ISO/FDIS 24675-2
(Main)Railway applications — Running time calculation for timetabling — Part 2: Distance-speed diagrams and speed curves
Railway applications — Running time calculation for timetabling — Part 2: Distance-speed diagrams and speed curves
In order to create punctual timetables, it is necessary to accurately calculate and plan out running time between stopping or passing points, headway between trains, train scheduling, rolling stock scheduling, driver and crew scheduling, operation scheduling in stations and depots and line / infrastructure capacity. Among these values, shortest running time between stopping or passing points must be calculated first, as this is the basis of timetabling. This document describes a practical procedure to create and verify distance-speed diagrams and speed curves using the parameters specified in ISO 24675-1. Shortest running time is obtained by numerically integrating the speed curves. This enables railway infrastructure managers, railway operators and related organizations to calculate accurate running time at the stage of setting up feasible and punctual daily timetables, seasonal timetables, annual timetables, strategic timetables for long-term perspective, and other timetables of a railway system. This document excludes running time calculation used for purposes other than timetabling.
Applications ferroviaires — Calcul des temps de parcours pour la construction des horaires — Partie 2: Diagrammes distance-vitesse et courbes de vitesse
General Information
- Status
- Not Published
- Technical Committee
- ISO/TC 269/SC 3 - Operations and services
- Drafting Committee
- ISO/TC 269/SC 3 - Operations and services
- Current Stage
- 5020 - FDIS ballot initiated: 2 months. Proof sent to secretariat
- Start Date
- 01-Jan-2026
- Completion Date
- 01-Jan-2026
Overview
ISO/FDIS 24675-2 specifies a practical procedure for creating and verifying distance‑speed diagrams and speed curves used to calculate the shortest running time for railway timetabling. Built to work with the input parameters defined in ISO 24675-1, the standard focuses on the physical motion of trains, describing how to derive a position‑based speed curve and obtain running time by numerical integration of that curve. The document targets railway infrastructure managers, operators and related organizations responsible for producing punctual, feasible daily, seasonal and strategic timetables.
Key Topics
- Distance‑speed diagrams and speed curves: Methods to represent train speed as a function of position along the infrastructure and to ensure the speed curve does not exceed the most restrictive speed profile at any location.
- Calculation principles: Emphasis on Newtonian motion applied to traction, resistance and braking forces to prepare realistic speed curves (as a precursor to time computation).
- Numerical integration: Shortest running time is obtained by integrating the prepared speed curve over the route.
- Verification and accuracy: Procedures to verify calculation results and check conformity with mandatory parameters and the most restrictive speed profiles.
- Input and dependencies: Uses the mandatory parameters and verifications defined in ISO 24675-1 and references related vocabularies such as ISO 24478 and IEC 60050-811.
Practical features covered in the standard include distance‑speed diagram presentation, bounding by restrictive speed profiles, and documented verification steps to ensure calculated values are reliable for timetabling.
Applications
ISO/FDIS 24675-2 is applicable where accurate running time forms the basis for scheduling and operations planning, including:
- Train timetabling (daily, seasonal, annual and strategic)
- Headway and line capacity assessment
- Rolling stock and crew scheduling
- Station and depot operation planning
By standardizing the creation and verification of speed curves and distance‑speed diagrams, the document helps improve punctuality, support consistent timetable production, and enable fair, repeatable calculations across infrastructure managers and operators.
Related Standards
- ISO 24675-1 - Requirements and mandatory input parameters for running time calculation (normative companion to Part 2).
- ISO 24478:2023 - Braking vocabulary used for defining braking terms.
- IEC 60050-811:2017 - Electrotechnical vocabulary relevant to traction and rolling stock.
Notes
- ISO/FDIS 24675-2 excludes running time calculations for purposes other than timetabling.
- Annexes in the document include illustrative examples of distance‑speed diagrams and calculation procedures for speed curves to assist implementation and verification.
Keywords: running time calculation, distance-speed diagrams, speed curves, shortest running time, timetabling, railway operators, infrastructure managers, numerical integration.
ISO/FDIS 24675-2 - Railway applications — Running time calculation for timetabling — Part 2: Distance-speed diagrams and speed curves Released:18. 12. 2025
REDLINE ISO/FDIS 24675-2 - Railway applications — Running time calculation for timetabling — Part 2: Distance-speed diagrams and speed curves Released:18. 12. 2025
ISO/FDIS 24675-2 - Applications ferroviaires — Calcul des temps de parcours pour la construction des horaires — Partie 2: Diagrammes distance-vitesse et courbes de vitesse Released:5. 02. 2026
Get Certified
Connect with accredited certification bodies for this standard

Bureau Veritas Railway Certification
Railway and transportation certification.
Deutsch Quality Systems (India) Pvt. Ltd. (DQS India)
Subsidiary of DQS Holding GmbH, founding member of IQNet. CDSCO Notified Body.

Excellence Ireland Quality Association (EIQA)
Irish quality certification organization.
Sponsored listings
Frequently Asked Questions
ISO/FDIS 24675-2 is a draft published by the International Organization for Standardization (ISO). Its full title is "Railway applications — Running time calculation for timetabling — Part 2: Distance-speed diagrams and speed curves". This standard covers: In order to create punctual timetables, it is necessary to accurately calculate and plan out running time between stopping or passing points, headway between trains, train scheduling, rolling stock scheduling, driver and crew scheduling, operation scheduling in stations and depots and line / infrastructure capacity. Among these values, shortest running time between stopping or passing points must be calculated first, as this is the basis of timetabling. This document describes a practical procedure to create and verify distance-speed diagrams and speed curves using the parameters specified in ISO 24675-1. Shortest running time is obtained by numerically integrating the speed curves. This enables railway infrastructure managers, railway operators and related organizations to calculate accurate running time at the stage of setting up feasible and punctual daily timetables, seasonal timetables, annual timetables, strategic timetables for long-term perspective, and other timetables of a railway system. This document excludes running time calculation used for purposes other than timetabling.
In order to create punctual timetables, it is necessary to accurately calculate and plan out running time between stopping or passing points, headway between trains, train scheduling, rolling stock scheduling, driver and crew scheduling, operation scheduling in stations and depots and line / infrastructure capacity. Among these values, shortest running time between stopping or passing points must be calculated first, as this is the basis of timetabling. This document describes a practical procedure to create and verify distance-speed diagrams and speed curves using the parameters specified in ISO 24675-1. Shortest running time is obtained by numerically integrating the speed curves. This enables railway infrastructure managers, railway operators and related organizations to calculate accurate running time at the stage of setting up feasible and punctual daily timetables, seasonal timetables, annual timetables, strategic timetables for long-term perspective, and other timetables of a railway system. This document excludes running time calculation used for purposes other than timetabling.
ISO/FDIS 24675-2 is classified under the following ICS (International Classification for Standards) categories: 03.220.30 - Transport by rail; 45.020 - Railway engineering in general. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO/FDIS 24675-2 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.
