ISO 6145-1:2003
(Main)Gas analysis - Preparation of calibration gas mixtures using dynamic volumetric methods - Part 1: Methods of calibration
Gas analysis - Preparation of calibration gas mixtures using dynamic volumetric methods - Part 1: Methods of calibration
ISO 6145-1:2003 specifies the calibration methods involved in the preparation of gas mixtures by dynamic volumetric techniques. It also gives a brief presentation of a non-exhaustive list of examples of dynamic volumetric techniques which are described in more detail in other parts of ISO 6145.
Analyse des gaz — Préparation des mélanges de gaz pour étalonnage à l'aide de méthodes volumétriques dynamiques — Partie 1: Méthodes d'étalonnage
L'ISO 6145-1:2003 spécifie les méthodes d'étalonnage impliquées dans la préparation des mélanges de gaz par des techniques volumétriques dynamiques. Elle présente également brièvement une liste non exhaustive d'exemples de techniques volumétriques dynamiques décrites plus en détails dans d'autres parties de l'ISO 6145.
Analiza plinov – Priprava kalibrirnih plinskih zmesi z dinamičnimi volumetrijskimi metodami – 1. del: Kalibracijske metode
General Information
Relations
Frequently Asked Questions
ISO 6145-1:2003 is a standard published by the International Organization for Standardization (ISO). Its full title is "Gas analysis - Preparation of calibration gas mixtures using dynamic volumetric methods - Part 1: Methods of calibration". This standard covers: ISO 6145-1:2003 specifies the calibration methods involved in the preparation of gas mixtures by dynamic volumetric techniques. It also gives a brief presentation of a non-exhaustive list of examples of dynamic volumetric techniques which are described in more detail in other parts of ISO 6145.
ISO 6145-1:2003 specifies the calibration methods involved in the preparation of gas mixtures by dynamic volumetric techniques. It also gives a brief presentation of a non-exhaustive list of examples of dynamic volumetric techniques which are described in more detail in other parts of ISO 6145.
ISO 6145-1:2003 is classified under the following ICS (International Classification for Standards) categories: 71.040.40 - Chemical analysis. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO 6145-1:2003 has the following relationships with other standards: It is inter standard links to ISO 6145-1:2019, ISO 6145-1:1986. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase ISO 6145-1:2003 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 6145-1
Second edition
2003-11-15
Gas analysis — Preparation of calibration
gas mixtures using dynamic volumetric
methods —
Part 1:
Methods of calibration
Analyse des gaz — Préparation des mélanges de gaz pour étalonnage
à l'aide de méthodes volumétriques dynamiques —
Partie 1: Méthodes d'étalonnage
Reference number
©
ISO 2003
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.
© ISO 2003
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2003 — All rights reserved
Contents Page
Foreword. iv
Introduction . v
1 Scope. 1
2 Normative references . 1
3 Terms and definitions. 1
4 Calibration methods . 2
4.1 General. 2
4.2 Description of primary or potentially primary measuring devices . 4
4.3 Measurements on the final mixture. 12
5 Techniques for preparation of gas mixtures calibrated by the methods described in
Clause 4. 13
5.1 General. 13
[3]
5.2 Volumetric pumps (see ISO 6145-2 ) . 15
[4]
5.3 Continuous injection (see ISO 6145-4 ). 15
[5]
5.4 Capillary (see ISO 6145-5 ). 15
[6]
5.5 Critical orifices (see ISO 6145-6 ). 16
[7]
5.6 Thermal mass flow controllers (see ISO 6145-7 ). 16
[8]
5.7 Diffusion (see ISO 6145-8 ) . 16
[9]
5.8 Saturation (see ISO 6145-9 ). 17
[10]
5.9 Permeation (see ISO 6145-10 ). 17
Annex A (normative) Volume measurement by weighing the water content. 19
Annex B (informative) Description of secondary devices which need calibration against primary
devices . 23
Bibliography . 32
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 6145-1 was prepared by Technical Committee ISO/TC 158, Analysis of gases.
This second edition cancels and replaces the first edition (ISO 6145-1:1986), in which the estimated
uncertainties in the calibration methods and techniques have now been combined in a square-root sum-of-
squares manner to form the relative combined standard uncertainty. In comparison with the previous edition
the periodic injection has been deleted (limited application).
ISO 6145 consists of the following parts, under the general title Gas analysis — Preparation of calibration gas
mixtures using dynamic volumetric methods:
Part 1: Methods of calibration
— Part 2: Volumetric pumps
— Part 4: Continuous injection methods
— Part 5: Capillary calibration devices
— Part 6: Critical orifices
— Part 7: Thermal mass-flow controllers
— Part 9: Saturation method
— Part 10: Permeation method
Diffusion will be the subject of a future Part 8 to ISO 6145. Part 3 to ISO 6145, entitled Periodic injections into
a flowing gas, has been withdrawn.
iv © ISO 2003 — All rights reserved
Introduction
This part of ISO 6145 is one of a series of standards which describes the various dynamic volumetric methods
used for the preparation of calibration gas mixtures.
In dynamic volumetric methods a gas, A, is introduced at volume or mass flow rate q into a constant flow rate
A
q of a complementary gas B. Gas A can be either a pure calibration component, i, or a mixture of i in A.
B
The volume fraction, ϕ of i in the final calibration gas mixture is given in the following equation:
i,M
q
A
ϕϕ=
ii,M ,A
qq+
AB
where ϕ is the volume or mass fraction of component, i, in the pre-mixed gas A, and is already known from
i,A
its method of preparation. It is assumed that in this equation, ϕ , the concentration of component, i, in gas B,
i,B
is zero.
The introduction of gas A can be continuous (e.g. permeation tube) or pseudo-continuous (e.g. volumetric
pump). A mixing chamber should be inserted in the system before the analyser and is particularly essential in
the case of pseudo-continuous introduction. The flow rate of component A is measured either directly in terms
of volume or mass, or indirectly by measuring the variation of a physical property.
The dynamic volumetric preparation techniques produce a continuous flow rate of calibration gas mixtures into
the analyser but do not generally allow the build-up of a reserve by storage under pressure.
The main techniques used for the preparation of the mixtures are:
a) volumetric pumps;
b) continuous injection;
c) capillary;
d) critical orifices;
e) thermal mass-flow controllers;
f) diffusion;
g) saturation;
h) permeation;
i) electrochemical generation.
In all cases, and most particularly if very dilute mixtures are concerned, the materials used for the apparatus
are chosen as a function of their resistance to corrosion and low absorption capacity (usually glass, PTFE or
stainless steel). It should, however, be pointed out that the phenomena are less important for dynamic
volumetric methods than for static methods.
Numerous variants or combinations of the main techniques can be considered and mixtures of several
constituents can also be prepared by successive operations.
Some of these techniques allow calculation of the final concentration of the gas mixture from basic physical
information (e.g. mass rates of diffusion, flow through capillaries). However, since all techniques are dynamic
and rely on stable flow rates, this part of ISO 6145 emphasizes calibration of the techniques by measurement
of the individual flow rates or their ratios, or by determination of the composition of the final mixture.
The uncertainty of the composition of the calibration gas mixture is best determined by comparison with a gas
mixture traceable to international standards. Certain of the techniques which may be used to prepare a range
of calibration gas mixtures may require several such traceable gas mixtures to verify their performance over
that range. The dynamic volumetric technique used has a level of uncertainty associated with it. Information
on the final mixture composition depends both on the calibration method and on the preparation technique.
vi © ISO 2003 — All rights reserved
INTERNATIONAL STANDARD ISO 6145-1:2003(E)
Gas analysis — Preparation of calibration gas mixtures using
dynamic volumetric methods —
Part 1:
Methods of calibration
1 Scope
This part of ISO 6145 specifies the calibration methods involved in the preparation of gas mixtures by dynamic
volumetric techniques. It also gives a brief presentation of a non-exhaustive list of examples of dynamic
volumetric techniques which are described in more detail in other parts of ISO 6145.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 6142, Gas analysis — Preparation of calibration gas mixtures — Gravimetric method
ISO 6143, Gas analysis — Comparison methods for determining and checking the composition of calibration
gas mixtures
ISO 7504, Gas analysis — Vocabulary
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 7504 and the following apply.
3.1
uncertainty of measurement
parameter, associated with the result of a measurement, that characterizes the dispersion of the values that
could reasonably be attributed to the measurand
NOTE 1 Values of the individual statistical uncertainties found in some methods and techniques in this part of
ISO 6145 are combined with the values of systematic uncertainties that also occur in a square-root sum-of-squares
manner to provide a relative combined uncertainty, or in some cases as a relative expanded uncertainty by application of
the coverage factor “2”.
NOTE 2 In keeping with Reference [1] of the Bibliography, the uncertainty of the composition of a mixture is expressed
as a relative expanded uncertainty.
4 Calibration methods
4.1 General
4.1.1 The uncertainty in the composition i,M of a component i of a calibration mixture M depends at any
time on
a) the uncertainty of the calibration method,
b) the frequency with which it is applied,
c) the stability of the control devices involved in the dynamic preparation technique.
To assess the uncertainty of the whole procedure, possible instantaneous variations and drift of the principle
parameters of the technique during the calibration procedure shall be considered.
According to the preparation technique for the gas mixtures used, calibration can be carried out by one of the
following methods:
measurement of flow rate (mass or volume);
comparison method;
tracer method;
direct chemical analysis.
Table 1 shows the applicability of each calibration method to the different preparation techniques.
Table 1 — Calibration methods applicable to the preparation techniques
Calibration methods
Preparation techniques
Comparison with Flow rate
a
Tracer Direct analysis
a a
ISO 6143 measurement
Volumetric pumps + — +
Continuous injection + — +
Capillary + + +
May be applicable;
Critical orifice + + +
depends on nature
Thermal mass flow controllers + + +
of components
Diffusion + — —
Saturation + — —
Permeation + — —
a
The pluses refer to the measurement of a volume flow. In principle, flow rate measurement can also be performed for continuous
injection methods, diffusion methods and permeation methods. Here, mass flows are measured rather than volume flows. For diffusion
and permeation tubes the mass flow may be measured continuously using a suspension balance.
4.1.2 In general, the principles of the methods fall into two categories, as follows.
Principles in which the flow rates of component gases are measured either by volume or by mass and in
which the concentration in the final mixture is calculated from the flow rate. Different techniques may be
used for the individual components of a mixture and these may be calibrated by different methods. The
principle of measurements of individual flow rates, however, remains.
Principles which operate directly on the final mixtures.
2 © ISO 2003 — All rights reserved
Since different principles are involved, they are given separately under each individual method.
Since the calibration methods rely upon different principles and the equipment used for the realization of the
gas flow rates is different, different units can be used to express the contents.
For calibrations using the comparison method, the content is expressed as a mole fraction or mole
concentration because most of the calibration gas mixtures used for the comparison, if possible, are described
in this way.
Using techniques based on volume flow rate leads in the first instance to volume fractions. Recalculation of
these data to mole fractions is possible but leads to an increase in the uncertainty because of the uncertainty
of the density and molar-volume data. In this case, the expression in volume fractions is preferred.
Calibration by the gravimetric method gives mass fractions for the contents of components in gas mixtures.
These can be recalculated to mole fractions by dividing by the respective atomic or molar masses. Expression
in mole fraction is therefore preferred.
Under some circumstances, the total flow rate cannot be taken as the sum of two individual flow rates q and
A
q which have been measured separately. These problems can be caused by deviations from the ideal gas
B
laws or by changes in conditions such as backpressure or viscosity resulting from the blending of the two flow
rates. Deviations from ideal behaviour can be predicted with reasonable accuracy and other uncertainties can
be minimized by careful attention to apparatus design.
4.1.3 Flow rate measurement is normally carried out using one of the following:
a) primary devices, based on absolute principles, for example:
gravimetric method;
b) methods which may be considered as potentially primary when the volume of the device is determined by
weighing the relevant volume of water, or another suitable liquid of higher density:
mercury-sealed piston,
bell-prover;
c) many other devices available for the measurement of volume flow, some of which are listed below
(calibration of these devices is carried out by using one of the above primary or potentially primary
methods):
soap-film meter,
wet-gas meter,
thermal mass flow sensor,
variable area flow meter.
The soap-film and mercury-sealed piston flow meters share a common principle, i.e. that of timing the travel of
a soap bubble or piston between carefully defined points either electronically or by observation, for example
by means of a cathetometer. The volume between these points can be determined by filling with water, which
is subsequently weighed (see Annex A).
The wet-gas meter is an integrating device which indicates the total volume of gas that has been passed
through it (the dry-gas meter, familiar from the domestic environment, has a similar integrating property but
has not been included because it is less accurate). The variable area flow meter is a continuously indicating
device. The thermal mass flow sensor measures mass flow rate as a function of heat flux.
NOTE These devices are fully described in Annex B.
4.1.4 Calibration of these flow-rate measuring devices is carried out using one of the primary or potentially
primary methods:
a) gravimetric method;
b) mercury-sealed piston;
c) bell prover.
The gravimetric method measures the mass of gas, which has flowed at a constant rate for a defined time
through the device to be calibrated. The mercury-sealed piston drives a defined volume of gas over a
measured time period into the device to be calibrated. The bell prover is a device for creating a constant and
defined flow rate of gas, acting as a mechanically driven gasholder.
The bell prover and the gravimetric method may be used directly, where appropriate, to calibrate the various
preparation techniques, but the information is more commonly transferred via one of the flow-rate measuring
devices.
4.2 Description of primary or potentially primary measuring devices
4.2.1 Gravimetric method
4.2.1.1 Principle
Gas from a cylinder flows at a constant rate through the device to be calibrated. This is continued for a
sufficiently long period for the loss of mass from the cylinder to be accurately measured. The procedure
provides data in terms of mass flow, which can then be converted to molar flow rate or, with assessed
uncertainty, to a volume flow rate.
