SIST EN IEC/IEEE 63195-1:2025
(Main)Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) - Part 1: Measurement procedure
Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) - Part 1: Measurement procedure
Identical adoption of future IEC/IEEE 63195-1 into EN IEC/IEEE 63195-1.
Bewertung der Leistungsdichte der Exposition des Menschen gegenüber hochfrequenten Feldern von drahtlosen Geräten in unmittelbarer Nähe des Kopfes und des Körpers (Frequenzbereich von 6 GHz bis 300 GHz) - Teil 1: Messverfahren
Évaluation de la densité de puissance de l'exposition humaine aux champs radiofréquences provenant de dispositifs sans fil à proximité immédiate de la tête et du corps (plage de fréquences de 6 GHz à 300 GHz) - Partie 1: Procédure de mesure
Ocenjevanje gostote moči izpostavljenosti človeka radiofrekvenčnim poljem brezžičnih naprav v neposredni bližini glave in telesa (frekvenčno območje 6 GHz do 300 GHz) - 1. del: Merilni postopek
Ta dokument določa protokole in preskusne postopke za ponovljivo in standardizirano merjenje gostote moči (PD), ki zagotavlja previdne ocene izpostavljenosti človeške glave ali telesa radiofrekvenčnim (RF) elektromagnetnim poljem (EMF), ki jih oddajajo komunikacijske naprave, z določeno merilno negotovostjo. Ti protokoli in postopki se uporabljajo za vrednotenje izpostavljenosti velike večine prebivalstva med uporabo komunikacijskih naprav, ki oddajajo radiofrekvenčno energijo in se držijo v roki ali pritrdijo na telo. Metode se uporabljajo za naprave, ki imajo lahko enega ali več oddajnikov oziroma anten in lahko delujejo s svojimi sevalnimi strukturami na razdaljah do 200 mm od človeške glave ali telesa.
Metode v tem dokumentu je mogoče uporabljati za ugotavljanje skladnosti z veljavnimi zahtevami glede največje gostote moči različnih vrst komunikacijskih naprav, ki oddajajo radiofrekvenčno energijo ter se uporabljajo v neposredni bližini glave in telesa, vključno v kombinaciji z drugimi napravami ali dodatki (npr. sponka za pas), ki oddajajo radiofrekvenčno energijo oziroma je ne oddajajo ali so vdelani v oblačila. Ti protokoli in postopki se uporabljajo v frekvenčnem območju od 6 GHz do 300 GHz.
Kategorije komunikacijskih naprav, ki oddajajo radiofrekvenčno energijo in so zajete v tem dokumentu, med drugim vključujejo mobilne telefone, radijske oddajnike v osebnih, namiznih in prenosnih računalnikih ter večpasovne naprave in naprave z več antenami.
OPOMBA 1: Preskusi sistemske validacije so določeni v dodatku B za 10 GHz, 30 GHz, 60 GHz in 90 GHz, da je zajeto frekvenčno območje od 6 GHz do 110 GHz. Dodatne validacijske antene za frekvenčno območje do 300 GHz bodo razvite v prihodnji reviziji tega dokumenta. Nadaljnja razprava o utemeljitvah je podana v dodatku I. OPOMBA 2: Protokole in preskusne postopke v tem dokumentu je mogoče prilagoditi tudi za oceno izpostavljenosti zaradi nekomunikacijskih naprav, ki delujejo v neposredni bližini glave in telesa, vendar te naprave ne spadajo na področje uporabe tega dokumenta.
OPOMBA 3: V zvezi z oceno kombinirane izpostavljenosti sočasnim oddajnikom, ki delujejo pri frekvencah pod 6 GHz, sta ustrezna standarda za meritve stopnje specifične absorpcije (SAR) IEC/IEEE 62209-1528:2020 in IEC/IEEE 62209-3:2019 [1].
OPOMBA 4: Za območje od 6 GHz do 10 GHz se področji uporabe tega dokumenta in standarda IEC/IEEE 62209-1528:2020 prekrivata.
V skladu s smernicami ICNIRP [2] in standardom IEEE ICES C95.1 [3] je gostota moči metrika skladnosti v tem frekvenčnem območju. Stopnjo specifične absorpcije je mogoče uporabiti kot metriko skladnosti, če to dovoljujejo lokalne regulativne zahteve (npr. kadar en oddajni pas vključuje preskusne kanale v območju pod in nad 6 GHz).