Standards Content (Sample)
FINAL DRAFT
International
Standard
ISO/TC 269/SC 3
Railway applications — Running
Secretariat: JISC
time calculation for timetabling —
Voting begins on:
2026-01-01
Part 2:
Distance-speed diagrams and speed
Voting terminates on:
2026-02-26
curves
Applications ferroviaires — Calcul des temps de parcours pour la
construction des horaires —
Partie 2: Diagrammes distance-vitesse et courbes de vitesse
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
Reference number
FINAL DRAFT
International
Standard
ISO/TC 269/SC 3
Railway applications — Running
Secretariat: JISC
time calculation for timetabling —
Voting begins on:
Part 2:
Distance-speed diagrams and speed
Voting terminates on:
curves
Applications ferroviaires — Calcul des temps de parcours pour la
construction des horaires —
Partie 2: Diagrammes distance-vitesse et courbes de vitesse
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
© ISO 2026
IN ADDITION TO THEIR EVALUATION AS
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
or ISO’s member body in the country of the requester.
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland Reference number
ii
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
3.1 General terms .1
3.2 Terms related to infrastructure . .2
3.3 Terms related to rolling stock .2
4 Relation between shortest running time and timetabling . 3
5 Running time calculation with a speed curve . 4
6 Calculation . 4
6.1 Basic principles .4
6.2 Calculation of a speed curve .5
6.3 Calculation of running time with a speed curve .6
7 Verification of accuracy of the calculation results . 7
Annex A (informative) Examples of distance-speed diagrams . 14
Annex B (informative) Calculation procedures for a speed curve .20
iii
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent
rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a)
patent(s) which may be required to implement this document. However, implementers are cautioned that
this may not represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 269, Railway applications, Subcommittee SC 3,
Operations and services.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
Introduction
The purpose of this document is to help many railway-related organizations around the world, regardless of
their experience, to calculate accurate train running time between two points such as stations for all rolling
stock types and its speed, helping to improve the punctuality of railways around the world.
Improving railway punctuality can increase the competitiveness of railway transportation against other
modes of transportation such as planes, buses and cars. More customers using railway means more
income for railway infrastructure managers, railway operators and related organizations. It also means
the promotion of national economic growth, increased social efficiency and the use of environmentally
friendly energy leading to increased global sustainability. Overall, an increased use of railways leads to an
improvement of quality of life (QOL) for customers.
In order to create punctual timetables, it is necessary to accurately calculate and plan out running time
between stopping or passing points, headway between trains, train scheduling, rolling stock scheduling,
driver and crew scheduling, operation scheduling in stations and depots and both line and infrastructure
capacities. Among these values, shortest running time between stopping or passing points is calculated
first, as this is the basis of timetabling.
This enables railway stakeholders to calculate the time accurately at the stage of setting up timetables of
a railway system, such as daily timetables, seasonal timetables, annual timetables, strategic timetables for
long-term perspective, and other timetables of a railway system. These timetables are created not only with
the shortest running time shown in this document but also with other factors for safety and punctuality
during commercial operations.
In many cases, running time calculation is realized using many detailed factors of practical real railway
operations. However, it is almost impossible to verify the appropriateness of the running time calculation
from the viewpoint of all such factors. On the other hand, suitable and practical verification procedures
for running time calculation need to be identified to ensure the quality and validity of the running time
calculation for punctual timetabling.
A practical running time calculation involves many factors of real railway operations. In order to establish
clear verification procedures of running time calculation, this document mainly focuses on physical
movements of a train.
ISO 24675-1 specifies the requirements with input parameters for running time calculation and with
verification of the usage of those parameters. Figure 1 shows the relation between this document and
ISO 24675-1.
v
Figure 1 — Relation between this document and ISO 24675-1
In addition to this document, further documents will complete the ISO 24675 series on railway timetabling.
All parts together form a specific and comprehensive guidance for railway timetabling. Figure 2 shows a
roadmap of the target for railway timetabling. It involves important elements of railway timetabling to be
standardized in the future.
Figure 2 — Roadmap for railway timetabling
vi
FINAL DRAFT International Standard ISO/FDIS 24675-2:2026(en)
Railway applications — Running time calculation for
timetabling —
Part 2:
Distance-speed diagrams and speed curves
1 Scope
This document specifies a practical procedure to create and verify distance-speed diagrams and speed
curves using the parameters specified in ISO 24675-1, from which the shortest running time for railway
timetabling is obtained by numerically integrating the speed curves.
This document excludes running time calculation used for purposes other than timetabling.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 24675-1:2022, Railway Applications — Running time calculation for timetabling — Part 1: Requirements
ISO 24478:2023, Railway applications — Braking — General vocabulary
IEC 60050-811:2017, International Electrotechnical Vocabulary (IEV) — Part 811: Electric traction
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 24675-1, ISO 24478, IEC 60050-811,
and the following apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1 General terms
3.1.1
position
distance from a specific reference point on a defined path on the infrastructure
[SOURCE: ISO 24675-1:2022, 3.1.3]
3.1.2
stopping point
point where a train stops or starts
[SOURCE: ISO 24675-1:2022, 3.1.4]
3.1.3
passing point
pre-defined point where the passing time of the train is recorded
3.1.4
starting point
point where a running time calculation starts
3.1.5
ending point
point where a running time calculation ends
3.1.6
speed curve
function from a position (3.1.1) value to a speed value showing speed changing of a train according to its
position (3.1.1)
3.1.7
timetabling
defining a set of train schedules for a railway system to provide a service considering conditions such as the
interaction between trains, infrastructure capacity, rolling stock, personnel, stations and depots scheduling,
shunting, commercial requirements, etc. according to its validity period or application
[SOURCE: ISO 24675-1:2022, 3.1.7]
3.1.8
running time
amount of time, on a defined path on the infrastructure, for the head of a train to pass from one stopping
point (3.1.2) or passing point (3.1.3) to another without making any stops in between
[SOURCE: ISO 24675-1:2022, 3.1.1]
3.1.9
shortest running time
running time (3.1.8) when a train is driven in the quickest way while conforming with predetermined
operating restrictions
[SOURCE: ISO 24675-1:2022, 3.1.2]
3.1.10
unit time
minimum time that constitutes the timetable
3.2 Terms related to infrastructure
3.2.1
gradient resistance force
force derived from track gradient
[SOURCE: ISO 24675-1:2022, 3.2.1]
3.3 Terms related to rolling stock
3.3.1
static mass
mass of the rail vehicle/unit/train in a stationary condition
[SOURCE: ISO 24478:2023, 3.5.5]
3.3.2
running resistance force
resistance to motion of a vehicle or train
[SOURCE: ISO 24675-1:2022, 3.3.2]
3.3.3
tractive force
force in direction of travel exerted by traction motors, engines or other means of propulsion
[SOURCE: ISO 24675-1:2022, 3.3.3]
3.3.4
braking deceleration
deceleration throughout the distance travelled from the commencement of the brake application until
achieving standstill or the final speed
Note 1 to entry: The braking distance represents the distance travelled from the commencement of the brake
application until achieving standstill or the final speed.
