ISO 6336-3:2006
(Main)Calculation of load capacity of spur and helical gears - Part 3: Calculation of tooth bending strength
Calculation of load capacity of spur and helical gears - Part 3: Calculation of tooth bending strength
ISO 6336-3:2006 specifies the fundamental formulae for use in tooth bending stress calculations for involute external or internal spur and helical gears.
Tragfähigkeitsberechnung von gerad- und schrägverzahnten Stirnrädern - Teil 3: Berechnung der Zahnfußtragfähigkeit
Calcul de la capacité de charge des engrenages cylindriques à dentures droite et hélicoïdale — Partie 3: Calcul de la résistance à la flexion en pied de dent
L'ISO 6336-3:2006 donne les équations fondamentales à utiliser pour le calcul de la capacité de charge à la flexion des dents d'engrenages cylindriques à denture droite et hélicoïdale, extérieure ou intérieure et à profil en développante de cercle.
Izračun nosilnosti ravnozobih in poševnozobih zobnikov - 3. del: Izračun upogibne trdnosti zob
General Information
Relations
Frequently Asked Questions
ISO 6336-3:2006 is a standard published by the International Organization for Standardization (ISO). Its full title is "Calculation of load capacity of spur and helical gears - Part 3: Calculation of tooth bending strength". This standard covers: ISO 6336-3:2006 specifies the fundamental formulae for use in tooth bending stress calculations for involute external or internal spur and helical gears.
ISO 6336-3:2006 specifies the fundamental formulae for use in tooth bending stress calculations for involute external or internal spur and helical gears.
ISO 6336-3:2006 is classified under the following ICS (International Classification for Standards) categories: 21.200 - Gears. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO 6336-3:2006 has the following relationships with other standards: It is inter standard links to ISO 6336-3:2006/Cor 1:2008, ISO 6336-3:2019, ISO 6336-3:1996, ISO 6336-3:1996/Cor 1:1999; is excused to ISO 6336-3:2006/Cor 1:2008. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase ISO 6336-3:2006 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 6336-3
Second edition
2006-09-01
Corrected version
2007-04-01
Calculation of load capacity of spur and
helical gears —
Part 3:
Calculation of tooth bending strength
Calcul de la capacité de charge des engrenages cylindriques à
dentures droite et hélicoïdale —
Partie 3: Calcul de la résistance à la flexion en pied de dent
Reference number
©
ISO 2006
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.
© ISO 2006
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2006 – All rights reserved
Contents Page
Foreword. v
Introduction . vi
1 Scope . 1
2 Normative references . 1
3 Terms, definitions, symbols and abbreviated terms. 1
4 Tooth breakage and safety factors . 2
5 Basic formulae . 2
5.1 Safety factor for bending strength (safety against tooth breakage), S . 2
F
5.2 Tooth root stress, σ . 2
F
5.3 Permissible bending stress, σ . 4
FP
6 Form factor, Y . 8
F
6.1 General. 8
6.2 Calculation of the form factor, Y : Method B . 9
F
6.3 Derivations of determinant normal tooth load for spur gears . 13
7 Stress correction factor, Y . 14
S
7.1 Basic uses . 14
7.2 Stress correction factor, Y : Method B. 14
S
7.3 Stress correction factor for gears with notches in fillets. 15
7.4 Stress correction factor, Y , relevant to the dimensions of the standard reference test
ST
gears. 15
8 Helix angle factor, Y . 15
β
8.1 Graphical value . 16
8.2 Determination by calculation. 16
9 Rim thickness factor, Y . 16
B
9.1 Graphical values . 16
9.2 Determination by calculation. 17
10 Deep tooth factor, Y . 18
DT
10.1 Graphical values . 18
10.2 Determination by calculation. 18
11 Reference stress for bending . 19
11.1 Reference stress for Method A. 19
11.2 Reference stress, with values σ and σ for Method B . 19
F lim FE
12 Life factor, Y . 19
NT
12.1 Life factor, Y : Method A. 19
NT
12.2 Life factor, Y : Method B. 19
NT
13 Sensitivity factor, Y , and relative notch sensitivity factor, Y . 21
δT δ rel T
13.1 Basic uses . 21
13.2 Determination of the sensitivity factors . 21
13.3 Relative notch sensitivity factor, Y : Method B. 22
δ rel T
14 Surface factors, Y , Y , and relative surface factor, Y . 27
R RT R rel T
14.1 Influence of surface condition. 27
14.2 Determination of surface factors and relative surface factors. 28
14.3 Relative surface factor, Y : Method B . 28
R rel T
15 Size factor, Y . 30
X
15.1 Size factor, Y : Method A . 30
X
15.2 Size factor, Y : Method B . 30
X
Annex A (normative) Permissible bending stress, σ , obtained from notched, flat or plain
FP
polished test pieces. 33
Annex B (informative) Guide values for mean stress influence factor, Y . 40
M
Bibliography . 42
iv © ISO 2006 – All rights reserved
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 6336-3 was prepared by Technical Committee ISO/TC 60, Gears, Subcommittee SC 2, Gear capacity
calculation.
This second edition cancels and replaces the first edition (ISO 6336-3:1996), Clauses 5 and Clause 9 of which
have been technically revised, with a new Clause 8 having been added to this new edition. It also incorporates
the Technical Corrigendum ISO 6336-3:1996/Cor.1:1999.
ISO 6336 consists of the following parts, under the general title Calculation of load capacity of spur and helical
gears:
⎯ Part 1: Basic principles, introduction and general influence factors
⎯ Part 2: Calculation of surface durability (pitting)
⎯ Part 3: Calculation of tooth bending strength
⎯ Part 5: Strength and quality of materials
⎯ Part 6: Calculation of service life under variable load
This corrected version incorporates the following corrections:
⎯ Figure 3 has been updated;
⎯ in Equation (17), the missing lines denoting the absolute value, Z , have been inserted;
n
⎯ minus signs missing from Equations (18) and (19) have been inserted;
⎯ Equation (50) has been corrected.
Introduction
The maximum tensile stress at the tooth root (in the direction of the tooth height), which may not exceed the
permissible bending stress for the material, is the basis for rating the bending strength of gear teeth. The
stress occurs in the “tension fillets” of the working tooth flanks. If load-induced cracks are formed, the first of
these often appears in the fillets where the compressive stress is generated, i.e. in the “compression fillets”,
which are those of the non-working flanks. When the tooth loading is unidirectional and the teeth are of
conventional shape, these cracks seldom propagate to failure. Crack propagation ending in failure is most
likely to stem from cracks initiated in tension fillets.
The endurable tooth loading of teeth subjected to a reversal of loading during each revolution, such as “idler
gears”, is less than the endurable unidirectional loading. The full range of stress in such circumstances is
more than twice the tensile stress occurring in the root fillets of the loaded flanks. This is taken into
consideration when determing permissible stresses (see ISO 6336-5).
When gear rims are thin and tooth spaces adjacent to the root surface narrow (conditions which can
particularly apply to some internal gears), initial cracks commonly occur in the compression fillet. Since, in
such circumstances, gear rims themselves can suffer fatigue breakage, special studies are necessary. See
Clause 1.
Several methods for calculating the critical tooth root stress and evaluating some of the relevant factors have
been approved. See ISO 6336-1.
vi © ISO 2006 – All rights reserved
INTERNATIONAL STANDARD ISO 6336-3:2006(E)
Calculation of load capacity of spur and helical gears —
Part 3:
Calculation of tooth bending strength
IMPORTANT — The user of this part of ISO 6336 is cautioned that when the method specified is used
for large helix angles and large pressure angles, the calculated results should be confirmed by
experience as by Method A.
1 Scope
This part of ISO 6336 specifies the fundamental formulae for use in tooth bending stress calculations for
involute external or internal spur and helical gears with a rim thickness s > 0,5 h for external gears and
R t
s > 1,75 m for internal gears. In service, internal gears can experience failure modes other than tooth
R n
bending fatigue, i.e. fractures starting at the root diameter and progressing radially outward. This part of
ISO 6336 does not provide adequate safety against failure modes other than tooth bending fatigue. All load
influences on tooth stress are included in so far as they are the result of loads transmitted by the gears and in
so far as they can be evaluated quantitatively.
The given formulae are valid for spur and helical gears with tooth profiles in accordance with the basic rack
standardized in ISO 53. They may also be used for teeth conjugate to other basic racks if the virtual contact
ratio ε is less than 2,5.
αn
The load capacity determined on the basis of permissible bending stress is termed “tooth bending strength”.
The results are in good agreement with other methods for the range, as indicated in the scope of ISO 6336-1.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 53:1998, Cylindrical gears for general and heavy engineering — Standard basic rack tooth profile
ISO 1122-1:1998, Vocabulary of gear terms — Part 1: Definitions related to geometry
ISO 6336-1:2006, Calculation of load capacity of spur and helical gears — Part 1: Basic principles,
introduction and general influence factors
ISO 6336-5:2003, Calculation of load capacity of spur and helical gears — Part 5: Strength and quality of
material
3 Terms, definitions, symbols and abbreviated terms
For the purposes of this document, the terms, definitions, symbols and abbreviated terms given in ISO 1122-1
and ISO 6336-1 apply.
4 Tooth breakage and safety factors
Tooth breakage usually ends the service live of a transmission. Sometimes, the destruction of all gears in a
transmission can be a consequence of the breakage of one tooth. In some instances, the transmission path
beween input and output shafts is broken. As a consequence, the chosen value of the safety factor S against
F
tooth breakage should be larger than the safety factor against pitting.
General comments on the choice of the minimum safety factor can be found in ISO 6336-1:2006, 4.1.7. It is
recommended that manufacturer and customer agree on the value of the minimum safety factor.
This part of ISO 6336 does not apply at stress levels above those permissible for 10 cycles, since stresses in
this range may exceed the elastic limit of the gear tooth.
5 Basic formulae
The actual tooth root stress σ and the permissible (tooth root) bending stress σ shall be calculated
F FP
separately for pinion and wheel; σ shall be less than σ .
F FP
5.1 Safety factor for bending strength (safety against tooth breakage), S
F
Calculate S separately for pinion and wheel:
F
σ
FG1
SS= W (1)
F1 Fmin
σ
F1
σ
FG2
SS= W (2)
F2 Fmin
σ
F2
σ and σ are derived from Equations (3) and (4). The values of σ for reference stress and static stress
F1 F2 FG
are calculated in accordance with 5.3.2.1 and 5.3.2.2, using Equation (5). For limited life, σ is determined in
FG
accordance with 5.3.3.
The values of tooth root stress limit σ , of permissible stress σ and of tooth root stress σ may each be
FG FP F
determined by different methods. The method used for each value shall be stated in the calculation report.
NOTE Safety factors in accordance with the present clause are relevant to transmissible torque.
See ISO 6336-1:2006, 4.1.7 for comments on numerical values for the minimum safety factor and risk of
damage.
5.2 Tooth root stress, σ
F
Tooth root stress σ is the maximum tensile stress at the surface in the root.
F
5.2.1 Method A
In principle, the maximum tensile stress can be determined by any appropriate method (finite element analysis,
integral equations, conformal mapping procedures or experimentally by strain measurement, etc.). In order to
determine the maximum tooth root stress, the effects of load distribution over two or more engaging teeth and
changes of stress with changes of meshing phase shall be taken into consideration.
Method A is only used in special cases and, because of the great effort involved, is only justifiable in such
cases.
