1Bf,2Bf,3B
kBB Depth factor
h
kB Uniformly distributed load factor
i,qB
kB Factor considering re-distribution of bending stresses in a cross-section
mB
kB Modification factor for duration of load and moisture content
modB
kBB Sheathing material factor
n
kB Reduction factor
rB
kB Reduction factor for load-carrying capacity
R,redB
kB Fastener spacing factor; Modification factor for spring stiffness
sB
kB Reduction factor for spacing
s,redB
kBB Factor depending on the shape of the cross-section
shape
kBB System strength factor
sys
kBB Reduction factor for notched beams
v
kB Volume factor
volB
kBor kBB Instability factor
y Bz
�B Minimum anchorage length for a glued-in rod
a,minB
� Span; contact length
�BB Support distance of a hole
A
�BB Effective length; Effective length of distribution
ef
�BB Distance from a hole to the end of the member
V
�BB Spacing between holes
Z
m Mass per unit area
nB Number of frequencies below 40 Hz
40B
nB Effective number of fasteners
efB
pBB Distributed load
d
qB Equivalent uniformly distributed load
iB
r Radius of curvature
s Spacing
s Basic fastener spacing B0B
r Inner radius BinB
t Thickness
tB Penetration depth
penB
uB Creep deformation
creepB
uB Final deformation
finB
uBB FinalBdeformation for a permanent action G
fin,G B
uBB FinalBdeformation for the leading variable action QBfin,Q,1 B1
uB FinalBdeformation for accompanying variable actions QB
fin,Q,iB BiB
uBB Instantaneous deformation
inst
uBB Instantaneous deformation for a permanent action G
inst,G
uBB Instantaneous deformation for the leading variable action QB
inst,Q,1 1B
uBB Instantaneous deformation for accompanying variable actions QB
inst,Q,i iB
wBB Precamber
c
wB Creep deflection
creepB
wB Final deflection
finB
wBB Instantaneous deflection
inst
wB Net final deflection
net,finB
v Unit impulse velocity response
Greek lower case letters
α Angle between the x-direction and the force for a punched metal plate; Angle
between a force and the direction of grain; Angle between the direction of the load
and the loaded edge (or end)
β Angle between the grain direction and the force for a punched metal plate
βBB Straightness factor
c
γ Angle between the x-direction and the timber connection line for a punched metal
plate
γ Partial factor for material properties, also accounting for model uncertainties and BMB
dimensional variations
λB Slenderness ratio corresponding to bending about the y-axis
yB
λBB Slenderness ratio corresponding to bending about the z-axis
z
λB Relative slenderness ratio corresponding to bending about the y-axis
rel,yB
λBB Relative slenderness ratio corresponding to bending about the z-axis
rel,z
ρB Characteristic density
kB
ρB Mean density
mB
σB Design compressive stress along the grain Bc,0,d
σB Design compressive stress at an angle α to the grain Bc,α,d
σ Mean design compressive stress of flange Bf,c,dB
σ Design compressive stress of extreme fibres of flange Bf,c,max,dB
σ Mean design tensile stress of flange Bf,t,dB
σ Design tensile stress of extreme fibres of flange Bf,t,max,dB
σ Critical bending stress Bm,critB
σ Design bending stress about the principal y-axis Bm,y,dB
σ Design bending stress about the principal z-axis Bm,z,dB
σ Design bending stress at an angle α to the grain Bm,α,dB
σB Axial stress BN
σ Design tensile stress along the grain Bt,0,dB
σ Design tensile stress perpendicular to the grain Bt,90,dB
σ Design compressive stress of web Bw,c,dB
σ Design tensile stress of web Bw,t,dB
τB Design shear stress
dB
τBB Design anchorage stress from axial force
F,d
τBB Design anchorage stress from moment
M,d
τB Design shear stress from torsion
tor,dB
ψBB Factor for combination value of a variable action
ψBB Factor for quasi-permanent value of a variable action
ζ Modal damping ratio
Section 2 Basis of design
2.1 Requirements
2.1.1 Basic requirements
(1)P The design of timber structures shall be in accordance with EN 1990:2002.
(2)P The supplementary provisions for timber structures given in this section shall also be
applied.
(3) The basic requirements of EN 1990:2002 section 2 are deemed to be satisfied for timber
structures when limit state design, in conjunction with the partial factor method using
EN 1990:2002 and EN 1991 for actions and their combinations and EN 1995 for resistances,
rules for serviceability and durability, is applied.
2.1.2 Reliability management
(1) When different levels of reliability are required, these levels should be preferably achieved
by an appropriate choice of quality management in design and execution, according to
EN 1990:2002 Annex C.
2.1.3 Design working life and durability
(1) EN 1990:2002 clause 2.3 applies.
2.2 Principles of limit state design
2.2.1 General
(1)P The design models for the different limit states shall, as appropriate, take into account the
following:
− different material properties (e.g. strength and stiffness);
− different time-dependent behaviour of the materials (duration of load, creep);
− different climatic conditions (temperature, moisture variations);
− different design situations (stages of construction, change of support conditions).
2.2.2 Ultimate limit states
(1)P The analysis of structures shall be carried out using the following values for stiffness
properties:
− for a first order linear elastic analysis of a structure, whose distribution of internal forces is
not affected by the stiffness distribution within the structure (eg. all members have the same
time-dependent properties), mean values shall be used;
− for a first order linear elastic analysis of a structure, whose distribution of internal forces is
affected by the stiffness distribution within the structure (eg. composite members containing
materials having different time-dependent properties), final mean values adjusted to the load
component causing the largest stress in relatio
...