The gas cylinder and flow-rate measuring device are set up as shown in Figure 1. The cylinder (1) is fitted with
a pressure regulator (2) on the outlet of which a precision needle valve (3) and shut-off valve (4) lead to the
device to calibrated (5). The dead volume between the needle valve outlet and the shutoff valve is minimized
by using the smallest size of tubing and fittings commensurate with the desired gas flow rate. The temperature
and pressure of the gas are measured at the inlet to the device to be calibrated.
The cylinder valve is opened, the pressure regulator is set to a value of, e.g. 100 kPa (1 bar) gauge, and the
needle valve is adjusted to the desired flow rate. When conditions are seen to be steady, the shut-off valve is
closed and the pipe-work is disconnected at the outlet of this valve. The cylinder, regulator, needle valve and
shut-off valve are weighed as a single unit. The pipe-work is reconnected and the shut-off valve is opened to
re-start the flow at the same rate. After the gas has flowed for a period long enough for the mass used to be
measured accurately, the shut-off valve is closed and the cylinder, regulator, needle valve and shut-off valve
weighed as before. During this period, the gas flow is accurately measured by first calculating the volume of
gas from the change in mass, then the flow rate from the volume and the time.
4 © ISO 2003 — All rights reserved
Key
1 cylinder
2 pressure regulator
3 needle valve
4 shut-off valve
5 device to be calibrated
a
To vent.
Figure 1 — Gravimetric method
4.2.1.2 Uncertainty of measurement
4.2.1.2.1 Uncertainty of weighing
Gravimetric preparation of mixtures is described in ISO 6142. Using the procedures given in ISO 6142, it can
−4
be assumed that the mass of gas used in a test can be weighed to a relative standard uncertainty of 2 × 10
(i.e. 20 g of gas taken from a 10 kg cylinder whose mass before and after the test can be measured with an
−3
−4
uncertainty of 2 mg, giving a relative standard uncertainty of 22/20 ×10 , i.e. 1,4 × 10 ).
4.2.1.2.2 Uncertainty with unstable flows
This uncertainty can be neglected provided the cylinder and its flow-rate control devices are both pressurized
with gas to the same degree for both weighings. However, when the gas is shut off before weighing, the pipe-
work between the needle valve and the shutoff valve becomes pressurized to the value set on the regulator,
and this will cause a surge when the gas flow rate restarts. The uncertainty caused by this surge is the
amount of gas required to pressurize the volume between the needle valve and the shut-off valve relative to
the amount of gas having flowed. If 2 ml of dead-space is pressurized to 1 bar gauge in a test in which 20 g of
−5
methane flows, the standard uncertainty is 7 × 10 .
To reduce pressure surge effects which can cause oscillations of flow, stabilize the gas flow before taking any
readings. This avoids any uncertainty.
4.2.1.2.3 Uncertainty on conversion of mass to volume
The temperature, pressure, compression (Z) factor and molar mass of the gas, all affect the uncertainty on
conversion of mass to volume. Measurement of temperature with an uncertainty of 0,05 °C and pressure to
−4 −4
10 Pa (0,1 mbar) represents relative standard uncertainties of 1,7 × 10 and 10 , respectively. Compression
−4
factors are commonly quoted to four decimal places, which implies an uncertainty of 10 , and molar masses
are known with sufficient accuracy not to contribute significantly. The relative standard uncertainty is therefore
−4
not greater than 2,2 × 10 .
4.2.1.2.4 Uncertainty due to flow rate variation
If the device to be calibrated measures either instantaneous flow rates or volumes which are small by
comparison with the volume taken from the cylinder, then variations in flow rate are a contribution to the
uncertainty.
A high quality pressure regulator and needle valve should ensure a flow rate constancy of 0,2 % relative, apart
from the initial flow surge (see 4.2.1.2.2), but should be checked for each installation. This level of flow-rate
−3
control represents a relative standard uncertainty of 2 × 10 .
4.2.1.2.5 Uncertainty of time measurement
The time during which the gas flows from the cylinder can be measured by an electronic timer with a relative
−4
standard uncertainty of 2 × 10 .
NOTE The uncertainty of the time measurement generally depends on the discharge time. The timer can be very
accurate, but if "hand" clocking is used to start and stop the timer the uncertainty in the time measurement is in the order
of ± 0,2 s, requiring a 1 000 s discharge time to reach the stated relative uncertainty.
4.2.1.2.6 Relative combined standard uncertainty
The combination of the standard uncertainties described in 4.2.1.2.1 to 4.2.1.2.5 is as follows:
−4
weighing 2 × 10
−5
flow transients 7 × 10
6 © ISO 2003 — All rights reserved
−4
mass to volume 2,2 × 10
−3
flow rate variation 2 × 10
−4
timing 2 × 10
−3
relative combined standard uncertainty 2,0 × 10
4.2.2 Mercury-sealed piston flow meter
4.2.2.1 Principle
A glass measuring tube (see Figure 2) of known diameter and uniformity is set vertically in an insulated box
fitted with temperature control. The temperature is maintained constant to within ± 0,02 °C.
The measuring tube is divided into a number of sections by photoelectric cells serving as sensors, and the
actual volume between two adjacent photoelectric cells is determined by filling with water and weighing (see
Annex A). Greater accuracy is achieved in the calibration if a liquid of higher density is used.
A constant flow moves a frictionless piston with a constant speed upwards. The displaced volume can be
estimated from the dimensions of the tube or measured with reference to the water calibration.
The piston, made of plastics (e.g. PVC) or glass contains a horizontal, circular groove, filled with mercury. The
purity of the mercury is such as to ensure that the piston does not stick in operation. The use of triple distilled
mercury is recommended.
The piston is allowed to attain a constant speed before time measurement is started at Sensor 1.
Depending on the flow rate and the tube size, time measurement is stopped when the piston passes Sensor 2
or Sensor 3. Sensors may be of the reflection type because of the high reflectance of the mercury ring.
Because of a high back-pressure caused by the weight of the piston, the measured pressure difference is
approximately from 0,1 kPa (1 mbar) up to 1 kPa (10 mbar).
The measuring sequence starts by closing Side A of the 3-way valve (see Figure 2). As soon as the piston
passes Sensor 1, time measurement starts; it stops after the piston passes the next sensor. The three-way
valve resets its position and the piston falls down on the spring. The flow meter is then ready to restart.
4.2.2.2 Uncertainty of measurement
4.2.2.2.1 Influence of temperature variation
−6 −1
The measuring tube is made of borosilicate glass having a coefficient of linear expansion of 3,3 × 10 K .
The result is that, taking into account the control of temperature to ± 0,02 °C, there are relative standard
−7 −5
uncertainties in the volume of the tube of approximately 2 × 10 and in the volume of gas of 7 × 10 .
NOTE The user should be aware that there can be a temperature gradient if flow sensors are heated to operate (e.g.
MFCs) in the upstream system. The expansion effects on glass can be neglected.
4.2.2.2.2 Correction for pressure differences and piston pressure
Correction for pressure differences of the flow device between calibration (p ) and use (p ) is made using
cal use
the factor (p + p ) / p , in which the piston pressure, p , generally takes values between 0,1 kPa
cal piston use piston
and 1 kPa.
Assuming the absolute pressure to be measurable with a relative uncertainty of ± 0,1 %, and the piston
pressure to be measurable with an uncertainty of less than ± 10 Pa, then the relative uncertainty of the
−3
pressure correction is 1,4 × 10 .
Key
1 photoelectric cell Sensor 2 (first volume)
2 photoelectric cell Sensor 3 (second volume)
3 piston
4 photoelectric cell Sensor 1 (start counting)
5 pressure sensor
6 spring
7 3-way valve (Sides A, B, C)
a
Flow in.
b
To vent.
Figure 2 — Mercury-sealed piston flow meter
4.2.2.2.3 Diffusion across the piston
The construction of the mercury-sealed piston does not provide for the possibility of keeping the same
composition of the gas on both sides. Although diffusion along the mercury seal is still possible, the effect is
considered negligible in general practice.
4.2.2.2.4 Relative combined standard uncertainty
The combination of the standard uncertainties described in parts 4.2.2.2.1. to 4.2.2.2.3 is as follows:
−5
temperature 7 × 10
−3
pressure 1,4 × 10
diffusion across piston 0
−3
relative combined standard uncertainty 1,4 × 10
8 © ISO 2003 — All rights reserved
4.2.3 Bell prover
4.2.3.1 General
A gas flow measurement shall be provided by displacing a defined volume of gas at constant flow from the
holder of a bell prover within a measured time period.
4.2.3.2 Principle
A schematic diagram of a bell prover is given in Figure 3 and shows the bell (1) in a stationary tank (2) filled
with the sealing liquid (3). The measuring scale (4) is used to take readings of the position of the bell, which is
supported on a chain passing over rollers (5) and balanced by the counterweight (6).
Key
1 bell 4 measuring scale
2 stationary tank 5 rollers
3 sealing liquid 6 counterweight
Figure 3 — Schematic diagram of a bell prover
The principle of operation is as follows.
a) The bell is raised and filled with air.
b) A definite volume of air is displaced from the prover by lowering the bell (1) into the stationary tank (2)
while maintaining constant pressure in the conduits. The time interval over which the air is displaced is
measured by a timer. The air flow rate is calculated using the measured values of volume and time
interval.
4.2.3.3 Uncertainty of measurement
4.2.3.3.1 Uncertainty on prover capacity
The volume of the bell prover is determined at various points over the usable range and the uncertainty on
each volume determination is determined at less than 0,5 cm . A best-fit line is drawn through the volume
determinations to provide a calibration graph having a relative standard uncertainty of ± 0,05 %. The volume
discharged from the bell prover is the difference in volume between the start and finish point, giving an
uncertainty of 2 times the relative standard uncertainty in calibration, i.e. ± 0,07 %.
4.2.3.3.2 Uncertainties in the use of the measuring scale
The position of the bell prover is determined using a measuring scale which may be read to better than
0,2 mm. Assuming a change in position of 1 m, the relative standard uncertainty would be ±
−4
( 2 × 0,03/ 3 ) / 1 000 = 0,16 mm in 1 m, or 1,6 × 10 .
4.2.3.3.3 Uncertainty on displacement time interval
The time interval may be electronically measured to better than ± 0,001 s. Assuming a discharge time of 40 s,
−5
the relative uncertainty is ±×( 2 0,001 / 3 ) / 40= 2× 10 .
4.2.3.3.4 Uncertainty on the gas-distributing device
Random variations in the speed of operation of the solenoid valve which starts and stops the gas discharge
should not exceed ± 0,03 s. On a discharge time of 40 s, the relative uncertainty is ± ( 2×=0,03 / 3 ) / 40
−4
6 × 10 .
4.2.3.3.5 Combined uncertainty due to the recalculation of flow rates to reference conditions
These should normally be avoided by carrying out calibrations under the required conditions.
The combination of the standard uncertainties described in 4.2.3.3.1 to 4.2.3.3.4 is as follows:
−4
capacity 7 × 10
−4
measuring rule 1,6 × 10
−5
timing 2 × 10
−4
distribution 6 × 10
recalculation 0
−3
relative combined standard uncertainty 0,9 × 10
This total is the combined uncertainty on the mean flow rate and instability of the flow rate has not been taken
into consideration.
10 © ISO 2003 — All rights reserved
4.2.4 Measurement of time
Timing is necessary for some of the flow-rate measuring devices. Photoelectric cells fitted to the soap-film flow
meter and mercury-sealed piston flow meter define the upper and lower measuring points between which the
film or piston moves. Similarly a photoelectric cell can register the movement of the pointer of a wet-gas meter
past a particular point on its scale. The shut-off valve for the gravimetric calibration can be linked to a timer. In
all cases, the timer should be an accurate electronic device capable of measuring the time intervals with a
−4
relative standard uncertainty of no greater than 2 × 10 .
4.2.5 Correction for pressure differences
With the exception of the mercury-sealed piston meter (see 4.2.2.2), a correction for pressure differences
between calibration and use of the flow device needs to be applied using a factor p / p . Assuming the
cal use
absolute pressure to be measurable with a relative uncertainty of ± 0,1 %, then the relative uncertainty in the
−3
correction is 1,4 × 10 .
4.2.6 Correction for temperature differences
Correction for temperature differences of the flow device between calibration (T ) and use (T ) is made
cal use
using a factor T / T , where T is the absolute temperature of the flowing gas expressed in kelvins.
use cal
Assuming the temperature measurement to have a relative uncertainty of ± 0,1 %, then the relative
−3
uncertainty in the correction is 1,4 × 10 .
4.2.7 Uncertainty calculation
The relative combined standard uncertainties of the primary calibration methods (see 4.2.1.2.6, 4.2.2.2.4 and
4.2.3.3.5) are given in the first column of Table 2. When this method has been used to calibrate one of the
secondary methods (see Annex B), the contribution has been added under calibration. Individual standard
uncertainties for the measurement and time contributions for each secondary method are included. These
have been combined in a square root sum of squares method to provide a combined uncertainty u for each
c
method.
The uncertainty contributions depend upon the characteristics of the calibration method and the flow-rate
control device. Thus, if a soap-film meter is calibrated by weighing its water content, there are three sources of
uncertainty, since the time taken by the soap-film between the graduation marks has to be measured. If,
however, the measurement gives a continuous indication (variable area flow meter or thermal mass flow
sensor), then once the calibration method flow rate has been established, there is no further need for time
measurement and hence no time measurement uncertainty.