2 © ISO 2006 – All rights reserved
5.2.2 Method B
According to this part of ISO 6336, the local tooth root stress is determined as the product of nominal tooth
1)
root stress and a stress correction factor .
This method involves the assumption that the determinant tooth root stress occurs with application of load at
the outer point of single pair tooth contact of spur gears or of the virtual spur gears of helical gears. However,
in the latter case, the “transverse load” shall be replaced by the “normal load”, applied over the facewidth of
the actual gear of interest.
For gears having virtual contact ratios in the range 2 u ε < 2,5, it is assumed that the determinant stress
αn
occurs with application of load at the inner point of triple pair tooth contact. In ISO 6336, this assumption is
taken into consideration by the deep tooth factor, Y In the case of helical gears, the factor, Y , accounts for
DT. β
deviations from these assumptions.
Method B is suitable for general calculations and is also appropriate for computer programming and for the
analysis of pulsator tests (with a given point of application of loading).
The total tangential load in the case of gear trains with multiple transmission paths (planetary gear trains,
split-path gear trains) is not quite evenly distributed over the individual meshes (depending on design,
tangential speed and manufacturing accuracy). This is to be taken into consideration by inserting a mesh load
factor, K , to follow K in Equation (3), in order to adjust as necessary the average load per mesh.
γ A
σσ = KK K K (3)
FF0 A v F β Fα
where
σ is the nominal tooth root stress, which is the maximum local principal stress produced at the tooth
F0
root when an error-free gear pair is loaded by the static nominal torque and without any
pre-stress such as shrink fitting, i.e. stress ratio R = 0 [see Equation (4)];
σ is the permissible bending stress (see 5.3);
FP
K is the application factor (see ISO 6336-6), which takes into account load increments due to
A
externally influenced variations of input or output torque;
K is the dynamic factor (see ISO 6336-1), which takes into account load increments due to internal
v
dynamic effects;
K is the face load factor for tooth root stress (see ISO 6336-1), which takes into account uneven
Fβ
distribution of load over the facewidth due to mesh-misalignment caused by inaccuracies in
manufacture, elastic deformations, etc.;
K is the transverse load factor for tooth root stress (see ISO 6336-1), which takes into account
Fα
uneven load distribution in the transverse direction, resulting, for example, from pitch deviations.
NOTE See ISO 6336-1:2006, 4.1.14, for the sequence in which factors K , K , K and K are calculated.
A v Fβ Fα
F
t
σ = (4)
YY Y Y Y
F0 FS β B DT
b
m
n
1) Stresses such as those caused by the shrink-fitting of gear rims, which are superimposed on stresses due to tooth
loading, should be taken into consideration in the calculation of permissible tooth root stress σ .
FP
where
2)
F is the nominal tangential load, the transverse load tangential to the reference cylinder (see
t
ISO 6336-1);
3)
b is the facewidth (for double helical gears b = 2 b ) ;
B
m is the normal module;
n
Y is the form factor (see Clause 6), which takes into account the influence on nominal tooth root stress
F
of the tooth form with load applied at the outer point of single pair tooth contact;
Y is the stress correction factor (see Clause 7), which takes into account the influence on nominal tooth
S
root stress, determined for application of load at the outer point of single pair tooth contact, to the
local tooth root stress, and thus, by means of which, are taken into account;
i) the stress amplifying effect of change of section at the tooth root, and
ii) the fact that evaluation of the true stress system at the tooth root critical section is more complex
than the simple system evaluation presented;
Y is the helix angle factor (see Clause 8), which compensates for the fact that the bending moment
β
intensity at the tooth root of helical gears is, as a consequence of the oblique lines of contact, less
than the corresponding values for the virtual spur gears used as bases for calculation;
Y is the rim thickness factor (see Clause 9), which adjusts the calculated tooth root stress for thin
B
rimmed gears;
Y is the deep tooth factor (see Clause 10), which adjusts the calculated tooth root stress for high
DT
precision gears with a contact ratio in the range of 2 u ε < 2,5.
αn
5.3 Permissible bending stress, σ
FP
The limit value of tooth root stresses (see Clause 11) should preferably be derived from material tests using
gears as test pieces, since in this way the effects of test piece geometry, such as the effect of the fillet at the
tooth roots, are included in the results. The calculation methods provided constitute empirical means for
comparing stresses in gears of different dimensions with experimental results. The closer test gears and test
conditions resemble the service gears and service conditions, the lesser will be the influence of inaccuracies
in the formulation of the calculation expressions.
5.3.1 Methods for determination of permissible bending stress, σ — Principles, assumptions and
FP
application
Several procedures for the determination of permissible bending stress σ are acceptable. The method
FP
adopted shall be validated by carrying out careful comparative studies of well-documented service histories of
a number of gears.
2) In all cases, even when ε > 2, it is necessary to substitute the relevant total tangential load as F . Reasons for the
αn t
choice of load application at the reference cylinder are given in 6.3. See ISO 6336-1, 4.2, for definition of F and comments
t
on particular characteristics of double helical gears.
3) The value b, of mating gears, is the facewidth at the root circle, ignoring any intentional transverse chamfers or
tooth-end rounding. If the facewidths of the pinion and wheel are not equal, it can be assumed that the load bearing width
of the wider facewidth is equal to the smaller facewidth plus such extension of the wider that does not exceed 1 × the
module at each end of the teeth.
4 © ISO 2006 – All rights reserved
5.3.1.1 Method A
By this method, the values for σ or for the tooth root stress limit, σ , are obtained using Equations (3) and
FP FG
(4) from the S-N curve or damage curve derived from results of testing facsimiles of the actual gear pair,
under the appropriate service conditions.
The cost required for this method is, in general, only justifiable for the development of new products, failure of
which would have serious consequences (e.g. for manned space flights).
Similarly, in line with this method, the allowable stress values may be derived from consideration of
dimensions, service conditions and performance of carefully monitored reference gears.
5.3.1.2 Method B
Damage curves characterized by the nominal stress number (bending), σ , and the factor Y have been
F lim NT
determined for a number of common gear materials and heat treatments from results of gear load or pulsator
testing of standard reference test gears. Material values so determined are converted to suit the dimensions of
the gears of interest, using the relative influence factors for notch sensitivity, Y , for surface roughness,
δ rel T
Y , and for size, Y .
R rel T X
Method B is recommended for the calculation of reasonably accurate gear ratings whenever bending strength
values are available from gear tests, from special tests or, if the material is similar, from ISO 6336-5.
5.3.2 Permissible bending stress, σ : Method B
FP
Subject to the reservations given in 5.3.2.1 and 5.3.2.2, Equation (5) is to be used for this calculation:
σ YY
Flim ST NT σ
σ Y
FE NT FG
σ = = = (5)
YY Y Y Y Y
δδ rel T R rel T X rel T R rel T X
FP
SS S
Fm in Fmin Fm in
where
σ is the nominal stress number (bending) from reference test gears (see ISO 6336-5), which is the
F lim
bending stress limit value relevant to the influences of the material, the heat treatment and the
surface roughness of the test gear root fillets;
σ is the allowable stress number for bending, corresponding to the basic bending strength of the
FE
un-notched test piece, under the assumption that the material condition (including heat
treatment) is fully elastic
σ = (σ Y );
FE F lim ST
Y is the stress correction factor, relevant to the dimensions of the reference test gears (see 7.4);
ST
Y is the life factor for tooth root stress, relevant to the dimensions of the reference test gear (see
NT
Clause 12), which takes into account the higher load capacity for a limited number of load cycles;
σ is the tooth root stress limit;
FG
σ = (σ S );
FG FP F min
S is the minimum required safety factor for tooth root stress (see Clause 4 and 5.1);
F min
Y is the relative notch sensitivity factor, which is the quotient of the notch sensitivity factor of the
δ rel T
gear of interest divided by the standard test gear factor (see Clause 13) and which enables the
influence of the notch sensitivity of the material to be taken into account;
Y is the relative surface factor, which is the quotient of the surface roughness factor of tooth root
R rel T
fillets of the gear of interest divided by the tooth root fillet factor of the reference test gear (see
Clause 14) and which enables the relevant surface roughness of tooth root fillet influences to be
taken into account;
Y is the size factor relevant to tooth root strength (see Clause 15), which is used to take into
X
account the influence of tooth dimensions on tooth bending strength.
5.3.2.1 Permissible bending stress (reference)
The permissible bending stress (reference), σ , is derived from Equation (5), with Y = 1 and influence
FP ref NT
factors σ , Y , Y , Y , Y and S calculated in accordance with the specified Method B.
F lim ST δ rel T R rel T X F min
5.3.2.2 Permissible bending stress (static)
The permissible bending stress (static), σ , is determined in accordance with Equation (5), with factors
FP stat
σ , Y , Y , Y , Y , Y and S calculated in accordance with the specified Method B (for static
F lim NT ST δ rel T R rel T X F min
stress).
5.3.3 Permissible bending stress, σ , for limited and long life: Method B
FP
σ for a given number of load cycles, N , is determined by means of graphical or calculated linear
FP L
interpolation along the S-N curve on a log-log scale, between the value obtained for reference stress in
accordance with 5.3.2.1 and the value obtained for static stress in accordance with 5.3.2.2. Also see
Clause 12.
5.3.3.1 Graphical values
Calculate σ for the reference stress and σ for the static stress in accordance with 5.3.2 and plot the
FP ref FP stat
S-N curve corresponding to life factor Y . See Figure 1 for the principle. σ for the relevant number of load
NT FP
cycles N can be read from this graph.
L
6 © ISO 2006 – All rights reserved
Key
X number of load cycles, N (log)
L
Y permissible bending stress, σ (log)
FP
1 static
2 limited life
3 long life
a
Example: permissible bending stress, σ , for a given number of load cycles.
FP
Figure 1 — Graphical determination of permissible bending stress for limited life,
in accordance with Method B
5.3.3.2 Determination by calculation
Calculate σ for the reference stress and σ for the static stress in accordance with 5.3.2 and, using
FP ref FP stat
these results, determine σ for the relevant number of load cycles N in the limited life range, as follows (see
FP L
ISO 6336-1:2006, Table 2, for an explanation of the abbreviations used).
exp
⎛⎞
31 × 0
σσ==Y σ ⎜ ⎟ (6)
FP FP ref N FP ref
⎜⎟
N
L
⎝⎠
4 6
a) For St, V, GGG (perl., bai.) or GTS (perl.), limited life range as shown in Figure 9, 10 < N u 3 × 10 :
L
σ
FPstat
(7)
exp = 0,403 7 log
σ
FP ref
b) For IF, Eh, NT (nitr.), NV (nitr.), NV (nitrocar.), GGG (ferr.) or GG, limited life range as shown in Figure 9,
3 6
10 < N u 3 × 10 :
L
σ
FP stat
exp = 0,287 6 log (8)
σ
FP ref
Corresponding calculations may be determined for the range of long life.
6 Form factor, Y
F
6.1 General
Y is the factor by which the influence of tooth form on nominal tooth root stress is taken into account. See
F
5.2.1 for principles, assumptions and details of use. Y is relevant to application of load at the outer point of
F
single pair tooth contact (Method B).
The chord between the points at which the 30° tangents contact the root fillets for external gears, or at which
the 60° tangents contact the root fillets for internal gears, defines the section to be used as the basis for
calculation (see Figures 3 to 4).
Determination of the values Y and Y is based on the nominal tooth form with the profile shift coefficient x. In
F S
general, the effect of reduction of tooth thickness on the tooth bending strength of finished-cut cylindrical
gears may be ignored. Since the tooth roots of ground or shaved gear teeth are usually generated by cutting
tools such as hobs, their shapes and dimensions are usually determined by the cutting depth settings.