6/29(16., 6,67(1
67$1'$5'
PDM
(YURNRG3URMHNWLUDQMHOHVHQLKNRQVWUXNFLM±GHO6SORãQDSUDYLODLQ
SUDYLOD]DVWDYEH
(XURFRGH'HVLJQRIWLPEHUVWUXFWXUHV±3DUW*HQHUDO±&RPPRQUXOHV
DQGUXOHVIRUEXLOGLQJV
(XURFRGH &RQFHSWLRQ HW FDOFXO GHV VWUXFWXUHV HQ ERLV ± 3DUWLH
*HQHUDOLWHV±5qJOHVFRPPXQHVHWUqJOHVSRXUOHVEkWLPHQWV
(XURFRGH %HPHVVXQJ XQG .RQVWUXNWLRQ YRQ +RO]EDXWHQ ± 7HLO
$OOJHPHLQHV±$OOJHPHLQH5HJHOQXQG5HJHOQ
!"#%$’&() *+, +,-"*./01
(230456478/ 9: ;<=<=83>?3>@"A
BCED6D6F6GHID@J,KLMON6P@Q,ROSITUTQOVUWTWXIWZYO[\RUW[@QO]6[@^]ETY,[Z_6T‘MJOa[6YOb\QOM6c,PONO[EQ‘P%_,PELMOWP%[ELTU]ZPELMON\Q6Td]ZM6NOMEL‘P@Q,MJ
6,67(1
1$&,21$/1,892'
6WDQGDUG6,67(1VO(YURNRG3URMHNWLUDQMHOHVHQLKNRQVWUXNFLM±GHO6SORãQD
SUDYLODLQSUDYLOD]DVWDYEHLPDVWDWXVVORYHQVNHJDVWDQGDUGDLQMHLVWRYHWHQHYURSVNHPX
VWDQGDUGX(1HQ(XURFRGH'HVLJQRIWLPEHUVWUXFWXUHV±3DUW*HQHUDO±&RPPRQ
UXOHVDQGUXOHVIRUEXLOGLQJV
1$&,21$/1,35('*2925
(YURSVNL VWDQGDUG (1 MH SULSUDYLO WHKQLþQL RGERU (YURSVNHJD NRPLWHMD ]D
VWDQGDUGL]DFLMR&(17&.RQVWUXNFLMVNLHYURNRGLNDWHUHJDWDMQLãWYRMHYSULVWRMQRVWL%6,
6ORYHQVNLVWDQGDUG6,67(1MHSUHYRGHYURSVNHJDVWDQGDUGD(19
SULPHUXVSRUDJOHGHEHVHGLODVORYHQVNHJDSUHYRGDYWHPVWDQGDUGXMHRGORþLOHQL]YLUQLHYURSVNL
VWDQGDUGYDQJOHãNHPMH]LNX6ORYHQVNRL]GDMRVWDQGDUGDMHSULSUDYLOWHKQLþQLRGERU6,677&.21
.RQVWUXNFLMH
=9(=$=1$&,21$/1,0,67$1'$5',
9VWDQGDUGX6,67(1SRPHQLVNOLFHYDQMHQDHYURSVNHLQPHGQDURGQHVWDQGDUGHNLMH
YNOMXþHQRYWDHYURSVNLVWDQGDUGVNOLFHYDQMHQDHQDNRYUHGQHVORYHQVNHVWDQGDUGHQSU
(1SRPHQL6,67(1
1$&,21$/1,'2'$7(.
9VNODGXVVWDQGDUGRP(1ERSULSUDYOMHQQDFLRQDOQLGRGDWHNNVWDQGDUGX6,67(1
1DFLRQDOQL GRGDWHN YVHEXMH DOWHUQDWLYQH SRVWRSNH YUHGQRVWL LQ SULSRURþLOD ]D UD]UHGH ]
RSRPEDPLNLNDåHMRNMHVHODKNRXYHOMDYLQDFLRQDOQDL]ELUD=DWRERQDFLRQDOQLGRGDWHN6,67(1
$YVHERYDOQDFLRQDOQRGRORþHQHSDUDPHWUHNLMLKMHWUHEDXSRUDELWLSULSURMHNWLUDQMXVWDYELQ
JUDGEHQLKLQåHQLUVNLKREMHNWRYNLERGR]JUDMHQLY5HSXEOLNL6ORYHQLML
1DFLRQDOQDL]ELUDMHY6,67(1GRYROMHQDY
3
3
3
35('+2'1$,='$-$
6,67(19 (XURFRGH3URMHNWLUDQMHOHVHQLKNRQVWUXNFLM±'HO6SORãQD
SUDYLODLQSUDYLOD]DVWDYEH
2320%(
± 3RYVRG NMHU VH Y EHVHGLOX VWDQGDUGD XSRUDEOMD L]UD] ³HYURSVNL VWDQGDUG´ Y
6,67(1WRSRPHQL³VORYHQVNLVWDQGDUG´
,,
6,67(1
± 1DFLRQDOQLXYRGLQQDFLRQDOQLSUHGJRYRUQLVWDVHVWDYQLGHOVWDQGDUGD
± 7DQDFLRQDOQLGRNXPHQWMHLVWRYHWHQ(1LQMHREMDYOMHQ]GRYROMHQMHP
&(1
5XHGH6WDVVDUW
%UXVHOM
%HOJLMD
± 7KLVQDWLRQDOGRFXPHQWLVLGHQWLFDOZLWK(1DQGLVSXEOLVKHGZLWKWKHSHUPLVVLRQRI
&(1
5XHGH6WDVVDUW
%UX[HOOHV
%HOJLXP
,,,
6,67(1
3UD]QDVWUDQ
,9
(95236.,67$1'$5' (1
(8523($167$1'$5'
1250((8523e(11(
(8523b,6&+(1250 1RYHPEHU
e!"(23fgh i&(%jk*+O+,-
6ORYHQVNDL]GDMD
(YURNRG3URMHNWLUDQMHOHVHQLKNRQVWUXNFLM±GHO6SORãQDSUDYLODLQSUDYLOD
]DVWDYEH
(XURFRGH'HVLJQRIWLPEHU (XURFRGH&RQFHSWLRQHW (XURFRGH%HPHVVXQJXQG
VWUXFWXUHV±3DUW*HQHUDO± FDOFXOGHVVWUXFWXUHVHQERLV± .RQVWUXNWLRQYRQ+RO]EDXWHQ
&RPPRQUXOHVDQGUXOHVIRU 3DUWLH*HQHUDOLWHV± 7HLO$OOJHPHLQHV±
EXLOGLQJV 5qJOHVFRPPXQHVHWUqJOHV $OOJHPHLQH5HJHOQXQG5HJHOQ
