Indoor air - Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS-FID

ISO 16000-6:2011 specifies a method for determination of volatile organic compounds (VOCs) in indoor air and in air sampled for the determination of the emission of VOCs from building products or materials and other products used in indoor environments using test chambers and test cells. The method uses Tenax TAÒ sorbent with subsequent thermal desorption and gas chromatographic analysis employing a capillary column or columns and a flame ionization detector and/or a mass spectrometric detector. The method is applicable to the measurement of non-polar and slightly polar VOCs at concentrations ranging from sub-micrograms per cubic metre to several milligrams per cubic metre. Using the principles specified in this method, an annex describes how some very volatile compounds and semi-volatile organic compounds can also be analysed.

Air intérieur — Partie 6: Dosage des composés organiques volatils dans l'air intérieur des locaux et chambres d'essai par échantillonnage actif sur le sorbant Tenax TA, désorption thermique et chromatographie en phase gazeuse utilisant MS ou MS-FID

L'ISO 16000-6:2011 spécifie une méthode permettant de doser les composés organiques volatils (COV) dans l'air intérieur et dans l'air échantillonné afin de déterminer l'émission de COV provenant de matériaux de construction à l'aide de chambres d'essai et de cellules d'essai. La méthode utilise du sorbant Tenax TA puis une désorption thermique et une analyse par chromatographie en phase gazeuse utilisant une ou plusieurs colonne(s) capillaire(s) avec détecteur à ionisation de flamme et/ou détecteur à spectrométrie de masse. La méthode s'applique au mesurage des COV non polaires et légèrement polaires à des concentrations allant de quelques nanogrammes par mètre cube à plusieurs milligrammes par mètre cube. À l'aide des principes spécifiés dans la présente méthode, certains composés très volatils et semi­volatils peuvent également être analysés.

Notranji zrak - 6. del: Določevanje hlapnih organskih spojin v notranjem zraku in zraku v preskusnih komorah z aktivnim vzorčenjem na sorbentu Tenax TA, termično desorpcijo in plinsko kromatografijo z MS ali MS-FID

Ta del standarda ISO 16000 določa metodo za določevanje hlapnih organskih spojin (VOC) v notranjem zraku in zraku, vzorčenem za določevanje emisij hlapnih organskih spojin iz gradbenih izdelkov ali materialov ter drugih izdelkov, ki se uporabljajo v notranjih okoljih, s preskusnimi komorami in celicami. Metoda uporablja sorbent Tenax TA?1) s poznejšo termično desorpcijo (TD) in analizo[13] s plinsko kromatografijo (GC), pri kateri se uporablja ena kapilarna kolona ali več, plamensko ionizacijski detektor (FID) in/ali masno selektivni (MS) detektor. Metoda se uporablja za merjenje nepolarnih ali rahlo polarnih hlapnih organskih spojin v koncentracijah manjših od mikrogramov na kubični meter do več miligramov na kubični meter. Ob upoštevanju načel iz te metode se lahko analizirajo tudi nekatere zelo hlapne spojine (VVC) in polhlapne organske spojine (SVOC) (glejte dodatek D).

General Information

Status
Withdrawn
Publication Date
30-Nov-2011
Withdrawal Date
30-Nov-2011
Technical Committee
Drafting Committee
Current Stage
9599 - Withdrawal of International Standard
Start Date
20-Aug-2021
Completion Date
13-Dec-2025

Relations

Standard
ISO 16000-6:2012
English language
35 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 16000-6:2011 - Indoor air
English language
29 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 16000-6:2011 - Air intérieur
French language
32 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

ISO 16000-6:2011 is a standard published by the International Organization for Standardization (ISO). Its full title is "Indoor air - Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS-FID". This standard covers: ISO 16000-6:2011 specifies a method for determination of volatile organic compounds (VOCs) in indoor air and in air sampled for the determination of the emission of VOCs from building products or materials and other products used in indoor environments using test chambers and test cells. The method uses Tenax TAÒ sorbent with subsequent thermal desorption and gas chromatographic analysis employing a capillary column or columns and a flame ionization detector and/or a mass spectrometric detector. The method is applicable to the measurement of non-polar and slightly polar VOCs at concentrations ranging from sub-micrograms per cubic metre to several milligrams per cubic metre. Using the principles specified in this method, an annex describes how some very volatile compounds and semi-volatile organic compounds can also be analysed.

ISO 16000-6:2011 specifies a method for determination of volatile organic compounds (VOCs) in indoor air and in air sampled for the determination of the emission of VOCs from building products or materials and other products used in indoor environments using test chambers and test cells. The method uses Tenax TAÒ sorbent with subsequent thermal desorption and gas chromatographic analysis employing a capillary column or columns and a flame ionization detector and/or a mass spectrometric detector. The method is applicable to the measurement of non-polar and slightly polar VOCs at concentrations ranging from sub-micrograms per cubic metre to several milligrams per cubic metre. Using the principles specified in this method, an annex describes how some very volatile compounds and semi-volatile organic compounds can also be analysed.

ISO 16000-6:2011 is classified under the following ICS (International Classification for Standards) categories: 13.040.20 - Ambient atmospheres. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO 16000-6:2011 has the following relationships with other standards: It is inter standard links to ISO 16000-6:2021, ISO 16000-6:2004. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase ISO 16000-6:2011 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-april-2012
1DGRPHãþD
SIST ISO 16000-6:2004
1RWUDQML]UDNGHO'RORþHYDQMHKODSQLKRUJDQVNLKVSRMLQYQRWUDQMHP]UDNXLQ
]UDNXYSUHVNXVQLKNRPRUDK]DNWLYQLPY]RUþHQMHPQDVRUEHQWX7HQD[7$
WHUPLþQRGHVRUSFLMRLQSOLQVNRNURPDWRJUDILMR]06DOL06),'
Indoor air - Part 6: Determination of volatile organic compounds in indoor and test
chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas
chromatography using MS or MS-FID
Air intérieur -- Partie 6: Dosage des composés organiques volatils dans l'air intérieur des
locaux et chambres d'essai par échantillonnage actif sur le sorbant Tenax TA, désorption
thermique et chromatographie en phase gazeuse utilisant MS ou MS-FID
Ta slovenski standard je istoveten z: ISO 16000-6:2011
ICS:
13.040.20 Kakovost okoljskega zraka Ambient atmospheres
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 16000-6
Second edition
2011-12-01
Indoor air —
Part 6:
Determination of volatile organic
compounds in indoor and test chamber

air by active sampling on Tenax TA
sorbent, thermal desorption and gas
chromatography using MS or MS-FID
Air intérieur —
Partie 6: Dosage des composés organiques volatils dans l'air intérieur
des locaux et chambres d'essai par échantillonnage actif sur le sorbant

Tenax TA , désorption thermique et chromatographie en phase
gazeuse utilisant MS ou MS-FID

Reference number
©
ISO 2011
©  ISO 2011
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2011 – All rights reserved

Contents Page
Foreword . iv
Introduction . vi
1  Scope . 1
2  Normative references . 1
3  Terms and definitions . 1
4  Principle . 2
5  Reagents and materials . 2
6  Apparatus . 4
7  Conditioning and storage of sorbent tubes . 6
7.1  Conditioning . 6
7.2  Storage of conditioned sorbent tubes before sampling . 6
8  Sampling . 6
8.1  Indoor air sampling . 6
8.2  Test chamber air sampling . 6
8.3  Sampling volumes . 7
8.4  Storage of loaded samples . 7
8.5  Field blanks . 7
9  Analysis . 7
9.1  General . 7
9.2  Thermal desorption . 8
9.3  Temperature programme . 8
9.4  Analysis of the samples. 8
10  Identification of single VOCs . 8
11  Concentration of analytes in the sampled air . 9
11.1  General . 9
11.2  Volatile organic compounds . 9
11.3  Total volatile organic compounds . 10
11.4  VVOC and SVOC compounds observed outside the TVOC range . 10
12  Performance characteristics . 11
13  Test report . 12
14  Quality control . 12
Annex A (informative) Examples of compounds detected in indoor air and from building products
in test chambers . 13
Annex B (informative) Safe sampling volumes for selected organic vapours sampled on Tenax

TA . 19

Annex C (informative) Storage recovery of solvents on Tenax TA sorbent tubes . 21
Annex D (informative) Determination of very volatile and semi-volatile organic compounds in
conjunction with volatile organic compounds . 23
Bibliography . 28

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 16000-6 was prepared by Technical Committee ISO/TC 146, Air quality, Subcommittee SC 6, Indoor air.
This second edition cancels and replaces the first edition (ISO 16000-6:2004), which has been technically
revised.
ISO 16000 consists of the following parts, under the general title Indoor air:
 Part 1: General aspects of sampling strategy
 Part 2: Sampling strategy for formaldehyde
 Part 3: Determination of formaldehyde and other carbonyl compounds in indoor air and test chamber
air — Active sampling method
 Part 4: Determination of formaldehyde — Diffusive sampling method
 Part 5: Sampling strategy for volatile organic compounds (VOCs)
 Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on ®
Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS-FID
 Part 7: Sampling strategy for determination of airborne asbestos fibre concentrations
 Part 8: Determination of local mean ages of air in buildings for characterizing ventilation conditions
 Part 9: Determination of the emission of volatile organic compounds from building products and
furnishing — Emission test chamber method
 Part 10: Determination of the emission of volatile organic compounds from building products and
furnishing — Emission test cell method
 Part 11: Determination of the emission of volatile organic compounds from building products and
furnishing — Sampling, storage of samples and preparation of test specimens
 Part 12: Sampling strategy for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins
(PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs)
iv © ISO 2011 – All rights reserved

 Part 13: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Collection on sorbent-backed filters
 Part 14: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Extraction, clean-up and analysis by
high-resolution gas chromatography and mass spectrometry
 Part 15: Sampling strategy for nitrogen dioxide (NO )
 Part 16: Detection and enumeration of moulds — Sampling by filtration
 Part 17: Detection and enumeration of moulds — Culture-based method
 Part 18: Detection and enumeration of moulds — Sampling by impaction
 Part 19: Sampling strategy for moulds
 Part 23: Performance test for evaluating the reduction of formaldehyde concentrations by sorptive
building materials
 Part 24: Performance test for evaluating the reduction of volatile organic compound (except
formaldehyde) concentrations by sorptive building materials
 Part 25: Determination of the emission of semi-volatile organic compounds by building products —
Micro-chamber method
 Part 26: Sampling strategy for carbon dioxide (CO )
 Part 28: Determination of odour emissions from building products using test chambers
The following parts are under preparation:
 Part 21: Detection and enumeration of moulds — Sampling from materials
 Part 27: Determination of settled fibrous dust on surfaces by SEM (scanning electron microscopy)
(direct method)
 Part 29: Test methods for VOC detectors
 Part 30: Sensory testing of indoor air
 Part 31: Measurement of flame retardants and plasticizers based on organophosphorus compounds —
Phosphoric acid ester
 Part 32: Investigation of constructions on pollutants and other injurious factors — Inspections
Introduction
ISO 16000-1 establishes general requirements relating to the measurement of indoor air pollutants and the
important conditions to be observed before or during the sampling of individual pollutants or groups of
pollutants. Aspects of the determination (sampling and analysis) and the sampling strategy of specific
pollutants or groups of pollutants are specified in the subsequent parts of ISO 16000 (see Foreword).
ISO 16000-5 (dealing with VOC sampling strategy) is a link between ISO 16000-1 (a generic standard
establishing the principles) and this part of ISO 16000, which deals with sampling and analytical
measurements.
[3]–[7]
ISO 16017 (see Clause 2 and Reference [8]) and ISO 12219 also focus on volatile organic compound
(VOC) measurements.
vi © ISO 2011 – All rights reserved

INTERNATIONAL STANDARD ISO 16000-6:2011(E)

Indoor air —
Part 6:
Determination of volatile organic compounds in indoor and test

chamber air by active sampling on Tenax TA sorbent, thermal
desorption and gas chromatography using MS or MS-FID
1 Scope
This part of ISO 16000 specifies a method for determination of volatile organic compounds (VOCs) in indoor
air and in air sampled for the determination of the emission of VOCs from building products or materials and
other products used in indoor environments using test chambers and test cells. The method uses
1) [13]
Tenax TA sorbent with subsequent thermal desorption (TD) and gas chromatographic (GC) analysis
employing a capillary column or columns and a flame ionization detector (FID) and/or a mass spectrometric
(MS) detector.
The method is applicable to the measurement of non-polar and slightly polar VOCs at concentrations ranging
from sub-micrograms per cubic metre to several milligrams per cubic metre. Using the principles specified in
this method, some very volatile compounds (VVOC) and semi-volatile organic compounds (SVOC) can also
be analysed (see Annex D).
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 16000-1, Indoor air — Part 1: General aspects of sampling strategy
ISO 16017-1:2000, Indoor, ambient and workplace air — Sampling and analysis of volatile organic
compounds by sorbent tube/thermal desorption/capillary gas chromatography — Part 1: Pumped sampling
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
semi-volatile organic compound
SVOC
organic compound whose boiling point is in the range from (240 °C to 260 °C) to (380 °C to 400 °C)
[14]
NOTE 1 This classification has been defined by the World Health Organization .