[SOURCE: ISO 24478:2023, 3.6.30, modified — "braking distance" has been replaced with the text after
"throughout" in the definition.]
3.3.5
inertia ratio
factor greater than unity applied to the mass of a train or vehicle to make allowance for the inertia of the
revolving masses inseparable from the movement of the train
[SOURCE: IEC 60050-811:2017, 811-05-07, modified — the text "same as allowance for rotating parts " has
been deleted from the end of the definition.]
4 Relation between shortest running time and timetabling
A running time used for timetabling is not always equal to the shortest running time. Adding additional time
is necessary to consider actual driving conditions for increasing safe operations and punctuality. This clause
shows four elements of a running time used for timetabling.
Figure 3 shows the following elements in a running time structure used for timetabling with the shortest
running time.
a) Shortest running time: The shortest running time is calculated using at least all the mandatory
parameters specified in ISO 24675-1.
b) Slack time: The slack time is calculated by rounding up to the unit time of the corresponding railway
line such as five-seconds, ten-seconds, fifteen-seconds or a half-minute.
c) Supplemental time: In the process of timetabling, feasible driving operations, vehicle variation, track
conditions and driving guidance should be considered. Given those factors differ according to the
conditions and features of the railway lines, based on these factors, the addition of supplemental time
to the shortest running time is necessary to appropriately prepare a running time for real railway
operation conditions. The supplemental time also serves in order to ensure punctuality, considering the
potential slight delays occurring in real railway operation conditions.
d) Running time used for timetabling: The running time used for timetabling is the sum of the shortest
running time, slack time and supplemental time.
Key
a shortest running time (target of this document)
b slack time
c supplemental time
d running time used for timetabling
Figure 3 — Running time structure used for timetabling
5 Running time calculation with a speed curve
Running time calculation generally consists of two steps.
— The first step is to determine a speed curve based on Newton’s laws. In practice, the speed curve
calculation needs railway operation field-related information. A speed curve is shown as a graph
expressing the train speed on each train position along its route. Although there are various ways of
drawing such graphs, examples of typical distance-speed diagrams are shown in Annex A.
— The second step is to calculate the time by numerically integrating the given speed curve and is based
on general calculation procedures, i.e. that are not specific to the railway field. This means that railway
domain knowledge is used in the calculation at the first step.
Once the speed curve is determined, running time can be obtained at the second step using the speed curve
as follows.
a) Create a speed curve.
b) Calculate the running time with the speed curve.
Clause 6 shows running time calculation with basic principles based on Newton’s laws and specific
information on railways.
6 Calculation
6.1 Basic principles
Speed curve involves the information on the speed of a train according to its position. For any point between
the starting point and ending point, a speed value is determined.
The calculation is based on Newton’s first law of dynamics stating that an object stays at rest or at constant
speed unless it is acted upon by an external force. It is also based on Newton’s second law that says when
a force acts on an object, the force accelerates the object in the same direction and the acceleration of the
object is proportional to the force. It represents the relation between acceleration and all the forces applied.
The purpose of the calculation is to find a relation between the position and time. Acceleration is the second
derivative of position with respect to time. It can be integrated to find a relation between the speed and
time.
Although train movement is a continuous phenomenon, it is calculated discretely as a uniform acceleration
motion for each calculation step.
Details for an efficient implementation of calculation algorithms are not part of this document. Hence,
specific examples of calculation procedures are described in Annex B.
a) Newton’s second law:
FM (1)
where
F is the force applied to the train, expressed in N;
M is the static mass of the train, expressed in kg;
α is the acceleration, expressed in m/s .
By deforming Formula (1), the acceleration is calculated as set out in Formula (2):
TvRvRx
rg
(2)
M
where
α is the acceleration, expressed in m/s ;
T is the tractive force, expressed in N;
R is the running resistance force, expressed in N;
r
R is the gradient resistance force, expressed in N;
g
γ is the inertia ratio;
M is the static mass of the train, expressed in kg;
v is the speed of the train, expressed in m/s;
x is the position of the train, expressed in m.
There are various calculation algorithms during braking phases, but at a minimum, whether the gradient
and running resistance forces are to be taken into account during braking phases or not shall be decided.
b) uniformly accelerated motion:
vvt (3)
t
svt (4)
2 2
2 svv (5)
1 0
where
v is the initial speed of the train before acceleration, expressed in m/s;
v is the speed of the train after acceleration, expressed in m/s;
α is the acceleration, expressed in m/s ;
s is the distance of train movement, expressed in m;
t is the time duration, expressed in s.
6.2 Calculation of a speed curve
The main assumptions for the speed curve calculation are as follows:
— the train is considered as a point mass;
— the requirements for train control systems [e.g. European Train Control System (ETCS),
Linienzugbeeinflussung (LZB), Chinese Train Control System (CTCS)] are not specified in this document.
...
ISO/DIS FDIS 24675-2:2025(en)
ISO/TC 269/SC 3/WG 3
Secretariat: JISC
Date: 2025-08-0812-17
Railway applications — Running time calculation for
timetabling— —
Part 2:
Distance-speed diagrams and speed curves
DISApplications ferroviaires — Calcul des temps de parcours pour la construction des horaires —
Partie 2: Diagrammes distance-vitesse et courbes de vitesse
FDIS stage
A model document of an International Standard (the Model International Standard) is available at:
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication
may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying,
or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO
at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: + 41 22 749 01 11
EmailE-mail: copyright@iso.org
Website: www.iso.orgwww.iso.org
Published in Switzerland
ISO #####-#:####(X/FDIS 24675-2:2025(en)
Contents
Foreword . v
Introduction . vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
3.1 General terms . 1
3.2 Terms related to infrastructure . 3
3.3 Terms related to rolling stock . 3
4 Relation between shortest running time and timetabling . 3
5 Running time calculation with a speed curve . 4
6 Calculation . 5
6.1 Basic principles . 5
6.2 Calculation of a speed curve. 7
6.3 Calculation of running time with a speed curve . 9
7 Verification of accuracy of the calculation results . 9
Annex A (informative) Examples of distance-speed diagrams . 19
Annex B (informative) Calculation procedures for a speed curve . 27
© ISO #### 2025 – All rights reserved
iv
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of
ISO document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights
in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s)
which may be required to implement this document. However, implementers are cautioned that this may not
represent the latest information, which may be obtained from the patent database available at
www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 269, Railway applications, Subcommittee SC 3,
Operations and services.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
v
ISO #####-#:####(X/FDIS 24675-2:2025(en)
Introduction
The purpose of this document is to help many railway-related organizations around the world, regardless of
their experience, to calculate accurate train running time between two points such as stations for all rolling
stock types and its speed, helping to improve the punctuality of railways around the world.
Improving railway punctuality can increase the competitiveness of railway transportation against other
modes of transportation such as planes, buses and cars. More customers using railway means more income
for railway infrastructure managers, railway operators and related organizations. It also means the promotion
of national economic growth, increased social efficiency, and the use of environmentally friendly energy
leading to increased global sustainability. Overall, an increased use of railwayrailways leads to an
improvement of “Qualityquality of Life (QoL)”life (QOL) for customers.