Because of material allowances for finishing processes such as profile grinding, it is usually the case that the
depth setting of the roughing tool, relative to the gear axis, includes the amount of nominal profile shift, xm ,
n
plus a tolerance designed to ensure that the finishing allowance will be greater instead of less than the
requisite minimum. Because of this, calculated values of tooth root stresses usually err on the side of safety.
If the tooth thickness deviation near the root results in a thickness reduction of more than 0,05 m , this shall be
n
taken into account in the stress calculation, by taking the generated profile, x , relative to rack shift amount m
E n
instead of the nominal profile.
The equations in this part of ISO 6336 apply to all basic rack profiles (see Figure 2) with and without undercut,
but with the following restrictions:
a) the contact point of the 30° (60°) tangent shall lie on the tooth root fillet generated by the root fillet of the
basic rack;
b) the basic rack profile of the gear shall have a root fillet with ρ > 0;
fP
c) the teeth shall be generated using tools such as hobs or rack type cutters;
d) since calculated ratings refer to finished tooth forms, profile grinding and similar allowances, including
tooth thickness allowances, can be neglected, and in practice it can be assumed that the dimensions of
the basic rack of the tool are the same as those of the counterpart basic rack of the gear;
e) for internal gears, a virtual basic rack profile is used which differs from the basic rack profile in the root
radius ρ [see Equation (11)].
fP
8 © ISO 2006 – All rights reserved
a) with undercut b) without undercut
Figure 2 — Dimensions and basic rack profile of the teeth (finished profile)
The above comments apply to straight spur and helical gears. The value Y is determined for the virtual spur
F
gears of helical gears; the virtual number of teeth z can be determined using Equation (21) or (22). Y is
n F
determined separately for the pinion and the wheel.
NOTE For a description of symbols and abbreviations, see ISO 6336-1:2006, Table 1.
6.2 Calculation of the form factor, Y : Method B
F
The determination of the normal chordal dimension s of the tooth root critical section and the bending
Fn
moment arm h relevant to load application at the outer point of single pair gear tooth contact for Method B is
Fe
shown in Figures 3 and 4.
a
Base circle.
Figure 3 — Determination of normal chordal dimensions of tooth root critical section for Method B
(external gears)
a
Base circle.
Figure 4 — Determination of normal chordal dimensions of tooth root critical section for Method B
(internal gears)
The following equation uses the symbols illustrated in Figures 3 and 4:
6 h
Fe
cosα
Fen
m
n
Y = (9)
F
⎛⎞s
Fn
cosα
⎜⎟
n
m
⎝⎠n
In order to evaluate precise values, s and α , of h it is first necessary to derive a value of θ which is
Fn Fen Fe
reasonably accurate, usually after five iterations of Equation (14). Determination of Y by graphical means is
F
not recommended.
4)
6.2.1 Tooth root normal chord, s , radius of root fillet, ρ , bending moment arm, h
Fn F Fe
First, determine the auxiliary values for Equation (9):
s
π ρ
pr
fP
(10)
Em=−h tanαα+ − 1− sin
()
nfP n n
4cosα cosα
nn
4) If the tip of the tooth has been rounded or chamfered, it is necessary to replace the tip diameter d in the calculation
a
by d the “effective tip diameter”. d is the diameter of a circle near the tip cylinder, containing limits of the usable gear
Na Na
flanks.
10 © ISO 2006 – All rights reserved
with
s = pr − q (see Figure 2);
pr
s = 0 when gears are not undercut;
pr
ρ = ρ for external gears, or
fPv fP
1,95
x +− / ρ /
()hm m
0 fP n n
fP
ρρ ≈+ m for internal gears (11)
n
fPv fP
z
3,156 ⋅1,036
where
x is the pinion-cutter shift coefficient;
z is the number of teeth of the pinion cutter;
ρ h
fPv fP
Gx=− + (12)
mm
nn
⎛⎞
2 π E
H=− − Τ (13)
⎜⎟
zm2
nn⎝⎠
with
Τ = π/3 for external gears;
Τ = π/6 for internal gears;
2G
θθ=−tan H (14)
z
n
The value θ = π/6 for external gears and θ = π/3 for internal gears may be used as a seed value in the iteration
of the transcendental Equation (14). Generally, the function converges after five iterations.
a) Tooth root normal chord s
Fn
⎯ For external gears:
⎛⎞
s π G ρ
⎛⎞
Fn fPv
=−z sin θ+ 3 − (15)
⎜⎟
n
⎜⎟
mm3cosθ
⎝⎠
nn⎝⎠
⎯ For internal gears:
⎛⎞
s π G ρ
⎛⎞
Fn fPv
=−z sin θ+ − (16)
⎜⎟
n
⎜⎟
mm6cosθ
⎝⎠
nn
⎝⎠
b) Radius of root fillet ρ (see Figures 3 and 4)
F
ρρ 2G
FfPv
=+ (17)
mm
nn cosθθz cos − 2G
()
n
c) Bending moment arm h
Fe
⎯ For external gears:
⎡⎤
1 π ⎛⎞G ρ
hd ⎛⎞
Fe en fPv
=−(cos siγγn tanαθ)− zcos−− − (18)
⎢⎥
Fen n ⎜⎟
ee ⎜⎟
23cos θ
mm ⎝⎠m
nn⎢⎥⎝⎠n
⎣⎦
⎯ For internal gears:
⎡⎤
⎛⎞ρ
1 ⎛⎞π G
hd
Fe en fPv
z=− (cos sin tanαθ)− cos−− 3 − (19)
⎢⎥γγ
⎜⎟
Fen n ⎜⎟
ee
26cos θ
mm m
⎢⎥⎝⎠
nn ⎝⎠n
⎣⎦
6.2.2 Parameters of virtual gears
These are as follows.
β=−arccos 1 sinβαcos = arcsin sinβαcos (20)
() ()
bn n
z
z = (21)
n
cosββcos
b
Approximation:
z
z ≈ (22)
n
cos β
ε
α
ε = (23)
α n
cos β
b
d
dm==z (24)
nnn
cos β
b
p = π m cos α (25)
bn n n
d = d cos α (26)
bn n n
d = d + d − d (27)
an n a
⎡⎤
22 2
z ⎛⎞dd⎛⎞ π d cosβαcos ⎛⎞d
an bn n bn
⎢⎥
d=−21− ε−+ (28)
()
en ⎜⎟ ⎜⎟ αn ⎜⎟
⎢⎥
zz22 2
⎝⎠ ⎝⎠ ⎝⎠
⎢⎥
⎣⎦
The number of teeth, z, is positive for external gears and negative for internal gears.
⎛⎞
d
bn
α = arccos (29)
⎜⎟
en
d
⎝⎠en
0,5π+ 2 tan α x
n
γ=+ invαα− inv (30)
enen
z
n
12 © ISO 2006 – All rights reserved
0,5π+ 2 tan α x
n
αα=−γ= tanα − invα− (31)
Fen en e en n
z
n
6.3 Derivations of determinant normal tooth load for spur gears
bending moment
Nominal bending stress = in accordance with the following equation, with
section modulus of gear at s
Fn
symbols in accordance with Figures 3 and 4.
F cosα
bFen
σ = h (32)
Fe
bs
()Fn
d d d
b
w
FF==F (33)
bt w
22 2
where
d is the base diameter;
b
d is the reference diameter;
d is the pitch diameter;
w
F is the nominal tangential load at the reference cylinder;
t
F is the nominal tangential load at the pitch cylinder.
w
F F
t
w
F== (34)
b
cos α cos α
w
⎡⎤
h
⎢⎥Fe
cos α
Fen
FF
⎢⎥
m tt
(35)
σ== Y
F
⎢⎥
bm bm
1⎛⎞s
⎢⎥Fn
cos α
⎜⎟
⎢⎥
6 m
⎝⎠
⎣⎦
where
α is the pressure angle of the basic rack profile;
α is the working pressure angle.
w
When σ is expressed as a function of F , a form factor, Y , can be derived from Equation (35).
t F
7 Stress correction factor, Y
S
7.1 Basic uses
The stress correction factor, Y , is used to convert the nominal tooth root stress to local tooth root stress and,
S
by means of this factor, the following are taken into account:
5)
a) the stress amplifying effect of section change at the fillet radius at the tooth root ;
b) that evaluation of the true stress system at the tooth root critical section is more complex than the simple
system evaluation presented, with evidence indicating that the intensity of the local stress at the tooth root
consists of two components, one of which is directly influenced by the value of the bending moment and
the other increasing with closer proximity to the critical section of the determinant position of load
application.
Y is the factor for load application at the outer point of single pair tooth contact (Method B). See 5.2 for the
S
principles, assumptions and application of Method B.
The formulae in this clause are based on data derived from the geometry of external spur gears with 20°
pressure angle, by means of measurement and calculations using finite element and integral equation
methods. The formulae can also be used to obtain approximate values for internal gears and for gears having
other pressure angles.
The present instructions refer to spur and helical gears. See Clause 6 for explanatory notes and information
on the calculation of the virtual numbers of teeth relevant to helical gears.
7.2 Stress correction factor, Y : Method B
S
The calculation of the stress correction factor, Y , is made in accordance with Equation (36), which is valid in
S
the range: 1 u q < 8; symbols are as illustrated in Figures 3 and 4.
s
⎡⎤
⎢⎥
⎢⎥
2,3
⎢⎥
1,21+
⎢⎥
⎣⎦L
Y L=+(1,2 0,13 ) q (36)
S
s
where
s
Fn
L = (37)
h
Fe
with
s from Equation (15) for external gears, Equation (16) for internal gears;
Fn
h from Equation (18) for external gears, Equation (19) for internal gears;
Fe
s
Fn
q = (38)
s
2ρ
F
with ρ from Equation (17).
F
Determination of Y by graphical methods is not appropriate.
S
5) See 7.3 for the procedure to be followed when grinding notches are present in tooth fillets.
14 © ISO 2006 – All rights reserved
7.3 Stress correction factor for gears with notches in fillets
A notch such as a grinding notch in the fillet of a gear near the critical section usually engenders a degree of
stress concentration exceeding that of the fillet; thus, the stress correction factor is correspondingly greater. A
fair estimate of Y , obtainable from Equation (39), can be substituted for Y , see Figure 5, if the notch is near
Sg S
the critical section. See also Reference [6].
1,3
Y
S
Y =
(39)
Sg
t
g
1,3 − 0,6
ρ
g
t
g
valid for
< 2,0
ρ
g
The effect of the grinding notch is less than that implied in Equation (39) when the notch is above the contact
point of the 30° tangent (external gears) or 60° tangent (internal gears).
Y also takes into consideration the reduction in the tooth root thickness.
sg
Deep notches in the fillets of surface hardened steel gears severely reduce the bending strength of their teeth.
7.4 Stress correction factor, Y , relevant to the dimensions of the standard reference test
ST
gears
The tooth root stress limit values for materials, according to ISO 6336-5, were derived from results of tests of
standard reference test gears for which either Y = 2,0 or for which test results were recalculated to this
ST
value. See also Reference [6].
Figure 5 — Notch dimensions
8 Helix angle factor, Y
β
The tooth root stress of a virtual spur gear, calculated as a prelimary value, is converted by means of the helix
factor Y to that of the corresponding helical gear. By this means, the oblique orientation of the lines of mesh
β
contact is taken into account (less tooth root stress).