1) Tenax TA is the trade name of a product supplied by Buchem. This information is given for the convenience of users
of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used
if they can be shown to lead to the same results.
NOTE 2 Boiling points of some compounds are difficult or impossible to determine because they decompose before
they boil at atmospheric pressure. Vapour pressure is another criterion for classification of compound volatility that may be
[15]
used for classification of organic chemicals .
3.2
volatile organic compound
VOC
organic compound whose boiling point is in the range from (50 °C to 100 °C) to (240 °C to 260 °C)
[14]
NOTE 1 This classification has been defined by the World Health Organization .
NOTE 2 Boiling points of some compounds are difficult or impossible to determine because they decompose before
they boil at atmospheric pressure. Vapour pressure is another criterion for classification of compound volatility that may be
[15]
used for classification of organic chemicals .
3.3
very volatile organic compound
VVOC
organic compound whose boiling point is in the range from 0 °C to (50 °C to 100 °C)
[14]
NOTE 1 This classification has been defined by the World Health Organization .
NOTE 2 Boiling points of some compounds are difficult or impossible to determine because they decompose before
they boil at atmospheric pressure. Vapour pressure is another criterion for classification of compound volatility that may be
[15]
used for classification of organic chemicals .
3.4
total volatile organic compounds
TVOCs

sum of volatile organic compounds, sampled on Tenax TA , which elute between and including n-hexane and
n-hexadecane on a non-polar capillary column, detected with a flame ionization detector (TVOC-FID) or mass
spectrometric detector (TVOC-MS), and quantified by converting the total area of the chromatogram in that
analytical window to a nominal mass using the chromatographic response factor for toluene (toluene
equivalents)
NOTE While this part of ISO 16000 specifies the determination of individual VOCs, it is common in practice to
generate a single concentration value to characterize the total amount of VOCs present in the air. This value is called the
TVOC value (see 11.3 and Clause 13). It should be emphasized that the TVOC value so obtained depends on the
sampling and analytical methods used, and therefore should be interpreted taking into account the full description of these
methods.
4 Principle
A measured volume of sample air is collected from room air, an emission test chamber (see ISO 16000-9) or
an emission test cell (see ISO 16000-10) by drawing through one (or more) sorbent tube containing

Tenax TA sorbent. Volatile organic compounds (VOCs) are retained by the sorbent tube, and the
compounds are subsequently analysed in the laboratory. The collected VOCs are desorbed by heat and
transferred under inert carrier gas via a cold trap or sorbent trap into a gas chromatograph equipped with a
capillary column or columns and a flame ionization detector and/or a mass spectrometric detector.
5 Reagents and materials
5.1 Volatile organic compounds for calibration, of chromatographic quality.
5.2 Dilution solvent, for preparing calibration blend solution for liquid spiking, of chromatographic quality,
free from compounds co-eluting with the compound(s) of interest (5.1).
NOTE It is in most cases beneficial to use dilution solvent that is considerably more volatile than the VOCs to be
analysed. Methanol most commonly fulfils this criterion. Health and safety data for organic compounds are given, for
[24]
example, in International Chemical Safety Cards (ICSCs) .
2 © ISO 2011 – All rights reserved


5.3 Tenax TA , particle size 0,18 mm to 0,60 mm (30 mesh to 80 mesh).
 
Tenax TA is a porous polymer based on 2,6-diphenyleneoxide. Manufactured Tenax TA contains quantities
of impurities, which shall be removed before using it for VOC sampling. Perform cleaning by thermal

conditioning the Tenax TA under a flow of pure carrier gas. Select cleaning conditions so that no degradation
of the polymer occurs, e.g. at a temperature of 300 °C for 10 h using a carrier gas flow rate of 50 ml/min to

100 ml/min for packed sampling tubes. Pack pre-cleaned Tenax TA into sampling tubes that are tightly
sealed and store in a closed, emission-free container. Check the success of the cleaning procedure by
performing an analysis of the cleaned sorbent.
NOTE Pre-packed, conditioned (cleaned) and capped sorbent tubes are available commercially.
5.4 Standard atmospheres, of known concentrations of the compound(s) of interest, prepared by a
[1] [2]
recognized procedure. Methods specified in ISO 6141 and the appropriate part of ISO 6145 are suitable.
Prepare standard atmospheres equivalent to about 100 µg/m . If the procedure is not applied under
conditions that allow the establishment of full traceability of the generated concentrations to primary standards
of mass and/or volume, or if the chemical inertness of the generation system cannot be guaranteed, the
concentrations shall be confirmed using an independent procedure.
5.5 Standard sorbent tubes, loaded by spiking from standard atmospheres (5.4), prepared by passing an
accurately known volume of the standard atmosphere through the sorbent tube, e.g. by means of a pump.
The volume of atmosphere sampled shall not exceed the breakthrough volume of the analyte-sorbent
combination. After loading, disconnect and seal the tube. Prepare fresh standards with each batch of samples.
For indoor air and test chamber air, load sorbent tubes with e.g. 100 ml, 200 ml, 400 ml, 1 l, 2 l, 4 l or 10 l of
the 100 µg/m standard atmosphere selected.
5.6 Calibration blend solutions for liquid spiking.
5.6.1 General. The stability and safe storage times of calibration blend solutions shall be determined. Fresh
standard solutions shall be prepared accordingly or if there is evidence of deterioration, e.g. reactions
between alcohols and ketones. Appropriate calibration solution concentrations vary depending upon expected
target analyte levels in each batch of samples. Examples of solution preparation for a range of applications
are given in 5.6.2 to 5.6.6.
5.6.2 Solution containing approximately 10 mg/ml of each liquid component. Introduce 50 ml of
dilution solvent into a 100 ml volumetric flask. Accurately weigh approximately 1 g of substance or substances
of interest into a 100 ml volumetric flask, starting with the least volatile substance. Make up to 100 ml with
dilution solvent, stopper and shake to mix.
5.6.3 Solution containing approximately 1 000 µg/ml of each liquid component. Introduce 50 ml of
dilution solvent into a 100 ml volumetric flask. Add 10 ml of solution 5.6.2. Make up to 100 ml with dilution
solvent, stopper and shake to mix.
5.6.4 Solution containing approximately 100 µg/ml of each liquid component. Introduce 50 ml of
dilution solvent into a 100 ml volumetric flask. Add 10 ml of solution 5.6.3. Make up to 100 ml with dilution
solvent, stopper and shake to mix.
5.6.5 Solution containing approximately 10 µg/ml of each liquid component. Introduce 50 ml of dilution
solvent into a 100 ml volumetric flask. Add 10 ml of solution 5.6.4. Make up to 100 ml with dilution solvent,
stopper and shake to mix.
5.6.6 Solution containing approximately 1 µg/ml of each liquid component. Introduce 50 ml of dilution
solvent into a 100 ml volumetric flask. Add 10 ml of solution 5.6.5. Make up to 100 ml with dilution solvent,
stopper and shake to mix.
5.7 Standard sorbent tubes, loaded by spiking, prepared by injecting aliquots of standard solutions on to
clean sorbent tubes.
The sampling end of a sorbent tube is fitted to the unheated injection unit of the gas chromatograph (GC)
(6.10) through which inert purge gas is passed at 100 ml/min, and a 1 µl to 5 µl aliquot of an appropriate
standard solution is injected through the septum. After 5 min, the tube is disconnected and sealed. Prepare
fresh standard tubes with each batch of samples.
Introducing liquid standards on to sorbent tubes via a GC injector is considered the optimum approach to
liquid standard introduction, as components reach the sorbent bed in the vapour phase. Alternatively, liquid
standards may be introduced directly on to the sorbent bed using a syringe (6.3).
Calibration mixtures should be prepared in controlled ambient temperature conditions. Before use, temper the
solutions accordingly.
NOTE 1 When preparing standard tubes containing SVOC analytes, efficient transfer is enhanced if the configuration
of injector allows the tip of the syringe to make gentle contact with the sorbent retaining mechanism (e.g. gauze or frit)
within the tube.
NOTE 2 Standard tubes containing VVOCs are more typically prepared either from standard atmospheres (see 5.4 and
5.5) or from concentrated gas standards sourced commercially. It is appropriate for concentrated gas standards to be
introduced to the sampling end of sorbent tubes in a stream of carrier gas via an unheated GC injector.
NOTE 3 If standard tubes are being prepared by introducing aliquots from more than one standard solution or gas, it is
appropriate first to introduce the standard containing higher boiling components and to introduce the lightest components
last. This minimizes risk of analyte breakthrough during the standard tube loading process.
5.8 Commercial, preloaded standard tubes, certified, are available and can be used for establishing
analytical quality control and for routine calibration.
5.9 Inert carrier gas, e.g. He, Ar, N . The purity of the carrier gas should permit the detection of an
injection of 0,5 ng of toluene.
CAUTION — The quality of the carrier gas is of great importance, as contaminants possibly contained
in the gases are enriched in the cold trap together with the substances to be analysed.
6 Apparatus
Ordinary laboratory apparatus and in particular the following.

6.1 Sorbent tubes, of stainless steel or glass, containing at least 200 mg of Tenax TA sorbent (5.3),
with metal screw caps and polytetrafluoroethene (PTFE) ferrules.
Tubes with outside diameter of 6,4 mm (0.25 inch), inside diameter of 5 mm, and of length 89 mm (3.5 inch)
fulfil the requirement and are used in many commercial thermal desorbers. Use deactivated glass wool or
other suitable mechanism, e.g. stainless steel frit, to retain the sorbent in the tube.
NOTE 1 The unit inch is not allowed in ISO documents; inch equivalents are given for information only.

Pre-cleaned sorbent tubes containing Tenax TA are available commercially. Alternatively, sorbent tubes can
be filled in the laboratory as follows.
Weigh the appropriate amount of adsorbent, using no less than 200 mg of sorbent per tube to maintain the
sorption capacity. To pack the tube, insert a plug of deactivated glass wool or a stainless steel gauze into one
end of the tube. Transfer the adsorbent into the tube, assisted by suction if desired. Place an additional plug
or gauze after the sorbent to retain it in the tube.
NOTE 2 The determination of breakthrough volume is specified in ISO 16017-1:2000, Annex B. Breakthrough volumes
are proportional to the dimensions of the sampling tube and quantity of sorbent. As an approximate measure, doubling the
bed length while tube diameter is kept constant doubles the safe sampling volume (SSV).
4 © ISO 2011 – All rights reserved

6.2 Sorbent tube unions. For sampling, two sorbent tubes connected in series using metal screw-cap
couplings with PTFE ferrules.
6.3 Precision syringes, readable to at least 0,1 µl.
[11] [10]
6.4 Sampling pump, fulfilling the requirements of EN 1232 or ASTM D3686 .
6.5 Tubing, of polyethylene (PE) or PTFE, of appropriate diameter, used to ensure a leak-proof fit to both
pump and sample tube.
Sampling tubes shall not be used with plastic tubing upstream of the sorbent. Interferences from the tubing
can introduce contaminants.
6.6 Flow meter calibrator. Bubble meter or other suitable device for gas flow calibration.
6.7 Gas chromatographic (GC) system, fitted with a flame ionization detector and/or mass spectrometric
detector capable of detecting an injection of at least 1 ng of toluene with a signal-to-noise ratio of at least
5 to 1.
6.8 Capillary column. A suitable GC capillary column is selected for separation of analytes in the sample.
Bonded 100 % dimethylpolysiloxane columns of 30 m to 60 m, internal diameter 0,25 mm to 0,32 mm and
phase thickness 0,25 µm to 0,5 µm are examples of columns proven to be suitable for VOC analysis of indoor
air, emission test chamber (in accordance with ISO 16000-9) air, and emission test cell (in accordance with
ISO 16000-10) air.
)
NOTE A dimethylpolysiloxane column, e.g. an HP-1 column, does not separate 3-carene from 2-ethyl-1-hexanol
with certain oven programmes, nor does it separate m- and p-xylenes.
6.9 Thermal desorption apparatus, for the two-stage thermal desorption of the sorbent tubes and transfer
of desorbed vapours via an inert gas flow into a GC.
A typical apparatus contains a mechanism for holding the tubes to be desorbed while they are heated and
purged simultaneously with inert carrier gas. The desorption temperature and time are adjustable, as is the
carrier gas flow rate. The apparatus may also incorporate additional features, such as automatic sample-tube
loading, leak testing, and a cold trap or other suitable device to concentrate the desorbed sample. The
desorbed sample, contained in the purge gas, is routed to the gas chromatograph and capillary column via a
heated transfer line.
6.10 Injection facility for preparing standards by liquid spiking (optional). A conventional gas
chromatographic injection unit or equivalent device may be used for preparing calibration standards. This can
be used in situ, or it can be mounted separately. The injector should be unheated to eliminate risk of heat
transfer to the tube and associated risk of analyte breakthrough. The back of the injection unit should be
adapted if necessary to fit the sample tube. This can be done conveniently by means of compression coupling
with an O-ring seal.
NOTE When preparing standard tubes containing SVOC analytes, efficient transfer is enhanced if the configuration
of the injector allows the tip of the syringe to make gentle contact with the sorbent retaining mechanism (e.g. gauze or frit)
within the tube.
6.11 Calibration of pump. Calibrate the pump with the sorbent tube assembly in line, using an appropriate
external calibrated meter.
2 HP-1 is the trade name of a product manufactured by Agilent, Inc. This information is given for the convenience of
users of this document and does not constitute an endorsement by ISO of the product named.
7 Conditioning and storage of sorbent tubes
7.1 Conditioning
Prior to each sampling use, condition the pre-cleaned sorbent tubes at 300 °C for 10 min under inert carrier
gas at a flow rate of 50 ml/min to 100 ml/min, to remove trace organic volatiles possibly trapped on the tube.
Analyse a representative number of conditioned tubes for blank value, using routine analytical parameters, to
ensure that the thermal desorption blank is sufficiently small. The sorbent tube blank level is acceptable if
artefact peaks are no greater than 10 % of the typical peak areas of the analytes of interest. If the blank is
unacceptable, recondition the tubes by repeating the conditioning procedure. If after repeated conditioning the
blank is still unacceptable, the tubes shall be refilled (see procedure in 6.1).
7.2 Storage of conditioned sorbent tubes before sampling
Seal conditioned sorbent tubes with metal screw-cap fittings with PTFE ferrules and store in an emission-free
container at room temperature. Use conditioned sampling tubes within four weeks. Recondition tubes stored
for more than four weeks before sampling.
8 Sampling
8.1 Indoor air sampling
Assemble the sampling line. If more than one tube is used in order to ensure that the breakthrough volume for
one tube and the analyte of interest is not exceeded, prepare a tube assembly by joining the tubes in series
with a union (6.2). Attach the pump to the sorbent tube or tube assembly with PE or PTFE tubing. Start the
pump and note and record the sampling flow rate or register reading, note starting time, temperature and, if
necessary for calculation, also atmospheric pressure. An appropriate sampling flow rate is in the range of
50 ml/min to 200 ml/min. At the end of the sampling period, note and record the flow rate or register reading,
turn the pump off, and note and record the time, temperature and, if necessary, atmospheric pressure.
Disconnect the sampling tube from the sampling line and seal both ends using screw-cap fittings with PTFE
ferrules.
If sampling flow rate is determined using an integrated flow-measuring device, e.g. a mass flow meter,
connect the sampling tube to the sampling line, start the pump, note and record the time and flow rate or
register reading. Note and record temperature and, if necessary, atmospheric pressure. An appropriate
sampling flow rate is in the range of 50 ml/min to 200 ml/min. At the end of the sampling period, note and
record the flow rate or register reading, turn off the pump, note and register the time the pump was turned off.
Disconnect the sampling tube from the sampling line and seal both ends using screw-cap fittings with PTFE
ferrules.
Sampling from indoor air shall be performed taking into account the general aspects of sampling strategy as
specified in ISO 16000-1.
Sampling flow rates lower than 50 ml/min may be used if the operator finds it necessary, e.g. to enable longer
sampling times.
8.2 Test chamber air sampling
Assemble the sampling line. If the sampling flow rate is determined with a calibrator, start the pump, note and
record the sampling flow rate. Appropriate sampling flow rate is in the range of 50 ml/min to 200 ml/min. When
sampling from an emission chamber, the sampling flow shall not exceed 80 % of the air flow rate of the
chamber. Connect the sampling tube to the test chamber outlet or other sampling port of the emission test
chamber, note and record the time the tube was connected. Note and record temperature and if necessary
atmospheric pressure. At the end of the sampling period, disconnect the sampling tube from the chamber
sampling port, note and record the time of disconnection, repeat the sampling flow determination, and turn off
the pump. Disconnect the sampling tube from the sampling line and seal both ends using screw cap fittings
with PTFE ferrules.
6 © ISO 2011 – All rights reserved