The relative combined standard uncertainties listed in Table 2 relate only to the calibration methods described
in 4.2 and, when used, the flow-rate measuring devices described in Annex B. When a mixture is prepared
using one of the techniques described in subsequent parts of ISO 6145 (see the Bibliography), the relative
standard uncertainties associated with the technique should also be taken into account.
Table 2 — Estimated uncertainties of flow-rate measuring methods (see 4.1.3)
a
Secondary flow-rate measuring device
Primary
Source of
calibration
uncertainty Soap film Wet-gas Variable area Thermal mass
method
flow meter meter flow meter flow sensor
−3 −3 −3 −3
Calibration 2,0 × 10 2,0 × 10 2,0 × 10 2,0 × 10
−4 −4 −2 −4
Gravimetric Measurement 3,3 × 10 5,1 × 10 2,3 × 10 1,0 × 10
−3
−4 −4
u u 2,0 × 10
Time 2,0 × 10 2,0 × 10 0 0
rel
−3 −3 −2 −3
u 2,0 × 10 2,1 × 10 2,3 × 10 2,0 × 10
c
−3 −3 −3 −3
Calibration 1,4 × 10 1,4 × 10 1,4 × 10 1,4 × 10
Mercury-sealed
−4 −4 −2 −4
Measurement 3,3 × 10 5,1 × 10 2,3 × 10 1,0 × 10
piston flow meter
−4 −4 −4 −4
Time 2,0 × 10 2,0 × 10 2,0 × 10 2,0 × 10
−3
u u 1,4 × 10
rel
−3 −3 −2 −3
u 1,5 × 10 1,5 × 10 2,3 × 10 1,4 × 10
c
−3 −3 −3 −3
Calibration 0,9 × 10 0,9 × 10 0,9 × 10 0,9 × 10
−4 −4 −2 −4
Bell prover
Measurement 3,3 × 10 5,1 × 10 2,3 × 10 1,0 × 10
−3 −4 −4 −4 −4
u u 0,9 × 10 Time 2,0 × 10 2,0 × 10 2,0 × 10 2,0 × 10
rel
−3 −3 −2 −3
u 1,0 × 10 1,1 × 10 2,3 × 10 0,9 × 10
c
−5
Calibration 7,7 × 10 — — —
Weighing of volume
−4
Measurement 3,3 × 10 — — —
of water
−4
Time 2,0 × 10 — — —
−5
u u 7,7 × 10
rel
−4
u 3,9 × 10 — — —
c
NOTE The combined uncertainties, u , for the secondary flow-rate measuring device are those which are the best obtainable
c
under controlled conditions.
a
See Annex B.
4.3 Measurements on the final mixture
4.3.1 General
This approach eliminates non-additivity uncertainties, e.g. volume changes on mixing of components.
Calibration of the concentration in the final mixture is carried out as described in 4.3.2 to 4.3.3.
4.3.2 Comparison method
Where possible, the content of the prepared gas mixture shall be verified by comparison with a standard
prepared or certified by an accredited national or international body. The results provided by this verification
shall confirm traceability to that national body within the analytical limits of the comparison method. Use the
comparison method described in ISO 6143.
NOTE This verification also yields information about the accuracy of the technique used to prepare the calibration
gas mixture.
12 © ISO 2003 — All rights reserved
4.3.3 Measurements on the final mixture
4.3.3.1 General
The measurement on the final mixture shall be performed by one of the two following methods:
a) direct chemical analysis; or
b) tracer methods using comparison or direct chemical analysis.
4.3.3.2 Direct chemical analysis
In some cases, an analytical method exists that should be used to determine the amount of component i in the
final mixture without reference to other calibration gas mixtures. The amount of i is determined as the mass or
number of moles. The volume of the mixture used in the analytical procedure shall be measured.
4.3.3.3 Tracer methods
The method relies on previous introduction into gas, A, through another preparation method, of a tracer gas, T.
The gas, A, then contains:
a) a known volume fraction ϕ of tracer gas T;
T,A
b) a known volume fraction ϕ of component i.
i,A
The measurement, either by direct chemical analysis or by a comparison method, of the volume fraction ϕ
TM
of T in the final mixture M, enables measurement of the dilution ratio q /(q + q ) of A in M and hence the
A A B
concentration i, M in the final mixture, i.e.
q
A
ϕϕ= (1)
T,M T,A
qq+
AB
q
A
ϕϕ= (2)
ii,M ,A
qq+
AB
The tracer gas shall be non-reactive with gases A and B.
This method may be preferred to the comparison method applied to component i, when it is possible to use a
tracer gas for which the accuracy and precision of measurement is better at its final volume fraction ϕ than
T,M
that for the desired component at its final volume fraction ϕ . The final volume fraction ϕ may, for example,
i,M i,M
be lower than that achievable for the desired analytical detection limit.
5 Techniques for preparation of gas mixtures calibrated by the methods described
in Clause 4
5.1 General
Several techniques are available and the choice between them should be decided based on the concentration
range, the availability of equipment and the required uncertainty. Almost all methods depend upon addition of
two flow rates, q of gas A and q of gas B, with the resultant volume fraction being defined as a first
A B
approximation for a direct dilution of pure component A by a gas B, free of gas A:
q
A
ϕ = (3)
A
qq+
AB
In fact, the general formula is
qq
AA
ϕϕ=+ϕ 1− (4)
ii,M ,A i,B
qq++q q
AB AB
a) when ϕ the concentration of component i in gas B, is equal to zero:
i,B
q
A
ϕϕ= (5)
ii,M ,A
qq+
AB
for direct dilution of component i, since component i (gas A) is never 100 % pure;
for dilution of gas A, which contains i at a low concentration, in order to obtain a lower concentration
of the component i.
b) when ϕ is not taken to be equal to zero, for very low concentrations or mass fractions, then generally:
i,B
q
A
1 (6)
qq+
AB
and
q
A
ϕ=+ϕϕ (7)
ii,M ,A i,B
qq+
AB
The techniques have different areas of application depending on the concentration range (see Table 3).
The techniques involved are those of mixing gases, which, except for the diffusion and permeation techniques,
may themselves be dilute mixtures the compositions of which have been established separately. The range of
compositions produced by any technique can thus be considerably extended, and Table 3 gives the range of
volume fractions available.
The relative expanded uncertainty defines the ability of the technique to produce a series of consistent
mixtures. Variations can be either short-term or long-term with respect to the response time of the system, the
long-term variations being more significant.
Table 3 — Dilution ranges for the preparation techniques expressed as mole fraction
Typical relative expanded
Preparation technique Range of volume fraction (Gas B)
uncertainty
−4
Volumetric pumps 10 to about 1 0,5
−5 −2
Continuous injection 10 to 10 5,0
−5
Capillary 10 to nominal 1 1,0
−4
Critical orifices 10 to nominal 1 0,5
−9
Thermal mass flow controllers 10 to nominal 1 1,0
−9 −3
Diffusion 10 to 10 3,0
a
Saturation 1,0
−9 −6
Permeation 10 to 10 2,5
a
Depends on saturation value of component.
14 © ISO 2003 — All rights reserved
[3]
5.2 Volumetric pumps (see ISO 6145-2 )
Each gas is forwarded separately by a piston pump and is mixed with the other at the outlet. One pump is
driven at a constant speed by a synchronous motor and the other at a proportion of this speed by means of
gear wheels. Changing the gear wheels changes the composition of the mixture.
The flow rate of each component is described by Equation (8):
qV=×n (8)
where
V is the volume capacity of the pump cylinder;
n is the number of strokes per minute.
This method gives repeatable mixtures provided that both of the following conditions are maintained:
a) before use, the motor is allowed to run for at least 30 min to attain thermal equilibrium and to overcome
transitory conditions (desorption or dissolution of gas); during this period, the pump draws in a dry gas;
−4
b) any pressure difference equal to or greater than 20 Pa (2 × 10 bar) between the two input tubings or of
−2
1 kPa (10 bar) between the entry and outlet tubings is avoided.
[4]
5.3 Continuous injection (see ISO 6145-4 )
The gaseous or liquid calibration component is injected continuously by means of a mechanically driven
syringe at flow rate, q , into a continuously flowing complementary gas flow rate, q . After mixing in a glass
A B
apparatus, the prepared calibration gas mixture is sampled under atmospheric pressure.
[5]
5.4 Capillary (see ISO 6145-5 )
The calibration component, q , is passed through a capillary tube under conditions of constant pressure drop
A
into a controlled flow rate of complementary gas q . The calibration gas mixture produced may be further
B
diluted, if required at a lower content, through another capillary.
The volume flow rate of a gas A, q , passing through the capillary is given by
A
π−rp p
()
q = (9)
A
8ηL
where
r is the radius of the capillary tube;
L is the length of the capillary tube;
p is the pressure at the inlet of the capillary tube;
p is the pressure at the outlet of the capillary tube;
η is the dynamic viscosity.
ISO 6145-1:
...
SLOVENSKI STANDARD
01-oktober-2004
$QDOL]DSOLQRY±3ULSUDYDNDOLEULUQLKSOLQVNLK]PHVL]GLQDPLþQLPLYROXPHWULMVNLPL
PHWRGDPL±GHO.DOLEUDFLMVNHPHWRGH
Gas analysis -- Preparation of calibration gas mixtures using dynamic volumetric
methods -- Part 1: Methods of calibration
Analyse des gaz -- Préparation des mélanges de gaz pour étalonnage à l'aide de
méthodes volumétriques dynamiques -- Partie 1: Méthodes d'étalonnage
Ta slovenski standard je istoveten z: ISO 6145-1:2003
ICS:
71.040.40 Kemijska analiza Chemical analysis
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 6145-1
Second edition
2003-11-15
Gas analysis — Preparation of calibration
gas mixtures using dynamic volumetric
methods —
Part 1:
Methods of calibration
Analyse des gaz — Préparation des mélanges de gaz pour étalonnage
à l'aide de méthodes volumétriques dynamiques —
Partie 1: Méthodes d'étalonnage
Reference number
©
ISO 2003
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.
© ISO 2003
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2003 — All rights reserved
Contents Page
Foreword. iv
Introduction . v
1 Scope. 1
2 Normative references . 1
3 Terms and definitions. 1
4 Calibration methods . 2
4.1 General. 2
4.2 Description of primary or potentially primary measuring devices . 4
4.3 Measurements on the final mixture. 12
5 Techniques for preparation of gas mixtures calibrated by the methods described in
Clause 4. 13
5.1 General. 13
[3]
5.2 Volumetric pumps (see ISO 6145-2 ) . 15
[4]
5.3 Continuous injection (see ISO 6145-4 ). 15
[5]
5.4 Capillary (see ISO 6145-5 ). 15
[6]
5.5 Critical orifices (see ISO 6145-6 ). 16
[7]
5.6 Thermal mass flow controllers (see ISO 6145-7 ). 16
[8]
5.7 Diffusion (see ISO 6145-8 ) . 16
[9]
5.8 Saturation (see ISO 6145-9 ). 17
[10]
5.9 Permeation (see ISO 6145-10 ). 17
Annex A (normative) Volume measurement by weighing the water content. 19
Annex B (informative) Description of secondary devices which need calibration against primary
devices . 23
Bibliography . 32
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 6145-1 was prepared by Technical Committee ISO/TC 158, Analysis of gases.
This second edition cancels and replaces the first edition (ISO 6145-1:1986), in which the estimated
uncertainties in the calibration methods and techniques have now been combined in a square-root sum-of-
squares manner to form the relative combined standard uncertainty. In comparison with the previous edition
the periodic injection has been deleted (limited application).
ISO 6145 consists of the following parts, under the general title Gas analysis — Preparation of calibration gas
mixtures using dynamic volumetric methods:
Part 1: Methods of calibration
— Part 2: Volumetric pumps
— Part 4: Continuous injection methods
— Part 5: Capillary calibration devices
— Part 6: Critical orifices
— Part 7: Thermal mass-flow controllers
— Part 9: Saturation method
— Part 10: Permeation method
Diffusion will be the subject of a future Part 8 to ISO 6145. Part 3 to ISO 6145, entitled Periodic injections into
a flowing gas, has been withdrawn.
iv © ISO 2003 — All rights reserved
Introduction
This part of ISO 6145 is one of a series of standards which describes the various dynamic volumetric methods
used for the preparation of calibration gas mixtures.
In dynamic volumetric methods a gas, A, is introduced at volume or mass flow rate q into a constant flow rate
A
q of a complementary gas B. Gas A can be either a pure calibration component, i, or a mixture of i in A.
B
The volume fraction, ϕ of i in the final calibration gas mixture is given in the following equation:
i,M
q
A
ϕϕ=
ii,M ,A
qq+
AB
where ϕ is the volume or mass fraction of component, i, in the pre-mixed gas A, and is already known from
i,A
its method of preparation. It is assumed that in this equation, ϕ , the concentration of component, i, in gas B,
i,B
is zero.
The introduction of gas A can be continuous (e.g. permeation tube) or pseudo-continuous (e.g. volumetric
pump). A mixing chamber should be inserted in the system before the analyser and is particularly essential in
the case of pseudo-continuous introduction. The flow rate of component A is measured either directly in terms
of volume or mass, or indirectly by measuring the variation of a physical property.
The dynamic volumetric preparation techniques produce a continuous flow rate of calibration gas mixtures into
the analyser but do not generally allow the build-up of a reserve by storage under pressure.
The main techniques used for the preparation of the mixtures are:
a) volumetric pumps;
b) continuous injection;
c) capillary;
d) critical orifices;
e) thermal mass-flow controllers;
f) diffusion;
g) saturation;
h) permeation;
i) electrochemical generation.
In all cases, and most particularly if very dilute mixtures are concerned, the materials used for the apparatus
are chosen as a function of their resistance to corrosion and low absorption capacity (usually glass, PTFE or
stainless steel). It should, however, be pointed out that the phenomena are less important for dynamic
volumetric methods than for static methods.