SRXUOHVEkWLPHQWV
7DHYURSVNLVWDQGDUGMH&(1VSUHMHODSULOD
ýODQL&(1PRUDMRL]SROQMHYDWLQRWUDQMHSUHGSLVH&(1&(1(/(&VNDWHULPMHSUHGSLVDQRGDPRUDELWL
WD VWDQGDUG EUH] NDNUãQLKNROL VSUHPHPE VSUHMHW NRW QDFLRQDOQL VWDQGDUG 1DMQRYHMãL VH]QDPL WHK
QDFLRQDOQLKVWDQGDUGRY]QMLKRYLPLELEOLRJUDIVNLPLSRGDWNLVHQD]DKWHYRODKNRGRELMRSUL&HQWUDOQHP
VHNUHWDULDWXDOLNDWHULNROLþODQLFL&(1
7DHYURSVNLVWDQGDUGREVWDMDYWUHKL]YLUQLKL]GDMDKDQJOHãNLIUDQFRVNLLQQHPãNL,]GDMHYGUXJLK
MH]LNLKNLMLKþODQLFH&(1QDODVWQRRGJRYRUQRVWSUHYHGHMRLQL]GDMRWHUSULMDYLMRSUL8SUDYQHPFHQWUX
&(1YHOMDMRNRWXUDGQHL]GDMH
ýODQL&(1 VRQDFLRQDOQL RUJDQL ]DVWDQGDUGH$YVWULMH %HOJLMH&LSUD ýHãNHUHSXEOLNH 'DQVNH
(VWRQLMH)LQVNH)UDQFLMH*UþLMH,VODQGLMH,UVNH,WDOLMH/DWYLMH/LWYH /XNVHPEXUJD0DGåDUVNH
0DOWH1HPþLMH1L]R]HPVNH1RUYHãNH3ROMVNH3RUWXJDOVNH6ORYDãNH6ORYHQLMHâSDQLMHâYHGVNH
âYLFHLQ=GUXåHQHJDNUDOMHVWYD
&(1
(YURSVNLNRPLWH]DVWDQGDUGL]DFLMR
(XURSHDQ&RPPLWWHHIRU6WDQGDUGL]DWLRQ
&RPLWp(XURSpHQGH1RUPDOLVDWLRQ
(XURSlLVFKHV.RPLWHHIU1RUPXQJ
#9:0=@/ 9=9d-#l3<%9//9mno+,*iol/04
BgCEDZD,prqstJ,uO[ZRUWQ6T_IP\[ON,WM@^ROSITv\wZ^[ONET_R,MN6RIP%]@^c,[ONOP\xOL[@Q6T_OP\qstJaPOyJIM6YOQO[ESd[2st8H,z6zZ{OGHUGH6|CZDZD,p}s
6,67(1
96(%,1$ 6WUDQ
3UHGJRYRU
6SORãQR
3RGURþMHXSRUDEH
3RGURþMHXSRUDEH(1
3RGURþMHXSRUDEH(1
=YH]D]GUXJLPLVWDQGDUGL
3UHGSRVWDYNH
5D]OLNRYDQMHPHGQDþHOLLQSUDYLOL]DXSRUDER
,]UD]LLQGHILQLFLMH
6SORãQR
'RGDWQLL]UD]LLQGHILQLFLMHXSRUDEOMHQHYWHPVWDQGDUGX
6LPEROLXSRUDEOMHQLY(1
2VQRYHSURMHNWLUDQMD
=DKWHYH
7HPHOMQH]DKWHYH
9RGHQMH]DQHVOMLYRVWL
3URMHNWQDåLYOMHQMVNDGREDLQWUDMQRVW
1DþHODSURMHNWLUDQMDSRPHWRGLPHMQLKVWDQM
6SORãQR
0HMQDVWDQMDQRVLOQRVWL
0HMQDVWDQMDXSRUDEQRVWL
7HPHOMQHVSUHPHQOMLYNH
9SOLYLLQYSOLYLRNROMD
6SORãQR
5D]UHGLWUDMDQMDREWHåEH
5D]UHGLXSRUDEQRVWL
/DVWQRVWLPDWHULDORYLQSURL]YRGRY
9SOLYLWUDMDQMDREWHåEHLQYODJHQDWUGQRVW
9SOLYLWUDMDQMDREWHåEHLQYODJHQDGHIRUPDFLMH
3UHYHUMDQMH]PHWRGRGHOQLKIDNWRUMHY
3URMHNWQHYUHGQRVWLODVWQRVWLPDWHULDORY
3URMHNWQHYUHGQRVWLJHRPHWULMVNLKSRGDWNRY
3URMHNWQDQRVLOQRVW
3UHYHUMDQMHVWDWLþQHJDUDYQRWHåMD(48
/DVWQRVWLPDWHULDORY
6SORãQR
7UGQRVWQLLQWRJRVWQLSDUDPHWUL
=YH]HPHGQDSHWRVWPLLQGHIRUPDFLMDPL
0RGLILNDFLMVNLIDNWRUML]DWUGQRVW]DUD]OLþQHUD]UHGHXSRUDEQRVWLLQWUDMDQMDREWHåEH
6,67(1
0RGLILNDFLMVNLIDNWRUML]DGHIRUPDFLMH]DUD]OLþQHUD]UHGHXSRUDEQRVWL
0DVLYQLOHV
/HSOMHQLODPHOLUDQLOHV
6ORMQDWLIXUQLUQLOHV/9/
/HVQHSORãþH
/HSLOD
.RYLQVNDYH]QDVUHGVWYD
7UDMQRVW
2GSRUQRVWSURWLELRORãNLPãNRGOMLYFHP
.RUR]LMVNDRGSRUQRVW
2VQRYHDQDOL]HNRQVWUXNFLM
2VQRYH
(OHPHQWL
=YH]H
6HVWDYL
6SORãQR
2NYLUQHNRQVWUXNFLMH
3RHQRVWDYOMHQDDQDOL]DSDOLþLM]åHEOMDQLPLSORãþDPLMHåHYNDPL
5DYQLQVNLRNYLULLQORNRYL
0HMQDVWDQMDQRVLOQRVWL
3URMHNWLUDQMHSUHþQLKSUHUH]RY]QDSHWRVWPLYHQLJODYQLVPHUL
6SORãQR
1DWHJY]SRUHGQR]YODNQL
1DWHJSUDYRNRWQRQDYODNQD
7ODNY]SRUHGQR]YODNQL
7ODNSUDYRNRWQRQDYODNQD
8SRJLE
6WULJ
7RU]LMD
3URMHNWLUDQMHSUHþQLKSUHUH]RYVNRPELQDFLMRQDSHWRVWL
6SORãQR
7ODþQHQDSHWRVWLSRGNRWRPJOHGHQDYODNQD
.RPELQDFLMDXSRJLEDLQQDWHJD