If sampling flow rate is determined by using an integrated flow-measuring device, e.g. a mass flow meter,
connect the sampling tube to the sampling line and further to the chamber sampling port, start the pump, note
and record the time and flow rate or register reading. Note and record temperature and, if necessary,
atmospheric pressure. An appropriate sampling flow rate is in the range of 50 ml/min to 200 ml/min. At the end
of the sampling period, note and record the flow rate or register reading, turn off the pump, note and register
the time the pump was turned off. Disconnect the sampling tube from the sampling line and seal both ends
using screw cap fittings with PTFE ferrules.
8.3 Sampling volumes
SSVs, i.e. amounts of gas that can be sampled without breakthrough of VOCs, are listed in Annex B. In
general, the suitable sampling volumes when sampling VOCs from non-industrial indoor air is 1 l to 5 l for

sampling tubes with 200 mg of Tenax TA . In material emission measurements, the material type and age,
loading factor and air exchange rate in the chamber determine suitable sampling volumes. The maximum
recommended sampling volume, in general, is 5 l.
Sampling volume has to be adjusted to the expected concentrations. When sampling unknown concentrations,
it is recommended that at least three parallel samples be taken with different sampling volumes. If the
analytical result is not dependent on the sampling volume, no breakthrough of the analytes has occurred.
8.4 Storage of loaded samples
Loaded sampling tubes shall be tightly sealed and stored in an emission-free container at ambient room
temperature. The effect of storage on loaded VOC from indoor or chamber air is not known, although some
data (see Annex C) suggest that they may be stable over several months at room temperature. To avoid
possible changes, the samples should be analysed as soon as possible and preferably within four weeks after
collection.
8.5 Field blanks

Field blanks shall be Tenax TA sampling tubes identical to those used for VOC sampling. These tubes are
subjected to the same handling procedure in the field as the sample tubes, except for the actual period of
sampling. Field blanks shall be marked, stored and analysed in sequence with the actual samples. In a
measurement campaign, about 10 % of the samples analysed shall be field blanks. If only a few
measurements are performed, at least one field blank shall be prepared and analysed.
9 Analysis
9.1 General
For analysis, VOCs are thermally desorbed from the sampling tubes. Separate the individual VOCs using
capillary columns in a gas chromatograph and detect with a flame ionization detector (FID) and mass
spectrometric detector (MS) or with MS only. MS can be used for both identification and quantification of
compounds, while FID signals alone are used only for compound quantification.
When a flame ionization detector and a mass spectrometric detector are used together for the analysis, the
detectors can either be fitted to the same gas chromatograph or to different gas chromatographs. In the latter
case, identical sample injection and separation parameters shall be used in both instruments to produce
comparable chromatograms.
When the quantification is made using FID, calibration standard mixtures of different concentrations or at least
a single level calibrant shall be analysed with each set of samples as a check on system performance.
When using MS for quantification, calibration standard mixtures of at least three, or better, five or seven,
different concentrations shall be analysed with each set of samples to update the calibration.
Internal standards, e.g. isotopically labelled compounds, may be used to control the performance of sampling
and analysis.
9.2 Thermal desorption
Select desorption time and desorption gas flow rate so that the desorption efficiency for octadecane is better
than 95 %. The determination of desorption efficiency is described in ISO 16017-1.
Typical desorption conditions for VOC analysis using a secondary cold trap and sampling tube containing

200 mg to 250 mg Tenax TA are listed in the following.
Desorption temperature 260 °C to 280 °C
Alternative desorption temperatures may be required if different sorbents are used in the sample tube (e.g. for
analysis of VVOCs in accordance with ISO 16017-1 or Annex D, or for quantitative recovery of SVOCs). If a
different desorption temperature is used, an explanation shall be included in the test report.
Desorption time 5 min to 15 min
Desorption gas flow rate 30 ml/min to 50 ml/min
Cold-trap high temperature 260 °C to 300 °C
Cold-trap low temperature 30 °C to 20 °C

Cold-trap sorbent Tenax TA
Transfer-line temperature 150 °C to 225 °C
Split ratios Split ratios between the sample tube and secondary trap and between the
secondary trap and analytical column (if applicable) should be selected
dependent on expected atmospheric concentration. (See guidance from
respective manufacturers of the thermal desorption apparatus.)
NOTE The more volatile VVOCs can break through the cold trap under these conditions and are not quantitatively
determined by the analysis (see Annex D for information on how to analyse VVOC and SVOC quantitatively). Alternative
sorbents and analytical conditions for accommodating a wider range of compounds are listed in D.6.1.
9.3 Temperature programme
Temperature programming of the analytical column is needed when analysing mixtures of substances
showing large differences in boiling points and polarities in order to achieve a good resolution in minimal time.
9.4 Analysis of the samples
Analyse VOC samples preferably within four weeks from sampling. Analyse field blanks and appropriate
standards in sequence with the samples. Identify VOCs with MS and quantify them from the FID or MS
chromatogram.
10 Identification of single VOCs
For identification of single, non-target VOCs, analyse the samples with MS operating in the scan mode.
Identify single VOCs detected in the sample using the mass spectrometer total ion chromatogram and the
retention time of the compound. Compare the total ion chromatogram with either the mass spectra of pure
compounds or commercially available compilations (libraries) of mass spectra. User-generated libraries may
also be used. Correspondence of retention time with a retention time of a compound used for calibration on a
single column should not exclusively be regarded as proof of identity.
Identify as many compounds as possible, particularly those representing the 10 highest peaks and those
present at concentrations above 2 µg/m . A list of VOCs which, according to experience at the time of
8 © ISO 2011 – All rights reserved

publication, are frequently encountered in indoor air and emitted from materials is given in Annex A. A
satisfactory level of identification has been achieved if the chromatographic peak areas of identified VOCs
when summed correspond to at least two-thirds of the total area of all the peaks in the chromatogram eluting
between and including n-hexane to n-hexadecane.
The selected ion monitoring (SIM) mode of MS operation may also be used. The choice is left to the operator,
who shall be aware of the differences between SIM and scan modes.
11 Concentration of analytes in the sampled air
11.1 General
Identified compounds are quantified using their individual response factors when the reference compound is
available. In other cases, quantification is reported as a toluene equivalent. Unidentified compounds are
quantified using the toluene response factor.
11.2 Volatile organic compounds
Compound-specific response factors and the linearity of FID and MS for compounds of interest are
determined by calibrating the analytical system with standard solutions (5.5, 5.6.3, 5.6.4, 5.6.5, 5.6.6 or 5.9).
Prepare a calibration curve using at least three different concentrations over the linear range (better using five
or seven different concentrations). The lowest concentration used for calibration shall be at or below the
lowest sample concentration.
The peak areas of a single VOC chromatogram are proportional to the mass of compound injected. For each
compound, the relationship between the mass of analyte injected and the corresponding peak area is
determined. The slope of the calibration curve over the linear range is the response factor of the VOC studied:
Abm c (1)
St St St St
where
A is the analyte peak
...


INTERNATIONAL ISO
STANDARD 16000-6
Second edition
2011-12-01
Indoor air —
Part 6:
Determination of volatile organic
compounds in indoor and test chamber

air by active sampling on Tenax TA
sorbent, thermal desorption and gas
chromatography using MS or MS-FID
Air intérieur —
Partie 6: Dosage des composés organiques volatils dans l'air intérieur
des locaux et chambres d'essai par échantillonnage actif sur le sorbant

Tenax TA , désorption thermique et chromatographie en phase
gazeuse utilisant MS ou MS-FID

Reference number
©
ISO 2011
©  ISO 2011
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2011 – All rights reserved

Contents Page
Foreword . iv
Introduction . vi
1  Scope . 1
2  Normative references . 1
3  Terms and definitions . 1
4  Principle . 2
5  Reagents and materials . 2
6  Apparatus . 4
7  Conditioning and storage of sorbent tubes . 6
7.1  Conditioning . 6
7.2  Storage of conditioned sorbent tubes before sampling . 6
8  Sampling . 6
8.1  Indoor air sampling . 6
8.2  Test chamber air sampling . 6
8.3  Sampling volumes . 7
8.4  Storage of loaded samples . 7
8.5  Field blanks . 7
9  Analysis . 7
9.1  General . 7
9.2  Thermal desorption . 8
9.3  Temperature programme . 8
9.4  Analysis of the samples. 8
10  Identification of single VOCs . 8
11  Concentration of analytes in the sampled air . 9
11.1  General . 9
11.2  Volatile organic compounds . 9
11.3  Total volatile organic compounds . 10
11.4  VVOC and SVOC compounds observed outside the TVOC range . 10
12  Performance characteristics . 11
13  Test report . 12
14  Quality control . 12
Annex A (informative) Examples of compounds detected in indoor air and from building products
in test chambers . 13
Annex B (informative) Safe sampling volumes for selected organic vapours sampled on Tenax

TA . 19

Annex C (informative) Storage recovery of solvents on Tenax TA sorbent tubes . 21
Annex D (informative) Determination of very volatile and semi-volatile organic compounds in
conjunction with volatile organic compounds . 23
Bibliography . 28

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 16000-6 was prepared by Technical Committee ISO/TC 146, Air quality, Subcommittee SC 6, Indoor air.
This second edition cancels and replaces the first edition (ISO 16000-6:2004), which has been technically
revised.
ISO 16000 consists of the following parts, under the general title Indoor air:
 Part 1: General aspects of sampling strategy
 Part 2: Sampling strategy for formaldehyde
 Part 3: Determination of formaldehyde and other carbonyl compounds in indoor air and test chamber
air — Active sampling method
 Part 4: Determination of formaldehyde — Diffusive sampling method
 Part 5: Sampling strategy for volatile organic compounds (VOCs)
 Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on ®
Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS-FID
 Part 7: Sampling strategy for determination of airborne asbestos fibre concentrations
 Part 8: Determination of local mean ages of air in buildings for characterizing ventilation conditions
 Part 9: Determination of the emission of volatile organic compounds from building products and
furnishing — Emission test chamber method
 Part 10: Determination of the emission of volatile organic compounds from building products and
furnishing — Emission test cell method
 Part 11: Determination of the emission of volatile organic compounds from building products and
furnishing — Sampling, storage of samples and preparation of test specimens
 Part 12: Sampling strategy for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins
(PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs)
iv © ISO 2011 – All rights reserved