Numerous variants or combinations of the main techniques can be considered and mixtures of several
constituents can also be prepared by successive operations.
Some of these techniques allow calculation of the final concentration of the gas mixture from basic physical
information (e.g. mass rates of diffusion, flow through capillaries). However, since all techniques are dynamic
and rely on stable flow rates, this part of ISO 6145 emphasizes calibration of the techniques by measurement
of the individual flow rates or their ratios, or by determination of the composition of the final mixture.
The uncertainty of the composition of the calibration gas mixture is best determined by comparison with a gas
mixture traceable to international standards. Certain of the techniques which may be used to prepare a range
of calibration gas mixtures may require several such traceable gas mixtures to verify their performance over
that range. The dynamic volumetric technique used has a level of uncertainty associated with it. Information
on the final mixture composition depends both on the calibration method and on the preparation technique.
vi © ISO 2003 — All rights reserved
INTERNATIONAL STANDARD ISO 6145-1:2003(E)
Gas analysis — Preparation of calibration gas mixtures using
dynamic volumetric methods —
Part 1:
Methods of calibration
1 Scope
This part of ISO 6145 specifies the calibration methods involved in the preparation of gas mixtures by dynamic
volumetric techniques. It also gives a brief presentation of a non-exhaustive list of examples of dynamic
volumetric techniques which are described in more detail in other parts of ISO 6145.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 6142, Gas analysis — Preparation of calibration gas mixtures — Gravimetric method
ISO 6143, Gas analysis — Comparison methods for determining and checking the composition of calibration
gas mixtures
ISO 7504, Gas analysis — Vocabulary
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 7504 and the following apply.
3.1
uncertainty of measurement
parameter, associated with the result of a measurement, that characterizes the dispersion of the values that
could reasonably be attributed to the measurand
NOTE 1 Values of the individual statistical uncertainties found in some methods and techniques in this part of
ISO 6145 are combined with the values of systematic uncertainties that also occur in a square-root sum-of-squares
manner to provide a relative combined uncertainty, or in some cases as a relative expanded uncertainty by application of
the coverage factor “2”.
NOTE 2 In keeping with Reference [1] of the Bibliography, the uncertainty of the composition of a mixture is expressed
as a relative expanded uncertainty.
4 Calibration methods
4.1 General
4.1.1 The uncertainty in the composition i,M of a component i of a calibration mixture M depends at any
time on
a) the uncertainty of the calibration method,
b) the frequency with which it is applied,
c) the stability of the control devices involved in the dynamic preparation technique.
To assess the uncertainty of the whole procedure, possible instantaneous variations and drift of the principle
parameters of the technique during the calibration procedure shall be considered.
According to the preparation technique for the gas mixtures used, calibration can be carried out by one of the
following methods:
measurement of flow rate (mass or volume);
comparison method;
tracer method;
direct chemical analysis.
Table 1 shows the applicability of each calibration method to the different preparation techniques.
Table 1 — Calibration methods applicable to the preparation techniques
Calibration methods
Preparation techniques
Comparison with Flow rate
a
Tracer Direct analysis
a a
ISO 6143 measurement
Volumetric pumps + — +
Continuous injection + — +
Capillary + + +
May be applicable;
Critical orifice + + +
depends on nature
Thermal mass flow controllers + + +
of components
Diffusion + — —
Saturation + — —
Permeation + — —
a
The pluses refer to the measurement of a volume flow. In principle, flow rate measurement can also be performed for continuous
injection methods, diffusion methods and permeation methods. Here, mass flows are measured rather than volume flows. For diffusion
and permeation tubes the mass flow may be measured continuously using a suspension balance.
4.1.2 In general, the principles of the methods fall into two categories, as follows.
Principles in which the flow rates of component gases are measured either by volume or by mass and in
which the concentration in the final mixture is calculated from the flow rate. Different techniques may be
used for the individual components of a mixture and these may be calibrated by different methods. The
principle of measurements of individual flow rates, however, remains.
Principles which operate directly on the final mixtures.
2 © ISO 2003 — All rights reserved
Since different principles are involved, they are given separately under each individual method.
Since the calibration methods rely upon different principles and the equipment used for the realization of the
gas flow rates is different, different units can be used to express the contents.
For calibrations using the comparison method, the content is expressed as a mole fraction or mole
concentration because most of the calibration gas mixtures used for the comparison, if possible, are described
in this way.
Using techniques based on volume flow rate leads in the first instance to volume fractions. Recalculation of
these data to mole fractions is possible but leads to an increase in the uncertainty because of the uncertainty
of the density and molar-volume data. In this case, the expression in volume fractions is preferred.
Calibration by the gravimetric method gives mass fractions for the contents of components in gas mixtures.
These can be recalculated to mole fractions by dividing by the respective atomic or molar masses. Expression
in mole fraction is therefore preferred.
Under some circumstances, the total flow rate cannot be taken as the sum of two individual flow rates q and
A
q which have been measured separately. These problems can be caused by deviations from the ideal gas
B
laws or by changes in conditions such as backpressure or viscosity resulting from the blending of the two flow
rates. Deviations from ideal behaviour can be predicted with reasonable accuracy and other uncertainties can
be minimized by careful attention to apparatus design.
4.1.3 Flow rate measurement is normally carried out using one of the following:
a) primary devices, based on absolute principles, for example:
gravimetric method;
b) methods which may be considered as potentially primary when the volume of the device is determined by
weighing the relevant volume of water, or another suitable liquid of higher density:
mercury-sealed piston,
bell-prover;
c) many other devices available for the measurement of volume flow, some of which are listed below
(calibration of these devices is carried out by using one of the above primary or potentially primary
methods):
soap-film meter,
wet-gas meter,
thermal mass flow sensor,
variable area flow meter.
The soap-film and mercury-sealed piston flow meters share a common principle, i.e. that of timing the travel of
a soap bubble or piston between carefully defined points either electronically or by observation, for example
by means of a cathetometer. The volume between these points can be determined by filling with water, which
is subsequently weighed (see Annex A).
The wet-gas meter is an integrating device which indicates the total volume of gas that has been passed
through it (the dry-gas meter, familiar from the domestic environment, has a similar integrating property but
has not been included because it is less accurate). The variable area flow meter is a continuously indicating
device. The thermal mass flow sensor measures mass flow rate as a function of heat flux.
NOTE These devices are fully described in Annex B.
4.1.4 Calibration of these flow-rate measuring devices is carried out using one of the primary or potentially
primary methods:
a) gravimetric method;
b) mercury-sealed piston;
c) bell prover.
The gravimetric method measures the mass of gas, which has flowed at a constant rate for a defined time
through the device to be calibrated. The mercury-sealed piston drives a defined volume of gas over a
measured time period into the device to be calibrated. The bell prover is a device for creating a constant and
defined flow rate of gas, acting as a mechanically driven gasholder.
The bell prover and the gravimetric method may be used directly, where appropriate, to calibrate the various
preparation techniques, but the information is more commonly transferred via one of the flow-rate measuring
devices.
4.2 Description of primary or potentially primary measuring devices
4.2.1 Gravimetric method
4.2.1.1 Principle
Gas from a cylinder flows at a constant rate through the device to be calibrated. This is continued for a
sufficiently long period for the loss of mass from the cylinder to be accurately measured. The procedure
provides data in terms of mass flow, which can then be converted to molar flow rate or, with assessed
uncertainty, to a volume flow rate.
The gas cylinder and flow-rate measuring device are set up as shown in Figure 1. The cylinder (1) is fitted with
a pressure regulator (2) on the outlet of which a precision needle valve (3) and shut-off valve (4) lead to the
device to calibrated (5). The dead volume between the needle valve outlet and the shutoff valve is minimized
by using the smallest size of tubing and fittings commensurate with the desired gas flow rate. The temperature
and pressure of the gas are measured at the inlet to the device to be calibrated.
The cylinder valve is opened, the pressure regulator is set to a value of, e.g. 100 kPa (1 bar) gauge, and the
needle valve is adjusted to the desired flow rate. When conditions are seen to be steady, the shut-off valve is
closed and the pipe-work is disconnected at the outlet of this valve. The cylinder, regulator, needle valve and
shut-off valve are weighed as a single unit. The pipe-work is reconnected and the shut-off valve is opened to
re-start the flow at the same rate. After the gas has flowed for a period long enough for the mass used to be
measured accurately, the shut-off valve is closed and the cylinder, regulator, needle valve and shut-off valve
weighed as before. During this period, the gas flow is accurately measured by first calculating the volume of
gas from the change in mass, then the flow rate from the volume and the time.
4 © ISO 2003 — All rights reserved
Key
1 cylinder
2 pressure regulator
3 needle valve
4 shut-off valve
5 device to be calibrated
a
To vent.
Figure 1 — Gravimetric method
4.2.1.2 Uncertainty of measurement
4.2.1.2.1 Uncertainty of weighing
Gravimetric preparation of mixtures is described in ISO 6142. Using the procedures given in ISO 6142, it can
−4
be assumed that the mass of gas used in a test can be weighed to a relative standard uncertainty of 2 × 10
(i.e. 20 g of gas taken from a 10 kg cylinder whose mass before and after the test can be measured with an
−3
−4
uncertainty of 2 mg, giving a relative standard uncertainty of 22/20 ×10 , i.e. 1,4 × 10 ).
4.2.1.2.2 Uncertainty with unstable flows
This uncertainty can be neglected provided the cylinder and its flow-rate control devices are both pressurized
with gas to the same degree for both weighings. However, when the gas is shut off before weighing, the pipe-
work between the needle valve and the shutoff valve becomes pressurized to the value set on the regulator,
and this will cause a surge when the gas flow rate restarts. The uncertainty caused by this surge is the
amount of gas required to pressurize the volume between the needle valve and the shut-off valve relative to
the amount of gas having flowed. If 2 ml of dead-space is pressurized to 1 bar gauge in a test in which 20 g of
−5
methane flows, the standard uncertainty is 7 × 10 .
To reduce pressure surge effects which can cause oscillations of flow, stabilize the gas flow before taking any
readings. This avoids any uncertainty.
4.2.1.2.3 Uncertainty on conversion of mass to volume
The temperature, pressure, compression (Z) factor and molar mass of the gas, all affect the uncertainty on
conversion of mass to volume. Measurement of temperature with an uncertainty of 0,05 °C and pressure to
−4 −4
10 Pa (0,1 mbar) represents relative standard uncertainties of 1,7 × 10 and 10 , respectively. Compression
−4
factors are commonly quoted to four decimal places, which implies an uncertainty of 10 , and molar masses
are known with sufficient accuracy not to contribute significantly. The relative standard uncertainty is therefore
−4
not greater than 2,2 × 10 .
4.2.1.2.4 Uncertainty due to flow rate variation
If the device to be calibrated measures either instantaneous flow rates or volumes which are small by
comparison with the volume taken from the cylinder, then variations in flow rate are a contribution to the
uncertainty.
A high quality pressure regulator and needle valve should ensure a flow rate constancy of 0,2 % relative, apart
from the initial flow surge (see 4.2.1.2.2), but should be checked for each installation. This level of flow-rate
−3
control represents a relative standard uncertainty of 2 × 10 .
4.2.1.2.5 Uncertainty of time measurement
The time during which the gas flows from the cylinder can be measured by an electronic timer with a relative
−4
standard uncertainty of 2 × 10 .
NOTE The uncertainty of the time measurement generally depends on the discharge time. The timer can be very
accurate, but if "hand" clocking is used to start and stop the timer the uncertainty in the time measurement is in the order
of ± 0,2 s, requiring a 1 000 s discharge time to reach the stated relative uncertainty.
4.2.1.2.6 Relative combined standard uncertainty
The combination of the standard uncertainties described in 4.2.1.2.1 to 4.2.1.2.5 is as follows:
−4
weighing 2 × 10
−5
flow transients 7 × 10
6 © ISO 2003 — All rights reserved
−4
mass to volume 2,2 × 10
−3
flow rate variation 2 × 10
−4
timing 2 × 10
−3
relative combined standard uncertainty 2,0 × 10
4.2.2 Mercury-sealed piston flow meter
4.2.2.1 Principle
A glass measuring tube (see Figure 2) of known diameter and uniformity is set vertically in an insulated box
fitted with temperature control. The temperature is maintained constant to within ± 0,02 °C.
The measuring tube is divided into a number of sections by photoelectric cells serving as sensors, and the
actual volume between two adjacent photoelectric cells is determined by filling with water and weighing (see
Annex A). Greater accuracy is achieved in the calibration if a liquid of higher density is used.
A constant flow moves a frictionless piston with a constant speed upwards. The displaced volume can be
estimated from the dimensions of the tube or measured with reference to the water calibration.
The piston, made of plastics (e.g. PVC) or glass contains a horizontal, circular groove, filled with mercury. The
purity of the mercury is such as to ensure that the piston does not stick in operation. The use of triple distilled
mercury is recommended.
The piston is allowed to attain a constant speed before time measurement is started at Sensor 1.
Depending on the flow rate and the tube size, time measurement is stopped when the piston passes Sensor 2
or Sensor 3. Sensors may be of the reflection type because of the high reflectance of the mercury ring.
Because of a high back-pressure caused by the weight of the piston, the measured pressure difference is
approximately from 0,1 kPa (1 mbar) up to 1 kPa (10 mbar).
The measuring sequence starts by closing Side A of the 3-way valve (see Figure 2). As soon as the piston
passes Sensor 1, time measurement starts; it stops after the piston passes the next sensor. The three-way
valve resets its position and the piston falls down on the spring. The flow meter is then ready to restart.
4.2.2.2 Uncertainty of measurement
4.2.2.2.1 Influence of temperature variation
−6 −1
The measuring tube is made of borosilicate glass having a coefficient of linear expansion of 3,3 × 10 K .