8.1 Graphical value
Y may be read from Figure 6 as a function of the helix angle, β, and the overlap ratio, ε .
β β
Key
X reference helix angle, β, degrees
Y1 helix factor, Y
β
Y2 overlap ratio, ε
β
Helix factors Y > 25° shall be confirmed by experience.
β
Figure 6 — Helix factor, Y
β
8.2 Determination by calculation
The factor Y can be calculated using Equation (40), which is consistent with the curves illustrated in Figure 6.
β
β
Y =−1 ε (40)
ββ
120°
where β is the reference helix angle, in degrees.
The value 1,0 is substituted for ε when ε > 1,0, and 30° is substituted for β when β > 30°.
β β
9 Rim thickness factor, Y
B
Where the rim thickness is not sufficient to provide full support for the tooth root, the location of bending
fatigue failure may be through the gear rim, rather than at the root fillet. The rim thickness factor Y is a
B
simplified factor used to de-rate thin rimmed gears when detailed calculations of stresses in both tension and
compression or experience are not available. For critically loaded applications this method should be replaced
by a m
...
SLOVENSKI STANDARD
01-julij-2008
1DGRPHãþD
SIST ISO 6336-3:2002
,]UDþXQQRVLOQRVWLUDYQR]RELKLQSRãHYQR]RELK]REQLNRYGHO,]UDþXQXSRJLEQH
WUGQRVWL]RE
Calculation of load capacity of spur and helical gears - Part 3: Calculation of tooth
bending strength
Tragfähigkeitsberechnung von gerad- und schrägverzahnten Stirnrädern - Teil 3:
Berechnung der Zahnfußtragfähigkeit
Calcul de la capacité de charge des engrenages cylindriques à dentures droite et
hélicoïdale - Partie 3: Calcul de la résistance à la flexion en pied de dent
Ta slovenski standard je istoveten z: ISO 6336-3:2006
ICS:
21.200 Gonila Gears
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 6336-3
Second edition
2006-09-01
Corrected version
2007-04-01
Calculation of load capacity of spur and
helical gears —
Part 3:
Calculation of tooth bending strength
Calcul de la capacité de charge des engrenages cylindriques à
dentures droite et hélicoïdale —
Partie 3: Calcul de la résistance à la flexion en pied de dent
Reference number
©
ISO 2006
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.
© ISO 2006
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2006 – All rights reserved
Contents Page
Foreword. v
Introduction . vi
1 Scope . 1
2 Normative references . 1
3 Terms, definitions, symbols and abbreviated terms. 1
4 Tooth breakage and safety factors . 2
5 Basic formulae . 2
5.1 Safety factor for bending strength (safety against tooth breakage), S . 2
F
5.2 Tooth root stress, σ . 2
F
5.3 Permissible bending stress, σ . 4
FP
6 Form factor, Y . 8
F
6.1 General. 8
6.2 Calculation of the form factor, Y : Method B . 9
F
6.3 Derivations of determinant normal tooth load for spur gears . 13
7 Stress correction factor, Y . 14
S
7.1 Basic uses . 14
7.2 Stress correction factor, Y : Method B. 14
S
7.3 Stress correction factor for gears with notches in fillets. 15
7.4 Stress correction factor, Y , relevant to the dimensions of the standard reference test
ST
gears. 15
8 Helix angle factor, Y . 15
β
8.1 Graphical value . 16
8.2 Determination by calculation. 16
9 Rim thickness factor, Y . 16
B
9.1 Graphical values . 16
9.2 Determination by calculation. 17
10 Deep tooth factor, Y . 18
DT
10.1 Graphical values . 18
10.2 Determination by calculation. 18
11 Reference stress for bending . 19
11.1 Reference stress for Method A. 19
11.2 Reference stress, with values σ and σ for Method B . 19
F lim FE
12 Life factor, Y . 19
NT
12.1 Life factor, Y : Method A. 19
NT
12.2 Life factor, Y : Method B. 19
NT
13 Sensitivity factor, Y , and relative notch sensitivity factor, Y . 21
δT δ rel T
13.1 Basic uses . 21
13.2 Determination of the sensitivity factors . 21
13.3 Relative notch sensitivity factor, Y : Method B. 22
δ rel T
14 Surface factors, Y , Y , and relative surface factor, Y . 27
R RT R rel T
14.1 Influence of surface condition. 27
14.2 Determination of surface factors and relative surface factors. 28
14.3 Relative surface factor, Y : Method B . 28
R rel T
15 Size factor, Y . 30
X
15.1 Size factor, Y : Method A . 30
X
15.2 Size factor, Y : Method B . 30
X
Annex A (normative) Permissible bending stress, σ , obtained from notched, flat or plain
FP
polished test pieces. 33
Annex B (informative) Guide values for mean stress influence factor, Y . 40
M
Bibliography . 42
iv © ISO 2006 – All rights reserved
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 6336-3 was prepared by Technical Committee ISO/TC 60, Gears, Subcommittee SC 2, Gear capacity
calculation.
This second edition cancels and replaces the first edition (ISO 6336-3:1996), Clauses 5 and Clause 9 of which
have been technically revised, with a new Clause 8 having been added to this new edition. It also incorporates
the Technical Corrigendum ISO 6336-3:1996/Cor.1:1999.
ISO 6336 consists of the following parts, under the general title Calculation of load capacity of spur and helical
gears:
⎯ Part 1: Basic principles, introduction and general influence factors
⎯ Part 2: Calculation of surface durability (pitting)
⎯ Part 3: Calculation of tooth bending strength
⎯ Part 5: Strength and quality of materials
⎯ Part 6: Calculation of service life under variable load
This corrected version incorporates the following corrections:
⎯ Figure 3 has been updated;
⎯ in Equation (17), the missing lines denoting the absolute value, Z , have been inserted;
n
⎯ minus signs missing from Equations (18) and (19) have been inserted;
⎯ Equation (50) has been corrected.
Introduction
The maximum tensile stress at the tooth root (in the direction of the tooth height), which may not exceed the
permissible bending stress for the material, is the basis for rating the bending strength of gear teeth. The
stress occurs in the “tension fillets” of the working tooth flanks. If load-induced cracks are formed, the first of
these often appears in the fillets where the compressive stress is generated, i.e. in the “compression fillets”,
which are those of the non-working flanks. When the tooth loading is unidirectional and the teeth are of
conventional shape, these cracks seldom propagate to failure. Crack propagation ending in failure is most
likely to stem from cracks initiated in tension fillets.
The endurable tooth loading of teeth subjected to a reversal of loading during each revolution, such as “idler
gears”, is less than the endurable unidirectional loading. The full range of stress in such circumstances is
more than twice the tensile stress occurring in the root fillets of the loaded flanks. This is taken into
consideration when determing permissible stresses (see ISO 6336-5).
When gear rims are thin and tooth spaces adjacent to the root surface narrow (conditions which can
particularly apply to some internal gears), initial cracks commonly occur in the compression fillet. Since, in
such circumstances, gear rims themselves can suffer fatigue breakage, special studies are necessary. See
Clause 1.
Several methods for calculating the critical tooth root stress and evaluating some of the relevant factors have
been approved. See ISO 6336-1.
vi © ISO 2006 – All rights reserved
INTERNATIONAL STANDARD ISO 6336-3:2006(E)
Calculation of load capacity of spur and helical gears —
Part 3:
Calculation of tooth bending strength
IMPORTANT — The user of this part of ISO 6336 is cautioned that when the method specified is used
for large helix angles and large pressure angles, the calculated results should be confirmed by
experience as by Method A.
1 Scope
This part of ISO 6336 specifies the fundamental formulae for use in tooth bending stress calculations for
involute external or internal spur and helical gears with a rim thickness s > 0,5 h for external gears and
R t
s > 1,75 m for internal gears. In service, internal gears can experience failure modes other than tooth
R n
bending fatigue, i.e. fractures starting at the root diameter and progressing radially outward. This part of
ISO 6336 does not provide adequate safety against failure modes other than tooth bending fatigue. All load
influences on tooth stress are included in so far as they are the result of loads transmitted by the gears and in
so far as they can be evaluated quantitatively.
The given formulae are valid for spur and helical gears with tooth profiles in accordance with the basic rack
standardized in ISO 53. They may also be used for teeth conjugate to other basic racks if the virtual contact
ratio ε is less than 2,5.
αn
The load capacity determined on the basis of permissible bending stress is termed “tooth bending strength”.
The results are in good agreement with other methods for the range, as indicated in the scope of ISO 6336-1.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 53:1998, Cylindrical gears for general and heavy engineering — Standard basic rack tooth profile
ISO 1122-1:1998, Vocabulary of gear terms — Part 1: Definitions related to geometry
ISO 6336-1:2006, Calculation of load capacity of spur and helical gears — Part 1: Basic principles,
introduction and general influence factors
ISO 6336-5:2003, Calculation of load capacity of spur and helical gears — Part 5: Strength and quality of
material
3 Terms, definitions, symbols and abbreviated terms
For the purposes of this document, the terms, definitions, symbols and abbreviated terms given in ISO 1122-1
and ISO 6336-1 apply.
4 Tooth breakage and safety factors
Tooth breakage usually ends the service live of a transmission. Sometimes, the destruction of all gears in a
transmission can be a consequence of the breakage of one tooth. In some instances, the transmission path
beween input and output shafts is broken. As a consequence, the chosen value of the safety factor S against
F
tooth breakage should be larger than the safety factor against pitting.
General comments on the choice of the minimum safety factor can be found in ISO 6336-1:2006, 4.1.7. It is
recommended that manufacturer and customer agree on the value of the minimum safety factor.
This part of ISO 6336 does not apply at stress levels above those permissible for 10 cycles, since stresses in
this range may exceed the elastic limit of the gear tooth.
5 Basic formulae
The actual tooth root stress σ and the permissible (tooth root) bending stress σ shall be calculated
F FP
separately for pinion and wheel; σ shall be less than σ .
F FP
5.1 Safety factor for bending strength (safety against tooth breakage), S
F
Calculate S separately for pinion and wheel:
F
σ
FG1
SS= W (1)
F1 Fmin
σ
F1
σ
FG2
SS= W (2)
F2 Fmin
σ
F2
σ and σ are derived from Equations (3) and (4). The values of σ for reference stress and static stress
F1 F2 FG
are calculated in accordance with 5.3.2.1 and 5.3.2.2, using Equation (5). For limited life, σ is determined in
FG
accordance with 5.3.3.
The values of tooth root stress limit σ , of permissible stress σ and of tooth root stress σ may each be
FG FP F
determined by different methods. The method used for each value shall be stated in the calculation report.
NOTE Safety factors in accordance with the present clause are relevant to transmissible torque.
See ISO 6336-1:2006, 4.1.7 for comments on numerical values for the minimum safety factor and risk of
damage.
5.2 Tooth root stress, σ
F
Tooth root stress σ is the maximum tensile stress at the surface in the root.
F
5.2.1 Method A
In principle, the maximum tensile stress can be determined by any appropriate method (finite element analysis,
integral equations, conformal mapping procedures or experimentally by strain measurement, etc.). In order to
determine the maximum tooth root stress, the effects of load distribution over two or more engaging teeth and
changes of stress with changes of meshing phase shall be taken into consideration.
Method A is only used in special cases and, because of the great effort involved, is only justifiable in such
cases.
2 © ISO 2006 – All rights reserved
5.2.2 Method B
According to this part of ISO 6336, the local tooth root stress is determined as the product of nominal tooth
1)
root stress and a stress correction factor .