.RPELQDFLMDXSRJLEDLQWODND
6WDELOQRVWHOHPHQWRY
6SORãQR
7ODþQRDOLWODþQRXSRJLEQRREUHPHQMHQLVWHEUL
8SRJLEQRDOLXSRJLEQRWODþQRREUHPHQMHQLQRVLOFL
3URMHNWLUDQMHSUHþQLKSUHUH]RYHOHPHQWRYVVSUHPHQOMLYLPSUHþQLPSUHUH]RPDOL
XNULYOMHQRREOLNR
6SORãQR
6,67(1
5DYQLHQRNDSQLQRVLOFL
5DYQLGYRNDSQLQRVLOFLXNULYOMHQLQRVLOFLLQGYRNDSQLQRVLOFL]XNULYOMHQLPVSRGQMLPURERP
VHGODVWLQRVLOFL
=DUH]DQLHOHPHQWL
6SORãQR
1RVLOFL]DUH]DQLSULSRGSRUL
1RVLOQRVWVLVWHPD
0HMQDVWDQMDXSRUDEQRVWL
=GUVLYVWLNLK
0HMQHYUHGQRVWLXSRJLENRYQRVLOFHY
9LEUDFLMH
6SORãQR
9LEUDFLMH]DUDGLGHORYDQMDVWURMHY
6WDQRYDQMVNLVWURSRYL
=YH]HVNRYLQVNLPLYH]QLPLVUHGVWYL
6SORãQR
=DKWHYH]DYH]QDVUHGVWYD
=YH]H]YHþMLPãWHYLORPYH]QLKVUHGVWHY
9HþVWULåQH]YH]H
3ULNOMXþQHVLOHSRGNRWRPJOHGHQDYODNQD
,]PHQLþQHSULNOMXþQHVLOHQDWHJ±WODN
%RþQDQRVLOQRVWNRYLQVNLKSDOLþDVWLKYH]QLKVUHGVWHY
6SORãQR
=YH]HOHVOHVLQOHVQDSORãþDOHV
=YH]HMHNOROHV
äHEOMDQH]YH]H
%RþQRREUHPHQMHQLåHEOML
6SORãQR
äHEOMDQH]YH]HOHVOHV
äHEOMDQH]YH]HREORåQDSORãþDOHV
äHEOMDQH]YH]HMHNOROHV
2VQRREUHPHQMHQLåHEOML
.RPELQLUDQRERþQRLQRVQRREUHPHQMHQLåHEOML
=YH]HVVSRQNDPL
9LMDþHQH]YH]H
%RþQRREUHPHQMHQLYLMDNL
6SORãQRLQYLMDþHQH]YH]HOHVOHV
9LMDþHQH]YH]HREORåQDSORãþDOHV
9LMDþHQH]YH]HMHNOROHV
2VQRREUHPHQMHQLYLMDNL
=YH]HVSDOLþDVWLPLPR]QLNL
6,67(1
=YH]H]OHVQLPLYLMDNL
%RþQRREUHPHQMHQLOHVQLYLMDNL
2VQRREUHPHQMHQLOHVQLYLMDNL
.RPELQLUDQRERþQRLQRVQRREUHPHQMHQLOHVQLYLMDNL
=YH]HVNRYLQVNLPLMHåDVWLPLSORãþDPL
6SORãQR
*HRPHWULMDSORãþ
7UGQRVWQHODVWQRVWLSORãþ
%RþQHVLGUQHWUGQRVWLMHåDVWLKSORãþ
'RORþLWHYQRVLOQRVWL]YH]H
%RþQHVLGUQHQRVLOQRVWLMHåDVWLKSORãþ
1RVLOQRVWSORãþH
=YH]H]REURþDVWLPLLQSORãþDWLPLPR]QLNLNRQHNWRUML
=YH]H]]REDWLPLPR]QLNL
.RPSRQHQWHLQVHVWDYL
.RPSRQHQWH
/HSOMHQLQRVLOFLVWDQNLPLVWRMLQDPL
/HSOMHQLQRVLOFLVWDQNLPLSDVQLFDPL
1RVLOFL]PHKDQVNLPLYH]QLPLVUHGVWYL
6WHEUL]PHKDQVNLPLYH]QLPLVUHGVWYLLQOHSOMHQLVWHEUL
6HVWDYL
3DOLþMD
3DOLþMDVNRYLQVNLPLMHåDVWLPLSORãþDPL
3ORVNRYQLVWUHãQLLQVWURSQLHOHPHQWL
6SORãQR
3RHQRVWDYOMHQDDQDOL]DSORVNRYQLKVWUHãQLKLQVWURSQLKHOHPHQWRY
6WHQVNLHOHPHQWL
6SORãQR
3RHQRVWDYOMHQDDQDOL]DVWHQVNLKHOHPHQWRY±PHWRGD$
3RHQRVWDYOMHQDDQDOL]DVWHQVNLKHOHPHQWRY±PHWRGD%
=DKWHYH]DVHVWDYHVWHQLQSDQHORYNLVHODKNRUDþXQDMRVSRHQRVWDYOMHQR
DQDOL]R
5DþXQVNLSRVWRSHN
%RþQR]DYDURYDQMH
6SORãQR
3RVDPH]QLWODþQRREUHPHQMHQLHOHPHQWL
%RþQR]DYDURYDQMHVLVWHPRYQRVLOFHYDOLSDOLþLM
.RQVWUXNFLMVNH]DKWHYHLQQDG]RU
6SORãQR
0DWHULDOL
/HSOMHQLVWLNL
6,67(1
=YH]H]PHKDQVNLPLYH]QLPLVUHGVWYL
6SORãQR
äHEOML
9LMDNLLQSRGORåNH
3DOLþDVWLPR]QLNL
/HVQLYLMDNL
0RQWDåD
3UHYR]LQSRVWDYLWHY
1DG]RU
3RVHEQDSUDYLOD]DSORVNRYQHNRQVWUXNFLMH
6WUHãQLLQVWURSQLHOHPHQWL
6WHQVNLHOHPHQWL
3RVHEQDSUDYLOD]DSDOLþMDVNRYLQVNLPLMHåDVWLPLSORãþDPL
,]GHODYD
3RVWDYLWHY
'RGDWHN$LQIRUPDWLYQL%ORNRYQDVWULåQDSRUXãLWHYSULPR]QLþHQLK]YH]DKMHNOROHV
'RGDWHN%LQIRUPDWLYQL1RVLOFL]PHKDQVNLPLYH]QLPLVUHGVWYL
%3RHQRVWDYOMHQDDQDOL]D
%3UHþQLSUHUH]L
%3UHGSRVWDYNH
%5D]PLNL
%3RYHVL]DUDGLXSRJLEQLKPRPHQWRY
%(IHNWLYQDXSRJLEQDWRJRVW
%1RUPDOQHQDSHWRVWL