Postopki v tem dokumentu se ne uporabljajo za meritve elektromagnetnih polj (EMF) naprav ali predmetov, namenjenih za vsaditev v telo.
General Information
Standards Content (Sample)
SLOVENSKI STANDARD
01-maj-2025
Ocenjevanje gostote moči izpostavljenosti človeka radiofrekvenčnim poljem
brezžičnih naprav v neposredni bližini glave in telesa (frekvenčno območje 6 GHz
do 300 GHz) - 1. del: Merilni postopek
Assessment of power density of human exposure to radio frequency fields from wireless
devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) -
Part 1: Measurement procedure
Bewertung der Leistungsdichte der Exposition des Menschen gegenüber
hochfrequenten Feldern von drahtlosen Geräten in unmittelbarer Nähe des Kopfes und
des Körpers (Frequenzbereich von 6 GHz bis 300 GHz) - Teil 1: Messverfahren
Évaluation de la densité de puissance de l'exposition humaine aux champs
radiofréquences provenant de dispositifs sans fil à proximité immédiate de la tête et du
corps (plage de fréquences de 6 GHz à 300 GHz) - Partie 1: Procédure de mesure
Ta slovenski standard je istoveten z: EN IEC/IEEE 63195-1:2023
ICS:
17.220.20 Merjenje električnih in Measurement of electrical
magnetnih veličin and magnetic quantities
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EUROPEAN STANDARD EN IEC/IEEE 63195-1
NORME EUROPÉENNE
EUROPÄISCHE NORM January 2023
ICS 17.220.20
English Version
Assessment of power density of human exposure to radio
frequency fields from wireless devices in close proximity to the
head and body (frequency range of 6 GHz to 300 GHz) - Part 1:
Measurement procedure
(IEC/IEEE 63195-1:2022)
Évaluation de la densité de puissance de l'exposition Bewertung der Leistungsdichte der Exposition des
humaine aux champs radiofréquences provenant de Menschen gegenüber hochfrequenten Feldern von
dispositifs sans fil à proximité immédiate de la tête et du drahtlosen Geräten in unmittelbarer Nähe des Kopfes und
corps (plage de fréquences de 6 GHz à 300 GHz) - des Körpers (Frequenzbereich von 6 GHz bis 300 GHz) -
Partie 1: Procédure de mesure Teil 1: Messverfahren
(IEC/IEEE 63195-1:2022) (IEC/IEEE 63195-1:2022)
This European Standard was approved by CENELEC on 2023-01-09. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Türkiye and the United Kingdom.
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2023 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN IEC/IEEE 63195-1:2023 E
European foreword
This document (EN IEC/IEEE 63195-1:2023) consists of the text of document IEC/IEEE 63195-1:2022,
prepared by IEC/TC 106 "Methods for the assessment of electric, magnetic and electromagnetic fields
associated with human exposure".
The following dates are fixed:
• latest date by which this document has to be (dop) 2024-01-09
implemented at national level by publication of an
identical national standard or by endorsement
• latest date by which the national standards (dow) 2026-01-09
conflicting with this document have to be withdrawn
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
This document has been prepared under a Standardization Request given to CENELEC by the
European Commission and the European Free Trade Association.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Standard IEC/IEEE 63195-1:2022 was approved by CENELEC as a
European Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standard indicated:
ISO/IEC 17025:2017 NOTE Harmonized as EN ISO/IEC 17025:2017 (not modified)
IEC 62311:2019 NOTE Harmonized as EN IEC 62311:2020 (not modified)
ISO/IEC 17043:2010 NOTE Harmonized as EN ISO/IEC 17043:2010 (not modified)
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the
relevant EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cenelec.eu.