This document describes the requirements for shortestIn order to create punctual timetables, it is necessary
to accurately calculate and plan out running time calculation when setting upbetween stopping or passing
points, headway between trains, train scheduling, rolling stock scheduling, driver and crew scheduling,
operation scheduling in stations and depots and both line and infrastructure capacities. Among these values,
shortest running time between stopping or passing points is calculated first, as this is the basis of timetabling.
This enables railway stakeholders to calculate the time accurately at the stage of setting up timetables of a
railway system, such as daily timetables, seasonal timetables, annual timetables, strategic timetables for long-
term perspective, and other timetables of a railway system. It is necessary to note that theseThese timetables
are created not only with the shortest running time shown in this document but also with other factors for
safety and punctuality during commercial operations.
In many cases, running time calculation is realized using many detailed factors of practical real railway
operations. However, it is almost impossible to verify the appropriateness of the running time calculation from
the viewpoint of all such factors. realised using many detailed factors of practical real railway operations.
However, it is almost impossible to verify the appropriateness of the running time calculation from the
viewpoint of all such factors. On the other hand, suitable and practical verification procedures for running
time calculation areneed to be identified to ensure the quality and validity of the running time calculation for
punctual timetabling.
Running time calculation consists of two steps in general. The first step is to determine a speed curve based
on Newton’s laws. A speed curve is shown as a graph expressing the train speed on each train position along
its route. In practice, a speed curve involves much information on distinctive characteristics of the railway
operation field. The second step is to calculate the time by numerically integrating the given speed curve and
is based on general calculation procedures not only for the railway operation field. In other words, railway-
domain knowledge is reflected into the calculation at the first step. Once the speed curve is prepared, running
time can be obtained at the second step using the speed curve.
As it is described above, aA practical running time calculation involves many factors of real railway operations.
But inIn order to establish clear verification procedures of running time calculation, this document mainly
focuses on physical movements of a train.
ISO 24675-1 specifies the requirements with input parameters for running time calculation and with
verification of the usage of those parameters. 0Figure 1 shows the relation between this document and ISO
24675-1.
© ISO #### 2025 – All rights reserved
vi
Requirements of this document
Calculation of a speed curve (shown in Subclause 6.2)
Verification (shown in Clause 7)
✓Most restrictive speed profile at each position
✓Presenting distance-speed diagrams
✓Not exceed the most restrictive speed profile
✓Compare the calculated values
✓Mandatory parameters in ISO 24675-1
Shortest running time calculation
Calculation Calculation Shortest
parameters running time
method
Selected parameters
General principles
✓ Infrastructure parameters
of physics
(shown in Subclause 5.2)
✓ Rolling stock condition parameters
(shown in Subclause 5.3)
✓ Operational condition parameters
(shown in Subclause 5.4)
Verification(shown in Clause 6)
✓Increase of shortest running time
✓Decrease of shortest running time
Requirements of ISO 24675-1
Figure 1 — Relation between this document and ISO 24675-1
vii
ISO #####-#:####(X/FDIS 24675-2:2025(en)
In addition to this document, further documents will complete the standardISO 24675 series ofon railway
timetabling. All parts together form a specific and comprehensive guidance for railway timetabling. 0Figure 2
shows a roadmap of the target of our working groupfor railway timetabling. It involves important elements of
railway timetabling to be standardized in the future.
Figure 2 — Roadmap of our working groupfor railway timetabling
© ISO #### 2025 – All rights reserved
viii
ISO/DISFDIS 24675-2:2025(en)
Railway applications — Running time calculation for timetabling — —
Part 2:
Distance-speed diagrams and speed curves
1 Scope
In order to create punctual timetables, it is necessary to accurately calculate and plan out running time
between stopping or passing points, headway between trains, train scheduling, rolling stock scheduling, driver
and crew scheduling, operation scheduling in stations and depots and line / infrastructure capacity.
Among these values, shortest running time between stopping or passing points must be calculated first, as this
is the basis of timetabling.
This document specifies a practical procedure to create and verify distance-speed diagrams and speed curves
using the parameters specified in ISO 24675-1. Shortest, from which the shortest running time for railway
timetabling is obtained by numerically integrating the speed curves.
This enables railway infrastructure managers, railway operators and related organizations to calculate
accurate running time at the stage of setting up feasible and punctual daily timetables, seasonal timetables,
annual timetables, strategic timetables for long-term perspective, and other timetables of a railway system.
This document excludes running time calculation used for purposes other than timetabling.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 24675--1:2022, Railway Applications — Running time calculation for timetabling — Part 1: Requirements
ISO 24478:2023, Railway applications — Braking — General vocabulary
IEC 60050-811:2017, International Electrotechnical Vocabulary (IEV) — Part 811: Electric traction
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 24675-1, ISO 24478:2023, IEC
60050-811:2017, and the following apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— — ISO Online browsing platform: available at https://www.iso.org/obp
— — IEC Electropedia: available at https://www.electropedia.org/
3.1 General terms
3.1.1 3.1.1
position
distance from a specific reference point on a defined path on the infrastructure
[SOURCE: ISO 24675-1:2022, 3.1.3]
3.1.2 3.1.2
stopping point
point where a train stops or starts
[SOURCE: ISO 24675-1:2022, 3.1.4]
3.1.3 3.1.3
passing point
pre-defined point where the passing time of the train is recorded
3.1.4 3.1.4
starting point
point where a running time calculation starts
3.1.5 3.1.5
ending point
point where a running time calculation ends
3.1.6 3.1.6
speed curve
function from a position (3.1.1(3.1.1)) value to a speed value showing speed changing of a train according to
its position (3.1.1(3.1.1))
3.1.7 3.1.7
timetabling
defining a set of train schedules for a railway system to provide a service considering conditions such as the
interaction between trains, infrastructure capacity, rolling stock, personnel, stations and depots scheduling,
shunting, commercial requirements, etc. according to its validity period or application
[SOURCE: ISO 24675-1:2022, 3.1.7]
3.1.8 3.1.8
running time
amount of time, on a defined path on the infrastructure, for the head of a train to pass from one stopping point
(3.1.2(3.1.2)) or passing point (3.1.3(3.1.3)) to another without making any stops in between
[SOURCE: ISO 24675-1:2022, 3.1.1]
3.1.9 3.1.9
shortest running time
running time (3.1.8(3.1.8)) when a train is driven in the quickest way while conforming with predetermined
operating restrictions
3.1.10
[SOURCE: ISO 24675-1:2022, 3.1.2]
3.1.10
unit time
minimum time that constitutes the timetable
ISO/DISFDIS 24675-2:2025(en)
3.2 Infrastructure
3.2.1
3.2 Terms related to infrastructure
3.2.1
gradient resistance force
force derived from track gradient
[SOURCE: ISO 24675-1:2022, 3.2.1]
3.3 RollingTerms related to rolling stock
3.3.1 3.3.1
static mass
mass of the rail vehicle/unit/train in a stationary condition
[SOURCE: ISO 24478:2023, 3.5.5]
3.3.2 3.3.2
running resistance force
resistance to motion of a vehicle or train
[SOURCE: ISO 24675-1:2022, 3.3.2]
3.3.3 3.3.3
tractive force
force in direction of travel exerted by traction motors, engines or other means of propulsion
[SOURCE: ISO 24675-1:2022, 3.3.3]
3.3.4 3.3.4
braking deceleration
deceleration throughout the braking distance travelled from the commencement of the brake application until
achieving standstill or the final speed
Note 1 to entry: The braking distance represents the distance travelled from the commencement of the brake application
until achieving standstill or the final speed.