%1DMYHþMDVWULåQDQDSHWRVW
%2EUHPHQLWHYYH]QLKVUHGVWHY]DSODWLQGLVWDQþQLNRY
'RGDWHN&LQIRUPDWLYQL6HVWDYOMHQLVWHEUL
&6SORãQR
&3UHGSRVWDYNH
&1RVLOQRVW
&6WHEUL]PHKDQVNLPLYH]QLPLVUHGVWYL
&(IHNWLYQDYLWNRVW
&2EUHPHQLWHYYH]QLKVUHGVWHY
&.RPELQLUDQDREUHPHQLWHY
&6WHEULGHOMHQLKSUHUH]RY]GLVWDQþQLNLLQ]DSODWDPL
&3UHGSRVWDYNH
&2VQDQRVLOQRVW
&2EUHPHQLWHYYH]QLKVUHGVWHY]DSODWDOLGLVWDQþQLNRY
&3UHGDOþQLVWHEUL]OHSOMHQLPLDOLåHEOMDQLPLYR]OLãþL
&3UHGSRVWDYNH
&1RVLOQRVW
6,67(1
&6WULåQHVLOH
'RGDWHN'LQIRUPDWLYQL%LEOLRJUDILMD
6,67(1
3UHGJRYRU
7DHYURSVNLVWDQGDUG(1MHSULSUDYLOWHKQLþQLRGERU&(17&.RQVWUXNFLMVNLHYURNRGL
NDWHUHJDVHNUHWDULDWMHQD%6,
7DHYURSVNLVWDQGDUGPRUDSRVWDWLQDFLRQDOQLVWDQGDUG]REMDYRLVWRYHWQHJDEHVHGLODDOL]XUDGQR
UD]JODVLWYLMRQDMSR]QHMHGRPDMDQDFLRQDOQLVWDQGDUGLNLVR]QMLPYQDVSURWMXSDPRUDMRELWL
XPDNQMHQLQDMSR]QHMHPDUFD
7DGRNXPHQWQDGRPHãþD(19
&(17&MHRGJRYRUHQ]DYVHNRQVWUXNFLMVNHHYURNRGH
3RGRORþLOLKQRWUDQMLKSUHGSLVRY&(1&(1(/(&VRWDHYURSVNLVWDQGDUGGROåQHVSUHMHWLQDFLRQDOQH
RUJDQL]DFLMH]DVWDQGDUGHQDVOHGQMLKGUåDY$YVWULMH%HOJLMH&LSUDýHãNHUHSXEOLNH'DQVNH(VWRQLMH
)LQVNH )UDQFLMH *UþLMH ,VODQGLMH ,UVNH ,WDOLMH /DWYLMH /LWYH /XNVHPEXUJD 0DGåDUVNH 0DOWH
1HPþLMH1L]R]HPVNH1RUYHãNH3ROMVNH3RUWXJDOVNH6ORYDãNH6ORYHQLMHâSDQLMHâYHGVNHâYLFH
LQ=GUXåHQHJDNUDOMHVWYD
2]DGMHSURJUDPDHYURNRGRY
.RPLVLMD(YURSVNLKVNXSQRVWLVHMHYOHWXQDSRGODJLþOHQD5LPVNHSRJRGEHRGORþLODGD
VSUHMPHDNFLMVNLSURJUDPQDSRGURþMXJUDGEHQLãWYD&LOMSURJUDPDMHELORGVWUDQLWLWHKQLþQHRYLUHSUL
WUJRYDQMXLQXVNODGLWLWHKQLþQHVSHFLILNDFLMH
=QRWUDMWHJDSURJUDPDMH.RPLVLMDVSRGEXGLODSULSUDYRQL]DXVNODMHQLKWHKQLþQLKSUDYLO]DSURMHNWLUDQMH
JUDGEHQLK REMHNWRY NL EL VH VSUYD XSRUDEOMDOD NRW DOWHUQDWLYD UD]OLþQLP SUDYLORP YHOMDYQLP Y
SRVDPH]QLKGUåDYDKþODQLFDKNRQþQRSDELMLKQDGRPHVWLODYFHORWL
.RPLVLMDMHVSRPRþMRXSUDYQHJDRGERUDYNDWHUHPVRELOLSUHGVWDYQLNLGUåDYþODQLFSHWQDMVWOHWYRGLOD
UD]YRMSURJUDPDHYURNRGRYNDWHUHJDUH]XOWDWMHELODSUYDJHQHUDFLMDHYURNRGRYYRVHPGHVHWLKOHWLK
VWROHWMD
/HWDVRVH.RPLVLMDLQGUåDYHþODQLFH(8LQ()7$RGORþLOHGDQDSRGODJLGRJRYRUD~PHG
.RPLVLMRLQ&(1]YHþSRREODVWLOLSUHQHVHMRSULSUDYRLQREMDYOMDQMHHYURNRGRYQD&(1GDELHYURNRGL
YSULKRGQMHLPHOLVWDWXVVWDQGDUGRY(17RMHHYURNRGHGHMDQVNRSRYH]DOR]GRORþEDPLYVHKGLUHNWLY
6YHWD LQDOL GRORþEDPL .RPLVLMH NL VH QDQDãDMR QD HYURSVNH VWDQGDUGH QSU 'LUHNWLYD 6YHWD
(*6RJUDGEHQLKSURL]YRGLK&3'LQ'LUHNWLYH6YHWD(*6(*6WHU(*6
RMDYQLKGHOLKLQVWRULWYDKWHUXVWUH]QHGLUHNWLYH()7$NLVRELOHVSUHMHWH]DXYHOMDYLWHYQRWUDQMHJD
WUJD
3URJUDPNRQVWUXNFLMVNLKHYURNRGRYREVHJDQDVOHGQMHVWDQGDUGHNLLPDMRQDVSORãQRYHþGHORY
(1(YURNRG2VQRYHSURMHNWLUDQMDNRQVWUXNFLM
(1(YURNRG9SOLYLQDNRQVWUXNFLMH
(1(YURNRG3URMHNWLUDQMHEHWRQVNLKNRQVWUXNFLM
(1(YURNRG3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLM
(1(YURNRG3URMHNWLUDQMHVRYSUHåQLKMHNOHQLKLQEHWRQVNLKNRQVWUXNFLM
(1(YURNRG3URMHNWLUDQMHOHVHQLKNRQVWUXNFLM
(1(YURNRG3URMHNWLUDQMH]LGDQLKNRQVWUXNFLM
(1(YURNRG*HRWHKQLþQRSURMHNWLUDQMH
5f37%f<=/=4<&5/=;/l/ 9= =&5/=ff<=9E4f8/ 933==4i.&(21=5=
~