The result is that, taking into account the control of temperature to ± 0,02 °C, there are relative standard
−7 −5
uncertainties in the volume of the tube of approximately 2 × 10 and in the volume of gas of 7 × 10 .
NOTE The user should be aware that there can be a temperature gradient if flow sensors are heated to operate (e.g.
MFCs) in the upstream system. The expansion effects on glass can be neglected.
4.2.2.2.2 Correction for pressure differences and piston pressure
Correction for pressure differences of the flow device between calibration (p ) and use (p ) is made using
cal use
the factor (p + p ) / p , in which the piston pressure, p , generally takes values between 0,1 kPa
cal piston use piston
and 1 kPa.
Assuming the absolute pressure to be measurable with a relative uncertainty of ± 0,1 %, and the piston
pressure to be measurable with an uncertainty of less than ± 10 Pa, then the relative uncertainty of the
−3
pressure correction is 1,4 × 10 .
Key
1 photoelectric cell Sensor 2 (first volume)
2 photoelectric cell Sensor 3 (second volume)
3 piston
4 photoelectric cell Sensor 1 (start counting)
5 pressure sensor
6 spring
7 3-way valve (Sides A, B, C)
a
Flow in.
b
To vent.
Figure 2 — Mercury-sealed piston flow meter
4.2.2.2.3 Diffusion across the piston
The construction of the mercury-sealed piston does not provide for the possibility of keeping the same
composition of the gas on both sides. Although diffusion along the mercury seal is still possible, the effect is
considered negligible in general practice.
4.2.2.2.4 Relative combined standard uncertainty
The combination of the standard uncertainties described in parts 4.2.2.2.1. to 4.2.2.2.3 is as follows:
−5
temperature 7 × 10
−3
pressure 1,4 × 10
diffusion across piston 0
−3
relative combined standard uncertainty 1,4 × 10
8 © ISO 2003 — All rights reserved
4.2.3 Bell prover
4.2.3.1 General
A gas flow measurement shall be provided by displacing a defined volume of gas at constant flow from the
holder of a bell prover within a measured time period.
4.2.3.2 Principle
A schematic diagram of a bell prover is given in Figure 3 and shows the bell (1) in a stationary tank (2) filled
with the sealing liquid (3). The measuring scale (4) is used to take readings of the position of the bell, which is
supported on a chain passing over rollers (5) and balanced by the counterweight (6).
Key
1 bell 4 measuring scale
2 stationary tank 5 rollers
3 sealing liquid 6 counterweight
Figure 3 — Schematic diagram of a bell prover
The principle of operation is as follows.
a) The bell is raised and filled with air.
b) A definite volume of air is displaced from the prover by lowering the bell (1) into the stationary tank (2)
while maintaining constant pressure in the conduits. The time interval over which the air is displaced is
measured by a timer. The air flow rate is calculated using the measured values of volume and time
interval.
4.2.3.3 Uncertainty of measurement
4.2.3.3.1 Uncertainty on prover capacity
The volume of the bell prover is determined at various points over the usable range and the uncertainty on
each volume determination is determined at less than 0,5 cm . A best-fit line is drawn through the volume
determinations to provide a calibration graph having a relative standard uncertainty of ± 0,05 %. The volume
discharged from the bell prover is the difference in volume between the start and finish point, giving an
uncertainty of 2 times the relative standard uncertainty in calibration, i.e. ± 0,07 %.
4.2.3.3.2 Uncertainties in the use of the measuring scale
The position of the bell prover is determined using a measuring scale which may be read to better than
0,2 mm. Assuming a change in position of 1 m, the relative standard uncertainty would be ±
−4
( 2 × 0,03/ 3 ) / 1 000 = 0,16 mm in 1 m, or 1,6 × 10 .
4.2.3.3.3 Uncertainty on displacement time interval
The time interval may be electronically measured to better than ± 0,001 s. Assuming a discharge time of 40 s,
−5
the relative uncertainty is ±×( 2 0,001 / 3 ) / 40= 2× 10 .
4.2.3.3.4 Uncertainty on the gas-distributing device
Random variations in the speed of operation of the solenoid valve which starts and stops the gas discharge
should not exceed ± 0,03 s. On a discharge time of 40 s, the relative uncertainty is ± ( 2×=0,03 / 3 ) / 40
−4
6 × 10 .
4.2.3.3.5 Combined uncertainty due to the recalculation of flow rates to reference conditions
These should normally be avoided by carrying out calibrations under the required conditions.
The combination of the standard uncertainties described in 4.2.3.3.1 to 4.2.3.3.4 is as follows:
−4
capacity 7 × 10
−4
measuring rule 1,6 × 10
−5
timing 2 × 10
−4
distribution 6 × 10
recalculation 0
−3
relative combined standard uncertainty 0,9 × 10
This total is the combined uncertainty on the mean flow rate and instability of the flow rate has not been taken
into consideration.
10 © ISO 2003 — All rights reserved
4.2.4 Measurement of time
Timing is necessary for some of the flow-rate measuring devices. Photoelectric cells fitted to the soap-film flow
meter and mercury-sealed piston flow meter define the upper and lower measuring points between which the
film or piston moves. Similarly a photoelectric cell can register the movement of the pointer of a wet-gas meter
past a particular point on its scale. The shut-off valve for the gravimetric calibration can be linked to a timer. In
all cases, the timer should be an accurate electronic device capable of measuring the time intervals with a
−4
relative standard uncertainty of no greater than 2 × 10 .
4.2.5 Correction for pressure differences
With the exception of the mercury-sealed piston meter (see 4.2.2.2), a correction for pressure differences
between calibration and use of the flow device needs to be applied using a factor p / p . Assuming the
cal use
absolute pressure to be measurable with a relative uncertainty of ± 0,1 %, then the relative uncertainty in the
−3
correction is 1,4 × 10 .
4.2.6 Correction for temperature differences
Correction for temperature differences of the flow device between calibration (T ) and use (T ) is made
cal use
using a factor T / T , where T is the absolute temperature of the flowing gas expressed in kelvins.
use cal
Assuming the temperature measurement to have a relative uncertainty of ± 0,1 %, then the relative
−3
uncertainty in the correction is 1,4 × 10 .
4.2.7 Uncertainty calculation
The relative combined standard uncertainties of the primary calibration methods (see 4.2.1.2.6, 4.2.2.2.4 and
4.2.3.3.5) are given in the first column of Table 2. When this method has been used to calibrate one of the
secondary methods (see Annex B), the contribution has been added under calibration. Individual standard
uncertainties for the measurement and time contributions for each secondary method are included. These
have been combined in a square root sum of squares method to provide a combined uncertainty u for each
c
method.
The uncertainty contributions depend upon the characteristics of the calibration method and the flow-rate
control device. Thus, if a soap-film meter is calibrated by weighing its water content, there are three sources of
uncertainty, since the time taken by the soap-film between the graduation marks has to be measured. If,
however, the measurement gives a continuous indication (variable area flow meter or thermal mass flow
sensor), then once the calibration method flow rate has been established, there is no further need for time
measurement and hence no time measurement uncertainty.
The relative combined standard uncertainties listed in Table 2 relate only to the calibration methods described
in 4.2 and, when used, the flow-rate measuring devices described in Annex B. When a mixture is prepared
using one of the techniques described in subsequent parts of ISO 6145 (see the Bibliography), the relative
standard uncertainties associated with the technique should also be taken into account.
Table 2 — Estimated uncertainties of flow-rate measuring methods (see 4.1.3)
a
Secondary flow-rate measuring device
Primary
Source of
calibration
uncertainty Soap film Wet-gas Variable area Thermal mass
method
flow meter meter flow meter flow sensor
−3 −3 −3 −3
Calibration 2,0 × 10 2,0 × 10 2,0 × 10 2,0 × 10
−4 −4 −2 −4
Gravimetric Measurement 3,3 × 10 5,1 × 10 2,3 × 10 1,0 × 10
−3
−4 −4
u u 2,0 × 10
Time 2,0 × 10 2,0 × 10 0 0
rel
−3 −3 −2 −3
u 2,0 × 10 2,1 × 10 2,3 × 10 2,0 × 10
c
−3 −3 −3 −3
Calibration 1,4 × 10 1,4 × 10 1,4 × 10 1,4 × 10
Mercury-sealed
−4 −4 −2 −4
Measurement 3,3 × 10 5,1 × 10 2,3 × 10 1,0 × 10
piston flow meter
−4 −4 −4 −4
Time 2,0 × 10 2,0 × 10 2,0 × 10 2,0 × 10
−3
u u 1,4 × 10
rel
−3 −3 −2 −3
u 1,5 × 10 1,5 × 10 2,3 × 10 1,4 × 10
c
−3 −3 −3 −3
Calibration 0,9 × 10 0,9 × 10 0,9 × 10 0,9 × 10
−4 −4 −2 −4
Bell prover
Measurement 3,3 × 10 5,1 × 10 2,3 × 10 1,0 × 10
−3 −4 −4 −4 −4
u u 0,9 × 10 Time 2,0 × 10 2,0 × 10 2,0 × 10 2,0 × 10
rel
−3 −3 −2 −3
u 1,0 × 10 1,1 × 10 2,3 × 10 0,9 × 10
c
−5
Calibration 7,7 × 10 — — —
Weighing of volume
−4
Measurement 3,3 × 10 — — —
of water
−4
Time 2,0 × 10 — — —
−5
u u 7,7 × 10
rel
−4
u 3,9 × 10 — — —
c
NOTE The combined uncertainties, u , for the secondary flow-rate measuring device are those which are the best obtainable
c
under controlled conditions.
a
See Annex B.
4.3 Measurements on the final mixture
4.3.1 General
This approach eliminates non-additivity uncertainties, e.g. volume changes on mixing of components.
Calibration of the concentration in the final mixture is carried out as described in 4.3.2 to 4.3.3.
4.3.2 Comparison method
Where possible, the content of the prepared gas mixture shall be verified by comparison with a standard
prepared or certified by an accredited national or international body. The results provided by this verification
shall confirm traceability to that national body within the analytical limits of the comparison method. Use the
comparison method described in ISO 6143.
NOTE This verification also yields information about the accuracy of the technique used to prepare the calibration
gas mixture.
12 © ISO 2003 — All rights reserved
4.3.3 Measurements on the final mixture
4.3.3.1 General
The measurement on the final mixture shall be performed by one of the two following methods:
a) direct chemical analysis; or
b) tracer methods using comparison or direct chemical analysis.
4.3.3.2 Direct chemical analysis
In some cases, an analytical method exists that should be used to determine the amount of component i in the
final mixture without reference to other calibration gas mixtures. The amount of i is determined as the mass or
number of moles. The volume of the mixture used in the analytical procedure shall be measured.
4.3.3.3 Tracer methods
The method relies on previous introduction into gas, A, through another preparation method, of a tracer gas, T.
The gas, A, then contains:
a) a known volume fraction ϕ of tracer gas T;
T,A
b) a known volume fraction ϕ of component i.
i,A
The measurement, either by direct chemical analysis or by a comparison method, of the volume fraction ϕ
TM
of T in the final mixture M, enables measurement of the dilution ratio q /(q + q ) of A in M and hence the
A A B
concentration i, M in the final mixture, i.e.
q
A
ϕϕ= (1)
T,M T,A
qq+
AB
q
A
ϕϕ= (2)
ii,M ,A
qq+
AB
The tracer gas shall be non-reactive with gases A and B.
This method may be preferred to the comparison method applied to component i, when it is possible to use a
tracer gas for which the accuracy and precision of measurement is better at its final volume fraction ϕ than
T,M
that for the desired component at its final volume fraction ϕ . The final volume fraction ϕ may, for example,
i,M i,M
be lower than that achievable for the desired analytical detection limit.
5 Techniques for preparation of gas mixtures calibrated by the methods described
in Clause 4
5.1 General
Several techniques are available and the choice between them should be decided based on the concentration
range, the availability of equipment and the required uncertainty. Almost all methods depend upon addition of
two flow rates, q of gas A and q of gas B, with the resultant volume fraction being defined as a first
A B
approximation for a direct dilution of pure component A by a gas B, free of gas A:
q
A
ϕ = (3)
A
qq+
AB
In fact, the general formula is
qq
AA
ϕϕ=+ϕ 1− (4)
ii,M ,A i,B
qq++q q
AB AB
a) when ϕ the concentration of component i in gas B, is equal to zero:
i,B
q
A
ϕϕ= (5)
ii,M ,A
qq+
AB
for direct dilution of component i, since component i (gas A) is never 100 % pure;
for dilution of gas A, which contains i at a low concentration, in order to obtain a lower concentration
of the component i.
b) when ϕ is not taken to be equal to zero, for very low concentrations or mass fractions, then generally:
i,B
q
A
1 (6)
qq+
AB
and
q
A
ϕ=+ϕϕ (7)
ii,M ,A i,B
qq+
AB
The techniques have different areas of application depending on the concentration range (see Table 3).
The techniques involved are those of mixing gases, which, except for the diffusion and permeation techniques,
may themselves be dilute mixtures the compositions of which have been established separately. The range of
compositions produced by any technique can thus be considerably extended, and Table 3 gives the range of
volume fractions available.
The relative expanded uncertainty defines the ability of the technique to produce a series of consistent
mixtures. Variations can be either short-term or long-term with respect to the response time of the system, the
long-term variations being more significant.