[SOURCE: ISO 24478:2023, 3.6.30], modified — "braking distance" has been replaced with the text after
"throughout" in the definition.]
3.3.5 3.3.5
inertia ratio
factor greater than unity applied to the mass of a train or vehicle to make allowance for the inertia of the
revolving masses inseparable from the movement of the train same as allowance for rotating parts
[SOURCE: IEC 60050-811:2017, 811-05-07], modified — the text "same as allowance for rotating parts " has
been deleted from the end of the definition.]
4 Relation between shortest running time and timetabling
A running time used for timetabling is not always equal to the shortest running time. Adding additional time
is necessary to consider actual driving conditions for increasing safe operations and punctuality. This clause
shows four elements of a running time used for timetabling.
0Figure 3 shows the following elements and a structure ofin a running time structure used for timetabling
with the shortest running time.
a) a) Shortest running time: The shortest running time is calculated using at least all the mandatory
parameters specified in ISO 24675-1.
b) b) Slack time: The slack time causedis calculated by rounding up to the unit time of the
corresponding railway line such as five-seconds, ten-seconds, fifteen-seconds or a half-minute.
c) c) SupplementSupplemental time: In the process of timetabling, feasible driving operations,
vehicle variation, track conditions, and driving guidance areshould be considered. BecauseGiven those
factors differ according to the conditions and features of the railway lines, based on these factors, the
addition of supplementsupplemental time to the shortest running time is necessary to appropriately
prepare a running time for real railway operation conditions. The supplementsupplemental time also
serves in order to ensure punctuality, considering the potential slight delays occurring in real railway
operation conditions.
d) d) Running time used for timetabling: The running time used for timetabling is the sum of the
shortest running time, slack time and supplementsupplemental time.
Considering these elements, accurate and appropriate calculation of the
Key
a shortest running time is indispensable for punctual railway operations.(target of this document)
(a) (b) (c)
(d)
Key
(a) Shortest running time (target of this document)
(b) Slack time
(c) Supplement time
(d) Running time used for timetabling
Figure 3 — Elements and structure of a b slack time
c supplemental time
d running time used for timetabling
Figure 3 — Running time structure used for timetabling
5 Running time calculation with a speed curve
Running time calculation generally consists of two steps.
— The first step is to determine a speed curve based on Newton’s laws. In practice, the speed curve
calculation needs railway operation field-related information. Here, aA speed curve is shown as a graph
expressing the train speed on each train position along its route. Although there are various ways of
drawing such graphs, examples of typical distance-speed diagrams are shown in Annex AAnnex A.
ISO/DISFDIS 24675-2:2025(en)
— The second step is to calculate the time by numerically integrating the given speed curve and is based on
general calculation procedures, i.e. that are not specific to the railway field. In other words,This means that
railway -domain knowledge is reflected intoused in the calculation at the first step.
Once the speed curve is determined, running time can be obtained at the second step using the speed curve as
follows.
a) a) Create a speed curve.
b) b) Calculate the running time with the speed curve.
6Clause 6 shows running time calculation with basic principles based on Newton’s laws and specific
information on railways.
6 Calculation
6.1 Basic principles
Speed curve involves the information on the speed of a train according to its position. For any point between
the starting point and ending point, a speed value is determined.
The calculation is based on Newton’s first law of dynamics stating that an object stays at rest or at constant
speed unless it is acted upon by an external force. It is also based on Newton’s second law that says when a
force acts on an object, the force accelerates the object in the same direction and the acceleration value of the
object is proportional to the force. It represents the relation between acceleration and all the forces applied.
The purpose of the calculation is to find a relation between the position and time. Acceleration is the second
derivative of position with respect to time. It can be integrated to find a relation between the speed and time.
Although train movement is a continuous phenomenon, it is calculated discretely as a uniformlyuniform
acceleration motion for each calculation step.
Details for an efficient implementation of calculation algorithms are not part of this document. Hence, specific
examples of calculation procedures are described in 0Annex B.
a) a) Newton’s second law:
𝐹=𝑀×𝛼 (1)
where
F is the force applied to the train, expressed in N;
M is the static mass of the train, expressed in kg;
α is the acceleration value, expressed in m/s .
F is the force applied to the train, expressed in N;
M is the static mass of the train, expressed in kg;
α is the acceleration, expressed in m/s .
By deforming 0Formula (1),, the acceleration value is calculated as set out in 0Formula (2).:
(2)
𝑇(𝑣)−𝑅 (𝑣)−𝑅 (𝑥)
r g
𝛼= (2)
𝛾×𝑀
where
α is acceleration value, expressed in m/s ;
T is tractive force, expressed in N;
R is running resistance force, expressed in N;
r
R is gradient resistance force, expressed in N;
g
γ is inertia ratio;
M is static mass of the train, expressed in kg;
v is speed of train, expressed in m/s;
x is position of train, expressed in m.
α is the acceleration, expressed in m/s ;
T is the tractive force, expressed in N;
Rr is the running resistance force, expressed in N;
Rg is the gradient resistance force, expressed in N;
γ is the inertia ratio;
M is the static mass of the train, expressed in kg;
v is the speed of the train, expressed in m/s;
x is the position of the train, expressed in m.
There are various calculation algorithms during braking phases, but at a minimum it is necessary to decide,
whether the gradient and running resistance forces are to be taken into account during braking phases or not
shall be decided.
b) b) Uniformlyuniformly accelerated motion:
v v t
(3)
t
(4)
s v t
2 s v v (5)
𝑣 =𝑣 +𝛼×𝑡 (3)
1 0
𝛼×𝑡
𝑠=𝑣 ×𝑡+ (4)
2 2
2×𝛼×𝑠=𝑣 −𝑣 (5)
1 0
where
v is initial speed of train before acceleration, expressed in m/s;
v is speed of train after acceleration, expressed in m/s;
α is acceleration value, expressed in m/s ;
ISO/DISFDIS 24675-2:2025(en)
s is distance of train movement, expressed in m;
t is time duration, expressed in s.
v0 is the initial speed of the train before acceleration, expressed in m/s;
v1 is the speed of the train after acceleration, expressed in m/s;
α is the acceleration, expressed in m/s ;
s is the distance of train movement, expressed in m;
t is the time duration, expressed in s.