5 35iE4E9=Z4/95=3=;g= =/=;8Z4E95g.do2?&(\!1I
6,67(1
(1(YURNRG3URMHNWLUDQMHSRWUHVQRRGSRUQLKNRQVWUXNFLM
(1(YURNRG3URMHNWLUDQMHDOXPLQLMVNLKNRQVWUXNFLM
(YURNRGLSUL]QDYDMRRGJRYRUQRVWSULVWRMQLKREODVWLYYVDNLGUåDYLþODQLFLLQMLPGRSXãþDMRSUDYLFRGD
YUHGQRVWLSRYH]DQH]YDUQRVWMRGRORþDMRQDQDFLRQDOQLUDYQLRGGUåDYHGRGUåDYHUD]OLþQR
6WDWXVLQSRGURþMHYHOMDYQRVWLHYURNRGRY
ýODQLFH(8LQ()7$SUL]QDYDMRHYURNRGHNRWUHIHUHQþQHGRNXPHQWH]DQDVOHGQMHQDPHQH
± NRWQDþLQ]DGRND]RYDQMHXVWUH]QRVWLVWDYELQJUDGEHQLKLQåHQLUVNLKREMHNWRYELVWYHQLP]DKWHYDP
'LUHNWLYH6YHWD(*6]ODVWLELVWYHQL]DKWHYLãWª0HKDQVNDRGSRUQRVWLQVWDELOQRVW©LQ
ELVWYHQL]DKWHYLãWª9DUQRVWSULSRåDUX©
± NRWSRGODJR]DVSHFLILNDFLMRSRJRGE]DJUDGQMRJUDGEHQLKREMHNWRYLQVSUHPOMDMRþHLQåHQLUVNH
VWRULWYH
± NRWRNYLU]DSULSUDYRKDUPRQL]LUDQLKWHKQLþQLKVSHFLILNDFLM]DJUDGEHQHSURL]YRGH(1LQ(7$
.MHUVHHYURNRGLQDQDãDMRQDJUDGEHQHREMHNWHVRQHSRVUHGQRSRYH]DQL]UD]ODJDOQLPLGRNXPHQWL
QDYHGHQLPLYþOHQX'LUHNWLYHRJUDGEHQLKSURL]YRGLK&3'þHSUDYMHQMLKRYDQDUDYDGUXJDþQDRG
QDUDYHKDUPRQL]LUDQLKVWDQGDUGRY]DSURL]YRGH=DWRPRUDMRWHKQLþQLRGERUL&(1LQDOLGHORYQH
VNXSLQH (27$ NL SULSUDYOMDMR WHKQLþQH VSHFLILNDFLMH ]D SURL]YRGH XSRãWHYDWL WHKQLþQH YLGLNH
HYURNRGRYGDELVWHPGRVHJOLSRSROQRXVNODMHQRVWWHKWHKQLþQLKVSHFLILNDFLM]HYURNRGL
(YURNRGL YVHEXMHMR VNXSQD SUDYLOD ]D YVDNGDQMR UDER SUL SURMHNWLUDQMX RELþDMQLK LQ LQRYDWLYQLK
NRQVWUXNFLMNRWFHORWHDOLSRVDPH]QLKNRQVWUXNFLMVNLKGHORY(YURNRGLQHYVHEXMHMRSRVHEQLKGRORþLO]D
QHQDYDGQHREOLNHNRQVWUXNFLMDOLQHQDYDGQHSURMHNWQHSRJRMH9WHKSULPHULKMHSRWUHEQRVRGHORYDQMH
]L]YHGHQFL
1DFLRQDOQHL]GDMHHYURNRGRY
1DFLRQDOQDL]GDMDHYURNRGDYVHEXMHSROHJFHORWQHJDEHVHGLODHYURNRGD]YVHPLGRGDWNLNRWJDMH
REMDYLO&(1WXGLPRUHELWQRQDFLRQDOQRQDVORYQLFRQDFLRQDOQLSUHGJRYRULQQDFLRQDOQLGRGDWHN
1DFLRQDOQLGRGDWHNODKNRYVHEXMHOHSRGDWNHRSDUDPHWULKNLVRYHYURNRGXQDYHGHQLNRWQDFLRQDOQR
GRORþHQL SDUDPHWUL 1'3 7L SDUDPHWUL YHOMDMR ]D SURMHNWLUDQMH NRQVWUXNFLM VWDYE LQ JUDGEHQLK
LQåHQLUVNLKREMHNWRYYGUåDYLYNDWHULERGR]JUDMHQL7RVR
± YUHGQRVWLLQDOLUD]UHGLNMHUHYURNRGLGRSXãþDMRDOWHUQDWLYH
± YUHGQRVWLNMHUHYURNRGLQDYDMDMROHVLPEROH
± SRGDWNLVSHFLILþQL]DGUåDYRJHRJUDIVNLSRGQHEQLLWQNRWMHQSUNDUWDVQHJD
± SRVWRSHNþHMLKHYURNRGGRSXãþDYHþ
± RGORþLWHYRXSRUDELLQIRUPDWLYQLKGRGDWNRY
± QDSRWNHRGRGDWQLKLQIRUPDFLMDKNLQLVRYQDVSURWMX]HYURNRGL]DSRPRþXSRUDEQLNX
e@E8@\78¡¢<¢ £Z⁄E@g¥EƒE@⁄@g⁄¡@¥@§ £ƒ8E #E£ƒZE¡£¥@£¡@£ Z¤gEi' ¡£“⁄@¥@'@6E⁄£
¥6⁄@¥E?¢ £Z⁄@£«£O¥EƒEE⁄ ‹£Z£‹'@ ¢ Z££O¥E‹' ¡£' ¡E⁄ ?ƒ ¡« £¥@£¡ £ƒ‹›fi7£#@#¡£fl#›–%†\‡›–
·
@„”Z E¡@£¥@£¡@£¢ £Z⁄@@8¥EƒE⁄88'@,£¥¡¥E@⁄£ƒ £@ £ƒ8'@§g¡ @£⁄£¡@¥@¡@⁄g£ Z '@,¥EƒE@⁄@6£
¥E⁄@ Z#¥EƒE@⁄ ¤@Z ¡Z‹'@¡¢ »
¢E„”Z@¥E@£}@ …¥E…'@⁄@¥@E⁄ ‰¡@¥¡ E⁄…£6 '@,‹¥E ƒE⁄@6£\ƒ £@£‹£\'Efl@£¿£Z fl@£ ‹£¤' ¡#)¡@ …£
Z@¥E@⁄¤6ƒ £@@?' ¡E⁄ £¥E?' ¡6O£¡,?£'@»
fl6„¢ ££E ' ¡¢ £ZZ@'§¥E‹' ¡£' ¡@⁄?ƒ@¡« £¥@£¡ £ƒ#Z@ ¡E⁄£O@¡ £fl2¥E«@⁄¡'@@Z#ƒ £@#@§I
›⁄¡ Z£E£O« 6 EZ‹'@¢ }⁄ §‹' ¡£E¢£6⁄ £,¥EƒE⁄£6`6#£@?' ¡£E¢ £Z⁄@£O¥@ ƒE@⁄£O`66¶
6,67(1
=YH]HPHGHYURNRGLLQKDUPRQL]LUDQLPLWHKQLþQLPLVSHFLILNDFLMDPL(1LQ(7$]DSURL]YRGH