This method involves the assumption that the determinant tooth root stress occurs with application of load at
the outer point of single pair tooth contact of spur gears or of the virtual spur gears of helical gears. However,
in the latter case, the “transverse load” shall be replaced by the “normal load”, applied over the facewidth of
the actual gear of interest.
For gears having virtual contact ratios in the range 2 u ε < 2,5, it is assumed that the determinant stress
αn
occurs with application of load at the inner point of triple pair tooth contact. In ISO 6336, this assumption is
taken into consideration by the deep tooth factor, Y In the case of helical gears, the factor, Y , accounts for
DT. β
deviations from these assumptions.
Method B is suitable for general calculations and is also appropriate for computer programming and for the
analysis of pulsator tests (with a given point of application of loading).
The total tangential load in the case of gear trains with multiple transmission paths (planetary gear trains,
split-path gear trains) is not quite evenly distributed over the individual meshes (depending on design,
tangential speed and manufacturing accuracy). This is to be taken into consideration by inserting a mesh load
factor, K , to follow K in Equation (3), in order to adjust as necessary the average load per mesh.
γ A
σσ = KK K K (3)
FF0 A v F β Fα
where
σ is the nominal tooth root stress, which is the maximum local principal stress produced at the tooth
F0
root when an error-free gear pair is loaded by the static nominal torque and without any
pre-stress such as shrink fitting, i.e. stress ratio R = 0 [see Equation (4)];
σ is the permissible bending stress (see 5.3);
FP
K is the application factor (see ISO 6336-6), which takes into account load increments due to
A
externally influenced variations of input or output torque;
K is the dynamic factor (see ISO 6336-1), which takes into account load increments due to internal
v
dynamic effects;
K is the face load factor for tooth root stress (see ISO 6336-1), which takes into account uneven
Fβ
distribution of load over the facewidth due to mesh-misalignment caused by inaccuracies in
manufacture, elastic deformations, etc.;
K is the transverse load factor for tooth root stress (see ISO 6336-1), which takes into account
Fα
uneven load distribution in the transverse direction, resulting, for example, from pitch deviations.
NOTE See ISO 6336-1:2006, 4.1.14, for the sequence in which factors K , K , K and K are calculated.
A v Fβ Fα
F
t
σ = (4)
YY Y Y Y
F0 FS β B DT
b
m
n
1) Stresses such as those caused by the shrink-fitting of gear rims, which are superimposed on stresses due to tooth
loading, should be taken into consideration in the calculation of permissible tooth root stress σ .
FP
where
2)
F is the nominal tangential load, the transverse load tangential to the reference cylinder (see
t
ISO 6336-1);
3)
b is the facewidth (for double helical gears b = 2 b ) ;
B
m is the normal module;
n
Y is the form factor (see Clause 6), which takes into account the influence on nominal tooth root stress
F
of the tooth form with load applied at the outer point of single pair tooth contact;
Y is the stress correction factor (see Clause 7), which takes into account the influence on nominal tooth
S
root stress, determined for application of load at the outer point of single pair tooth contact, to the
local tooth root stress, and thus, by means of which, are taken into account;
i) the stress amplifying effect of change of section at the tooth root, and
ii) the fact that evaluation of the true stress system at the tooth root critical section is more complex
than the simple system evaluation presented;
Y is the helix angle factor (see Clause 8), which compensates for the fact that the bending moment
β
intensity at the tooth root of helical gears is, as a consequence of the oblique lines of contact, less
than the corresponding values for the virtual spur gears used as bases for calculation;
Y is the rim thickness factor (see Clause 9), which adjusts the calculated tooth root stress for thin
B
rimmed gears;
Y is the deep tooth factor (see Clause 10), which adjusts the calculated tooth root stress for high
DT
precision gears with a contact ratio in the range of 2 u ε < 2,5.
αn
5.3 Permissible bending stress, σ
FP
The limit value of tooth root stresses (see Clause 11) should preferably be derived from material tests using
gears as test pieces, since in this way the effects of test piece geometry, such as the effect of the fillet at the
tooth roots, are included in the results. The calculation methods provided constitute empirical means for
comparing stresses in gears of different dimensions with experimental results. The closer test gears and test
conditions resemble the service gears and service conditions, the lesser will be the influence of inaccuracies
in the formulation of the calculation expressions.
5.3.1 Methods for determination of permissible bending stress, σ — Principles, assumptions and
FP
application
Several procedures for the determination of permissible bending stress σ are acceptable. The method
FP
adopted shall be validated by carrying out careful comparative studies of well-documented service histories of
a number of gears.
2) In all cases, even when ε > 2, it is necessary to substitute the relevant total tangential load as F . Reasons for the
αn t
choice of load application at the reference cylinder are given in 6.3. See ISO 6336-1, 4.2, for definition of F and comments
t
on particular characteristics of double helical gears.
3) The value b, of mating gears, is the facewidth at the root circle, ignoring any intentional transverse chamfers or
tooth-end rounding. If the facewidths of the pinion and wheel are not equal, it can be assumed that the load bearing width
of the wider facewidth is equal to the smaller facewidth plus such extension of the wider that does not exceed 1 × the
module at each end of the teeth.
4 © ISO 2006 – All rights reserved
5.3.1.1 Method A
By this method, the values for σ or for the tooth root stress limit, σ , are obtained using Equations (3) and
FP FG
(4) from the S-N curve or damage curve derived from results of testing facsimiles of the actual gear pair,
under the appropriate service conditions.
The cost required for this method is, in general, only justifiable for the development of new products, failure of
which would have serious consequences (e.g. for manned space flights).
Similarly, in line with this method, the allowable stress values may be derived from consideration of
dimensions, service conditions and performance of carefully monitored reference gears.
5.3.1.2 Method B
Damage curves characterized by the nominal stress number (bending), σ , and the factor Y have been
F lim NT
determined for a number of common gear materials and heat treatments from results of gear load or pulsator
testing of standard reference test gears. Material values so determined are converted to suit the dimensions of
the gears of interest, using the relative influence factors for notch sensitivity, Y , for surface roughness,
δ rel T
Y , and for size, Y .
R rel T X
Method B is recommended for the calculation of reasonably accurate gear ratings whenever bending strength
values are available from gear tests, from special tests or, if the material is similar, from ISO 6336-5.
5.3.2 Permissible bending stress, σ : Method B
FP
Subject to the reservations given in 5.3.2.1 and 5.3.2.2, Equation (5) is to be used for this calculation:
σ YY
Flim ST NT σ
σ Y
FE NT FG
σ = = = (5)
YY Y Y Y Y
δδ rel T R rel T X rel T R rel T X
FP
SS S
Fm in Fmin Fm in
where
σ is the nominal stress number (bending) from reference test gears (see ISO 6336-5), which is the
F lim
bending stress limit value relevant to the influences of the material, the heat treatment and the
surface roughness of the test gear root fillets;
σ is the allowable stress number for bending, corresponding to the basic bending strength of the
FE
un-notched test piece, under the assumption that the material condition (including heat
treatment) is fully elastic
σ = (σ Y );
FE F lim ST
Y is the stress correction factor, relevant to the dimensions of the reference test gears (see 7.4);
ST
Y is the life factor for tooth root stress, relevant to the dimensions of the reference test gear (see
NT
Clause 12), which takes into account the higher load capacity for a limited number of load cycles;
σ is the tooth root stress limit;
FG
σ = (σ S );
FG FP F min
S is the minimum required safety factor for tooth root stress (see Clause 4 and 5.1);
F min
Y is the relative notch sensitivity factor, which is the quotient of the notch sensitivity factor of the
δ rel T
gear of interest divided by the standard test gear factor (see Clause 13) and which enables the
influence of the notch sensitivity of the material to be taken into account;
Y is the relative surface factor, which is the quotient of the surface roughness factor of tooth root
R rel T
fillets of the gear of interest divided by the tooth root fillet factor of the reference test gear (see
Clause 14) and which enables the relevant surface roughness of tooth root fillet influences to be
taken into account;
Y is the size factor relevant to tooth root strength (see Clause 15), which is used to take into
X
account the influence of tooth dimensions on tooth bending strength.
5.3.2.1 Permissible bending stress (reference)
The permissible bending stress (reference), σ , is derived from Equation (5), with Y = 1 and influence
FP ref NT
factors σ , Y , Y , Y , Y and S calculated in accordance with the specified Method B.
F lim ST δ rel T R rel T X F min
5.3.2.2 Permissible bending stress (static)
The permissible bending stress (static), σ , is determined in accordance with Equation (5), with factors
FP stat
σ , Y , Y , Y , Y , Y and S calculated in accordance with the specified Method B (for static
F lim NT ST δ rel T R rel T X F min
stress).
5.3.3 Permissible bending stress, σ , for limited and long life: Method B
FP
σ for a given number of load cycles, N , is determined by means of graphical or calculated linear
FP L
interpolation along the S-N curve on a log-log scale, between the value obtained for reference stress in
accordance with 5.3.2.1 and the value obtained for static stress in accordance with 5.3.2.2. Also see
Clause 12.
5.3.3.1 Graphical values
Calculate σ for the reference stress and σ for the static stress in accordance with 5.3.2 and plot the
FP ref FP stat
S-N curve corresponding to life factor Y . See Figure 1 for the principle. σ for the relevant number of load
NT FP
cycles N can be read from this graph.
L
6 © ISO 2006 – All rights reserved
Key
X number of load cycles, N (log)
L
Y permissible bending stress, σ (log)
FP
1 static
2 limited life
3 long life
a
Example: permissible bending stress, σ , for a given number of load cycles.
FP
Figure 1 — Graphical determination of permissible bending stress for limited life,
in accordance with Method B
5.3.3.2 Determination by calculation
Calculate σ for the reference stress and σ for the static stress in accordance with 5.3.2 and, using
FP ref FP stat
these results, determine σ for the relevant number of load cycles N in the limited life range, as follows (see
FP L
ISO 6336-1:2006, Table 2, for an explanation of the abbreviations used).
exp
⎛⎞
31 × 0
σσ==Y σ ⎜ ⎟ (6)
FP FP ref N FP ref
⎜⎟
N
L
⎝⎠
4 6
a) For St, V, GGG (perl., bai.) or GTS (perl.), limited life range as shown in Figure 9, 10 < N u 3 × 10 :
L
σ
FPstat
(7)
exp = 0,403 7 log
σ
FP ref
b) For IF, Eh, NT (nitr.), NV (nitr.), NV (nitrocar.), GGG (ferr.) or GG, limited life range as shown in Figure 9,
3 6
10 < N u 3 × 10 :
L
σ
FP stat
exp = 0,287 6 log (8)
σ
FP ref
Corresponding calculations may be determined for the range of long life.
6 Form factor, Y
F
6.1 General
Y is the factor by which the influence of tooth form on nominal tooth root stress is taken into account. See
F
5.2.1 for principles, assumptions and details of use. Y is relevant to application of load at the outer point of
F
single pair tooth contact (Method B).
The chord between the points at which the 30° tangents contact the root fillets for external gears, or at which
the 60° tangents contact the root fillets for internal gears, defines the section to be used as the basis for
calculation (see Figures 3 to 4).
Determination of the values Y and Y is based on the nominal tooth form with the profile shift coefficient x. In
F S
general, the effect of reduction of tooth thickness on the tooth bending strength of finished-cut cylindrical
gears may be ignored. Since the tooth roots of ground or shaved gear teeth are usually generated by cutting
tools such as hobs, their shapes and dimensions are usually determined by the cutting depth settings.