Publication Year Title EN/HD Year
IEC/IEEE 62209- 2020 Measurement procedure for the EN IEC/IEEE 62209- 2021
1528 assessment of specific absorption rate of 1528
human exposure to radio frequency fields
from hand-held and body-worn wireless
communication devices - Part 1528:
Human models, instrumentation and
procedures (Frequency range of 4 MHz to
10 GHz)
IEC/IEEE 63195-2 2022 Assessment of power density of human EN IEC/IEEE 63195-2 2023
exposure to radio frequency fields from
wireless devices in close proximity to the
head and body (Frequency range of 6 GHz
to 300 GHz) – Part 2: Computational
procedure
IEC/IEEE 63195-1 ®
Edition 1.0 2022-05
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Assessment of power density of human exposure to radio frequency fields from
wireless devices in close proximity to the head and body (frequency range of
6 GHz to 300 GHz) –
Part 1: Measurement procedure
Évaluation de la densité de puissance de l'exposition humaine aux champs
radiofréquences provenant de dispositifs sans fil à proximité immédiate de la
tête et du corps (plage de fréquences de 6 GHz à 300 GHz) –
Partie 1: Procédure de mesure
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 17.220.20 ISBN 978-2-8322-0123-7
– 2 – IEC/IEEE 63195-1:2022 © IEC/IEEE 2022
CONTENTS
FOREWORD . 9
INTRODUCTION . 11
1 Scope . 12
2 Normative references . 13
3 Terms and definitions . 13
3.1 Exposure metrics and parameters . 13
3.2 Spatial, physical, and geometrical parameters associated with exposure
metrics . 16
3.3 Measurement instrumentation, field probe, and data-processing parameters . 17
3.4 RF power parameters . 20
3.5 Test device technical operating and antenna parameters . 21
3.6 Test device physical configurations . 23
3.7 Uncertainty parameters . 24
4 Symbols and abbreviated terms . 25
4.1 Symbols . 25
4.1.1 Physical quantities . 25
4.1.2 Constants . 26
4.2 Abbreviated terms . 26
5 Quick start guide and application of this document . 27
5.1 Quick start guide . 27
5.2 Application of this document . 30
5.3 Stipulations . 30
6 Measurement system and laboratory requirements . 30
6.1 General requirements . 30
6.2 Laboratory requirements . 31
6.3 Field probe requirements . 32
6.4 Measurement instrumentation requirements . 32
6.5 Scanning system requirements . 33
6.5.1 Single-probe systems . 33
6.5.2 Multiple field-probe systems . 33
6.6 Device holder requirements . 34
6.7 Post-processing quantities, procedures, and requirements . 35
6.7.1 Formulas for calculation of sPD . 35
6.7.2 Post-processing procedure . 37
6.7.3 Requirements . 38
7 Protocol for PD assessment . 39
7.1 General . 39
7.2 Measurement preparation . 39
7.2.1 Relative system check . 39
7.2.2 DUT requirements . 39
7.2.3 DUT preparation . 40
7.2.4 Selecting evaluation surfaces . 41
7.3 Tests to be performed . 44
7.3.1 General . 44
7.3.2 Tests to be performed when supported by simulations of the antenna
array . 46
7.3.3 Tests to be performed by measurements of the antenna array . 48
IEC/IEEE 63195-1:2022 © IEC/IEEE 2022 – 3 –
7.4 Measurement procedure . 48
7.4.1 General measurement procedure . 48
7.4.2 Power density assessment methods . 49
7.4.3 Power scaling for operating mode and channel . 51
7.4.4 Correction for DUT drift . 53
7.5 Exposure combining. 54
7.5.1 General . 54
7.5.2 Combining power density and SAR results . 55
8 Uncertainty estimation . 58
8.1 General . 58
8.2 Requirements for uncertainty evaluations . 58
8.3 Description of uncertainty models . 58
8.4 Uncertainty terms dependent on the measurement system . 59
8.4.1 CAL – Calibration of the measurement equipment . 59
8.4.2 COR – Probe correction . 59
8.4.3 FRS – Frequency response . 59
8.4.4 SCC – Sensor cross coupling . 60
8.4.5 ISO – Isotropy . 61
8.4.6 LIN – System linearity error . 61
8.4.7 PSC – Probe scattering . 61
8.4.8 PPO – Probe positioning offset . 62
8.4.9 PPR – Probe positioning repeatability . 62
8.4.10 SMO – Sensor mechanical offset . 63
8.4.11 PSR – Probe spatial resolution . 63
8.4.12 FLD – Field impedance dependence (ratio |E|/|H|) . 63