6.2 Calculation of a speed curve
The main assumptions for the speed curve calculation are as follows.:
— — the train is considered as a point mass;
— — the requirements offor train control systems ([e.g., . European Train Control System (ETCS, ),
Linienzugbeeinflussung (LZB, ), Chinese Train Control System (CTCS))] are not specified in this document.
NOTE A length of a train is an important parameter especially when considering long trains. However, noting
the accuracy of calculation needed in this document, it is not mandatory.
Based on the different speed limitations depending on the infrastructure condition, the train characteristics
and operational condition restrictions, etc., the resulting and most restrictive speed profile at each position
shall be defined. 0Figure 4 shows an example of the most restrictive speed profile (bold dash-dot line). The
speed curve of the train shall not exceed the most restrictive speed profile.
y
x
Key
x position, expressed in m
y speed, expressed in km/h
most restrictive speed profile
maximum speed depending on the infrastructure condition
maximum operational speed of rolling stock
maximum operational speed on operational condition
temporary speed restriction
Key
X position, expressed in m
Y speed, expressed in km/h
1 most restrictive speed profile
2 maximum speed depending on the infrastructure condition
3 maximum operational speed of rolling stock
4 maximum operational speed on operational condition
5 temporary speed restriction
Figure 4 — Example of the most restrictive speed profile
All the requirements in ISO 24675-1 shall be adopted when speed curve is calculated in this document.
ISO/DISFDIS 24675-2:2025(en)
The calculation of speed curve is based on Newton’s laws (see 6.16.1).). The sum of forces in the formula for
traction, running resistance and other influences depends on specified parameters which need to be included
into the calculation.
6.3 Calculation of running time with a speed curve
Running time is calculated with a given speed curve. This is because the running time can be obtained by
numerically integrating the speed. In some cases, speed curve and running time are calculated simultaneously.
See Annex BAnnex B. .
For different calculations, the running time of a specific section should always be the same if the restriction
conditions within that section are the same on both calculations, regardless of different calculation starting
and ending points, origins, or destinations, outside that specific section. For example, the running time for
section C to D in 0 should be the same for two calculations, routes,
a) a) A to C to D to E, and
b) b) B to C to D to F
if the applicable conditions (such as speed restrictions, infrastructure restrictions, train composition, etc).)
are the same in sectionssection C to D in both calculations.
Key
X position, expressed in m
Y speed, expressed in km/h
1 railway line
2 speed curve
A candidate for eith
...
PROJET FINAL
Norme
internationale
ISO/TC 269/SC 3
Applications ferroviaires — Calcul
Secrétariat: JISC
des temps de parcours pour la
Début de vote:
construction des horaires —
2026-01-01
Partie 2:
Vote clos le:
2026-02-26
Diagrammes distance-vitesse et
courbes de vitesse
Railway applications — Running time calculation for
timetabling —
Part 2: Distance-speed diagrams and speed curves
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
PROJETS DE NORMES
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
NORMES POUVANT
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
Numéro de référence
PROJET FINAL
Norme
internationale
ISO/TC 269/SC 3
Applications ferroviaires — Calcul
Secrétariat: JISC
des temps de parcours pour la
Début de vote:
construction des horaires —
2026-01-01
Partie 2:
Vote clos le:
2026-02-26
Diagrammes distance-vitesse et
courbes de vitesse
Railway applications — Running time calculation for
timetabling —
Part 2: Distance-speed diagrams and speed curves
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
DOCUMENT PROTÉGÉ PAR COPYRIGHT
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
© ISO 2026 INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
PROJETS DE NORMES
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
NORMES POUVANT
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse Numéro de référence
ii
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d'application . 1
2 Références normatives . 1
3 Termes et définitions . 1
3.1 Termes généraux .1
3.2 Termes relatifs à l'infrastructure .2
3.3 Termes relatifs au matériel roulant .3
4 Relation entre le plus bref temps de parcours et la construction des horaires . 3
5 Calcul d’un temps de parcours à l’aide d’une courbe de vitesse . 4
6 Calcul . 4
6.1 Principes de base .4
6.2 Calcul d'une courbe de vitesse .6
6.3 Calcul du temps de parcours à l’aide d’une courbe de vitesse .6
7 Vérification de la précision des résultats de calcul . 7
Annexe A (informative) Exemples de diagrammes distance-vitesse .16
Annexe B (informative) Procédures de calcul d’une courbe de vitesse .22
iii
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux
de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général
confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire
partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (IEC) en ce qui concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document
a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2
(voir www.iso.org/directives).
L’ISO attire l’attention sur le fait que la mise en application du présent document peut entraîner l’utilisation
d’un ou de plusieurs brevets. L’ISO ne prend pas position quant à la preuve, à la validité et à l’applicabilité de
tout droit de brevet revendiqué à cet égard. À la date de publication du présent document, l’ISO n'avait pas
reçu notification qu’un ou plusieurs brevets pouvaient être nécessaires à sa mise en application. Toutefois,
il y a lieu d’avertir les responsables de la mise en application du présent document que des informations
plus récentes sont susceptibles de figurer dans la base de données de brevets, disponible à l'adresse
www.iso.org/patents. L’ISO ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de
brevets et de ne pas avoir signalé leur existence.
Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour
information, par souci de commodité, à l'intention des utilisateurs et ne sauraient constituer un engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion de
l'ISO aux principes de l'Organisation mondiale du commerce (OMC) concernant les obstacles techniques au
commerce (OTC), voir le lien suivant: www.iso.org/iso/foreword.html.
Le présent document a été élaboré par le Comité technique ISO/TC 269, Applications ferroviaires, Sous-comité
SC 3, Opérations et services.
Il convient que l'utilisateur adresse tout retour d'information ou toute question concernant le présent
document à l'organisme national de normalisation de son pays. Une liste exhaustive desdits organismes se
trouve à l'adresse www.iso.org/members.html.
iv
Introduction
Le présent document vise à aider les organismes du secteur ferroviaire du monde entier, indépendamment
de leur expérience, à calculer les temps de parcours précis des trains entre deux points tels que des gares
pour tous types de matériel roulant, ainsi que leur vitesse, dans l'optique d'améliorer la ponctualité des
trajets ferroviaires dans le monde entier.
L'amélioration de la ponctualité des trajets ferroviaires peut accroître la compétitivité du transport
ferroviaire par rapport aux autres modes de transport tels que les avions, les bus et les voitures. Le fait
d'avoir plus de clients est synonyme de plus fortes recettes pour les gestionnaires d'infrastructure
ferroviaire, les opérateurs ferroviaires et les organismes connexes. Cela favorise également la croissance
économique nationale, une meilleure cohésion sociale et l'emploi d'énergie respectueuse de l'environnement
pour un développement mondial plus durable. De manière générale, l'intensification du recours aux chemins
de fer améliore la qualité de vie des usagers.