Because of material allowances for finishing processes such as profile grinding, it is usually the case that the
depth setting of the roughing tool, relative to the gear axis, includes the amount of nominal profile shift, xm ,
n
plus a tolerance designed to ensure that the finishing allowance will be greater instead of less than the
requisite minimum. Because of this, calculated values of tooth root stresses usually err on the side of safety.
If the tooth thickness deviation near the root results in a thickness reduction of more than 0,05 m , this shall be
n
taken into account in the stress calculation, by taking the generated profile, x , relative to rack shift amount m
E n
instead of the nominal profile.
The equations in this part of ISO 6336 apply to all basic rack profiles (see Figure 2) with and without undercut,
but with the following restrictions:
a) the contact point of the 30° (60°) tangent shall lie on the tooth root fillet generated by the root fillet of the
basic rack;
b) the basic rack profile of the gear shall have a root fillet with ρ > 0;
fP
c) the teeth shall be generated using tools such as hobs or rack type cutters;
d) since calculated ratings refer to finished tooth forms, profile grinding and similar allowances, including
tooth thickness allowances, can be neglected, and in practice it can be assumed that the dimensions of
the basic rack of the tool are the same as those of the counterpart basic rack of the gear;
e) for internal gears, a virtual basic rack profile is used which differs from the basic rack profile in the root
radius ρ [see Equation (11)].
fP
8 © ISO 2006 – All rights reserved
a) with undercut b) without undercut
Figure 2 — Dimensions and basic rack profile of the teeth (finished profile)
The above comments apply to straight spur and helical gears. The value Y is determined for the virtual spur
F
gears of helical gears; the virtual number of teeth z can be determined using Equation (21) or (22). Y is
n F
determined separately for the pinion and the wheel.
NOTE For a description of symbols and abbreviations, see ISO 6336-1:2006, Table 1.
6.2 Calculation of the form factor, Y : Method B
F
The determination of the normal chordal dimension s of the tooth root critical section and the bending
Fn
moment arm h relevant to load application at the outer point of single pair gear tooth contact for Method B is
Fe
shown in Figures 3 and 4.
a
Base circle.
Figure 3 — Determination of normal chordal dimensions of tooth root critical section for Method B
(external gears)
a
Base circle.
Figure 4 — Determination of normal chordal dimensions of tooth root critical section for Method B
(internal gears)
The following equation uses the symbols illustrated in Figures 3 and 4:
6 h
Fe
cosα
Fen
m
n
Y = (9)
F
⎛⎞s
Fn
cosα
⎜⎟
n
m
⎝⎠n
In order to evaluate precise values, s and α , of h it is first necessary to derive a value of θ which is
Fn Fen Fe
reasonably accurate, usually after five iterations of Equation (14). Determination of Y by graphical means is
F
not recommended.
4)
6.2.1 Tooth root normal chord, s , radius of root fillet, ρ , bending moment arm, h
Fn F Fe
First, determine the auxiliary values for Equation (9):
s
π ρ
pr
fP
(10)
Em=−h tanαα+ − 1− sin
()
nfP n n
4cosα cosα
nn
4) If the tip of the tooth has been rounded or chamfered, it is necessary to replace the tip diameter d in the calculation
a
by d the “effective tip diameter”. d is the diameter of a circle near the tip cylinder, containing limits of the usable gear
Na Na
flanks.
10 © ISO 2006 – All rights reserved
with
s = pr − q (see Figure 2);
pr
s = 0 when gears are not undercut;
pr
ρ = ρ for external gears, or
fPv fP
1,95
x +− / ρ /
()hm m
0 fP n n
fP
ρρ ≈+ m for internal gears (11)
n
fPv fP
z
3,156 ⋅1,036
where
x is the pinion-cutter shift coefficient;
z is the number of teeth of the pinion cutter;
ρ h
fPv fP
Gx=− + (12)
mm
nn
⎛⎞
2 π E
H=− − Τ (13)
⎜⎟
zm2
nn⎝⎠
with
Τ = π/3 for external gears;
Τ = π/6 for internal gears;
2G
θθ=−tan H (14)
z
n
The value θ = π/6 for external gears and θ = π/3 for internal gears may be used as a seed value in the iteration
of the transcendental Equation (14). Generally, the function converges after five iterations.
a) Tooth root normal chord s
Fn
⎯ For external gears:
⎛⎞
s π G ρ
⎛⎞
Fn fPv
=−z sin θ+ 3 − (15)
⎜⎟
n
⎜⎟
mm3cosθ
⎝⎠
nn⎝⎠
⎯ For internal gears:
⎛⎞
s π G ρ
⎛⎞
Fn fPv
=−z sin θ+ − (16)
⎜⎟
n
⎜⎟
mm6cosθ
⎝⎠
nn
⎝⎠
b) Radius of root fillet ρ (see Figures 3 and 4)
F
ρρ 2G
FfPv
=+ (17)
mm
nn cosθθz cos − 2G
()
n
c) Bending moment arm h
Fe
⎯ For external gears:
⎡⎤
1 π ⎛⎞G ρ
hd ⎛⎞
Fe en fPv
=−(cos siγγn tanαθ)− zcos−− − (18)
⎢⎥
Fen n ⎜⎟
ee ⎜⎟
23cos θ
mm ⎝⎠m
nn⎢⎥⎝⎠n
⎣⎦
⎯ For internal gears:
⎡⎤
⎛⎞ρ
1 ⎛⎞π G
hd
Fe en fPv
z=− (cos sin tanαθ)− cos−− 3 − (19)
⎢⎥γγ
⎜⎟
Fen n ⎜⎟
ee
26cos θ
mm m
⎢⎥⎝⎠
nn ⎝⎠n
⎣⎦
6.2.2 Parameters of virtual gears
These are as follows.
β=−arccos 1 sinβαcos = arcsin sinβαcos (20)
() ()
bn n
z
z = (21)
n
cosββcos
b
Approximation:
z
z ≈ (22)
n
cos β
ε
α
ε = (23)
α n
cos β
b
d
dm==z (24)
nnn
cos β
b
p = π m cos α (25)
bn n n
d = d cos α (26)
bn n n
d = d + d − d (27)
an n a
⎡⎤
22 2
z ⎛⎞dd⎛⎞ π d cosβαcos ⎛⎞d
an bn n bn
⎢⎥
d=−21− ε−+ (28)
()
en ⎜⎟ ⎜⎟ αn ⎜⎟
⎢⎥
zz22 2
⎝⎠ ⎝⎠ ⎝⎠
⎢⎥
⎣⎦
The number of teeth, z, is positive for external gears and negative for internal gears.
⎛⎞
d
bn
α = arccos (29)
⎜⎟
en
d
⎝⎠en
0,5π+ 2 tan α x
n
γ=+ invαα− inv (30)
enen
z
n
12 © ISO 2006 – All rights reserved
0,5π+ 2 tan α x
n
αα=−γ= tanα − invα− (31)
Fen en e en n
z
n
6.3 Derivations of determinant normal tooth load for spur gears
bending moment
Nominal bending stress = in accordance with the following equation, with
section modulus of gear at s
Fn
symbols in accordance with Figures 3 and 4.
F cosα
bFen
σ = h (32)
Fe
bs
()Fn
d d d
b
w
FF==F (33)
bt w
22 2
where
d is the base diameter;
b
d is the reference diameter;
d is the pitch diameter;
w
F is the nominal tangential load at the reference cylinder;
t
F is the nominal tangential load at the pitch cylinder.
w
F F
t
w
F== (34)
b
cos α cos α
w
⎡⎤
h
⎢⎥Fe
cos α
Fen
FF
⎢⎥
m tt
(35)
σ== Y
F
⎢⎥
bm bm
1⎛⎞s
⎢⎥Fn
cos α
⎜⎟
⎢⎥
6 m
⎝⎠
⎣⎦
where
α is the pressure angle of the basic rack profile;
α is the working pressure angle.
w
When σ is expressed as a function of F , a form factor, Y , can be derived from Equation (35).
t F
7 Stress correction factor, Y
S
7.1 Basic uses
The stress correction factor, Y , is used to convert the nominal tooth root stress to local tooth root stress and,
S
by means of this factor, the following are taken into account:
5)
a) the stress amplifying effect of section change at the fillet radius at the tooth root ;
b) that evaluation of the true stress system at the tooth root critical section is more complex than the simple
system evaluation presented, with evidence indicating that the intensity of the local stress at the tooth root
consists of two components, one of which is directly influenced by the value of the bending moment and
the other increasing with closer proximity to the critical section of the determinant position of load
application.
Y is the factor for load application at the outer point of single pair tooth contact (Method B). See 5.2 for the
S
principles, assumptions and application of Method B.
The formulae in this clause are based on data derived from the geometry of external spur gears with 20°
pressure angle, by means of measurement and calculations using finite element and integral equation
methods. The formulae can also be used to obtain approximate values for internal gears and for gears having
other pressure angles.
The present instructions refer to spur and helical gears. See Clause 6 for explanatory notes and information
on the calculation of the virtual numbers of teeth relevant to helical gears.
7.2 Stress correction factor, Y : Method B
S
The calculation of the stress correction factor, Y , is made in accordance with Equation (36), which is valid in
S
the range: 1 u q < 8; symbols are as illustrated in Figures 3 and 4.
s
⎡⎤
⎢⎥
⎢⎥
2,3
⎢⎥
1,21+
⎢⎥
⎣⎦L
Y L=+(1,2 0,13 ) q (36)
S
s
where
s
Fn
L = (37)
h
Fe
with
s from Equation (15) for external gears, Equation (16) for internal gears;
Fn
h from Equation (18) for external gears, Equation (19) for internal gears;
Fe
s
Fn
q = (38)
s
2ρ
F
with ρ from Equation (17).
F
Determination of Y by graphical methods is not appropriate.
S
5) See 7.3 for the procedure to be followed when grinding notches are present in tooth fillets.
14 © ISO 2006 – All rights reserved
7.3 Stress correction factor for gears with notches in fillets
A notch such as a grinding notch in the fillet of a gear near the critical section usually engenders a degree of
stress concentration exceeding that of the fillet; thus, the stress correction factor is correspondingly greater. A
fair estimate of Y , obtainable from Equation (39), can be substituted for Y , see Figure 5, if the notch is near
Sg S
the critical section. See also Reference [6].
1,3
Y
S
Y =
(39)
Sg
t
g
1,3 − 0,6
ρ
g
t
g
valid for
< 2,0
ρ
g
The effect of the grinding notch is less than that implied in Equation (39) when the notch is above the contact
point of the 30° tangent (external gears) or 60° tangent (internal gears).
Y also takes into consideration the reduction in the tooth root thickness.
sg
Deep notches in the fillets of surface hardened steel gears severely reduce the bending strength of their teeth.
7.4 Stress correction factor, Y , relevant to the dimensions of the standard reference test
ST
gears
The tooth root stress limit values for materials, according to ISO 6336-5, were derived from results of tests of
standard reference test gears for which either Y = 2,0 or for which test results were recalculated to this
ST
value. See also Reference [6].
Figure 5 — Notch dimensions
8 Helix angle factor, Y
β
The tooth root stress of a virtual spur gear, calculated as a prelimary value, is converted by means of the helix
factor Y to that of the corresponding helical gear. By this means, the oblique orientation of the lines of mesh
β
contact is taken into account (less tooth root stress).
8.1 Graphical value
Y may be read from Figure 6 as a function of the helix angle, β, and the overlap ratio, ε .