 Part 13: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Collection on sorbent-backed filters
 Part 14: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and
polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Extraction, clean-up and analysis by
high-resolution gas chromatography and mass spectrometry
 Part 15: Sampling strategy for nitrogen dioxide (NO )
 Part 16: Detection and enumeration of moulds — Sampling by filtration
 Part 17: Detection and enumeration of moulds — Culture-based method
 Part 18: Detection and enumeration of moulds — Sampling by impaction
 Part 19: Sampling strategy for moulds
 Part 23: Performance test for evaluating the reduction of formaldehyde concentrations by sorptive
building materials
 Part 24: Performance test for evaluating the reduction of volatile organic compound (except
formaldehyde) concentrations by sorptive building materials
 Part 25: Determination of the emission of semi-volatile organic compounds by building products —
Micro-chamber method
 Part 26: Sampling strategy for carbon dioxide (CO )
 Part 28: Determination of odour emissions from building products using test chambers
The following parts are under preparation:
 Part 21: Detection and enumeration of moulds — Sampling from materials
 Part 27: Determination of settled fibrous dust on surfaces by SEM (scanning electron microscopy)
(direct method)
 Part 29: Test methods for VOC detectors
 Part 30: Sensory testing of indoor air
 Part 31: Measurement of flame retardants and plasticizers based on organophosphorus compounds —
Phosphoric acid ester
 Part 32: Investigation of constructions on pollutants and other injurious factors — Inspections
Introduction
ISO 16000-1 establishes general requirements relating to the measurement of indoor air pollutants and the
important conditions to be observed before or during the sampling of individual pollutants or groups of
pollutants. Aspects of the determination (sampling and analysis) and the sampling strategy of specific
pollutants or groups of pollutants are specified in the subsequent parts of ISO 16000 (see Foreword).
ISO 16000-5 (dealing with VOC sampling strategy) is a link between ISO 16000-1 (a generic standard
establishing the principles) and this part of ISO 16000, which deals with sampling and analytical
measurements.
[3]–[7]
ISO 16017 (see Clause 2 and Reference [8]) and ISO 12219 also focus on volatile organic compound
(VOC) measurements.
vi © ISO 2011 – All rights reserved

INTERNATIONAL STANDARD ISO 16000-6:2011(E)

Indoor air —
Part 6:
Determination of volatile organic compounds in indoor and test

chamber air by active sampling on Tenax TA sorbent, thermal
desorption and gas chromatography using MS or MS-FID
1 Scope
This part of ISO 16000 specifies a method for determination of volatile organic compounds (VOCs) in indoor
air and in air sampled for the determination of the emission of VOCs from building products or materials and
other products used in indoor environments using test chambers and test cells. The method uses
1) [13]
Tenax TA sorbent with subsequent thermal desorption (TD) and gas chromatographic (GC) analysis
employing a capillary column or columns and a flame ionization detector (FID) and/or a mass spectrometric
(MS) detector.
The method is applicable to the measurement of non-polar and slightly polar VOCs at concentrations ranging
from sub-micrograms per cubic metre to several milligrams per cubic metre. Using the principles specified in
this method, some very volatile compounds (VVOC) and semi-volatile organic compounds (SVOC) can also
be analysed (see Annex D).
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 16000-1, Indoor air — Part 1: General aspects of sampling strategy
ISO 16017-1:2000, Indoor, ambient and workplace air — Sampling and analysis of volatile organic
compounds by sorbent tube/thermal desorption/capillary gas chromatography — Part 1: Pumped sampling
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
semi-volatile organic compound
SVOC
organic compound whose boiling point is in the range from (240 °C to 260 °C) to (380 °C to 400 °C)
[14]
NOTE 1 This classification has been defined by the World Health Organization .


1) Tenax TA is the trade name of a product supplied by Buchem. This information is given for the convenience of users
of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used
if they can be shown to lead to the same results.
NOTE 2 Boiling points of some compounds are difficult or impossible to determine because they decompose before
they boil at atmospheric pressure. Vapour pressure is another criterion for classification of compound volatility that may be
[15]
used for classification of organic chemicals .
3.2
volatile organic compound
VOC
organic compound whose boiling point is in the range from (50 °C to 100 °C) to (240 °C to 260 °C)
[14]
NOTE 1 This classification has been defined by the World Health Organization .
NOTE 2 Boiling points of some compounds are difficult or impossible to determine because they decompose before
they boil at atmospheric pressure. Vapour pressure is another criterion for classification of compound volatility that may be
[15]
used for classification of organic chemicals .
3.3
very volatile organic compound
VVOC
organic compound whose boiling point is in the range from 0 °C to (50 °C to 100 °C)
[14]
NOTE 1 This classification has been defined by the World Health Organization .
NOTE 2 Boiling points of some compounds are difficult or impossible to determine because they decompose before
they boil at atmospheric pressure. Vapour pressure is another criterion for classification of compound volatility that may be
[15]
used for classification of organic chemicals .
3.4
total volatile organic compounds
TVOCs

sum of volatile organic compounds, sampled on Tenax TA , which elute between and including n-hexane and
n-hexadecane on a non-polar capillary column, detected with a flame ionization detector (TVOC-FID) or mass
spectrometric detector (TVOC-MS), and quantified by converting the total area of the chromatogram in that
analytical window to a nominal mass using the chromatographic response factor for toluene (toluene
equivalents)
NOTE While this part of ISO 16000 specifies the determination of individual VOCs, it is common in practice to
generate a single concentration value to characterize the total amount of VOCs present in the air. This value is called the
TVOC value (see 11.3 and Clause 13). It should be emphasized that the TVOC value so obtained depends on the
sampling and analytical methods used, and therefore should be interpreted taking into account the full description of these
methods.
4 Principle
A measured volume of sample air is collected from room air, an emission test chamber (see ISO 16000-9) or
an emission test cell (see ISO 16000-10) by drawing through one (or more) sorbent tube containing

Tenax TA sorbent. Volatile organic compounds (VOCs) are retained by the sorbent tube, and the
compounds are subsequently analysed in the laboratory. The collected VOCs are desorbed by heat and
transferred under inert carrier gas via a cold trap or sorbent trap into a gas chromatograph equipped with a
capillary column or columns and a flame ionization detector and/or a mass spectrometric detector.
5 Reagents and materials
5.1 Volatile organic compounds for calibration, of chromatographic quality.
5.2 Dilution solvent, for preparing calibration blend solution for liquid spiking, of chromatographic quality,
free from compounds co-eluting with the compound(s) of interest (5.1).
NOTE It is in most cases beneficial to use dilution solvent that is considerably more volatile than the VOCs to be
analysed. Methanol most commonly fulfils this criterion. Health and safety data for organic compounds are given, for
[24]
example, in International Chemical Safety Cards (ICSCs) .
2 © ISO 2011 – All rights reserved


5.3 Tenax TA , particle size 0,18 mm to 0,60 mm (30 mesh to 80 mesh).
 
Tenax TA is a porous polymer based on 2,6-diphenyleneoxide. Manufactured Tenax TA contains quantities
of impurities, which shall be removed before using it for VOC sampling. Perform cleaning by thermal

conditioning the Tenax TA under a flow of pure carrier gas. Select cleaning conditions so that no degradation
of the polymer occurs, e.g. at a temperature of 300 °C for 10 h using a carrier gas flow rate of 50 ml/min to

100 ml/min for packed sampling tubes. Pack pre-cleaned Tenax TA into sampling tubes that are tightly
sealed and store in a closed, emission-free container. Check the success of the cleaning procedure by
performing an analysis of the cleaned sorbent.
NOTE Pre-packed, conditioned (cleaned) and capped sorbent tubes are available commercially.
5.4 Standard atmospheres, of known concentrations of the compound(s) of interest, prepared by a
[1] [2]
recognized procedure. Methods specified in ISO 6141 and the appropriate part of ISO 6145 are suitable.
Prepare standard atmospheres equivalent to about 100 µg/m . If the procedure is not applied under
conditions that allow the establishment of full traceability of the generated concentrations to primary standards
of mass and/or volume, or if the chemical inertness of the generation system cannot be guaranteed, the
concentrations shall be confirmed using an independent procedure.
5.5 Standard sorbent tubes, loaded by spiking from standard atmospheres (5.4), prepared by passing an
accurately known volume of the standard atmosphere through the sorbent tube, e.g. by means of a pump.
The volume of atmosphere sampled shall not exceed the breakthrough volume of the analyte-sorbent
combination. After loading, disconnect and seal the tube. Prepare fresh standards with each batch of samples.
For indoor air and test chamber air, load sorbent tubes with e.g. 100 ml, 200 ml, 400 ml, 1 l, 2 l, 4 l or 10 l of
the 100 µg/m standard atmosphere selected.
5.6 Calibration blend solutions for liquid spiking.
5.6.1 General. The stability and safe storage times of calibration blend solutions shall be determined. Fresh
standard solutions shall be prepared accordingly or if there is evidence of deterioration, e.g. reactions
between alcohols and ketones. Appropriate calibration solution concentrations vary depending upon expected
target analyte levels in each batch of samples. Examples of solution preparation for a range of applications
are given in 5.6.2 to 5.6.6.
5.6.2 Solution containing approximately 10 mg/ml of each liquid component. Introduce 50 ml of
dilution solvent into a 100 ml volumetric flask. Accurately weigh approximately 1 g of substance or substances
of interest into a 100 ml volumetric flask, starting with the least volatile substance. Make up to 100 ml with
dilution solvent, stopper and shake to mix.
5.6.3 Solution containing approximately 1 000 µg/ml of each liquid component. Introduce 50 ml of
dilution solvent into a 100 ml volumetric flask. Add 10 ml of solution 5.6.2. Make up to 100 ml with dilution
solvent, stopper and shake to mix.
5.6.4 Solution containing approximately 100 µg/ml of each liquid component. Introduce 50 ml of
dilution solvent into a 100 ml volumetric flask. Add 10 ml of solution 5.6.3. Make up to 100 ml with dilution
solvent, stopper and shake to mix.
5.6.5 Solution containing approximately 10 µg/ml of each liquid component. Introduce 50 ml of dilution
solvent into a 100 ml volumetric flask. Add 10 ml of solution 5.6.4. Make up to 100 ml with dilution solvent,
stopper and shake to mix.
5.6.6 Solution containing approximately 1 µg/ml of each liquid component. Introduce 50 ml of dilution
solvent into a 100 ml volumetric flask. Add 10 ml of solution 5.6.5. Make up to 100 ml with dilution solvent,
stopper and shake to mix.
5.7 Standard sorbent tubes, loaded by spiking, prepared by injecting aliquots of standard solutions on to
clean sorbent tubes.
The sampling end of a sorbent tube is fitted to the unheated injection unit of the gas chromatograph (GC)
(6.10) through which inert purge gas is passed at 100 ml/min, and a 1 µl to 5 µl aliquot of an appropriate
standard solution is injected through the septum. After 5 min, the tube is disconnected and sealed. Prepare
fresh standard tubes with each batch of samples.
Introducing liquid standards on to sorbent tubes via a GC injector is considered the optimum approach to
liquid standard introduction, as components reach the sorbent bed in the vapour phase. Alternatively, liquid
standards may be introduced directly on to the sorbent bed using a syringe (6.3).
Calibration mixtures should be prepared in controlled ambient temperature conditions. Before use, temper the
solutions accordingly.
NOTE 1 When preparing standard tubes containing SVOC analytes, efficient transfer is enhanced if the configuration
of injector allows the tip of the syringe to make gentle contact with the sorbent retaining mechanism (e.g. gauze or frit)
within the tube.
NOTE 2 Standard tubes containing VVOCs are more typically prepared either from standard atmospheres (see 5.4 and
5.5) or from concentrated gas standards sourced commercially. It is appropriate for concentrated gas standards to be
introduced to the sampling end of sorbent tubes in a stream of carrier gas via an unheated GC injector.
NOTE 3 If standard tubes are being prepared by introducing aliquots from more than one standard solution or gas, it is
appropriate first to introduce the standard containing higher boiling components and to introduce the lightest components
last. This minimizes risk of analyte breakthrough during the standard tube loading process.
5.8 Commercial, preloaded standard tubes, certified, are available and can be used for establishing
analytical quality control and for routine calibration.
5.9 Inert carrier gas, e.g. He, Ar, N . The purity of the carrier gas should permit the detection of an
injection of 0,5 ng of toluene.
CAUTION — The quality of the carrier gas is of great importance, as contaminants possibly contained
in the gases are enriched in the cold trap together with the substances to be analysed.
6 Apparatus
Ordinary laboratory apparatus and in particular the following.

6.1 Sorbent tubes, of stainless steel or glass, containing at least 200 mg of Tenax TA sorbent (5.3),
with metal screw caps and polytetrafluoroethene (PTFE) ferrules.
Tubes with outside diameter of 6,4 mm (0.25 inch), inside diameter of 5 mm, and of length 89 mm (3.5 inch)
fulfil the requirement and are used in many commercial thermal desorbers. Use deactivated glass wool or
other suitable mechanism, e.g. stainless steel frit, to retain the sorbent in the tube.
NOTE 1 The unit inch is not allowed in ISO documents; inch equivalents are given for information only.