8.4.13 MED – Measurement drift . 63
8.4.14 APN – Amplitude and phase noise . 64
8.4.15 TR – Measurement area truncation . 64
8.4.16 DAQ – Data acquisition . 64
8.4.17 SMP – Sampling . 64
8.4.18 REC – Field reconstruction . 64
8.4.19 SNR – Signal-to-noise ratio . 65
8.4.20 TRA – Forward transformation and backward transformation . 65
8.4.21 SCA – Power density scaling . 66
8.4.22 SAV – Spatial averaging . 66
8.4.23 COM – Exposure combining . 66
8.5 Uncertainty terms dependent on the DUT and environmental factors . 66
8.5.1 PC – Probe coupling with DUT . 66
8.5.2 MOD – Modulation response . 67
8.5.3 IT – Integration time . 67
8.5.4 RT – Response time . 68
8.5.5 DH – Device holder influence . 68
8.5.6 DA – DUT alignment . 68
8.5.7 AC – RF ambient conditions . 68
8.5.8 TEM – Laboratory temperature. 68
8.5.9 REF – Reflections in laboratory . 69
8.5.10 MSI – Measurement system immunity/secondary reception . 69
8.5.11 DRI – DUT drift . 69
8.6 Combined and expanded uncertainty . 69
– 4 – IEC/IEEE 63195-1:2022 © IEC/IEEE 2022
9 Measurement report . 73
9.1 General . 73
9.2 Items to be recorded in measurement reports . 73
Annex A (normative) Measurement system check and system validation tests . 76
A.1 Overview . 76
A.2 Normalization to total radiated power . 77
A.2.1 General . 77
A.2.2 Option 1: Accepted power measurement . 77
A.2.3 Option 2: Total radiated power measurement . 81
A.3 Relative system check . 82
A.3.1 Purpose . 82
A.3.2 Antenna and test conditions . 82
A.3.3 Procedure . 83
A.3.4 Acceptance criteria . 83
A.4 Absolute system check . 85
A.4.1 Purpose . 85
A.4.2 Antenna and test conditions . 85
A.4.3 Procedure . 85
A.4.4 Acceptance criteria . 85
A.5 System validation . 86
A.5.1 Purpose . 86
A.5.2 Procedure . 86
A.5.3 Validation of modulation response . 87
A.5.4 Acceptance criteria . 87
Annex B (normative) Antennas for system check and system validation tests . 89
B.1 General . 89
B.2 Pyramidal horn antennas for system checks . 90
B.3 Cavity-fed dipole arrays for system validation . 91
B.3.1 Description . 91
B.3.2 Numerical target values for cavity-fed dipole arrays . 94
B.3.3 Field and power density distribution patterns . 94
B.3.4 Far-field radiation patterns . 99
B.4 Pyramidal horns with slot arrays for system validation . 101
B.4.1 Description . 101
B.4.2 Numerical target values for pyramidal horns loaded with a slot array . 103
B.4.3 Field and power density distribution patterns . 104
B.4.4 Far-field radiation patterns . 109
B.5 Antenna validation procedure . 110
B.5.1 General . 110
B.5.2 Objectives, scope, and usage specifications . 111
B.5.3 Antenna design. 111
B.5.4 Numerical targets . 111
B.5.5 Reference antennas calibration . 111
B.5.6 Antenna verification and life expectation . 111
B.5.7 Uncertainty budget considerations . 111
B.6 Validation procedure for wideband signals . 112
B.6.1 General . 112
B.6.2 Validation signals . 112
B.6.3 Validation antennas and setup . 112
IEC/IEEE 63195-1:2022 © IEC/IEEE 2022 – 5 –
B.6.4 Target values for validation antennas transmitting wideband signals . 112
B.6.5 Wideband signal uncertainty . 112
B.6.6 Validation procedure . 113
Annex C (normative) Calibration and characterization of measurement probes . 114
C.1 General . 114
C.2 Calibration of waveguide probes . 114
C.2.1 General . 114
C.2.2 Sensitivity . 114
C.2.3 Linearity . 114
C.2.4 Lower detection limit . 115
C.2.5 Isotropy . 115
C.2.6 Response time . 115
C.3 Calibration for isotropic scalar E-field or H-field probes . 115
C.3.1 General . 115
C.3.2 Sensitivity . 115
C.3.3 Isotropy . 115
C.3.4 Linearity . 116
C.3.5 Lower detection limit . 116
C.3.6 Response time . 116
C.4 Calibration of phasor E-field or H-field probes . 116
C.4.1 General . 116
C.4.2 Sensitivity . 116
C.4.3 Isotropy . 117
C.4.4 Linearity . 117
C.4.5 Lower detection limit . 117
C.5 Calibration uncertainty parameters. 117
C.5.1 General . 117
C.5.2 Input power to the antenna . 117
C.5.3 Mismatch effect (input power measurement) . 117
C.5.4 Gain and offset distance . 118
C.5.5 Signal spectrum . 118