β β
Key
X reference helix angle, β, degrees
Y1 helix factor, Y
β
Y2 overlap ratio, ε
β
Helix factors Y
...
NORME ISO
INTERNATIONALE 6336-3
Deuxième édition
2006-09-01
Version corrigée
2007-04-01
Calcul de la capacité de charge des
engrenages cylindriques à dentures
droite et hélicoïdale —
Partie 3:
Calcul de la résistance à la flexion en
pied de dent
Calculation of load capacity of spur and helical gears —
Part 3: Calculation of tooth bending strength
Numéro de référence
©
ISO 2006
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier
peut être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence
autorisant l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées
acceptent de fait la responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute
responsabilité en la matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info
du fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir
l'exploitation de ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation,
veuillez en informer le Secrétariat central à l'adresse donnée ci-dessous.
© ISO 2006
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax. + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse
ii © ISO 2006 – Tous droits réservés
Sommaire Page
Avant-propos. v
Introduction . vi
1 Domaine d'application. 1
2 Références normatives . 1
3 Termes, définitions, symboles et termes abrégés . 2
4 Rupture de dent et coefficients de sécurité. 2
5 Équation de base . 2
5.1 Coefficient de sécurité pour la contrainte de flexion (sécurité contre la rupture
de dent), S . 2
F
5.2 Contrainte en pied de dent, σ . 2
F
5.3 Contrainte de flexion admissible en pied de dent, σ . 4
FP
6 Facteurs de forme, Y . 8
F
6.1 Généralités . 8
6.2 Calcul du facteur de forme Y : Méthode B. 9
F
6.3 Détermination de la charge normale à la dent pour une denture droite . 13
7 Facteurs de concentration de contraintes, Y . 14
S
7.1 Usage de base. 14
7.2 Facteur de concentration de contraintes, Y : Méthode B . 14
S
7.3 Facteur de concentration de contrainte pour denture avec entaille aux flancs de
raccordement . 15
7.4 Facteur de concentration de contraintes, Y , approprié aux dimensions de l'engrenage
ST
d'essai de référence normalisé . 15
8 Facteur d'inclinaison, Y . 15
β
8.1 Valeurs graphiques. 16
8.2 Détermination par calcul. 16
9 Facteur d'épaisseur de jante, Y . 16
B
9.1 Valeurs graphiques. 16
9.2 Détermination par calcul. 17
10 Facteur de profondeur de dent, Y . 18
DT
10.1 Valeurs graphiques. 18
10.2 Détermination par calcul. 18
11 Contrainte de référence pour la flexion. 19
11.1 Contrainte de référence pour la Méthode A. 19
11.2 Contrainte de référence avec les valeurs de σ et σ pour la Méthode B . 19
F lim FE
12 Facteur de durée de vie, Y . 19
NT
12.1 Facteur de durée de vie Y : Méthode A . 19
NT
12.2 Facteur de durée de vie Y : Méthode B . 20
NT
13 Facteur de sensibilité à l'entaille, Y , et facteurs de sensibilité relative à l'entaille, Y . 21
δT δ rel T
13.1 Bases de l'utilisation . 21
13.2 Détermination du facteur de sensibilité à l'entaille. 21
13.3 Facteur de sensibilité relative à l'entaille, Y : Méthode B . 22
δ rel T
14 Facteurs d'état de surface, Y , Y , et facteurs d'état de surface relatif, Y . 27
R RT R rel T
14.1 Influence de l'état de surface. 27
14.2 Détermination des facteurs d'état de surface et des facteurs relatifs d'état de surface. 28
14.3 Facteur d'état de surface relatif, Y : Méthode B . 28
R rel T
15 Facteur de dimension, Y . 30
X
15.1 Facteur de dimension, Y : Méthode A . 30
X
15.2 Facteur de dimension, Y : Méthode B . 30
X
Annexe A (normative) Contrainte de flexion admissible, σ , obtenue à partir d'éprouvettes polies
FP
entaillées, planes ou lisses. 33
Annexe B (informative) Valeurs indicatives pour le facteur d'influence de contrainte moyenne, Y . 41
M
Bibliographie . 43
iv © ISO 2006 – Tous droits réservés
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 6336-3 a été élaborée par le comité technique ISO/TC 60, Engrenages, sous-comité SC 2, Calcul de la
capacité des engrenages.
Cette deuxième édition annule et remplace la première édition (ISO 6336-3:1996), dont les Articles 5 et
l'Article 9 ont fait l'objet d'une révision technique, avec un nouvel Article 8 qui a été ajouté. Elle incorpore
également le Rectificatif technique ISO 6336-3:1996/Cor.1:1999.
L'ISO 6336 comprend les parties suivantes, présentées sous le titre général Calcul de la capacité de charge
des engrenages cylindriques à dentures droite et hélicoïdale:
⎯ Partie 1: Principes de base, introduction et facteur généraux d'influence
⎯ Partie 2: Calcul de la résistance à la pression de contact (piqûre)
⎯ Partie 3: Calcul de la résistance à la flexion en pied de dent
⎯ Partie 5: Résistance et qualité des matériaux
⎯ Partie 6: Calcul de la durée de vie en service sous charge variable
Dans cette version corrigée
⎯ la Figure 3 a été mise à jour;
⎯ dans l’Équation (17), la valeur absolue de z a été notée;
n
⎯ des signes «moins» qui manquaient dans les Équations (18) et (19) ont été insérés;
⎯ l’Équation (50) a été corrigée.
Introduction
La contrainte maximale de traction en pied de dent (dans la direction de la hauteur de dent), qui ne peut
excéder la contrainte de flexion admissible pour le matériau, est la base du calcul de la capacité de charge à
la flexion des dents. Cette contrainte apparaît dans les profils de raccordement en pied de dent en traction, du
côté des flancs actifs. Si la charge est telle qu'elle provoque la formation de fissures, celles-ci apparaissent en
priorité dans les profils de raccordement où la contrainte de compression est générée, c'est-à-dire dans les
«profils de raccordement de compression», qui sont du côté des flancs non actifs. Lorsque le chargement des
dentures est unidirectionnel de type répété et que les dents sont de forme standard, ces fissures ne se
propagent que rarement jusqu'à la rupture. Les ruptures dues à la propagation des fissures sont
généralement le fait d'amorces initiées dans les profils de raccordement en pied de dent sollicités en traction.
La tenue en fatigue des dents soumises à chaque tour à un chargement de type alterné, tel que les pignons
intermédiaires, est plus faible que pour une sollicitation de type unidirectionnel répétée. Dans ce cas
l'amplitude totale de la contrainte est supérieure à deux fois la contrainte de traction apparaissant dans le
profil de raccordement en pied de dent des flancs chargés. Cela est pris en compte dans le calcul des
contraintes admissibles (voir l'ISO 6336-5).
Quand les jantes des roues dentées sont peu épaisses et que les entre-dents adjacents à la surface de pied
sont étroits (conditions qui peuvent se rencontrer en particulier avec des dentures intérieures), les fissures
apparaissent habituellement dans le profil de raccordement des flancs sollicités en compression. Puisque,
dans de tels cas, la jante peut à elle seule subir une rupture de fatigue, des études particulières sont
nécessaires. Voir l'Article 1.
Plusieurs méthodes de calcul de la contrainte critique en pied de dent et d'évaluation des facteurs associés
ont été adoptées. Voir l'ISO 6336-1.
vi © ISO 2006 – Tous droits réservés
NORME INTERNATIONALE ISO 6336-3:2006(F)
Calcul de la capacité de charge des engrenages cylindriques à
dentures droite et hélicoïdale —
Partie 3:
Calcul de la résistance à la flexion en pied de dent
IMPORTANT — L'utilisateur de la présente partie de l'ISO 6336 est mis en garde que, lorsqu'il utilise la
méthode spécifiée pour de grands angles d'hélice et de grands angles de pression, il convient que les
résultats calculés soient confirmés par l'expérience ainsi que par la Méthode A.
1 Domaine d'application
La présente partie de l'ISO 6336 donne les équations fondamentales à utiliser pour le calcul de la capacité de
charge à la flexion des dents d'engrenages cylindriques à denture droite et hélicoïdale, extérieure ou
intérieure et à profil en développante de cercle, et présentant, sous le pied de dent, une épaisseur de jante
telle que s > 0,5 h pour les dentures extérieures et s > 1,75 m pour les dentures intérieures. En service, les
r t r n
dentures intérieures peuvent subir des modes de défaillance autres que la fatigue en flexion en pied de dent,
c'est-à-dire des fissures commençant au diamètre de pied pour évoluer radialement vers l'extérieur. La
présente partie de l'ISO 6336 n'assure pas une sécurité appropriée contre des modes de défaillance autres
que la fatigue en flexion en pied de dent. Elle tient compte de tous les paramètres agissant sur la résistance à
la rupture des dents, pour autant que ceux-ci résultent des charges appliquées sur la denture et qu'ils
puissent être évalués quantitativement.
Les équations données sont valables pour des roues cylindriques à dentures droite et hélicoïdale, avec des
profils de denture conformes au tracé de référence de l'ISO 53. Elles peuvent aussi être appliquées à des
dentures conjuguées à un autre tracé de référence, si le rapport de conduite virtuel ne dépasse pas ε = 2,5.
αn
La capacité de charge déterminée à partir de la contrainte admissible en pied de dent est appelée «résistance
à la flexion en pied de dent». Les résultats sont en concordance avec ceux obtenus par d'autres méthodes
pour la plage indiquée dans le domaine d'application de l'ISO 6336-1.
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les
références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du
document de référence s'applique (y compris les éventuels amendements).
ISO 53:1998, Engrenages cylindriques de mécanique générale et de grosse mécanique — Tracé de
référence
ISO 1122-1:1998, Vocabulaire des engrenages — Partie 1: Définitions géométriques
ISO 6336-1:2006, Calcul de la capacité de charge des engrenages cylindriques à dentures droite et
hélicoïdale — Partie 1: Principes de base, introduction et facteurs généraux d'influence
ISO 6336-5:2003, Calcul de la capacité de charge des engrenages cylindriques à dentures droite et
hélicoïdale — Partie 5: Résistance et qualité des matériaux
3 Termes, définitions, symboles et termes abrégés
Pour les besoins du présent document, les termes, les définitions, les symboles et les termes abrégés donnés
dans l'ISO 1122-1 et dans l’ISO 6336-1 s'appliquent.
4 Rupture de dent et coefficients de sécurité
Une rupture de dent signifie, en général, la fin de la vie de l'engrenage. Quelquefois, la rupture d'une dent
entraîne la destruction de toute la denture. Dans certains cas, la liaison entre l'arbre d'entrée et l'arbre de
sortie est interrompue. Par conséquent, il convient que le choix du coefficient de sécurité S contre la rupture
F
de dents soit plus grand que le coefficient de sécurité contre la formation des piqûres.
Certaines règles d'ordre général sur le choix du coefficient de sécurité minimal peuvent être trouvées dans
l'ISO 6336-1:2006, 4.1.7. Il est recommandé que le fabricant et l'utilisateur s'accordent sur la valeur à donner
au coefficient de sécurité minimal.
La présente partie de l'ISO 6336 ne s'applique pas aux contraintes supérieures à celles indiquées pour un
nombre de cycles égal à 10 , puisque, pour de telles contraintes, on risque de dépasser la limite élastique du
matériau de la denture.
5 Équation de base
La contrainte effective en pied de dent σ et la contrainte admissible en pied de dent σ doivent être
F FP
calculées séparément pour le pignon et la roue; σ doit être inférieur à σ .