Pour construire des horaires précis afin d'assurer la ponctualité des trains, il est nécessaire de calculer et de
prévoir avec précision les temps de parcours entre les points d’arrêt ou de passage, les intervalles entre les
trains, la planification d'un train, la programmation du matériel roulant, la programmation du conducteur et
du personnel de bord, la programmation des opérations en gare et au dépôt et les capacités de la ligne et de
l'infrastructure. Parmi ces valeurs, le plus bref temps de parcours entre les points d’arrêt ou de passage est
calculé en premier, car c'est le fondement de la construction des horaires.
Cela permet aux acteurs du ferroviaire de calculer les temps de manière précise lors de la construction des
horaires d’un système ferroviaire, tels que des horaires quotidiens, des horaires saisonniers, des horaires
annuels, des horaires stratégiques pour une perspective à long terme, et d’autres horaires d’un système
ferroviaire. Ces horaires sont créés non seulement à l’aide du plus bref temps de parcours indiqué dans ce
document, mais aussi en tenant compte d'autres facteurs pour la sécurité et la ponctualité lors des opérations
commerciales.
Le calcul du temps de parcours est souvent réalisé en utilisant de nombreux facteurs détaillés des
opérations ferroviaires réelles et pratiques. Toutefois, il est presque impossible de vérifier la pertinence du
calcul du temps de parcours par rapport à tous ces facteurs. D'un autre côté, il est nécessaire d’identifier
des procédures de vérification appropriées et pratiques pour le calcul du temps de fonctionnement pour
garantir la qualité et la validité du calcul du temps de parcours, permettant une construction des horaires
précise.
Le calcul pratique du temps de parcours implique de nombreux facteurs des opérations ferroviaires réelles.
Afin d'établir des procédures de vérification claires pour le calcul du temps de parcours, le présent document
se concentre principalement sur les mouvements physiques d'un train.
L’ISO24675-1 spécifie les exigences avec des paramètres d'entrée pour le calcul du temps de parcours et
avec vérification de l'utilisation de ces paramètres. La Figure 1 montre la relation entre ce document et
l’ISO 24675-1.
v
Figure 1 — Relation entre ce document et l’ISO 24675-1
Outre le présent document, d'autres documents compléteront la série ISO 24675 relative à la construction
des horaires ferroviaires. Toutes les parties forment ensemble des orientations spécifiques et complètes
pour la construction des horaires ferroviaires. La Figure 2 montre une feuille de route de l’objectif de la
construction des horaires ferroviaires. Elle implique des éléments importants de la construction des
horaires ferroviaires à normaliser à l'avenir.
Figure 2 — Feuille de route pour la construction des horaires ferroviaires
vi
PROJET FINAL Norme internationale ISO/FDIS 24675-2:2026(fr)
Applications ferroviaires — Calcul des temps de parcours
pour la construction des horaires —
Partie 2:
Diagrammes distance-vitesse et courbes de vitesse
1 Domaine d'application
Le présent document établit une procédure pratique pour créer et vérifier des diagrammes distance-vitesse
et des courbes de vitesse en utilisant les paramètres spécifiés dans l’ISO 24675-1, à partir desquels le plus
bref temps de parcours pour la construction des horaires ferroviaires est obtenu par l'intégration numérique
des courbes de vitesse.
Le présent document ne couvre pas les calculs de temps de parcours utilisés à d'autres fins que la
construction des horaires.
2 Références normatives
Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu, des exigences du
présent document. Pour les références datées, seule l’édition citée s’applique. Pour les références non datées,
la dernière édition du document de référence s'applique (y compris les éventuels amendements).
ISO 24675-1:2022, Applications ferroviaires — Calcul des temps de parcours pour la construction des horaires
— Partie 1: Exigences
ISO 24478:2023, Applications ferroviaires — Freinage — Vocabulaire général
IEC 60050-811:2017, Vocabulaire Électrotechnique International — Partie 811: Traction électrique
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions de l'ISO 24675-1, l'ISO 24478, l'IEC 60050-811
ainsi que les suivants s'appliquent.
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en normalisation,
consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l'adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l'adresse https:// www .electropedia .org/
3.1 Termes généraux
3.1.1
position
distance à partir d'un point de référence spécifique sur un tronçon défini de l'infrastructure
[SOURCE: ISO 24675-1:2022, 3.1.3]
3.1.2
point d'arrêt
point auquel un train s'arrête ou duquel le train part
[SOURCE: ISO 24675-1:2022, 3.1.4]
3.1.3
point de passage
point prédéfini où le temps de passage du train est enregistré
3.1.4
point de départ
point où commence le calcul du temps de parcours
3.1.5
point d'arrivée
point où se termine le calcul de temps de parcours
3.1.6
courbe de vitesse
fonction d'une valeur de position (3.1.1) à une valeur de vitesse montrant le changement de vitesse d'un train
en fonction de sa position (3.1.1)
3.1.7
construction des horaires
définition d'un ensemble d'horaires de trains pour un système ferroviaire afin de fournir un service
en tenant compte de conditions telles que l'interaction entre les trains, la capacité de l'infrastructure, le
matériel roulant, le personnel, la programmation des gares et des dépôts, les manœuvres, les exigences
commerciales, etc. selon sa période de validité ou son application
[SOURCE: ISO 24675-1:2022, 3.1.7]
3.1.8
temps de parcours
temps, sur un tronçon défini de l'infrastructure, nécessaire pour que la tête d'un train passe d'un point
d'arrêt (3.1.2) ou d’un point de passage (3.1.3) à un autre sans effectuer d'arrêt entre les deux
[SOURCE: ISO 24675-1:2022, 3.1.1]
3.1.9
plus bref temps de parcours
temps de parcours (3.1.8) d'un train réalisant le parcours le plus rapidement possible tout en respectant des
restrictions opérationnelles prédéterminées
[SOURCE: ISO 24675-1:2022, 3.1.2]
3.1.10
unité de temps
temps minimum qui constitue l'horaire
3.2 Termes relatifs à l'infrastructure
3.2.1
force de résistance due à la rampe ou à la pente
force due à la rampe ou à la pente
[SOURCE: ISO 24675-1:2022, 3.2.1]
3.3 Termes relatifs au matériel roulant
3.3.1
masse statique
masse du véhicule ferroviaire/unité/train en condition stationnaire
[SOURCE: ISO 24478:2023, 3.5.5]
3.3.2
force de résistance à l’avancement
résistance au déplacement d'un véhicule ou d'un train
[SOURCE: ISO 24675-1:2022, 3.3.2]
3.3.3
force de traction
force dans le sens de circulation exercée par les moteurs de traction, les moteurs ou d'autres moyens de
propulsion
[SOURCE: ISO 24675-1:2022, 3.3.3]
3.3.4
décélération de freinage
décélération tout au long de la distance parcourue depuis le début de serrage de frein jusqu'à l'arrêt complet
ou la vitesse finale
Note 1 à l'article: La distance de freinage représente la distance parcourue depuis le début de serrage de frein jusqu'à
l'arrêt complet ou la vitesse finale.