C.5.6 Setup stability . 118
C.5.7 Uncertainty for field impedance variations . 119
C.6 Uncertainty budget template . 119
Annex D (informative) Information on use of square or circular shapes for power
density averaging area in conformity evaluations . 121
D.1 General . 121
D.2 Method using computational analysis . 121
D.3 Areas averaged with square and circular shapes on planar evaluation
surface . 121
D.4 Areas averaged with square and circular shapes on nonplanar evaluation
surface . 123
Annex E (informative) Reconstruction algorithms . 125
E.1 General . 125
E.2 Methodologies to extract local field components and power densities . 125
E.2.1 General . 125
E.2.2 Phase-less approaches . 126
E.2.3 Approaches using E-field polarization ellipse measurements . 126
E.2.4 Direct near-field measurements . 126
– 6 – IEC/IEEE 63195-1:2022 © IEC/IEEE 2022
E.3 Forward transformation (propagation) of the fields . 127
E.3.1 General . 127
E.3.2 Field expansion methods . 128
E.3.3 Field integral equation methods . 128
E.4 Backward transformation (propagation) of the fields . 129
E.4.1 General . 129
E.4.2 Field expansion methods – the plane wave expansion . 129
E.4.3 Inverse source methods . 130
E.5 Analytical reference functions . 131
Annex F (normative) Interlaboratory comparisons . 133
F.1 Purpose . 133
F.2 Reference devices . 133
F.3 Power setup . 133
F.4 Interlaboratory comparison – procedure . 133
Annex G (informative) PD test and verification example . 134
G.1 Purpose . 134
G.2 DUT overview . 134
G.3 Test system verification . 134
G.4 Test setup . 134
G.5 Power density results . 134
G.6 Combined exposure (Total Exposure Ratio) . 134
Annex H (informative) Applicability of plane-wave equivalent approximations . 135
H.1 Objective . 135
H.2 Method . 135
H.3 Results . 135
H.4 Discussion . 137
Annex I (informative) Rationales for concepts and methods applied in this document
and IEC/IEEE 63195-2 . 138
I.1 Frequency range . 138
I.2 Calculation of sPD . 138
I.2.1 Application of the Poynting vector for calculation of incident power
density . 138
I.2.2 Averaging area . 139
Bibliography . 140
Figure 1 – Quick Start Guide . 29
Figure 2 – Simplified view of a generic measurement setup involving the use of
reconstruction algorithms . 38
Figure 3 – Cross-sectional view of SAM phantom for SAR evaluations at the reference
plane, as described in IEC/IEEE 62209-1528:2020 . 42
Figure 4 – Cross-sectional view of SAM virtual phantom for PD evaluations at the
reference plane (shell thickness is 2 mm everywhere, including at the pinna) . 42
Figure 5 – Example reference coordinate system for the left-ear ERP of the SAM
phantom . 44
Figure 6 – Example reference points and vertical and horizontal lines on a DUT . 44
Figure 7 – Flow chart for test procedure in 7.3 . 46
Figure 8 – Flow chart for general measurement procedure in 7.4.1 . 49
Figure 9 – Flow chart for power density assessment methods in 7.4.2 . 50
IEC/IEEE 63195-1:2022 © IEC/IEEE 2022 – 7 –
Figure 10 – SAR and power density evaluation at a point r . 57
Figure 11 – Combining SAR (top) and power density (bottom) for the SAM phantom . 57
Figure A.1 – Recommended accepted power measurement setup for relative system
check, absolute system check and system validation . 78
Figure A.2 – Equipment setup for measurement of forward power P and forward
f
coupled power P . 78
fc
Figure A.3 – Equipment setup for measuring the shorted reverse coupled power P . 78
rcs
Figure A.4 – Equipment setup for measuring the power with the reference antenna . 79
Figure A.5 – Port numbering for the S-parameter measurements of the directional
coupler . 80
Figure B.1 – Main dimensions for the cavity-fed dipole arrays – 30 GHz design . 92
Figure B.2 – 10 GHz patterns of |E | and Re{S} for the cavity-fed dipole arrays
total total
at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of
the dielectric substrate . 95
Figure B.3 – 30 GHz patterns of |E | and Re{S} for the cavity-fed dipole arrays
total total
at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of