Table 3 — Dilution ranges for the preparation techniques expressed as mole fraction
Typical relative expanded
Preparation technique Range of volume fraction (Gas B)
uncertainty
−4
Volumetric pumps 10 to about 1 0,5
−5 −2
Continuous injection 10 to 10 5,0
−5
Capillary 10 to nominal 1 1,0
−4
Critical orifices 10 to nominal 1 0,5
−9
Thermal mass flow controllers 10 to nominal 1 1,0
−9 −3
Diffusion 10 to 10 3,0
a
Saturation 1,0
−9 −6
Permeation 10 to 10 2,5
a
Depends on saturation value of component.
14 © ISO 2003 — All rights reserved
[3]
5.2 Volumetric pumps (see ISO 6145-2 )
Each gas is forwarded separately by a piston pump and is mixed with the other at the outlet. One pump is
driven at a constant speed by a synchronous motor and the other at a proportion of this speed by means of
gear wheels. Changing the gear wheels changes the composition of the mixture.
The flow rate of each component is described by Equation (8):
qV=×n (8)
where
V is the volume capacity of the pump cylinder;
n is the number of strokes per minute.
This method gives repeatable mixtures provided that both of the following conditions are maintained:
a) before use, the motor is allowed to run for at least 30 min to attain thermal equilibrium and to overcome
transitory conditions (desorption or dissolution of gas); during this period, the pump draws in a dry g
...
NORME ISO
INTERNATIONALE 6145-1
Deuxième édition
2003-11-15
Analyse des gaz — Préparation des
mélanges de gaz pour étalonnage à l'aide
de méthodes volumétriques
dynamiques —
Partie 1:
Méthodes d'étalonnage
Gas analysis — Preparation of calibration mixtures using dynamic
volumetric methods —
Part 1: Methods of calibration
Numéro de référence
©
ISO 2003
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier
peut être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence
autorisant l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées
acceptent de fait la responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute
responsabilité en la matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info
du fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir
l'exploitation de ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation,
veuillez en informer le Secrétariat central à l'adresse donnée ci-dessous.
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2003
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Version française parue en 2008
Publié en Suisse
ii © ISO 2003 – Tous droits réservés
Sommaire Page
Avant-propos. iv
Introduction . v
1 Domaine d'application.1
2 Références normatives .1
3 Termes et définitions.1
4 Méthodes d'étalonnage .2
4.1 Généralités .2
4.2 Description des dispositifs de mesure primaires ou potentiellement primaires.4
4.3 Mesures sur le mélange final.12
5 Techniques de préparation des mélanges de gaz étalonnés par les méthodes décrites
dans l'Article 4 .14
5.1 Généralités .14
[3]
5.2 Pompes volumétriques (voir l'ISO 6145-2 ).15
[4]
5.3 Injection continue (voir l'ISO 6145-4 ).15
[5]
5.4 Capillaire (voir l'ISO 6145-5 ) .15
[6]
5.5 Orifices critiques (voir l'ISO 6145-6 ) .16
[7]
5.6 Régulateurs thermiques de débit-masse (voir l'ISO 6145-7 ).17
[8]
5.7 Diffusion (voir l'ISO 6145-8 ).17
[9]
5.8 Saturation (voir l'ISO 6145-9 ).17
[10]
5.9 Perméation (voir l'ISO 6145-10 ) .18
Annexe A (normative) Mesure du volume par pesée de la teneur en eau.19
Annexe B (informative) Description des dispositifs secondaires à étalonner par rapport
aux dispositifs primaires .23
Bibliographie .32
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 6145-1 a été élaborée par le comité technique ISO/TC 158, Analyse des gaz.
Cette deuxième édition annule et remplace la première édition (ISO 6145-1:1986), dans laquelle les
incertitudes évaluées dans les méthodes et les techniques d'étalonnage sont à présent associées par la
racine carrée de la somme des carrés, de manière à former une incertitude type relative combinée. Par
rapport à l'édition précédente, la partie relative aux injections périodiques a été retirée (application limitée).
L'ISO 6145 comprend les parties suivantes, présentées sous le titre général Analyse des gaz — Préparation
des mélanges de gaz pour étalonnage à l'aide de méthodes volumétriques dynamiques:
⎯ Partie 1: Méthodes d'étalonnage
⎯ Partie 2: Pompes volumétriques
⎯ Partie 4: Méthode d'injection continue
⎯ Partie 5: Dispositifs d'étalonnage par capillaires
⎯ Partie 6: Orifices critiques
⎯ Partie 7: Régulateurs thermiques de débit-masse
⎯ Partie 9: Méthode par saturation
⎯ Partie 10: Méthode par perméation
La diffusion fera l'objet d'une future Partie 8 de l'ISO 6145. La Partie 3 de l'ISO 6145, intitulée Injections
périodiques dans un flux gazeux, a été retirée.
iv © ISO 2003 – Tous droits réservés
Introduction
La présente partie de l'ISO 6145 fait partie d'une série de normes présentant différentes méthodes
volumétriques dynamiques, utilisées pour préparer des mélanges de gaz pour étalonnage.
Dans les méthodes volumétriques dynamiques, un gaz A est introduit au volume ou débit massique, q dans
A
un gaz de complément B à débit constant, q . Le gaz A peut être un constituant pour étalonnage pur, i, ou un
B
mélange de i dans A.
La fraction volumique, ϕ , de i dans le mélange final de gaz pour étalonnage est donnée par l'équation
i,M
suivante:
⎛⎞q
A
ϕϕ=
⎜⎟
ii,M ,A
qq+
⎝⎠AB
où ϕ est la fraction volumique ou massique du composant, i, dans le prémélange de gaz A et est déjà
i,A
connue d’après sa méthode de préparation. Dans cette équation, il est admis que, ϕ , la concentration du
i,B
composant, i, dans le gaz B, est nulle.
L'introduction du gaz A peut être continue (par tube à perméation, par exemple) ou pseudo-continue (pompe
volumétrique, par exemple). Il convient d'insérer une chambre de mélange dans le système, avant l'analyseur.
Elle est particulièrement importante dans le cas d'une introduction pseudo-continue. Le débit du composant A
est mesuré directement en termes de volume ou de masse, ou indirectement par la mesure de la variation
d'une propriété physique.
Les techniques de préparation volumétriques dynamiques produisent un débit continu de mélanges de gaz
pour étalonnage dans l'analyseur, mais ne permettent en général pas la constitution d'une réserve par
stockage sous pression.
Les principales techniques de préparation des mélanges sont les suivantes:
a) pompes volumétriques;
b) injection continue;
c) capillaire;
d) orifices critiques;
e) régulateurs thermique de débit-masse;
f) diffusion;
g) saturation;
h) perméation;
i) génération électrochimique.
Dans tous les cas, et plus particulièrement si des mélanges très dilués sont concernés, les matériaux de
l'appareillage sont choisis en fonction de leur résistance à la corrosion et de leur faible capacité d'absorption
(du verre, du PTFE ou de l'acier inoxydable, en général). Néanmoins, il convient de souligner que ces
phénomènes ont moins d'importance pour les méthodes volumétriques dynamiques que pour les méthodes
statiques.
De nombreuses variantes ou combinaisons des principales techniques peuvent être considérées, et des
mélanges de plusieurs constituants peuvent également être préparés par opérations successives.
Certaines de ces techniques permettent de calculer la concentration finale du mélange de gaz à partir de
données physiques de base (les débits massiques de diffusion ou le débit au travers de capillaires, par
exemple). Toutefois, étant donné que toutes les techniques sont dynamiques et reposent sur des débits
stables, la présente partie de l'ISO 6145 met l'accent sur l'étalonnage des techniques par mesurage des
débits individuels ou de leurs rapports, ou par détermination de la composition du mélange final.
La méthode la plus efficace pour déterminer l’incertitude de la composition du mélange de gaz pour
étalonnage est la comparaison avec un mélange de gaz certifié et traçable suivant les normes internationales.
Certaines des techniques qui peuvent être utilisées pour préparer une gamme de mélanges de gaz pour
étalonnage peuvent nécessiter plusieurs mélanges de gaz étalons pour vérifier leur performance sur toute la
gamme. La technique volumétrique dynamique utilisée comporte un niveau d'incertitude. Les informations
relatives à la composition du mélange final dépendent de la méthode d'étalonnage et de la technique de
préparation.
vi © ISO 2003 – Tous droits réservés
NORME INTERNATIONALE ISO 6145-1:2003(F)
Analyse des gaz — Préparation des mélanges de gaz pour
étalonnage à l'aide de méthodes volumétriques dynamiques —
Partie 1:
Méthodes d'étalonnage
1 Domaine d'application
La présente partie de l'ISO 6145 spécifie les méthodes d'étalonnage impliquées dans la préparation des
mélanges de gaz par des techniques volumétriques dynamiques. Elle présente également brièvement une
liste non exhaustive d'exemples de techniques volumétriques dynamiques, décrites plus en détails dans
d'autres parties de l'ISO 6145.
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les
références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du
document de référence s'applique (y compris les éventuels amendements).
ISO 6142, Analyse des gaz — Préparation des mélanges de gaz pour étalonnage — Méthode gravimétrique
ISO 6143, Analyse des gaz — Méthodes comparatives pour la détermination et la vérification de la
composition des mélanges de gaz pour étalonnage
ISO 7504, Analyse des gaz — Vocabulaire
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans l'ISO 7504 ainsi que les
suivants s'appliquent.
3.1
incertitude de mesure
paramètre, associé au résultat d'une mesure, caractérisant la dispersion des valeurs qui pourraient être
raisonnablement attribuées au mesurande
NOTE 1 Les valeurs des incertitudes statistiques individuelles présentes dans certaines méthodes et techniques de la
présente partie de l'ISO 6145 sont combinées aux valeurs des incertitudes systématiques d'une racine carrée de la
somme des carrés pour fournir une incertitude combinée relative ou, dans les cas d'incertitude relative élargie, par
application du coefficient d’élargissement «2».
NOTE 2 À l'instar de la Référence [1] de la Bibliographie, l'incertitude de la composition d'un mélange est exprimée en
tant qu'incertitude relative élargie.
4 Méthodes d'étalonnage
4.1 Généralités
4.1.1 L'incertitude de la composition i,M du composant i d'un mélange pour étalonnage M dépend souvent
de
a) l'incertitude de la méthode d'étalonnage,
b) la fréquence à laquelle elle est appliquée,
c) la stabilité des dispositifs de contrôle impliqués dans la technique de préparation dynamique.
Pour évaluer l'incertitude de l'ensemble du mode opératoire, les variations instantanées et les dérives
possibles des principaux paramètres de la technique lors de l'étalonnage doivent être prises en compte.
Selon la technique de préparation des mélanges de gaz utilisés, l'étalonnage peut être réalisé au moyen de
l'une des méthodes suivantes:
⎯ mesure du débit (massique ou volumique);
⎯ méthode de comparaison;
⎯ méthode du traceur;
⎯ analyse chimique directe.
Le Tableau 1 illustre l'applicabilité de chaque méthode d'étalonnage en fonction des différentes techniques de
préparation.
Tableau 1 — Méthodes d'étalonnage applicables aux techniques de préparation
Méthodes d'étalonnage
Techniques
de
Comparaison avec
a a
Mesure du débit Traceur Analyse directe
préparation
a
l'ISO 6143
Pompes
+ — +
volumétriques
Injection
+ — +
continue
Capillaire + + +
Orifices
+ + +
Peut être applicable;
critiques
selon la nature des
Régulateurs
composants
thermiques
+ + +
de débit-
masse
Diffusion + — —
Saturation + — —
Perméation + — —
a
Les signes plus (+) font référence à la mesure d'un débit volumique. En principe, la mesure du débit peut également être réalisée
pour les méthodes d'injection continue, les méthodes de diffusion et les méthodes de perméation. Ici, les débits-masses sont mesurés
plutôt que les débits volumiques. Pour les tubes à diffusion et à perméation, le débit-masse peut être mesuré de manière continue à
l'aide d'une balance à suspension.
2 © ISO 2003 – Tous droits réservés
4.1.2 D'une manière générale, les deux catégories ci-dessous caractérisent les principes des méthodes.
⎯ Principes dans lesquels les débits des composants des gaz sont mesurés par volume ou par masse, et la
concentration dans le mélange final est calculée à partir du débit. Différentes techniques peuvent être
utilisées pour les composants individuels d'un mélange, qui peuvent être étalonnées par différentes
méthodes. Toutefois, le principe des mesures des débits individuels est toujours en vigueur.
⎯ Principes fonctionnant directement sur les mélanges finals.
Étant donné que différents principes sont impliqués, ils sont donnés séparément dans chaque méthode
individuelle.
Étant donné que les méthodes d'étalonnage reposent sur différents principes et que l'appareillage utilisé pour
la réalisation des débits de gaz est différent, les teneurs peuvent être exprimées en unités différentes.
Pour les étalonnages utilisant la méthode de comparaison, la teneur est exprimée en fraction molaire ou en
concentration molaire, car la plupart des mélanges de gaz pour étalonnage, utilisés dans le cadre de la
comparaison, si possible, sont décrits de cette manière.
L'utilisation des techniques reposant sur le débit volumique donne, dans le premier exemple, des fractions
volumiques. Il est possible de recalculer ces données en fractions molaires, mais cela augmente l'incertitude
à cause de l'incertitude des données de masse volumique et des données de volume molaire. Dans ce cas,
l'expression en fractions volumiques est préférée.
L'étalonnage par la méthode gravimétrique permet d'obtenir la fraction massique de chacun des composants
dans les mélanges gazeux. Il est possible de recalculer ces fractions en fractions molaires en divisant par les
masses atomiques ou masses molaires respectives. L'expression en fraction molaire est alors préférée.
Dans certaines circonstances, le débit total ne peut pas être considéré comme la somme de deux débits
individuels q et q , qui ont été mesurés séparément. Ces problèmes peuvent être le résultat d'écarts par
A B
rapport aux lois des gaz parfaits ou de modifications des conditions telles que contre-pression ou viscosité
résultant du mélange de deux débits, par exemple. Il est possible de prévoir assez précisément les écarts par
rapport au comportement parfait, et les autres incertitudes peuvent être limitées en apportant une attention
particulière à la conception de l'appareillage.