Pre-cleaned sorbent tubes containing Tenax TA are available commercially. Alternatively, sorbent tubes can
be filled in the laboratory as follows.
Weigh the appropriate amount of adsorbent, using no less than 200 mg of sorbent per tube to maintain the
sorption capacity. To pack the tube, insert a plug of deactivated glass wool or a stainless steel gauze into one
end of the tube. Transfer the adsorbent into the tube, assisted by suction if desired. Place an additional plug
or gauze after the sorbent to retain it in the tube.
NOTE 2 The determination of breakthrough volume is specified in ISO 16017-1:2000, Annex B. Breakthrough volumes
are proportional to the dimensions of the sampling tube and quantity of sorbent. As an approximate measure, doubling the
bed length while tube diameter is kept constant doubles the safe sampling volume (SSV).
4 © ISO 2011 – All rights reserved

6.2 Sorbent tube unions. For sampling, two sorbent tubes connected in series using metal screw-cap
couplings with PTFE ferrules.
6.3 Precision syringes, readable to at least 0,1 µl.
[11] [10]
6.4 Sampling pump, fulfilling the requirements of EN 1232 or ASTM D3686 .
6.5 Tubing, of polyethylene (PE) or PTFE, of appropriate diameter, used to ensure a leak-proof fit to both
pump and sample tube.
Sampling tubes shall not be used with plastic tubing upstream of the sorbent. Interferences from the tubing
can introduce contaminants.
6.6 Flow meter calibrator. Bubble meter or other suitable device for gas flow calibration.
6.7 Gas chromatographic (GC) system, fitted with a flame ionization detector and/or mass spectrometric
detector capable of detecting an injection of at least 1 ng of toluene with a signal-to-noise ratio of at least
5 to 1.
6.8 Capillary column. A suitable GC capillary column is selected for separation of analytes in the sample.
Bonded 100 % dimethylpolysiloxane columns of 30 m to 60 m, internal diameter 0,25 mm to 0,32 mm and
phase thickness 0,25 µm to 0,5 µm are examples of columns proven to be suitable for VOC analysis of indoor
air, emission test chamber (in accordance with ISO 16000-9) air, and emission test cell (in accordance with
ISO 16000-10) air.
)
NOTE A dimethylpolysiloxane column, e.g. an HP-1 column, does not separate 3-carene from 2-ethyl-1-hexanol
with certain oven programmes, nor does it separate m- and p-xylenes.
6.9 Thermal desorption apparatus, for the two-stage thermal desorption of the sorbent tubes and transfer
of desorbed vapours via an inert gas flow into a GC.
A typical apparatus contains a mechanism for holding the tubes to be desorbed while they are heated and
purged simultaneously with inert carrier gas. The desorption temperature and time are adjustable, as is the
carrier gas flow rate. The apparatus may also incorporate additional features, such as automatic sample-tube
loading, leak testing, and a cold trap or other suitable device to concentrate the desorbed sample. The
desorbed sample, contained in the purge gas, is routed to the gas chromatograph and capillary column via a
heated transfer line.
6.10 Injection facility for preparing standards by liquid spiking (optional). A conventional gas
chromatographic injection unit or equivalent device may be used for preparing calibration standards. This can
be used in situ, or it can be mounted separately. The injector should be unheated to eliminate risk of heat
transfer to the tube and associated risk of analyte breakthrough. The back of the injection unit should be
adapted if necessary to fit the sample tube. This can be done conveniently by means of compression coupling
with an O-ring seal.
NOTE When preparing standard tubes containing SVOC analytes, efficient transfer is enhanced if the configuration
of the injector allows the tip of the syringe to make gentle contact with the sorbent retaining mechanism (e.g. gauze or frit)
within the tube.
6.11 Calibration of pump. Calibrate the pump with the sorbent tube assembly in line, using an appropriate
external calibrated meter.
2 HP-1 is the trade name of a product manufactured by Agilent, Inc. This information is given for the convenience of
users of this document and does not constitute an endorsement by ISO of the product named.
7 Conditioning and storage of sorbent tubes
7.1 Conditioning
Prior to each sampling use, condition the pre-cleaned sorbent tubes at 300 °C for 10 min under inert carrier
gas at a flow rate of 50 ml/min to 100 ml/min, to remove trace organic volatiles possibly trapped on the tube.
Analyse a representative number of conditioned tubes for blank value, using routine analytical parameters, to
ensure that the thermal desorption blank is sufficiently small. The sorbent tube blank level is acceptable if
artefact peaks are no greater than 10 % of the typical peak areas of the analytes of interest. If the blank is
unacceptable, recondition the tubes by repeating the conditioning procedure. If after repeated conditioning the
blank is still unacceptable, the tubes shall be refilled (see procedure in 6.1).
7.2 Storage of conditioned sorbent tubes before sampling
Seal conditioned sorbent tubes with metal screw-cap fittings with PTFE ferrules and store in an emission-free
container at room temperature. Use conditioned sampling tubes within four weeks. Recondition tubes stored
for more than four weeks before sampling.
8 Sampling
8.1 Indoor air sampling
Assemble the sampling line. If more than one tube is used in order to ensure that the breakthrough volume for
one tube and the analyte of interest is not exceeded, prepare a tube assembly by joining the tubes in series
with a union (6.2). Attach the pump to the sorbent tube or tube assembly with PE or PTFE tubing. Start the
pump and note and record the sampling flow rate or register reading, note starting time, temperature and, if
necessary for calculation, also atmospheric pressure. An appropriate sampling flow rate is in the range of
50 ml/min to 200 ml/min. At the end of the sampling period, note and record the flow rate or register reading,
turn the pump off, and note and record the time, temperature and, if necessary, atmospheric pressure.
Disconnect the sampling tube from the sampling line and seal both ends using screw-cap fittings with PTFE
ferrules.
If sampling flow rate is determined using an integrated flow-measuring device, e.g. a mass flow meter,
connect the sampling tube to the sampling line, start the pump, note and record the time and flow rate or
register reading. Note and record temperature and, if necessary, atmospheric pressure. An appropriate
sampling flow rate is in the range of 50 ml/min to 200 ml/min. At the end of the sampling period, note and
record the flow rate or register reading, turn off the pump, note and register the time the pump was turned off.
Disconnect the sampling tube from the sampling line and seal both ends using screw-cap fittings with PTFE
ferrules.
Sampling from indoor air shall be performed taking into account the general aspects of sampling strategy as
specified in ISO 16000-1.
Sampling flow rates lower than 50 ml/min may be used if the operator finds it necessary, e.g. to enable longer
sampling times.
8.2 Test chamber air sampling
Assemble the sampling line. If the sampling flow rate is determined with a calibrator, start the pump, note and
record the sampling flow rate. Appropriate sampling flow rate is in the range of 50 ml/min to 200 ml/min. When
sampling from an emission chamber, the sampling flow shall not exceed 80 % of the air flow rate of the
chamber. Connect the sampling tube to the test chamber outlet or other sampling port of the emission test
chamber, note and record the time the tube was connected. Note and record temperature and if necessary
atmospheric pressure. At the end of the sampling period, disconnect the sampling tube from the chamber
sampling port, note and record the time of disconnection, repeat the sampling flow determination, and turn off
the pump. Disconnect the sampling tube from the sampling line and seal both ends using screw cap fittings
with PTFE ferrules.
6 © ISO 2011 – All rights reserved

If sampling flow rate is determined by using an integrated flow-measuring device, e.g. a mass flow meter,
connect the sampling tube to the sampling line and further to the chamber sampling port, start the pump, note
and record the time and flow rate or register reading. Note and record temperature and, if necessary,
atmospheric pressure. An appropriate sampling flow rate is in the range of 50 ml/min to 200 ml/min. At the end
of the sampling period, note and record the flow rate or register reading, turn off the pump, note and register
the time the pump was turned off. Disconnect the sampling tube from the sampling line and seal both ends
using screw cap fittings with PTFE ferrules.
8.3 Sampling volumes
SSVs, i.e. amounts of gas that can be sampled without breakthrough of VOCs, are listed in Annex B. In
general, the suitable sampling volumes when sampling VOCs from non-industrial indoor air is 1 l to 5 l for

sampling tubes with 200 mg of Tenax TA . In material emission measurements, the material type and age,
loading factor and air exchange rate in the chamber determine suitable sampling volumes. The maximum
recommended sampling volume, in general, is 5 l.
Sampling volume has to be adjusted to the expected concentrations. When sampling unknown concentrations,
it is recommended that at least three parallel samples be taken with different sampling volumes. If the
analytical result is not dependent on the sampling volume, no breakthrough of the analytes has occurred.
8.4 Storage of loaded samples
Loaded sampling tubes shall be tightly sealed and stored in an emission-free container at ambient room
temperature. The effect of storage on loaded VOC from indoor or chamber air is not known, although some
data (see Annex C) suggest that they may be stable over several months at room temperature. To avoid
possible changes, the samples should be analysed as soon as possible and preferably within four weeks after
collection.
8.5 Field blanks

Field blanks shall be Tenax TA sampling tubes identical to those used for VOC sampling. These tubes are
subjected to the same handling procedure in the field as the sample tubes, except for the actual period of
sampling. Field blanks shall be marked, stored and analysed in sequence with the actual samples. In a
measurement campaign, about 10 % of the samples analysed shall be field blanks. If only a few
measurements are performed, at least one field blank shall be prepared and analysed.
9 Analysis
9.1 General
For analysis, VOCs are thermally desorbed from the sampling tubes. Separate the individual VOCs using
capillary columns in a gas chromatograph and detect with a flame ionization detector (FID) and mass
spectrometric detector (MS) or with MS only. MS can be used for both identification and quantification of
compounds, while FID signals alone are used only for compound quantification.
When a flame ionization detector and a mass spectrometric detector are used together for the analysis, the
detectors can either be fitted to the same gas chromatograph or to different gas chromatographs. In the latter
case, identical sample injection and separation parameters shall be used in both instruments to produce
comparable chromatograms.
When the quantification is made using FID, calibration standard mixtures of different concentrations or at least
a single level calibrant shall be analysed with each set of samples as a check on system performance.
When using MS for quantification, calibration standard mixtures of at least three, or better, five or seven,
different concentrations shall be analysed with each set of samples to update the calibration.
Internal standards, e.g. isotopically labelled compounds, may be used to control the performance of sampling
and analysis.
9.2 Thermal desorption
Select desorption time and desorption gas flow rate so that the desorption efficiency for octadecane is better
than 95 %. The determination of desorption efficiency is described in ISO 16017-1.
Typical desorption conditions for VOC analysis using a secondary cold trap and sampling tube containing

200 mg to 250 mg Tenax TA are listed in the following.
Desorption temperature 260 °C to 280 °C
Alternative desorption temperatures may be required if different sorbents are used in the sample tube (e.g. for
analysis of VVOCs in accordance with ISO 16017-1 or Annex D, or for quantitative recovery of SVOCs). If a
different desorption temperature is used, an explanation shall be included in the test report.
Desorption time 5 min to 15 min
Desorption gas flow rate 30 ml/min to 50 ml/min
Cold-trap high temperature 260 °C to 300 °C
Cold-trap low temperature 30 °C to 20 °C

Cold-trap sorbent Tenax TA
Transfer-line temperature 150 °C to 225 °C
Split ratios Split ratios between the sample tube and secondary trap and between the
secondary trap and analytical column (if applicable) should be selected
dependent on expected atmospheric concentration. (See guidance from
respective manufacturers of the thermal desorption apparatus.)
NOTE The more volatile VVOCs can break through the cold trap under these conditions and are not quantitatively
determined by the analysis (see Annex D for information on how to analyse VVOC and SVOC quantitatively). Alternative
sorbents and analytical conditions for accommodating a wider range of compounds are listed in D.6.1.
9.3 Temperature programme
Temperature programming of the analytical column is needed when analysing mixtures of substances
showing large differences in boiling points and polarities in order to achieve a good resolution in minimal time.
9.4 Analysis of the samples
Analyse VOC samples preferably within four weeks from sampling. Analyse field blanks and appropriate
standards in sequence with the samples. Identify VOCs with MS and quantify them from the FID or MS
chromatogram.
10 Identification of single VOCs
For identification of single, non-target VOCs, analyse the samples with MS operating in the scan mode.
Identify single VOCs detected in the sample using the mass spectrometer total ion chromatogram and the
retention time of the compound. Compare the total ion chromatogram with either the mass spectra of pure
compounds or commercially available compilations (libraries) of mass spectra. User-generated libraries may
also be used. Correspondence of retention time with a retention time of a compound used for calibration on a
single column should not exclusively be regarded as proof of identity.
Identify as many compounds as possible, particularly those representing the 10 highest peaks and those
present at concentrations above 2 µg/m . A list of VOCs which, according to experience at the time of
8 © ISO 2011 – All rights reserved

publication, are frequently encountered in indoor air and emitted from materials is given in Annex A. A
satisfactory level of identification has been achieved if the chromatographic peak areas of identified VOCs
when summed correspond to at least two-thirds of the total area of all the peaks in the chromatogram eluting
between and including n-hexane to n-hexadecane.
The selected ion monitoring (SIM) mode of MS operation may also be used. The choice is left to the operator,
who shall be aware of the differences between SIM and scan modes.
11 Concentration of analytes in the sampled air
11.1 General
Identified compounds are quantified using their individual response factors when the reference compound is
available. In other cases, quantification is reported as a toluene equivalent. Unidentified compounds are
quantified using the toluene response factor.
11.2 Volatile organic compounds
Compound-specific response factors and the linearity of FID and MS for compounds of interest are
determined by calibrating the analytical system with standard solutions (5.5, 5.6.3, 5.6.4, 5.6.5, 5.6.6 or 5.9).
Prepare a calibration curve using at least three different concentrations over the linear range (better using five
or seven different concentrations). The lowest concentration used for calibration shall be at or below the
lowest sample concentration.
The peak areas of a single VOC chromatogram are proportional to the mass of compound injected. For each
compound, the relationship between the mass of analyte injected and the corresponding peak area is
determined. The slope of the calibration curve over the linear range is the response factor of the VOC studied:
Abm c (1)
St St St St
where
A is the analyte peak area, in area units, in the chromatogram of the standard;
St
b is the slope of the calibration curve;
St
m is the mass, in nanograms, of analyte in the standard;
St
c is the ordinate intersect of the calibration curve — if the calibration curve passes through the origin,
St
c  0.
St
The mass of analyte, m , in nanograms, present in the sample is calculated from the detector peak area using
A
the response factor of the analyte:
A
A
mc (2)
AA
b
St
where
A is the peak area, in area units, of analyte in the chromatogram of the sample;
A
b is the slope of the calibration curve;
St
c is the ordinate intersect of the calibration curve — if the calibration curve passes through the origin,
A
c  0.
A
The mass concentration,  , in micrograms per cubic metre, of VOCs identified in the air sampled is
A
calculated by means of Equation (3):
mm
AA0
  (3)
A
V
where
m is the mass, in nanograms, of analyte present in the sampling tube;
A
m is the mass, in nanograms, of analyte present in the blank tube;
A0
V is the sampling volume, in litres.
If necessary, the concentrations are adjusted to 23 °C and 101,3 kPa:
101,3 (t 273)
 (4)
A;101,3;296 A
p 296
where
p is the actual pressure, in kilopascals, of the air sampled;
t is the actual temperature, in degrees Celsius, of the air sampled.
Unidentified compounds in the sample are quantified using the calibrati
...