+DUPRQL]LUDQHWHKQLþQHVSHFLILNDFLMH]DWHKQLþQHSURL]YRGHPRUDMRELWLXVNODMHQHVWHKQLþQLPLSUDYLOL
]DREMHNWH´1DGDOMHPRUDMRQDYRGLODSRYH]DQD]R]QDþHYDQMHP&(JUDGEHQLKSURL]YRGRYNLVH
VNOLFXMHMRQDHYURNRGHQDWDQþQRGRORþLWLNDWHUHQDFLRQDOQRSUHGSLVDQHSDUDPHWUHXSRãWHYDMR
'RGDWQHLQIRUPDFLMHR(1
(1YVHEXMHQDþHODLQ]DKWHYH]DYDUQRVWXSRUDEQRVWLQWUDMQRVWNRQVWUXNFLM3RGODJD]DQMMH
NRQFHSWPHMQLKVWDQMYSRYH]DYL]PHWRGRGHOQLKIDNWRUMHY
(1 VH ]D SURMHNWLUDQMH QRYLK NRQVWUXNFLM XSRUDEOMD VNXSDM ] HYURNRGRP (1 LQ
XVWUH]QLPLGHOLHYURNRGD(1
âWHYLOþQHYUHGQRVWLGHOQLKIDNWRUMHYLQGUXJLKSDUDPHWURY]DQHVOMLYRVWLVRSULSRURþHQHNRWWHPHOMQH
YUHGQRVWL NL ]DJRWDYOMDMR VSUHMHPOMLYR VWRSQMR ]DQHVOMLYRVWL ,]EUDQH VR ELOH RE SUHGSRVWDYNL GD
NRQVWUXNFLMRJUDGLMRXVSRVREOMHQLGHODYFLLQGDMH]DJRWRYOMHQRYRGHQMHNDNRYRVWLREMHNWRYýHGUXJL
WHKQLþQLRGERUL&(1XSRUDEOMDMR(1NRWWHPHOMQLGRNXPHQWPRUDMRXSRUDEOMDWLLVWHWHPHOMQH
YUHGQRVWL
1DFLRQDOQLGRGDWHNN(1
7DVWDQGDUGSRGDMDDOWHUQDWLYQHSRVWRSNHYUHGQRVWLLQSULSRURþLOD]RSRPEDPLNLNDåHMRNMHVHODKNR
XYHOMDYL QDFLRQDOQD L]ELUD =DWR QDM LPDMR QDFLRQDOQH L]GDMH (1 QDFLRQDOQL GRGDWHNNL
YVHEXMH YVH QDFLRQDOQR GRORþHQH SDUDPHWUH NL MLK MH WUHED XSRUDELWL SUL SURMHNWLUDQMX VWDYE LQ
JUDGEHQLKLQåHQLUVNLKREMHNWRYNLERGR]JUDMHQLYWHMGUåDYL
1DFLRQDOQDL]ELUDMHY(1GRYROMHQDYQDVOHGQMLKSRGSRJODYMLK
3 5D]YUVWLWHYREWHåEYUD]UHGHWUDMDQMDREWHåEH
3 5D]YUVWLWHYNRQVWUXNFLMYUD]UHGHXSRUDEQRVWL
3 'HOQLIDNWRUML]DODVWQRVWLPDWHULDORY
5DYQLGYRNDSQLQRVLOFLXNULYOMHQLQRVLOFLLQGYRNDSQLQRVLOFL]XNULYOMHQLPVSRGQMLPURERP
VHGODVWLQRVLOFL
0HMQHYUHGQRVWLXSRJLENRY
0HMQHYUHGQRVWL]DYLEUDFLMH
äHEOMDQH]YH]HOHVOHVSUDYLOD]DåHEOMHYNRQþQHPYODNQX
äHEOMDQH]YH]HOHVOHVQDUD]FHSREþXWOMLYHYUVWHOHVD
3URMHNWQDPHWRGD]DSDQHOQHVWHQH
0RGLILNDFLMVNLIDNWRUMLSULERþQHP]DYDURYDQMXVLVWHPRYQRVLOFHYDOLSDOLþLM
*UDGQMDSDOLþLMVNRYLQVNLPLMHåDVWLPLSORãþDPLQDMYHþMDXVORþLWHY
*UDGQMDSDOLþLMVNRYLQVNLPLMHåDVWLPLSORãþDPLQDMYHþMHRGVWRSDQMHRGQDYSLþQLFH
´†#ZE««£#@Z¶«iZE@£Oˆ¶¤ˆ¶?£«˜¶?£¥‹¯rfi˘d
6,67(1
6SORãQR
3RGURþMHXSRUDEH
3RGURþMHXSRUDEH(1
3 (1MHQDPHQMHQSURMHNWLUDQMXVWDYELQJUDGEHQLKLQåHQLUVNLKREMHNWRYYOHVXPDVL
...
SIST EN 1995-1-1:2005는 목재 구조 설계에 관한 유럽 코드인 Eurocode 5의 첫 번째 부분으로, 건물 및 토목 공사를 위한 일반 규칙과 특정 규칙을 제공합니다. 이 표준은 목재 및 목재 기반 패널로 제작된 구조물에 대해 포괄적인 구조 설계를 가능하게 하는 데 중점을 두고 있습니다. 특히 이 표준은 콘크리트, 강철 등 다른 재료와의 복합 구조에 대해서도 적용할 수 있는 일반적인 규칙을 제시하고 있습니다. SIST EN 1995-1-1:2005의 강점은 목재 구조물에 대한 통일된 기준을 제공함으로써 다양한 설계 접근 방식을 지원한다는 점입니다. 이는 건축가와 엔지니어들이 목재를 사용할 때 일관된 품질과 안전성을 확보할 수 있도록 도와줍니다. 또한, 이 표준은 국내외 규제를 충족시키는 데 필요한 구체적인 기술적 요소들을 담고 있어, 실제 설계 과정에서 유용하게 활용될 수 있습니다. 또한, SIST EN 1995-1-1:2005는 지속 가능한 건축을 위한 목재 사용의 중요성을 강조하며, 현대 건축 설계의 요구에 잘 부합하는 규정을 포함하고 있습니다. 이 문서를 통해 설계자들은 목재를 사용한 구조물의 안정성뿐만 아니라 환경적 이점도 고려한 안전한 건축 솔루션을 도출할 수 있게 됩니다. 결론적으로, SIST EN 1995-1-1:2005는 목재 구조물 설계를 위한 필수적인 지침서를 제공하며, 건축 및 토목 분야에서 목재 사용의 표준화를 더욱 촉진하는 중요한 역할을 하고 있습니다. 이 표준 문서는 목재가 현대 건축에서 차지하는 중요성을 잘 보여주며, 앞으로의 설계 과정에서도 지속 가능한 발전에 기여할 것입니다.