4.1.3 La mesure de débit est normalement réalisée par l’une des méthodes suivantes:
a) dispositifs primaires, reposant sur des principes absolus, par exemple:
⎯ méthode gravimétrique;
b) méthodes pouvant être considérées comme potentiellement primaires lorsque le volume du dispositif est
déterminé en pesant le volume d'eau approprié ou de tout autre liquide adéquat de masse volumique
plus élevée:
⎯ piston scellé au mercure,
⎯ clepsydre;
c) de nombreux autres dispositifs disponibles pour mesurer le débit volumique, dont certains sont
répertoriés ci-dessous (ces dispositifs sont étalonnés à l'aide de l'une des méthodes primaires ou
potentiellement primaires ci-dessus):
⎯ débitmètre à film de savon,
⎯ compteur à gaz humide,
⎯ capteurs thermiques de débit-masse,
⎯ débitmètre à flotteur.
Les débitmètres à film de savon et à piston scellé au mercure utilisent un principe commun, celui de mesurer
le temps le déplacement d'une bulle de savon ou d'un piston entre deux points définis avec précaution soit
électroniquement, soit par observation, au moyen d'un cathétomètre, par exemple. Le volume entre ces points
peut être déterminé par remplissage avec de l'eau, qui est ensuite pesée (voir Annexe A).
Le compteur à gaz humide est un dispositif d'intégration indiquant le volume total de gaz qui le traverse (le
compteur à gaz par voie sèche, fréquent en environnement domestique, comporte une propriété d'intégration
analogue, mais il n'a pas été retenu, car moins précis). Le débitmètre à flotteur est un dispositif d'indication
continue. Le capteur thermique de débit-masse mesure le débit massique en fonction d’un flux de chaleur.
NOTE Ces dispositifs sont décrits en détail dans l'Annexe B.
4.1.4 Ces dispositifs de mesure du débit sont étalonnés à l'aide de l'une des méthodes primaires ou
potentiellement primaires suivantes:
a) méthode gravimétrique;
b) piston scellé au mercure;
c) clepsydre.
La méthode gravimétrique permet de mesurer la masse du gaz, passant à débit constant par le dispositif à
étalonner pendant une durée déterminée. Le piston scellé au mercure injecte un volume déterminé de gaz
pendant une durée mesurée dans le dispositif à étalonner. La clepsydre est un dispositif permettant de créer
un débit constant et déterminé de gaz, agissant comme un gazomètre mécanique.
La clepsydre et la méthode gravimétrique peuvent être utilisées directement, le cas échéant, pour étalonner
les diverses techniques de préparation, mais les informations sont plus communément transférées par
l'intermédiaire de l'un des dispositifs de mesure du débit.
4.2 Description des dispositifs de mesure primaires ou potentiellement primaires
4.2.1 Méthode gravimétrique
4.2.1.1 Principe
Le gaz s'écoule d'une bouteille à débit constant au travers du dispositif à étalonner. L'écoulement dure
suffisamment longtemps pour que la perte de masse de la bouteille soit mesurée précisément. Le mode
opératoire fournit des données en termes de débit-masse, qui peuvent ensuite être converties en débit
molaire ou, avec l'incertitude évaluée, en débit volumique.
La bouteille de gaz et le dispositif de mesure du débit sont configurés comme cela est illustré à la Figure 1. La
bouteille (1) est équipée d'un régulateur de pression (2), à la sortie duquel une vanne pointeau de
précision (3) et une vanne d’arrêt (4) sont reliées au dispositif à étalonner (5). Le volume mort entre la vanne
pointeau et la vanne d’arrêt est réduit au minimum par l’utilisation de tubes et de garnitures de diamètre
interne aussi faible que possible, tout en restant compatible avec les débits utilisés. La température et la
pression du gaz sont mesurées à l'entrée du dispositif à étalonner.
La vanne de la bouteille est ouverte, le régulateur de pression réglé à 100 kPa (1 bar), par exemple, et la
vanne pointeau ajustée sur le débit souhaité. Lorsque les conditions sont jugées stables, la vanne d’arrêt est
fermée et la canalisation déconnectée à la sortie de cette vanne. La bouteille, le régulateur, la vanne pointeau
et la vanne d’arrêt sont pesés comme un seul élément. La canalisation est reconnectée et ouverte pour
instaurer le même débit. Une fois le gaz écoulé pendant une période suffisamment longue pour mesurer
précisément la masse utilisée, la vanne d’arrêt est fermée et la bouteille, le régulateur, la vanne pointeau et la
vanne d’arrêt sont pesés dans les mêmes conditions que précédemment. Au cours de cette période, le débit
de gaz est mesuré précisément en calculant en premier lieu le volume de gaz en fonction du changement de
masse, puis le débit en fonction du volume et du temps.
4 © ISO 2003 – Tous droits réservés
Légende
1 bouteille
2 régulateur de pression
3 vanne pointeau
4 vanne d’arrêt
5 dispositif à étalonner
a
Vers l'évent.
Figure 1 — Méthode gravimétrique
4.2.1.2 Incertitude de mesure
4.2.1.2.1 Incertitude de pesage
La préparation gravimétrique des mélanges est décrite dans l'ISO 6142. Selon les modes opératoires de
l’ISO 6142, il est possible de supposer que la masse de gaz utilisée dans un essai peut être pesée en fonction
−4
d'une incertitude type relative de 2 × 10 (c'est-à-dire 20 g de gaz prélevé d'une bouteille de 10 kg dont la
masse avant et après l'essai peut être mesurée avec une incertitude de 2 mg, donnant une incertitude type
−3
−4
relative de 22/20 ×10 , c'est-à-dire 1,4 × 10 ).
4.2.1.2.2 Incertitude des flux instables
Cette incertitude peut être ignorée, à condition que la bouteille et ses dispositifs de contrôle du débit soient
sous des conditions de pression de gaz identiques au même degré pour les deux pesées. Toutefois, si le
débit de gaz est stoppé avant pesée, la canalisation entre la vanne pointeau et la vanne d’arrêt se trouve mise
à la pression définie par le régulateur; cela peut créer un à-coup de surpression à la reprise du débit de gaz.
L'incertitude provoquée par cette surpression est la quantité de gaz nécessaire à la pressurisation du volume
entre la vanne pointeau et la vanne d’arrêt par rapport à la quantité de gaz écoulé. Si 2 ml d'espace libre sont
mis sous pression à 1 bar dans un essai au cours duquel 20 g de méthane s'écoulent, l'incertitude type est de
−5
7 × 10 .
Pour réduire les effets de la surpression, qui peuvent être à l'origine d'oscillations du flux, stabiliser le débit de
gaz avant de procéder aux lectures. Cela permet d'éviter les incertitudes.
4.2.1.2.3 Incertitude de conversion de la masse en volume
La température, la pression, le coefficient de compression (Z) et la masse molaire du gaz ont un impact sur
l'incertitude de conversion de la masse en volume. La mesure de la température avec une incertitude de
0,05 °C et de la pression jusqu'à 10 Pa (0,1 mbar) représente respectivement des incertitudes types relatives
−4 −4
de 1,7 × 10 et de 10 . Les coefficients de compression sont habituellement indiqués à quatre décimales, ce
−4
qui implique une incertitude de 10 , et les masses molaires sont connues avec une exactitude suffisante
−4
pour ne pas avoir d’impact significatif. L'incertitude type relative n'est donc pas supérieure à 2,2 × 10 .
4.2.1.2.4 Incertitude due à la variation du débit
Si le dispositif à étalonner mesure de petits débits ou volumes instantanés comparés au volume prélevé de la
bouteille, les variations du débit contribuent à l'incertitude.
La qualité du régulateur de pression et celle de la vanne pointeau doivent garantir une précision du débit à
0,2 %, outre la surpression du débit initial (voir 4.2.1.2.2), mais il convient de les contrôler pour chaque
−3
installation. Ce niveau de contrôle du débit représente une incertitude type relative 2 × 10 .
4.2.1.2.5 Incertitude de mesure du temps
La durée pendant laquelle le gaz s’écoule à partir de la bouteille peut être mesurée à l'aide d'un chronomètre
−4
électronique, avec une incertitude type relative de 2 × 10 .
NOTE L'incertitude de la mesure du temps dépend généralement de la durée de déchargement. Le chronomètre
peut être très précis, mais si le déclenchement et l’arrêt sont manuels, l'incertitude de mesure du temps est de l'ordre de
± 0,2 s, ce qui nécessite un temps de déchargement de 1 000 s pour atteindre l'incertitude type stipulée.
4.2.1.2.6 Incertitude type relative combinée
La combinaison des incertitudes types décrites de 4.2.1.2.1 à 4.2.1.2.5 se présente comme suit:
−4
⎯ pesage 2 × 10
−5
⎯ transitoires de flux 7 × 10
6 © ISO 2003 – Tous droits réservés
−4
⎯ masse en volume 2,2 × 10
−3
⎯ variation du débit 2 × 10
−4
⎯ chronométrage 2 × 10
−3
⎯ incertitude type relative combinée 2,0 × 10
4.2.2 Débitmètre à piston scellé au mercure
4.2.2.1 Principe
Un tube de mesure en verre (voir Figure 2) de diamètre et d'uniformité connus est placé verticalement dans
une boîte isotherme avec régulation de température. La température reste constante à ± 0,02 °C près.
Légende
1 cellule photo-électrique capteur 2 (premier volume) 5 capteur de pression
2 cellule photo-électrique capteur 3 (second volume) 6 ressort
3 piston 7 valve à 3 voies (côtés A, B, C)
4 cellule photo-électrique capteur 1 (début du comptage)
a
Flux entrant.
b
Vers l'évent.
Figure 2 — Débitmètre à piston scellé au mercure
Le tube de mesure est divisé en un certain nombre de sections par des cellules photo-électriques faisant
office de capteurs, et le volume réel entre deux cellules photoélectriques adjacentes est déterminé par
remplissage avec de l'eau, puis pesage (voir Annexe A). Il est possible d'obtenir une plus grande exactitude
de l'étalonnage à l'aide d'un liquide de masse volumique plus élevée.
Un débit constant déplace un piston sans frottement vers le haut à vitesse constante. Le volume déplacé peut
être évalué à partir des dimensions du tube ou mesuré par rapport à l'étalonnage à l'eau.
Le piston, en plastique (du PVC, par exemple) ou en verre, comporte une rainure horizontale et circulaire
remplie de mercure. La pureté du mercure est telle que le piston ne colle pas en cours de fonctionnement. Il
est recommandé d'utiliser du mercure distillé trois fois.
On laisse le piston atteindre une vitesse constante avant que la mesure du temps ne soit établie au niveau du
capteur 1.
Selon le débit et la dimension du tube, la mesure du temps est interrompue lorsque le piston passe le
capteur 2 ou 3. Il peut s'agir de capteurs à réflexion, car l'anneau de mercure offre un facteur de réflexion
élevé. Étant donné que le poids du piston est à l'origine d'une contre-pression élevée, la différence de
pression mesurée est comprise entre 0,1 kPa (1 mbar) et 1 kPa (10 mbar) environ.
La séquence de mesure commence par la fermeture du côté A de la vanne trois voies (voir Figure 2). Dès que
le piston passe le capteur 1, la mesure du temps commence. Elle s'arrête lorsque le piston passe le capteur
suivant. La vanne trois voies reprend sa position initiale et le piston tombe sur le ressort. Le débitmètre est
alors prêt à redémarrer.
4.2.2.2 Incertitude de mesure
4.2.2.2.1 Influence de la variation de température
−6 −1
Le tube de mesure est en verre borosilicaté dont le coefficient de dilatation linéaire est de 3,3 × 10 K . Il en
résulte que, compte tenu du contrôle de température à ± 0,02 °C près, le volume du tube et le volume de gaz
−7 −5
font respectivement l'objet d'incertitudes types relatives d'environ 2 × 10 et de 7 × 10 .
NOTE Il convient que l'utilisateur sache qu'il peut exister un gradient de température si les capteurs de débit sont
chauffés pour fonctionner (MFC, par exemple) dans le système amont. Les effets de dilatation sur le verre peuvent être
négligés.
4.2.2.2.2 Correction des différences de pression et de la pression du piston
La correction des différences de pression du dispositif de débit entre l'étalonnage (p ) et l'utilisation (p ) est
cal use
effectuée à l'aide du facteur (p + p ) / p , dans lequel la pression du piston, p , prend des valeurs
cal piston use piston
comprises entre 0,1 kPa et 1 kPa.
En supposant la pression absolue mesurable avec une incertitude relative de ± 0,1 % et la pression du piston
mesurable avec une incertitude inférieure à ± 10 Pa, l'incertitude relative de la correction de pression est alors
−3
de 1,4 × 10 .
4.2.2.2.3 Diffusion à travers le piston
La construction du piston scellé au mercure n'offre pas la possibilité de conserver la même composition
gazeuse des deux côtés. Bien que la diffusion le long du joint de mercure soit toujours possible, les effets sont
généralement considérés comme négligeables.
4.2.2.2.4 Incertitude type relative combinée
La combinaison des incertitudes types décrites de 4.2.2.2.1 à 4.2.2.2.3 se présente comme suit:
−5
⎯ température 7 × 10
−3
⎯ pression 1,4 × 10
⎯ diffusion à travers un piston 0
−3
⎯ incertitude type relative combinée 1,4 × 10
8 © ISO 2003 – Tous droits réservés
4.2.3 Clepsydre
4.2.3.1 Généralités
Un débit de gaz doit être mesuré en déplaçant un volume défini de gaz à débit constant à partir du support
d'une clepsydre pendant une période mesurée.