NORME ISO
INTERNATIONALE 16000-6
Deuxième édition
2011-12-01
Air intérieur —
Partie 6:
Dosage des composés organiques
volatils dans l'air intérieur des locaux et
chambres d'essai par échantillonnage

actif sur le sorbant Tenax TA ,
désorption thermique et chromatographie
en phase gazeuse utilisant MS ou MS-FID
Indoor air —
Part 6: Determination of volatile organic compounds in indoor and test

chamber air by active sampling on Tenax TA sorbent, thermal
desorption and gas chromatography using MS or MS-FID

Numéro de référence
©
ISO 2011
DOCUMENT PROTÉGÉ PAR COPYRIGHT

©  ISO 2011
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse
ii © ISO 2011 – Tous droits réservés

Sommaire Page
Avant-propos . iv
Introduction . vi
1  Domaine d'application . 1
2  Références normatives . 1
3  Termes et définitions . 2
4  Principe . 2
5  Réactifs et matériaux . 3
6  Appareillage . 5
7  Conditionnement et conservation des tubes à sorbant . 6
7.1  Conditionnement . 6
7.2  Conservation des tubes à sorbant conditionnés avant échantillonnage . 6
8  Échantillonnage . 7
8.1  Échantillonnage d'air intérieur . 7
8.2  Échantillonnage d'air en chambre d'essai . 7
8.3  Volumes de prélèvement . 7
8.4  Conservation des échantillons chargés . 8
8.5  Échantillons blancs . 8
9  Analyse . 8
9.1  Généralités . 8
9.2  Désorption thermique . 8
9.3  Programmation des températures . 9
9.4  Analyse des échantillons . 9
10  Identification de COV individuels. 9
11  Concentration des analytes dans l'air échantillonné . 10
11.1  Généralités . 10
11.2  Composés organiques volatils . 10
11.3  Composés organiques volatils totaux . 11
11.4  Composés de COTV et de COSV observés en dehors de la gamme de COVT . 11
12  Caractéristiques de performance . 12
13  Rapport d'essai . 13
14  Contrôle qualité. 13
Annexe A (informative) Exemples de composés détectés dans l'air intérieur et émanant des
produits de construction dans les chambres d'essai . 15
Annexe B (informative) Volumes limites de prélèvement des vapeurs organiques sélectionnées et ®
échantillonnées sur Tenax TA . 21
Annexe C (informative) Récupération des solvants après conservation dans des tubes à sorbant ®
Tenax TA . 23
Annexe D (informative) Dosage des composés organiques très volatils et semi-volatils
parallèlement aux composés organiques volatils. 25
Bibliographie . 31

Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 16000-6 a été élaborée par le comité technique ISO/TC 146, Qualité de l'air, sous-comité SC 6, Air
intérieur.
Cette deuxième édition annule et remplace la première édition (ISO 16000-6:2004), qui a fait l'objet d'une
révision technique.
L'ISO 16000 comprend les parties suivantes, présentées sous le titre général Air intérieur:
 Partie 1: Aspects généraux de la stratégie d'échantillonnage
 Partie 2: Stratégie d'échantillonnage du formaldéhyde
 Partie 3: Dosage du formaldéhyde et d'autres composés carbonylés dans l'air intérieur et dans l'air des
chambres d'essai — Méthode par échantillonnage actif
 Partie 4: Dosage du formaldéhyde — Méthode par échantillonnage diffusif
 Partie 5: Stratégie d'échantillonnage pour les composés organiques volatils (COV)
 Partie 6: Dosage des composés organiques volatils dans l'air intérieur des locaux et chambres d'essai ®
par échantillonnage actif sur le sorbant Tenax TA , désorption thermique et chromatographie en phase
gazeuse utilisant MS ou MS-FID
 Partie 7: Stratégie d'échantillonnage pour la détermination des concentrations en fibres d'amiante en
suspension dans l'air
 Partie 8: Détermination des âges moyens locaux de l'air dans des bâtiments pour caractériser les
conditions de ventilation
 Partie 9: Dosage de l'émission de composés organiques volatils de produits de construction et d'objets
d'équipement — Méthode de la chambre d'essai d'émission
 Partie 10: Dosage de l'émission de composés organiques volatils de produits de construction et d'objets
d'équipement — Méthode de la cellule d'essai d'émission
iv © ISO 2011 – Tous droits réservés

 Partie 11: Dosage de l'émission de composés organiques volatils de produits de construction et d'objets
d'équipement — Échantillonnage, conservation des échantillons et préparation d'échantillons pour essai
 Partie 12: Stratégie d'échantillonnage des polychlorobiphényles (PCB), des polychlorodibenzo-p-dioxines
(PCDD), des polychlorodibenzofuranes (PCDF) et des hydrocarbures aromatiques polycycliques (HAP)
 Partie 13: Dosage des polychlorobiphényles (PCB) de type dioxine et des polychlorodibenzo-p-dioxines
(PCDD)/polychlorodibenzofuranes (PCDF) totaux (en phase gazeuse et en phase particulaire) —
Collecte sur des filtres adsorbants
 Partie 14: Dosage des polychlorobiphényles (PCB) de type dioxine et des polychlorodibenzo-p-dioxines
(PCDD)/polychlorodibenzofuranes (PCDF) totaux (en phase gazeuse et en phase particulaire) —
Extraction, purification et analyse par chromatographie en phase gazeuse haute résolution et
spectrométrie de masse
 Partie 15: Stratégie d'échantillonnage du dioxyde d'azote (NO )
 Partie 16: Détection et dénombrement des moisissures — Échantillonnage par filtration
 Partie 17: Détection et dénombrement des moisissures — Méthode par culture
 Partie 18: Détection et dénombrement des moisissures — Échantillonnage par impaction
 Partie 19: Stratégie d'échantillonnage des moisissures
 Partie 23: Essai de performance pour l'évaluation de la réduction des concentrations en formaldéhyde
par des matériaux de construction sorptifs
 Partie 24: Essai de performance pour l'évaluation de la réduction des concentrations en composés
organiques volatils (sauf formaldéhyde) par des matériaux de construction sorptifs
 Partie 25: Dosage de l'émission de composés organiques semi-volatils des produits de construction —
Méthode de la micro-chambre
 Partie 26: Stratégie d'échantillonnage du dioxyde de carbone (CO )
 Partie 28: Détermination des émissions d'odeurs des produits de construction au moyen de chambres
d'essai
Les parties suivantes sont en cours d'élaboration:
 Partie 21: Détection et dénombrement des moisissures — Échantillonnage à partir de matériaux
 Partie 27: Détermination de la poussière fibreuse déposée sur les surfaces par microscopie électronique
à balayage (MEB) (méthode directe)
 Partie 29: Méthodes d'essai pour détecteurs de composés organiques volatils (COV)
 Partie 30: Essai sensoriel de l'air intérieur
 Partie 31: Mesurage des ignifugeants basés sur des composés organophosphorés — Ester d'acide
phosphorique
 Partie 32: Investigation de polluants et autres facteurs nocifs dans les constructions — Inspections
Introduction
L'ISO 16000-1 établit les exigences générales relatives au mesurage des polluants de l'air intérieur et les
conditions qu'il est important de respecter avant ou pendant l'échantillonnage de polluants isolés ou de
groupes de polluants. Les détails relatifs au dosage (échantillonnage et analyse) ainsi que la stratégie
d'échantillonnage des polluants ou des groupes spécifiques de polluants sont spécifiés dans les autres parties
de l'ISO 16000 (voir l'Avant-propos).
L'ISO 16000-5 (traitant de la stratégie d'échantillonnage des COV) est un lien entre l'ISO 16000-1 (une norme
générique établissant les principes) et la présente partie de l'ISO 16000 traitant de l'échantillonnage et des
mesurages analytiques.
[3]–[7]
L'ISO 16017 (voir Article 2 et Référence [8]) et l'ISO 12219 portent également sur les mesurages relatifs
aux composés organiques volatils (COV).

vi © ISO 2011 – Tous droits réservés

NORME INTERNATIONALE ISO 16000-6:2011(F)

Air intérieur —
Partie 6:
Dosage des composés organiques volatils dans l'air intérieur
des locaux et chambres d'essai par échantillonnage actif sur le

sorbant Tenax TA , désorption thermique et chromatographie
en phase gazeuse utilisant MS ou MS-FID
1 Domaine d'application
La présente partie de l'ISO 16000 spécifie une méthode permettant de doser les composés organiques
volatils (COV) dans l'air intérieur et dans l'air échantillonné afin de déterminer l'émission de COV provenant de
matériaux de construction à l'aide de chambres d'essai et de cellules d'essai. La méthode utilise du sorbant
®1)
Tenax TA puis une désorption thermique (TD) et une analyse par chromatographie en phase gazeuse
[13]
(GC) utilisant une ou plusieurs colonne(s) capillaire(s) avec détecteur à ionisation de flamme (FID) et/ou
détecteur à spectrométrie de masse (MS).
La méthode s'applique au mesurage des COV non polaires et légèrement polaires à des concentrations allant
de quelques nanogrammes par mètre cube à plusieurs milligrammes par mètre cube. À l'aide des principes
spécifiés dans la présente méthode, certains composés très volatils (COTV) et semi-volatils (COSV) peuvent
également être analysés (voir l'Annexe D).
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les
références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du
document de référence s'applique (y compris les éventuels amendements).
ISO 16000-1, Air intérieur — Partie 1: Aspects généraux de la stratégie d'échantillonnage
ISO 16017-1:2000, Air intérieur, air ambiant et air des lieux de travail — Échantillonnage et analyse des
composés organiques volatils par tube à adsorption/désorption thermique/chromatographie en phase gazeuse
sur capillaire — Partie 1: Échantillonnage par pompage