SIST EN 1995-1-1:2005は、木材構造物の設計に関する重要な指針を提供する標準規格です。この標準は、木材や木質パネルを使用した建物および土木工事の構造設計に関する一般的なルールを示しており、特にコンクリートやスチールなどの他の材料と複合的に使用される場合にも対応しています。 この標準の強みは、木材構造の設計において必要となる詳細なルールが明確に定義されている点です。これにより設計者は、木材の特性を最大限に活かしつつ、安全かつ持続可能な建物を創出することが可能になります。また、木材の強度や耐久性に関する基準が明示されているため、信頼性の高い設計を行うための重要なリソースとなっています。 さらに、SIST EN 1995-1-1:2005は、木材構造物に特有の設計課題に対しても適切なガイダンスを提供しています。これにより、設計者は建築基準法を遵守しつつ、革新的で実用的なデザインを行うことができます。この標準の適用は、地域や環境に応じた柔軟な設計を促進するための一助にもなります。 建設業界が持続可能性と環境への配慮を求める中で、木材の利用が増加しています。SIST EN 1995-1-1:2005は、このようなニーズに応えるため、木材を用いた建物の設計において不可欠なツールとなっています。この標準を参照することで、設計者は合理的で効率的な木材構造物の設計を進めることができ、長期的な信頼性を確保することができます。
The SIST EN 1995-1-1:2005 standard is an essential document that provides comprehensive guidelines for the design of timber structures. The scope of this standard encompasses the general rules for the structural design of buildings and civil engineering works made of timber and/or wood-based panels, which can be used either singly or in conjunction with other materials like concrete and steel. This wide-ranging applicability emphasizes its importance in modern construction practices, where composite materials are increasingly being utilized. One of the standout strengths of the SIST EN 1995-1-1:2005 standard is its detailed approach to structural design. It not only sets forth common rules for timber structures but also offers specific regulations tailored for buildings. This dual focus ensures that professionals in the field can find relevant guidance depending on the complexity and nature of their projects. Furthermore, the standard is rooted in a harmonized approach, which facilitates consistency and reliability in design methodologies across Europe. The relevance of this standard cannot be overstated, especially as the use of timber and wood-based materials continues to rise in the construction industry. Its guidelines support sustainability initiatives by promoting the use of renewable resources while ensuring that safety and performance standards are maintained. By aligning with Eurocode principles, the SIST EN 1995-1-1:2005 bolsters confidence among engineers and architects when designing structures that meet both aesthetic and functional criteria. In summary, the SIST EN 1995-1-1:2005 standard serves as a critical resource in the realm of timber structure design, providing essential rules that enhance the structural integrity, efficiency, and sustainability of buildings and civil engineering works. Its inclusive scope, detailed regulations, and alignment with contemporary construction practices make it a cornerstone document for professionals in the industry.
제목: SIST EN 1995-1-1:2005 - Eurocode 5: 나무 구조물의 설계 - Part 1-1: 일반사항 - 공통 규칙과 건물 규칙 내용: 이 유럽 표준은 날짜별 또는 날짜 없는 참조문서를 포함하고 있다. 이러한 인용 참조는 텍스트의 적절한 위치에 인용되며, 해당 출판물은 다음에 나열되어 있다. 날짜별 인용 참조에 대해서는, 이러한 출판물의 지속적인 개정이나 수정이 유럽 표준에 포함될 때만 이 유럽 표준에 적용된다. 날짜 없는 인용 참조에 대해서는 참조된 출판물의 최신판(개정 포함)이 적용된다.
The article discusses the European Standard, SIST EN 1995-1-1:2005, also known as Eurocode 5, which is focused on the design of timber structures. It includes both general rules and rules specifically for buildings. The standard incorporates provisions from other publications, and these references are cited throughout the text. Dated references are subject to subsequent amendments or revisions, which apply to the European Standard when incorporated. For undated references, the latest edition of the publication referred to applies, including any amendments.
記事のタイトル:SIST EN 1995-1-1:2005 - Eurocode 5:木造構造物の設計 - Part 1-1:一般的な事項 - 共通ルールおよび建物ルール 記事内容:この欧州規格は、他の出版物からの規定を日付付きまたは未日付の参照に含んでいます。これらの規定参照は、適切な場所で引用され、以下にリストされています。日付付き参照については、これらの出版物の後の改訂や修正が、この欧州規格に改訂または修正を経て組み込まれた場合にのみ、この欧州規格に適用されます。未日付の参照については、参照された出版物の最新版(改訂を含む)が適用されます。
この記事では、SIST EN 1995-1-1:2005、またはユーロコード5として知られる、木造構造物の設計に関するヨーロッパ標準について説明しています。これは一般的なルールと建物に関するルールを含んでいます。この標準では、他の出版物からの規定を組み込んでおり、これらの参照はテキスト内で適切な位置で引用されています。日付付きの参照文献の場合、これらの出版物の後続の改訂や修正は、改訂や修正によってこのヨーロッパ標準に組み込まれた場合にのみ、このヨーロッパ標準に適用されます。日付のない参照文献の場合、参照される出版物の最新版(改訂を含む)が適用されます。
The article discusses a European standard known as SIST EN 1995-1-1:2005 - Eurocode 5. The standard is focused on the design of timber structures, providing general rules and regulations for buildings. The standard incorporates references from other publications, whether they are dated or undated. If the references are dated, any amendments or revisions to those publications also apply to this European Standard. For undated references, the latest edition of the publication is applicable, including any amendments.
이 기사는 SIST EN 1995-1-1:2005, 즉 유로코드 5인 목조 구조물 설계를 다룬 유럽표준에 대해 설명하고 있습니다. 이는 일반 규칙과 건물을 위한 규칙을 포함하고 있습니다. 이 표준은 다른 출판물에서의 규정을 일부 포함하고 있으며, 이러한 인용문은 텍스트 내에서 적절한 위치에서 인용됩니다. 날짜별 참고문헌의 경우 이러한 출판물의 후속 개정 사항이 이 표준에 편입될 때에만 적용됩니다. 그리고 날짜가 없는 참고문헌의 경우, 해당 출판물의 최신 에디션(개정 포함)이 적용됩니다.














Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...