[SOURCE: ISO 24478:2023, 3.6.30, modifiée — «la distance de freinage» a été remplacé par «la distance
parcourue depuis le début de serrage de frein jusqu'à l'arrêt complet ou la vitesse finale» dans la définition.]
3.3.5
rapport d'inertie
facteur supérieur à l'unité appliqué à la masse d'un train ou d'un véhicule pour tenir compte de l'inertie des
masses en rotation inséparables du mouvement du train
[SOURCE: IEC 60050-811:2017, 811-05-07, modifiée — le texte «et des pièces rotatives» a été supprimé à la
fin de la définition.]
4 Relation entre le plus bref temps de parcours et la construction des horaires
Un temps de parcours utilisé pour la construction des horaires n’est pas toujours égal au plus bref temps
de parcours. Il est nécessaire d’ajouter du temps supplémentaire pour tenir compte des conditions réelles
de conduite afin d’améliorer la sécurité des opérations et la ponctualité. Le présent article montre quatre
éléments d’un temps de parcours utilisés pour la construction des horaires.
La Figure 3 montre les éléments suivants dans une structure de temps de parcours utilisée pour la
construction des horaires à l’aide du plus bref temps de parcours.
a) Plus bref temps de parcours: Le plus bref temps de parcours est calculé en utilisant au moins tous les
paramètres obligatoires spécifiés dans l’ISO24675-1.
b) Temps de latence: Le temps de latence est calculé en arrondissant à l'unité de temps de la ligne de chemin
de fer correspondante, tel que cinq secondes, dix secondes, quinze secondes ou une demi-minute.
c) Temps supplémentaire: Dans le processus de construction des horaires, il convient de tenir compte
des opérations de conduite réalisables, des différences entre les véhicules, des conditions de la voie
et des instructions de conduite. Étant donné que ces facteurs varient en fonction des conditions et
des caractéristiques des lignes ferroviaires, il est nécessaire, sur la base de ces facteurs, d'ajouter un
temps supplémentaire au plus bref temps de parcours afin de préparer un temps de parcours adapté
aux conditions réelles d'exploitation ferroviaire. Le temps supplémentaire sert également à assurer la
ponctualité, en tenant compte des légers retards potentiels pouvant survenir dans les conditions réelles
d'exploitation ferroviaire.
d) Temps de parcours utilisé pour la construction des horaires: Le temps de parcours utilisé pour la
construction des horaires est la somme du plus bref temps de parcours, du temps de latence et du temps
supplémentaire.
Légende
a plus bref temps de parcours (objectif du présent document)
b temps de latence
c temps supplémentaire
d temps de parcours utilisé pour la construction des horaires
Figure 3 — Temps de parcours utilisé pour la construction des horaires
5 Calcul d’un temps de parcours à l’aide d’une courbe de vitesse
Le calcul des temps de parcours comprend habituellement deux étapes.
— La première consiste à déterminer une courbe de vitesse basée sur les lois de Newton. En pratique, le
calcul de la courbe de vitesse nécessite des informations liées au domaine de l’exploitation ferroviaire.
Une courbe de vitesse est représentée sous forme de graphique exprimant la vitesse du train à chaque
position le long de son parcours. Bien qu'il existe différentes manières de tracer de tels graphiques,
quelques exemples de diagrammes distance-vitesse typiques sont présentés à l’Annexe A.
— La deuxième étape consiste à calculer les temps en intégrant numériquement la courbe de vitesse donnée
et est basée sur des procédures de calcul générales, qui ne se donc pas spécifiques au domaine ferroviaire.
Cela signifie que la connaissance du domaine ferroviaire est utilisée dans le calcul dès la première étape.
Une fois que la courbe de vitesse est déterminée, le temps de parcours peut être obtenu à la deuxième étape
en utilisant la courbe de vitesse, comme suit.
a) Créer une courbe de vitesse.
b) Calculer le temps de parcours à l’aide de la courbe de vitesse.
L’Article 6 explique comment calculer le temps de parcours avec des principes de base s’appuyant sur les lois
de Newton et des informations spécifiques sur les chemins de fer.
6 Calcul
6.1 Principes de base
La courbe de vitesse implique l'information sur la vitesse d'un train en fonction de sa position. Une valeur de
vitesse est déterminée pour tout point entre le point de départ et le point d'arrivée.
Le calcul est basé sur la première loi de Newton, qui stipule qu'un objet reste au repos ou à vitesse constante
tant qu'il n'est pas soumis à une force externe. Il s’appuie également sur la deuxième loi de Newton, qui
stipule que lorsqu'une force agit sur un objet, elle accélère l'objet dans la même direction et que l'accélération
de l'objet est proportionnelle à la force. Il représente la relation entre l'accélération et l’ensemble des forces
appliquées.
Le but du calcul est de trouver une relation entre la position et le temps. L'accélération est la deuxième
dérivée de la position par rapport au temps. Elle peut être intégrée pour trouver une relation entre la vitesse
et le temps.
Bien que le mouvement du train soit un phénomène continu, elle est calculée de manière discrète comme un
mouvement d’accélération uniforme pour chaque étape de calcul.
Les détails relatifs à une mise en œuvre efficace des algorithmes de calcul ne font pas partie de ce document.
Ainsi, des exemples spécifiques de procédures de calcul sont décrits dans l'Annexe B.
a) Deuxième loi de Newton:
FM (1)
où
F est la force appliquée au train, exprimée en N;
M est la masse statique du train, exprimée en kg;
α est l’accélération, exprimée en m/s .
En déformant la Formule (1), l’accélération est calculée à l’aide de la Formule (2):
Tv Rv Rx
rg
(2)
M
où
α est l’accélération, exprimée en m/s ;
T est la force de traction, exprimée en N;
R est la force de résistance à l’avancement, exprimée en N;
r
R est la force de résistance due à la rampe ou à la pente, exprimée en N;
g
γ est le rapport d'inertie;
M est la masse statique du train, exprimée en kg;
v est la vitesse du train, exprimée en m/s;
x est la position du train, exprimée en m.
Il existe divers algorithmes de calcul pendant les phases de freinage, mais il doit être décidé, a minima, si
les forces de résistance due à la rampe ou à la pente et de résistance à l’avancement sont prises en compte
pendant les phases de freinage.
b) mouvement uniformément accéléré:
vvt (3)
t
svt (4)
2 2
2 svv (5)
1 0
où
v est la vitesse initiale du train avant accélération, exprimée en m/s;
v est la vitesse du train après accélération, exprimée en m/s;
α est l’accélération, exprimée en m/s ;
s est la distance du mouvement du train, exprimée en m/;
t est la durée, exprimée en s.
6.2 Calcul d'une courbe de vitesse
Les principales hypothèses pour le calcul de la courbe de vitesse sont les suivantes:
— le train est considéré comme une masse ponctuelle;
— les exigences des systèmes de contrôle des trains [par exemple, le Système européen de contrôle des
trains (ETCS), le Contrôle de vitesse linéaire (Linienzugbeeinflussung, LZB), le Système de contrôle des
trains de la Chine (CTCS)] ne sont pas spécifi
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...