1) Tenax TA est l'appellation commerciale d'un produit fourni par Buchem. Cette information est donnée à l'intention
des utilisateurs du présent document et ne signifie nullement que l'ISO approuve ou recommande l'emploi exclusif du
produit ainsi désigné. Des produits équivalents peuvent être utilisés s'il est démontré qu'ils conduisent aux mêmes
résultats.
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
3.1
composé organique semi-volatil
COSV
composé organique dont le point d'ébullition se situe entre (240 °C à 260 °C) et (380 °C à 400 °C)
[14]
NOTE 1 Cette classification a été définie par l'Organisation mondiale de la santé .
NOTE 2 Les points d'ébullition de certains composés sont difficiles, voire impossibles à déterminer puisque leur
décomposition intervient avant l'ébullition à pression atmosphérique. La tension de vapeur constitue un autre critère de
classification de la volatilité des composés pouvant servir dans le cadre de la classification de produits chimiques
[15]
organiques .
3.2
composé organique volatil
COV
composé organique dont le point d'ébullition se situe entre (50 °C à 100 °C) et (240 °C à 260 °C)
[14]
NOTE 1 Cette classification a été définie par l'Organisation mondiale de la santé .
NOTE 2 Les points d'ébullition de certains composés sont difficiles, voire impossibles à déterminer puisque leur
décomposition intervient avant l'ébullition à pression atmosphérique. La tension de vapeur constitue un autre critère de
classification de la volatilité des composés pouvant servir dans le cadre de la classification de produits chimiques
[15]
organiques .
3.3
composé organique très volatil
COTV
composé organique dont le point d'ébullition se situe entre <0 °C et (50 °C à 100 °C)
[14]
NOTE 1 Cette classification a été définie par l'Organisation mondiale de la santé .
NOTE 2 Les points d'ébullition de certains composés sont difficiles, voire impossibles à déterminer puisque leur
décomposition intervient avant l'ébullition à pression atmosphérique. La tension de vapeur constitue un autre critère de
classification de la volatilité des composés pouvant servir dans le cadre de la classification de produits chimiques
[15]
organiques .
3.4
composés organiques volatils totaux
COVT ®
somme des composés organiques volatils, échantillonnés sur une cartouche de Tenax TA dont l'élution se
produit entre le n-hexane et le n-hexadécane inclus sur une colonne capillaire non polaire, détectée par
ionisation de flamme (COVT-FID) ou par spectrométrie de masse (COVT-MS) et quantifiée par la conversion
de la surface totale du chromatogramme dans cette fenêtre analytique en équivalent toluène
NOTE Alors que la présente partie de l'ISO 16000 spécifie le dosage de chaque COV, la pratique courante consiste
à générer une valeur de concentration unique afin de caractériser la quantité totale de COV présents dans l'air. Cette
valeur est appelée valeur COVT (voir 11.3 et l'Article 13). Il convient d'insister sur le fait que la valeur COVT ainsi obtenue
dépend des méthodes d'échantillonnage et d'analyse utilisées et qu'il convient par conséquent de l'interpréter en tenant
compte de la description complète de ces méthodes.
4 Principe
Un volume mesuré d'échantillon d'air est recueilli dans une pièce ou dans une chambre d'essai d'émission
(voir l'ISO 16000-9) ou une cellule d'essai d'émission (voir l'ISO 16000-10) à l'aide d'un ou plusieurs tube(s) à ®
sorbant contenant du sorbant Tenax TA . Les composés organiques volatils (COV) sont retenus par le tube à
sorbant et sont analysés par la suite en laboratoire. Les COV recueillis sont désorbés par la chaleur et
2 © ISO 2011 – Tous droits réservés

transférés par le gaz vecteur inerte via un piège froid ou un piège à sorbant dans un chromatographe en
phase gazeuse équipé d'une ou plusieurs colonne(s) capillaire(s) et d'un détecteur à ionisation de flamme
et/ou d'un détecteur à spectrométrie de masse.
5 Réactifs et matériaux
5.1 Composés organiques volatils pour étalonnage, de qualité chromatographique.
5.2 Solvant de dilution, pour préparer la solution de mélange d'étalonnage pour dopage de liquide, de
qualité chromatographique, exempt de composés co-éluant avec le(s) composé(s) à l'étude (5.1).
NOTE Dans la plupart des cas, il est avantageux d'utiliser un solvant de dilution considérablement plus volatil que les
COV à analyser. Le méthanol répond communément à ce critère. Les données d'hygiène et de sécurité relatives aux
[24]
composés organiques figurent notamment dans les Fiches internationales de sécurité chimique (ICSC) . ®
5.3 Tenax TA , granulométrie de 0,18 mm à 0,60 mm (30 mesh à 80 mesh).
® ®
Le Tenax TA est un polymère poreux à base d'oxyde de 2,6-diphénylène. Le Tenax TA fabriqué contient de
nombreuses impuretés qui doivent être éliminées avant son utilisation à des fins d'échantillonnage des COV. ®
Procéder au nettoyage du Tenax TA par conditionnement thermique, sous un flux de gaz vecteur pur. Définir
les conditions de nettoyage afin d'éviter toute dégradation du polymère, par exemple à une température de
300 °C pendant 10 h, en utilisant un flux de gaz vecteur à un débit de 50 ml/min à 100 ml/min pour les tubes ®
de prélèvement remplis. Remplir de Tenax TA préalablement nettoyé les tubes de prélèvement
hermétiquement scellés, puis les stocker dans un conteneur fermé, exempt d'émission. Analyser le sorbant
nettoyé afin de confirmer le succès du mode opératoire de nettoyage.
NOTE Des tubes de sorbant pré-remplis, conditionnés (nettoyés) et fermés sont disponibles dans le commerce.
5.4 Atmosphères normalisées, de concentrations connues en un (des) composé(s) à l'étude, préparées
[1]
selon un mode opératoire reconnu. Les méthodes spécifiées dans l'ISO 6141 et dans la partie appropriée
[2]
de l'ISO 6145 conviennent.
Préparer des atmosphères normalisées qui équivalent à 100 µg/m environ. Si le mode opératoire n'est pas
appliqué dans des conditions permettant la parfaite traçabilité des concentrations générées en étalons
primaires de masse et/ou de volume ou si l'inertie chimique du système de génération ne peut être garantie,
les concentrations doivent être confirmées à l'aide d'un mode opératoire indépendant.
5.5 Tubes à sorbant normalisés, chargés par dopage dans des atmosphères normalisées (5.4), préparés
en transférant un volume précis d'atmosphère normalisée dans le tube à sorbant, par exemple au moyen
d'une pompe.
Le volume d'échantillon d'atmosphère ne doit pas dépasser le volume de perçage du mélange d'analyte et de
sorbant. Après le chargement, détacher le tube et le refermer. Préparer de nouveaux étalons à chaque lot
d'échantillons. Dans le cadre des essais avec de l'air intérieur et de l'air de chambre d'essai, charger les tubes
à sorbant avec, par exemple, 100 ml, 200 ml, 400 ml, 1 l, 2 l, 4 l ou 10 l de l'atmosphère normalisée
sélectionnée à 100 µg/m .
5.6 Solutions de mélange d'étalonnage pour dopage de liquide.
5.6.1 Généralités. La stabilité et les durées de conservation en lieu sûr des solutions de mélange
d'étalonnage doivent être déterminées. De nouvelles solutions normalisées doivent être préparées en fonction
du mode opératoire ou dans le cas de dégradations, dues par exemple à des réactions entre alcools et
cétones. Les concentrations en solution d'étalonnage appropriées varient en fonction des niveaux d'analyte
cible attendus dans chaque lot d'échantillon. Des exemples de préparation de solutions pour une gamme
d'applications sont donnés en 5.6.2 à 5.6.6.
5.6.2 Solution contenant environ 10 mg/ml de chaque composant liquide. Introduire 50 ml de solvant
de dilution dans une fiole jaugée de 100 ml. Peser avec exactitude environ 1 g d'une ou plusieurs
substance(s) à l'étude dans une fiole jaugée de 100 ml, en commençant par la substance la moins volatile.
Compléter à 100 ml avec du solvant de dilution, boucher et agiter pour homogénéiser.
5.6.3 Solution contenant environ 1 000 µg/ml de chaque composant liquide. Introduire 50 ml de
solvant de dilution dans une fiole jaugée de 100 ml. Ajouter 10 ml de la solution préparée en 5.6.2. Compléter
à 100 ml avec du solvant de dilution, boucher et agiter pour homogénéiser.
5.6.4 Solution contenant environ 100 µg/ml de chaque composant liquide. Introduire 50 ml de solvant
de dilution dans une fiole jaugée de 100 ml. Ajouter 10 ml de la solution préparée en 5.6.3. Compléter à
100 ml avec du solvant de dilution, boucher et agiter pour homogénéiser.
5.6.5 Solution contenant environ 10 µg/ml de chaque composant liquide. Introduire 50 ml de solvant
de dilution dans une fiole jaugée de 100 ml. Ajouter 10 ml de la solution préparée en 5.6.4. Compléter à
100 ml avec du solvant de dilution, boucher et agiter pour homogénéiser.
5.6.6 Solution contenant environ 1 µg/ml de chaque composant liquide. Introduire 50 ml de solvant de
dilution dans une fiole jaugée de 100 ml. Ajouter 10 ml de la solution préparée en 5.6.5. Compléter à 100 ml
avec du solvant de dilution, boucher et agiter pour homogénéiser.
5.7 Tubes à sorbant normalisés, chargés par dopage, préparés en injectant des aliquotes de solutions
normalisées dans des tubes à sorbant propres.
L'extrémité de prélèvement d'un tube à sorbant est ajustée sur le dispositif d'injection du chromatographe en
phase gazeuse (GC) (6.10) balayé par du gaz de purge inerte à un débit de 100 ml/min et une aliquote de 1 µl
à 5 µl d'une solution normalisée appropriée est injectée au travers du septum. Au bout de 5 min, le tube est
détaché, puis refermé. Préparer de nouveaux tubes normalisés à chaque lot d'échantillons.
L'introduction d'étalons liquides dans des tubes à sorbant à l'aide d'un injecteur de chromatographe en phase
gazeuse est considérée comme constituant l'approche optimale en matière d'introduction d'étalons liquides,
car les composés atteignent la couche de sorbant en phase vapeur. Une autre méthode consiste à introduire
des étalons liquides directement dans la couche de sorbant à l'aide d'une seringue (6.3).
Il convient de préparer les mélanges d'étalonnage dans des conditions de température ambiante contrôlée.
Avant utilisation, amener les solutions à l'équilibre de température.
NOTE 1 Lors de la préparation des tubes normalisés contenant des analytes COSV, un transfert efficace est renforcé
si la configuration de l'injecteur permet à la pointe de la seringue d'entrer doucement en contact avec le mécanisme
retenant le sorbant (par exemple grille ou fritté) dans le tube.
NOTE 2 Les tubes normalisés contenant des COTV sont plus généralement préparés à partir d'atmosphères
normalisées (voir 5.4 et 5.5) ou à partir d'étalons gazeux concentrés achetés dans le commerce. La manière appropriée
pour introduire des étalons gazeux concentrés par l'extrémité de prélèvement des tubes de sorbant consiste à utiliser un
courant de gaz vecteur via un injecteur GC non chauffé.
NOTE 3 Si des tubes normalisés sont préparés par introduction d'aliquotes de plus d'une solution étalon ou de plus
d'un gaz étalon, il est approprié d'introduire d'abord l'étalon contenant les composants de plus hauts points d'ébullition et
d'introduire les composants les plus légers en dernier. Cela réduit le risque de perçage de l'analyte durant le processus de
chargement du tube normalisé.
5.8 Tubes normalisés préchargés, disponibles dans le commerce, certifiés, pouvant servir dans le
cadre du contrôle de la qualité analytique et de l'étalonnage de routine.
5.9 Gaz vecteur inerte, par exemple He, Ar, N . Il convient que la pureté du gaz vecteur permette de
détecter une injection de 0,5 ng de toluène.
ATTENTION — La qualité du gaz vecteur est de première importance, car les éléments polluants
susceptibles d'être contenus dans les gaz sont enrichis dans le piège froid avec les substances à
analyser.
4 © ISO 2011 – Tous droits réservés