the dielectric substrate . 96
Figure B.4 – 60 GHz patterns of |E | and Re{S} for the cavity-fed dipole arrays
total total
at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of
the dielectric substrate . 97
Figure B.5 – 90 GHz patterns of |E | and Re{S} for the cavity-fed dipole arrays
total total
at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of
the dielectric substrate . 98
Figure B.6 – Far-field radiation patterns of a) 10 GHz, b) 30 GHz, c) 60 GHz, and d) 90
GHz cavity-fed dipole arrays . 100
Figure B.7 – Main dimensions for the 0,15 mm stainless steel stencil with slot array . 101
Figure B.8 – Main dimensions for the pyramidal horn antennas. 102
Figure B.9 – 10 GHz patterns of |E | and Re{S} for the pyramidal horn loaded
total total
with a slot array at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the
upper surface of the slot array . 105
Figure B.10 – 30 GHz patterns of |E | and Re{S} for the pyramidal horn loaded
total total
with a slot array at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the
upper surface of the slot array . 106
Figure B.11 – 60 GHz patterns of |E | and Re{S} for the pyramidal horn loaded
total total
with a slot array at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the
upper surface of the slot array . 107
Figure B.12 – 90 GHz patterns of |E | and Re{S} for the pyramidal horn loaded
total total
with a slot array at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the
upper surface of the slot array . 108
Figure B.13 – Far-field radiation patterns of a) 10 GHz, b) 30 GHz, c) 60 GHz, and d)
90 GHz pyramidal horn loaded with a slot array . 110
Figure D.1 – Schematic view of the assessment of the variation of sPD using square
shape by rotating AUT (antenna under test) . 121
Figure D.2 – Comparison of psPD averaged using square versus circular shaped areas
on planar evaluation surfaces . 122
Figure D.3 – Example PD distributions with device next to ear evaluation surface . 123
Figure D.4 – Comparison of psPD averaged using cube cross-section (square-like)
versus sphere cross-section (circular-like) shaped areas for device next to ear
evaluation surface . 124
– 8 – IEC/IEEE 63195-1:2022 © IEC/IEEE 2022
Figure E.1 – Simulation (left) and forward transformation from measurements applying
methods described in [29] (right) of power density in the xz-plane (above) and yz-plane
(below) at a distance of 2 mm for a cavity-fed dipole array at 30 GHz (see Annex B) . 127
Figure H.1 – psPD / psPD as function of distance (in units of λ) from cavity-fed
pwe tot
dipole array (CDA##G, left-side) and pyramidal horn with slot arrays (SH##G, right-
side) operating at 10 GHz, 30 GHz, 60 GHz, and 90 GHz . 137
Table 1 – Evaluation plan check-list . 28
Table 2 – Minimum evaluation distance between the DUT antenna and the evaluation
surface for which the plane wave equivalent approximation applies . 50
Table 3 – Template of measurement uncertainty for power density measurements . 70
Table 4 – Example measurement uncertainty budget for power density measurement
results . 72
Table A.1 – Example of power measurement uncertainty . 81
Table A.2 – Communication signals for modulation response test . 87
Table B.1 – Target values for pyramidal horn antennas at different frequencies . 90
Table B.2 – Main dimensions for the cavity-fed dipole arrays at each frequency of
interest . 91
Table B.3 – Geometrical parameters of the cavity-fed dipole arrays at each frequency
of interest . 93
Table B.4 – Substrate and metallic block parameters for the cavity-fed dipole arrays at
each frequency of interest . 93
Table B.5 – Target values for the cavity-fed dipole arrays at 10 GHz, 30 GHz, 60 GHz,
and 90 GHz . 94
Table B.6 – Main dimensions for the stencil with slot array for each frequency . 102
Table B.7 – Primary dimensions for the corresponding pyramidal horns at each
frequency . 103
Table B.8 – Target values for the pyramidal horns loaded with slot arrays at 10 GHz,
30 GHz, 60 GHz, and 90 GHz .
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...