4.2.3.2 Principe
Une représentation schématique d’une clepsydre est fournie à la Figure 3 et montre la cloche (1) placée dans
un réservoir stable (2) rempli de liquide d'étanchéité (3). L'échelle de mesure (4) est utilisée pour lire la
position de la cloche, posée sur une chaîne passant par des rouleaux (5) et équilibrée au moyen d'un
contrepoids (6).
Légende
1 cloche 4 échelle de mesure
2 réservoir stable 5 rouleaux
3 liquide d'étanchéité 6 contrepoids
Figure 3 — Représentation schématique d'une clepsydre
Le principe de fonctionnement est le suivant.
a) La cloche est soulevée et remplie d'air.
b) Un volume défini d'air est déplacé de la clepsydre en abaissant la cloche (1) dans le réservoir stable (2)
tout en maintenant une pression constante dans les conduites. L'intervalle de temps pendant lequel l’air
est déplacé est mesuré par un chronomètre. Le débit d'air est calculé à l'aide des valeurs de volume
mesurées en fonction de l'intervalle de temps.
4.2.3.3 Incertitude de mesure
4.2.3.3.1 Incertitude de capacité de la clepsydre
Le volume de la clepsydre est déterminé en différents points de la gamme utilisable, et l'incertitude de chaque
détermination de volume est définie à moins de 0,5 cm . Une droite passant au plus près de tous les points
de mesure du volume est tracée afin de fournir un graphique d'étalonnage offrant une incertitude type relative
de ± 0,05 %. Le volume déchargé de la clepsydre est la différence, en volume, entre les points initial et final,
donnant une incertitude de 2 fois l'incertitude type relative de l'étalonnage, c'est-à-dire ± 0,07 %.
4.2.3.3.2 Incertitudes d'utilisation de l'échelle de mesure
La position de la clepsydre est déterminée à l'aide d'une échelle de mesure ayant une précision meilleure que
0,2 mm. En supposant que la position change de 1 m, l'incertitude type relative serait de
−4
± ( 2 × 0,03/ 3 ) /1 000 = 0,16 mm dans 1 m, ou 1,6 × 10 .
4.2.3.3.3 Incertitude de l'intervalle de temps de déplacement
L'intervalle de temps peut être mesuré électroniquement selon une précision supérieure à ± 0,001 s près. En
−5
supposant un temps de déchargement de 40 s, l'incertitude relative est de±×( 2 0,001/ 3 ) / 40= 2× 10 .
4.2.3.3.4 Incertitude du dispositif de distribution du gaz
Il convient que les variations aléatoires de la vitesse de fonctionnement de la vanne solénoïde qui démarre et
qui arrête l'écoulement de gaz ne dépassent pas ± 0,03 s. Sur un temps d'écoulement de 40 s, l'incertitude
−4
relative est de ±×( 2 0,03 / 3 ) / 40= 6 × 10 .
4.2.3.3.5 Incertitude combinée due au recalcul des débits en fonction de conditions de référence
En principe, il convient d'éviter ce type d'incertitude en procédant à des étalonnages dans les conditions
requises.
La combinaison des incertitudes types décrites de 4.2.3.3.1 à 4.2.3.3.4 se présente comme suit:
−4
⎯ capacité 7 × 10
−4
⎯ échelle de mesure 1,6 × 10
−5
⎯ chronométrage 2 × 10
−4
⎯ distribution 6 × 10
⎯ recalcul 0
−3
⎯ incertitude type relative combinée 0,9 × 10
Ce total représente l'incertitude combinée sur le débit moyen, et l'instabilité du débit n'a pas été prise en
compte.
10 © ISO 2003 – Tous droits réservés
4.2.4 Mesure du temps
Le chronométrage est nécessaire pour certains dispositifs de mesure du débit. Les cellules photo-électriques
dont est doté le débitmètre à film de savon et le débitmètre à piston scellé au mercure définissent les points
de mesure supérieur et inférieur entre lesquels le film ou le piston se déplace. De même, une cellule photo-
électrique peut enregistrer le mouvement du pointeur d'un compteur à gaz humide au-delà d’un point
particulier de son échelle. La vanne d’arrêt prévue pour un étalonnage gravimétrique peut être associée à un
chronomètre. Dans tous les cas, il convient que le chronomètre soit un dispositif électronique précis capable
−4
de mesurer les intervalles de temps avec une incertitude type relative de 2 × 10 au maximum.
4.2.5 Correction des différences de pression
À l'exception du débitmètre à piston scellé au mercure (voir 4.2.2.2), il est nécessaire d'appliquer une
correction des différences de pression entre l'étalonnage et l'utilisation du dispositif de débit à l'aide d'un
facteur p / p . En supposant que la pression absolue soit mesurable avec une incertitude relative de
cal use
−3
± 0,1 %, l'incertitude relative de la correction est de 1,4 × 10 .
4.2.6 Correction des différences de température
Les différences de température du dispositif de débit entre l'étalonnage (T ) et l'utilisation (T ) sont
cal use
corrigées par un facteur T / T , où T est la température absolue du flux gazeux exprimée en kelvins. En
use cal
supposant que l'incertitude relative de la mesure de température soit de ± 0,1 %, l'incertitude relative de la
−3
correction est de 1,4 × 10 .
4.2.7 Calcul de l'incertitude
Les incertitudes types relatives combinées des méthodes d'étalonnage primaires (voir 4.2.1.2.6, 4.2.2.2.4 et
4.2.3.3.5) sont données dans la première colonne du Tableau 2. Si cette méthode a été utilisée pour
étalonner l'une des méthodes secondaires (voir Annexe B), la contribution a été ajoutée sous l'étalonnage.
Les incertitudes types individuelles des contributions de la mesure et de la durée de chaque méthode
secondaire sont incluses. Elles ont été combinées dans une méthode de racine carrée de la somme des
carrés pour fournir une incertitude combinée, u , pour chaque méthode.
c
Les contributions d'incertitude dépendent des caractéristiques de la méthode d'étalonnage et du dispositif de
contrôle du débit. Par conséquent, si un débitmètre à film de savon est étalonné en pesant sa teneur en eau,
il existe trois sources d'incertitude, étant donné que le temps pris par le film de savon entre les graduations
est à mesurer. Toutefois, si la mesure donne une indication continue (débitmètre à flotteur ou capteur
thermique de débit-masse), et une fois le débit de la méthode d'étalonnage établi, la mesure du temps n'est
plus utile et, de ce fait, l'incertitude de mesure du temps n'existe plus.
Les incertitudes types relatives combinées répertoriées dans le Tableau 2 se rapportent uniquement aux
méthodes d'étalonnage décrites en 4.2 et aux dispositifs de mesure du débit décrits dans l'Annexe B,
lorsqu'ils sont utilisés. Lorsqu'un mélange est préparé par l'une des techniques décrites dans les parties
suivantes de l'ISO 6145 (voir Bibliographie), il convient également de tenir compte des incertitudes types
relatives associées à la technique.
Tableau 2 — Incertitudes estimées des méthodes de mesure du débit (voir 4.1.3)
a
Dispositif secondaire de mesure du débit
Méthode
Source de
d'étalonnage Capteur
l'incertitude Débitmètre à Compteur à Débitmètre à
primaire thermique de
film de savon gaz humide flotteur
débit-masse
−3 −3 −3 −3
Étalonnage 2,0 × 10 2,0 × 10 2,0 × 10 2,0 × 10
−4 −4 −2 −4
Gravimétrique
Mesure 3,3 × 10 5,1 × 10 2,3 × 10 1,0 × 10
−3 −4 −4
u u 2,0 × 10 Temps 2,0 × 10 2,0 × 10 0 0
rel
−3 −3 −2 −3
u 2,0 × 10 2,1 × 10 2,3 × 10 2,0 × 10
c
−3 −3 −3 −3
Étalonnage 1,4 × 10 1,4 × 10 1,4 × 10 1,4 × 10
Débitmètre à piston
−4 −4 −2 −4
Mesure 3,3 × 10 5,1 × 10 2,3 × 10 1,0 × 10
scellé au mercure
−4 −4 −4 −4
Temps 2,0 × 10 2,0 × 10 2,0 × 10 2,0 × 10
−3
u u 1,4 × 10
rel
−3 −3 −2 −3
u 1,5 × 10 1,5 × 10 2,3 × 10 1,4 × 10
c
−3 −3 −3 −3
Étalonnage 0,9 × 10 0,9 × 10 0,9 × 10 0,9 × 10
−4 −4 −2 −4
Clepsydre Mesure 3,3 × 10 5,1 × 10 2,3 × 10 1,0 × 10
−3
−4 −4 −4 −4
u u 0,9 × 10
Temps 2,0 × 10 2,0 × 10 2,0 × 10 2,0 × 10
rel
−3 −3 −2 −3
u 1,0 × 10 1,1 × 10 2,3 × 10 0,9 × 10
c
−5
Étalonnage 7,7 × 10 — — —
Pesage du volume
−4
Mesure 3,3 × 10 — — —
d'eau
−4
Temps 2,0 × 10 — — —
−5
u u 7,7 × 10
rel
−4
u 3,9 × 10 — — —
c
NOTE Les incertitudes combinées, u , du dispositif secondaire de mesure du débit sont celles qui peuvent être obtenues dans
c
les conditions contrôlées.
a
Voir Annexe B.
4.3 Mesures sur le mélange final
4.3.1 Généralités
Cette approche élimine les incertitudes non cumulatives comme les modifications du volume lors du mélange
des composants, par exemple.
L'étalonnage de la concentration dans le mélange final est décrit de 4.3.2 à 4.3.3.
4.3.2 Méthode de comparaison
Dans la mesure du possible, la teneur du mélange de gaz préparé doit être vérifiée par comparaison avec un
étalon élaboré ou certifié par un organisme international ou national accrédité. Les résultats de cette
vérification doivent confirmer la traçabilité auprès dudit organisme national dans les limites analytiques de la
méthode de comparaison. Utiliser la méthode de comparaison décrite dans l'ISO 6143.
NOTE Cette vérification donne également des informations relatives à l'exactitude de la technique utilisée pour
préparer le mélange de gaz pour étalonnage.
12 © ISO 2003 – Tous droits réservés
4.3.3 Mesures sur le mélange final
4.3.3.1 Généralités
Le mélange final doit être mesuré selon l'une des deux méthodes ci-dessous:
a) analyse chimique directe; ou
b) méthodes du traceur par comparaison ou analyse chimique directe.
4.3.3.2 Analyse chimique directe
Dans certains cas, il existe une méthode analytique qu'il convient d'utiliser pour déterminer la quantité de
composant i dans le mélange final sans référence à d'autres mélanges de gaz pour étalonnage. La quantité
de composant i est déterminée comme la masse ou le nombre de moles. Le volume du mélange utilisé dans
le mode opératoire analytique doit être mesuré.
4.3.3.3 Méthodes du traceur
La méthode repose sur l'introduction préalable d'un gaz traceur T dans le gaz A, par l'intermédiaire d'une
autre méthode de préparation. Le gaz A contient donc:
a) une fraction volumique connue ϕ de gaz traceur T;
T,A
b) une fraction volumique connue ϕ de composant i.
i,A
La mesure de la fraction volumique ϕ de T dans le mélange final M, réalisée par analyse chimique directe
T,M
ou par comparaison, permet de mesurer le rapport de dilution q /(q + q ) de A dans M et, de fait, la
A A B
concentration i,M dans le mélange final, c'est-à-dire:
⎛⎞q
A
ϕϕ= (1)
⎜⎟
T,M T,A
qq+
⎝⎠AB
⎛⎞q
A
ϕϕ= (2)
⎜⎟
ii,M ,A
qq+
⎝⎠AB
Le gaz traceur ne doit pas réagir avec les gaz A et B.
Cette méthode peut être préférée à la méthode de comparaison appliquée au composant i, lorsqu'il est
possible d'utiliser un gaz traceur pour lequel l'exactitude et la fidélité de mesure sont meilleures, à sa fraction
volumique finale ϕ , que celle du composant souhaité à sa fraction volumique finale ϕ . La fraction
T,M i,M
volumique finale ϕ peut, par exemple, être inférieure à celle qu'il est possible d'obtenir pour la limite de
i,M
détection analytique souhaitée.
5 Techniques de préparation des mélanges de gaz étalonnés par les méthodes
décrites dans l'Article 4
5.1 Généralités
Plusieurs techniques sont disponibles et il convient que le choix de l'une ou de l'autre repose sur la gamme de
concentration, la disponibilité de l'appareillage et l'incertitude requise. Presque toutes les méthodes
dépendent de l'ajout de deux débits, q de gaz A et q de gaz B, la fraction volumique qui en résulte étant
A B
définie comme une première approximation dans le cadre d'une dilution directe de composant pur A par un
gaz B, exempt de gaz A:
q
A
ϕ = (3)
A
qq+
AB
En effet, la formule générale est:
⎡⎤ ⎡ ⎤
qq
AA
ϕϕ=+ϕ 1− (4)
ii,M ,A⎢⎥ i,B⎢ ⎥
qq++qq
⎣⎦AB ⎣ AB⎦
a) Lorsque ϕ , la concentration du composant i dans le gaz B, est égale à zéro:
i,B
q
A
ϕϕ= (5)
ii,M ,A
qq+
AB
⎯ pour la dilution directe du composant i, étant donné que le composant i (gaz A) n'est jamais pur
à 100 %;
⎯ pour la dilution du gaz A, qui contient i à faible concentration, afin d'obtenir une concentration
inférieure du composant i.
b) Si ϕ est différent de zéro, pour de très faibles concentrati
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...