6 Appareillage
Appareillage courant de laboratoire et, en particulier, ce qui suit.
6.1 Tubes à sorbant, en acier inoxydable ou en verre, contenant au moins 200 mg de sorbant ®
Tenax TA (5.3), équipés de bouchons à vis en métal et bagues en polytétrafluoroéthylène (PTFE).
Les tubes d'un diamètre externe de 6,4 mm (0,25 pouce), d'un diamètre interne de 5 mm et d'une longueur de
89 mm (3,5 pouces) sont en conformité avec les exigences et sont utilisés dans de nombreux désorbeurs
thermiques disponibles dans le commerce. Utiliser de la laine de verre désactivée ou un autre mécanisme
adapté, par exemple un fritté en acier inoxydable, pour retenir le sorbant dans le tube.
NOTE 1 L'unité de pouce n'est pas autorisée dans les documents ISO; les équivalents en pouce sont donnés
uniquement à titre d'information. ®
Des tubes à sorbant préalablement nettoyés contenant du Tenax TA sont disponibles dans le commerce.
Sinon, des tubes à sorbant peuvent être remplis en laboratoire en procédant comme suit.
Peser la quantité appropriée de sorbant, en utilisant au moins 200 mg de sorbant par tube afin de maintenir la
capacité de sorption. Pour remplir le tube, placer un bouchon de laine de verre désactivée ou une grille en
acier inoxydable dans l'une des extrémités du tube. Transférer le sorbant dans le tube, par aspiration si
nécessaire. Une fois le sorbant versé, placer un bouchon ou une grille supplémentaire afin de retenir le
sorbant dans le tube.
NOTE 2 La détermination du volume de perçage est spécifiée dans l'ISO 16017-1:2000, Annexe B. Les volumes de
perçage sont proportionnels aux dimensions du tube de prélèvement et à la quantité de sorbant. Comme ordre d'idée de
mesure, doubler la longueur du lit, le diamètre du tube restant inchangé, double le VLP (volume limite de prélèvement).
6.2 Raccords pour tubes à sorbant. Pour l'échantillonnage, deux tubes à sorbant reliés en série à l'aide
de raccords filetés en métal équipés de bagues en PTFE.
6.3 Seringues de précision, permettant une lecture à au moins 0,1 µl près.
[11] [10]
6.4 Pompe de prélèvement, satisfaisant aux exigences de l'EN 1232 ou de l'ASTM D3686 .
6.5 Tubes, en polyéthylène (PE) ou en PTFE, de diamètre approprié, utilisés pour garantir l'absence de
fuite entre la pompe et le tube de prélèvement.
Les tubes de prélèvement ne doivent pas être utilisés avec des tuyaux en plastique en amont du sorbant. Les
tuyaux peuvent interférer en introduisant des contaminants.
6.6 Calibreur pour débitmètre. Débitmètre à bulles ou autre dispositif adapté à l'étalonnage de flux
gazeux.
6.7 Système de chromatographie en phase gazeuse (GC), équipé d'un détecteur à ionisation de flamme
et/ou d'un détecteur à spectrométrie de masse (MS), capable de détecter une injection d'au moins 1 ng de
toluène avec un rapport signal sur bruit d'au moins 5 à 1.
6.8 Colonne capillaire. Une colonne capillaire GC adaptée est sélectionnée pour la séparation des
analytes de l'échantillon. Des colonnes à phase 100 % diméthylpolysiloxane de 30 m à 60 m, avec un
diamètre interne compris entre 0,25 mm et 0,32 mm et une épaisseur de phase de 0,25 µm à 0,5 µm, sont
des exemples de colonnes qui s'avèrent appropriées à l'analyse des COV dans l'air intérieur, dans l'air de
chambres d'essai d'émission (conformément à l'ISO 16000-9) et dans l'air de cellules d'essai d'émission
(conformément à l'ISO 16000-10).
2 )
NOTE Une colonne en diméthylpolysiloxane, par exemple une colonne HP-1 , ne sépare pas le 3-carène du
2-éthyl-1-hexanol avec certains programmes de four, ni ne sépare le m- et le p-xylène.
6.9 Appareillage de désorption thermique, pour la désorption thermique en deux étapes des tubes à
sorbant et le transfert de vapeurs désorbées via un flux de gaz inerte dans un GC.
L'appareillage type comporte un mécanisme de support des tubes à désorber lors de leur chauffage et de leur
purge simultanés à l'aide de gaz vecteur inerte. La température et la durée de désorption, tout comme le débit
du gaz vecteur, sont réglables. L'appareillage peut également comporter des fonctionnalités supplémentaires,
telles que le chargement automatique d'un tube de prélèvement, les essais d'étanchéité et un piège froid ou
tout autre dispositif permettant de concentrer l'échantillon désorbé. L'échantillon désorbé, contenu dans le gaz
de purge, est dirigé vers le chromatographe en phase gazeuse et la colonne capillaire via une ligne de
transfert chauffée.
6.10 Dispositif d'injection pour la préparation d'étalons par dopage liquide (facultatif). Un dispositif
conventionnel d'injection dans le chromatographe en phase gazeuse, ou un dispositif équivalent, peut être
utilisé pour la préparation d'étalons. Il peut être utilisé in situ ou être installé séparément. Il convient que
l'injecteur ne soit pas chauffé afin d'éliminer le risque de transfert de chaleur au tube ainsi que les risques
associés de perçage de l'analyte. Il convient que l'arrière de l'unité d'injection soit adapté si nécessaire au
tube d'échantillon. Cela peut être réalisé en toute simplicité à l'aide d'un raccord mécanique équipé d'un joint
torique.
NOTE Lors de la préparation des tubes normalisés contenant des analytes COSV, un transfert efficace est renforcé
si la configuration de l'injecteur permet à la pointe de la seringue d'entrer doucement en contact avec le mécanisme
retenant le sorbant (par exemple grille ou fritté) dans le tube.
6.11 Étalonnage de la pompe. Étalonner la pompe avec le système de tubes à sorbant préalablement
installé, à l'aide d'un instrument de mesure étalonné externe approprié.
7 Conditionnement et conservation des tubes à sorbant
7.1 Conditionnement
Avant toute utilisation pour échantillonnage, conditionner les tubes à sorbant préalablement nettoyés à 300 °C
pendant 10 min sous un flux de gaz vecteur inerte à un débit compris entre 50 ml/min et 100 ml/min, afin de
supprimer les traces de substances organiques volatiles susceptibles d'être piégées dans le tube. Analyser un
nombre représentatif de tubes conditionnés pour déterminer une valeur à blanc à l'aide de paramètres
analytiques de routine, pour s'assurer que la valeur de blanc de désorption thermique retenue est
suffisamment faible. Le niveau de blanc du tube à sorbant est acceptable si les pics d'artefacts ne dépassent
pas 10 % des surfaces de pic types des analytes à l'étude. Si le blanc est inacceptable, reconditionner les
tubes en répétant le mode opératoire de conditionnement. Si, après le reconditionnement, le blanc reste
inacceptable, les tubes doivent être à nouveau remplis (voir le mode opératoire en 6.1).
7.2 Conservation des tubes à sorbant conditionnés avant échantillonnage
Fermer les tubes à sorbant conditionnés à l'aide de raccords filetés en métal équipés de bagues en PTFE et
les stocker à température ambiante dans un conteneur exempt de toute émission. Utiliser les tubes de
prélèvement conditionnés au cours des quatre semaines qui suivent. Reconditionner les tubes stockés
pendant plus de quatre semaines avant échantillonnage.

2 HP-1 est l'appellation commerciale d'un produit fabriqué par Agilent, Inc. Cette information est donnée à l'intention des
utilisateurs du présent document et ne signifie nullement que l'ISO approuve ou recommande l'emploi exclusif du produit
ainsi désigné.
6 © ISO 2011 – Tous droits réservés

8 Échantillonnage
8.1 Échantillonnage d'air intérieur
Monter la ligne de prélèvement. Si plusieurs tubes sont utilisés afin d'éviter de dépasser le volume de perçage
d'un seul tube et de l'analyte étudié, préparer un système de tubes en les reliant en série à l'aide d'un raccord
(6.2). Relier la pompe au tube à sorbant ou au système de tubes à l'aide d'un tuyau en PE ou en PTFE.
Démarrer la pompe, puis noter ou enregistrer le débit d'échantillonnage, noter l'heure de début, la
température et également la pression atmosphérique si cela s'avère nécessaire pour le calcul. Un débit
d'échantillonnage approprié se situe entre 50 ml/min et 200 ml/min. À la fin de la période d'échantillonnage,
noter et enregistrer le débit ou enregistrer les résultats, arrêter la pompe, puis noter et enregistrer l'heure, la
température et la pression atmosphérique, le cas échéant. Détacher le tube de prélèvement de la ligne de
prélèvement, puis refermer les deux extrémités à l'aide de raccords filetés équipés de bagues en PTFE.
Si le débit d'échantillonnage est déterminé à l'aide d'un dispositif de mesure de débit intégré, par exemple un
débitmètre massique, relier le tube de prélèvement à la ligne de prélèvement, démarrer la pompe, noter et
enregistrer l'heure et le débit. Noter et enregistrer la température et la pression atmosphérique, si besoin est.
Un débit d'échantillonnage approprié se situe entre 50 ml/min et 200 ml/min. À la fin de la période
d'échantillonnage, noter et enregistrer le débit, arrêter la pompe, puis noter et enregistrer l'heure à laquelle la
pompe a été arrêtée. Détacher le tube de prélèvement de la ligne de prélèvement, puis refermer les deux
extrémités à l'aide de raccords filetés équipés de bagues en PTFE.
L'échantillonnage d'air intérieur doit être réalisé en tenant compte des aspects généraux de la stratégie
d'échantillonnage spécifiée dans l'ISO 16000-1.
Des débits d'échantillonnage inférieurs à 50 ml/min peuvent être utilisés si l'opérateur le juge nécessaire, par
exemple pour permettre des durées d'échantillonnage plus longues.
8.2 Échantillonnage d'air en chambre d'essai
Monter la ligne de prélèvement. Si le débit d'échantillonnage est déterminé à l'aide d'un calibreur, démarrer la
pompe, noter et enregistrer le débit d'échantillonnage. Un débit d'échantillonnage approprié se situe entre
50 ml/min et 200 ml/min. Lors d'un échantillonnage dans une chambre d'émission, le débit d'échantillonnage
ne doit pas dépasser 80 % du débit d'air de la chambre. Relier le tube de prélèvement à la sortie de la
chambre d'essai ou à un autre port de prélèvement de la chambre d'essai d'émission, noter et enregistrer
l'heure à laquelle le tube a été relié. Noter et enregistrer la température et la pression atmosphérique, si
besoin est. À la fin de la période d'échantillonnage, détacher le tube de prélèvement du port de prélèvement
de la chambre, noter et enregistrer l'heure à laquelle il a été détaché, répéter la détermination du débit
d'échantillonnage, puis arrêter la pompe. Détacher le tube de prélèvement de la ligne de prélèvement, puis
refermer les deux extrémités à l'aide de raccords filetés équipés de bagues en PTFE.
Si le débit d'échantillonnage est déterminé à l'aide d'un dispositif de mesure de débit intégré, par exemple un
débitmètre massique, relier le tube de prélèvement à la ligne de prélèvement jusqu'au port de prélèvement de
la chambre, démarrer la pompe, noter et enregistrer l'heure et le débit. Noter et enregistrer la température et
la pression atmosphérique, si besoin est. Un débit d'échantillonnage approprié se situe entre 50 ml/min et
200 ml/min. À la fin de la période d'échantillonnage, noter et enregistrer le débit, arrêter la pompe, puis noter
et enregistrer l'heure à laquelle la pompe a été arrêtée. Détacher le tube de prélèvement de la ligne de
prélèvement, puis refermer les deux extrémités à l'aide de raccords filetés équipés de bagues en PTFE.
8.3 Volumes de prélèvement
Les VLP, c'est-à-dire les quantités de gaz pouvant être échantillonnées sans perçage des COV, sont
répertoriés dans l'Annexe B. En règle générale, les volumes appropriés pour l'échantillonnage des COV à
partir d'air intérieur non industriel varient entre 1 l et 5 l pour les tubes de prélèvement contenant 200 mg de ®
Tenax TA . Dans le cadre de mesurages d'émission d'un matériau, le type et l'âge du matériau, le facteur de
charge et le taux de renouvellement d'air dans la chambre permettent de déterminer les volumes de
prélèvement adaptés. En règle générale, le volume de prélèvement maximal recommandé est inférieur ou
égal à 5 l.
Le volume de prélèvement doit être adapté aux concentrations attendues. Lors de l'échantillonnage de
concentrations inconnues, il est recommandé de prélever au moins trois échantillons de volumes différents en
parallèle. Si le résultat d'analyse ne dépend pas du volume de prélèvement, aucun perçage des analytes ne
s'est produit.
8.4 Conservation des échantillons chargés
Les tubes de prélèvement chargés doivent être hermétiquement scellés et conservés à température ambiante
dans un conteneur exempt d'émission. L'incidence de la conservation sur des COV chargés prélevés dans de
l'air intérieur ou de chambre est inconnue, bien que certaines données (voir l'Annexe C) laissent à penser que
les COV restent stables pendant plusieurs mois à température ambiante. Pour éviter d'éventuelles
modifications, il convient d'analyser les échantillons dès que possible et de préférence au cours des quatre
semaines suivant le prélèvement.
8.5 Échantillons blancs ®
Les échantillons blancs doivent être des tubes de prélèvement de Tenax TA identiques à ceux utilisés pour
l'échantillonnage des COV. Ces tubes sont soumis au même mode opératoire de manipulation sur site que
les tubes de prélèvement, à l'exception de la période réelle d'échantillonnage. Les échantillons blancs doivent
être marqués, conservés et analysés avec les échantillons réels. Dans le cadre d'une opération de
mesurages, la proportion d'échantillons blancs doit correspondre à environ 10 % des échantillons analysés. Si
seuls quelques mesurages sont réalisés, au moins un échantillon blanc doit être préparé et analysé.
9 Analyse
9.1 Généralités
À des fins d'analyse, les COV sont thermiquement désorbés des tubes de prélèvement. Séparer chaque COV
à l'aide de colonnes capillaires dans un chromatographe en phase gazeuse et procéder à la détection à l'aide
d'un détecteur à ionisation de flamme (FID) et d'un détecteur à spectrométrie de masse (MS) ou uniquement
à l'aide de ce dernier. Le MS peut servir aussi bien pour l'identification et la quantification de composés, alors
que les signaux de FID seuls servent uniquement à la quantification de composés.
Lorsqu'un détecteur à ionisation de flamme et un détecteur à spectrométrie de masse sont utilisés
conjointement pour l'analyse, les détecteurs peuvent être ajustés sur le même chromatographe en phase
gazeuse ou sur deux chromatographes différents. Dans le dernier cas, une injection d'échantillon et des
paramètres de séparation identiques doivent être utilisés pour les deux instruments en vue d'obtenir des
chromatogrammes comparables.
Lorsque la quantification est effectuée à l'aide d'un FID, des mélanges d'étalons de concentrations différentes
ou au moins un étalon d'un niveau de concentration doit (doivent) être analysé(s) avec chaque lot
d'échantillons en vue de vérifier les performances du système.
Lors de l'utilisation d'un MS à des fins de quantification, les mélanges d'étalons d'au moins trois
concentrations différentes, le mieux étant cinq ou sept concentrations, doivent être analysés pour chaque lot
d'échantillons pour mettre à jour l'étalonnage.
Des étalons internes, par exemple des composés avec indicateurs isotopiques, peuvent être utilisés afin de
contrôler les performances d'échantillonnage et d'analyse.
9.2 Désorption thermique
Sélectionner la durée de désorption et le débit du gaz de désorption de manière à obtenir une efficacité de
désorption pour l'octadécane supérieure à 95 %. La détermination de l'efficacité de désorption est décrite
dans l'ISO 16017-1.
8 © ISO 2011 – Tous droits réservés

Les conditions types de désorption pour l'analyse des COV à l'aide d'un piège froid secondaire et d'un tube de ®
prélèvement contenant 200 mg à 250 mg de Tenax TA sont les suivantes:
Température de désorption 260 °C à 280 °C
D'autres températures de désorption peuvent être requises si différents sorbants sont utilisés dans le tube de
prélèvement (par exemple pour l'analyse des COTV), conformément à l'ISO 16017-1 ou à l'Annexe D ou pour
la récupération quantitative des COSV). Si une température de désorption différe
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...