F FP
5.1 Coefficient de sécurité pour la contrainte de flexion (sécurité contre la rupture de dent),
S
F
Calculer S séparément pour le pignon et la roue:
F
σ
FG1
SS= W (1)
F1 Fmin
σ
F1
σ
FG2
SS= W (2)
F2 Fmin
σ
F2
σ et σ sont calculés d'après les Équations (3) et (4). Les valeurs de σ pour la contrainte de référence et
F1 F2 FG
pour la contrainte statique sont calculées d'après l'Équation (5), conformément à 5.3.2.1 et 5.3.2.2. Pour une
durée de vie limitée, on détermine σ conformément à 5.3.3.
FG
Les valeurs de la limite de résistance en pied de dent σ , de la contrainte admissible en pied de dent σ et
FG FP
de la contrainte effective en pied de dent σ peuvent être déterminées suivant les différentes méthodes. La
F
méthode utilisée pour chaque valeur doit être indiquée dans la note de calcul.
NOTE Les coefficients de sécurité du présent paragraphe se rapportent au couple transmissible.
Pour des commentaires sur les valeurs numériques du coefficient de sécurité minimal et sur le risque de
détérioration, voir l'ISO 6336-1:2006, 4.1.7.
5.2 Contrainte en pied de dent, σ
F
La contrainte en pied de dent, σ , est la contrainte de traction maximale à la surface en pied de dent.
F
5.2.1 Méthode A
La contrainte de traction maximale peut, en principe, être déterminée par n'importe quelle méthode de calcul
appropriée (méthodes des éléments finis, des équations intégrales, de la transformation conforme ou
expérimentalement par la mesure des déformations à l'aide de jauges de contrainte, etc.). Pour déterminer la
2 © ISO 2006 – Tous droits réservés
contrainte en pied de dent maximale, les effets de la répartition de la charge sur deux dents ou plus en prise
et les modifications des contraintes en fonction des changements de phases dans l'engrènement doivent être
pris en compte.
La Méthode A n'est utilisée que dans des cas particuliers et, en raison de son coût élevé, son utilisation ne se
justifie que dans de tels cas.
5.2.2 Méthode B
Selon la présente partie de l'ISO 6336, la contrainte locale en pied de dent est définie comme le produit de la
1)
contrainte nominale en pied de dent par un facteur de concentration de contrainte .
La présente méthode admet l'hypothèse selon laquelle la contrainte en pied de dent déterminante est atteinte
avec l'application de la charge au point de plus haut contact unique d'un engrenage à denture droite, ou d'un
engrenage virtuel à denture droite équivalent à un engrenage à denture hélicoïdale. Toutefois dans ce dernier
cas, la «charge apparente» doit être remplacée par une «charge normale» appliquée sur la largeur de denture
de la roue réelle considérée.
Pour des dentures ayant un rapport de conduite virtuel 2 u ε < 2,5, on suppose que la contrainte en pied de
αn
dent déterminante apparaît lors de l'application de la charge au point le plus bas de triple contact. Dans
l'ISO 6336, cette hypothèse est prise en considération par le facteur de hauteur de dent, Y . Dans le cas
DT
d'engrenages à denture hélicoïdale, le facteur, Y , tient compte des écarts par rapport à ces hypothèses.
β
La Méthode B convient pour des calculs généraux et est également adaptée aux programmes de calcul par
ordinateur, ainsi qu'à l'exploitation des résultats expérimentaux obtenus au pulsateur (avec application de la
charge en un point donné).
Dans les transmissions à division de puissance (trains planétaires et trains dérivés), la force tangentielle totale
n'est pas également répartie sur chaque contact d'engrènement (elle dépend de la conception, des vitesses
tangentielles et de la précision de fabrication). Cela doit être pris en compte, en utilisant un facteur de
répartition, K , à la suite de K , dans l'Équation (3), pour ajuster si nécessaire la charge moyenne de chaque
γ A
engrènement.
σσ = KK K K (3)
FF0 A v F β Fα
où
σ est la contrainte de base en pied de dent, qui est la contrainte principale locale maximale
F0
produite en pied de dent quand un engrenage sans écart est chargé par un couple nominal
statique et sans aucune précontrainte tel que du frettage, c'est-à-dire rapport de contrainte R = 0
[voir Équation (4)];
σ est la contrainte de flexion admissible (voir 5.3);
FP
K est le facteur d'application (voir l'ISO 6336-6), qui tient compte de l'augmentation de la charge
A
due aux variations du couple d'entrée et de sortie;
K est le facteur dynamique (voir l'ISO 6336-1), qui tient compte de l'augmentation de la charge due
v
aux effets dynamiques internes;
K est le facteur de distribution longitudinale de la charge relatif à la contrainte en pied de dent (voir
Fβ
l'ISO 6336-1), qui tient compte de la distribution non uniforme de la charge sur la largeur de
denture due à un écart d'alignement relatif résultant, entre autres, des imprécisions de fabrication,
des déformations élastiques, etc.;
1) Il convient de prendre en compte les contraintes, telles que celles résultant du frettage d’une couronne dentée, qui se
superposent aux contraintes dues à la charge sur les dents dans le calcul de la contrainte admissible en pied de dent σ .
FP
K est le facteur de distribution transversale de la charge relatif à la contrainte en pied de dent (voir
Fα
l'ISO 6336-1). Il tient compte de la répartition inégale de la charge dans la direction transversale,
résultant par exemple des écarts de division.
NOTE L'ordre de détermination des facteurs K , K , K et K est défini dans l'ISO 6336-1:2006, 4.1.14.
A v Fβ Fα
F
t
σ = (4)
YY Y Y Y
FS β B DT
F0
b
m
n
où
F est la force tangentielle nominale, tangente au cylindre de référence du pignon dans le plan
t
2)
apparent (voir l'ISO 6336-1);
3)
b est la largeur de denture (dans le cas de dentures hélicoïdales doubles, b = 2 b ) ;
B
m est le module normal;
n
Y est le facteur de forme (voir l'Article 6), qui tient compte de l'influence de la forme de la dent sur la
F
contrainte nominale de flexion, pour une application de la charge au point de plus haut contact
unique;
Y est le facteur de concentration de contrainte (voir l'Article 7), qui tient compte de l'influence de la
S
contrainte nominale en pied de dent, déterminée pour une application de la charge au point de plus
haut contact unique, en une contrainte locale en pied de dent, et qui tient compte également
i) de l'augmentation de contrainte due au rayon de raccordement en pied de dent,
ii) du fait que, dans la section critique en pied de dent, apparaît un état de contrainte effectif
plus complexe que le modèle simplifié présenté ici;
Y est le facteur d'angle d'hélice (voir l'Article 8), qui tient compte du meilleur comportement vis-à-vis de
β
la contrainte en pied de dent, des dentures hélicoïdales, du fait de l'inclinaison des lignes de contact
par rapport à celui des dentures droites virtuelles utilisées pour le calcul;
Y est le facteur d'épaisseur de jante (voir l'Article 9), qui tient compte de la contrainte en pied de dent
B
calculée pour les dentures à jantes minces;
Y est le facteur de profondeur de dent (voir l'Article 10), qui tient compte de la contrainte en pied de
DT
dent calculée pour des dentures de haute précision avec un rapport de conduite de 2 u ε < 2,5.
αn
5.3 Contrainte de flexion admissible en pied de dent, σ
FP
Il convient de déterminer de préférence la valeur limite de la contrainte en pied de dent (voir l'Article 11) par
des essais directs sur des engrenages, car ainsi les effets de la géométrie des pièces d'essai, comme
l'influence du profil de raccordement en pied, sont inclus dans les résultats. Les méthodes de calcul fournies
constituent des moyens empiriques pour comparer les valeurs des contraintes obtenues sur des roues d'essai
de différentes dimensions, par rapport aux résultats expérimentaux. Plus l'engrenage d'essai et les conditions
d'essai seront proches de l'engrenage réel et des conditions de service réelles, plus on diminuera l'effet des
imprécisions dans la formulation des expressions de calcul.
2) Dans tous les cas, y compris lorsque ε > 2, il est nécessaire de prendre pour F la force tangentielle totale. Les
αn t
raisons du choix du cylindre de référence pour l'application de la force tangentielle sont données en 6.3.
Voir l'ISO 6336-1:2006, 4.2 pour la définition de F et les commentaires relatifs aux particularités des dentures en double
t
hélice.
3) Dans un engrenage conjugué, b est la largeur de denture au cercle de pied, sans tenir compte des chanfreins ou des
arrondis d'extrémité. Si les largeurs de denture du pignon et de la roue sont différentes, on peut supposer que la largeur
supportant la charge est égale à celle de la roue la moins large, augmentée d'une valeur qui n'excédera pas une fois le
module à chaque extrémité de la dent.
4 © ISO 2006 – Tous droits réservés
5.3.1 Méthodes de détermination de la contrainte de flexion admissible en pied de dent σ —
FP
Principes, hypothèses et application
La contrainte admissible en pied de dent, σ , peut être déterminée suivant différentes méthodes de calcul.
FP
La méthode adoptée doit être validée en s'assurant, par des études comparatives précises sur les historiques
bien documentés du comportement en service d'un certain nombre d'engrenages, que ces données sont
applicables à l'engrenage à calculer.
5.3.1.1 Méthode A
Par cette méthode, les valeurs de la contrainte admissible en pied de dent σ ou de la contrainte limite de
FP
flexion en pied de dent σ sont calculées avec les Équations (3) et (4) dérivées de la courbe de S-N ou de la
FG
courbe de fatigue, déterminées à partir d'essais réalisés sur des roues identiques à celles de l'engrenage
considéré, et dans des conditions de service appropriées.
Les coûts pour appliquer cette méthode ne sont en général justifiés que pour le développement de nouveaux
produits, dont la dégradation aurait de sérieuses conséquences (par exemple pour des véhicules spatiaux
habités).
De la même façon, cette méthode permet de déduire les valeurs de la contrainte admissible en tenant compte
des dimensions, des conditions de service et de la performance des engrenages de référence testés sous
contrôle.
5.3.1.2 Méthode B
À partir d'essais d'endurance réalisés sur des engrenages chargés ou d'essais au pulsateur réalisés sur des
roues d'essai de référence, des courbes de fatigue caractérisées par la contrainte nominale de référence
σ et le facteur de durée de vie Y ont été déterminées pour différents matériaux et traitements
F lim NT
thermiques usuels. Ces valeurs expérimentales sont ramenées aux dimensions de l'engrenage considérées,
par l'utilisation des facteurs relatifs de sensibilité à l'entaille du matériau Y , d'état de surface Y , et de
δ rel T R rel T
dimension Y .
X
La Méthode B est recommandée pour un calcul de la capacité de charge avec une précision acceptable,
chaque fois que l'on peut disposer de valeurs de la résistance à la flexion déterminées sur des engrenages
d'essais, ou si les matériaux sont similaires à ceux de l'ISO 6336-5.
5.3.2 Contrainte de flexion admissible, σ : Méthode B
FP
On utilise, dans ce cas, l'Équation (5), applicable avec les réserves données en 5.3.2.1 et 5.3.2.2:
σ YYST NT
Flim σ Y σ
FE NT FG
σ = = = (5)
YY Y Y Y Y
FP δδ rel T R rel T X rel T R rel T X
SS S
Fm in Fmin Fm in
où
σ est la contrainte nominale de flexion de l'engrenage d'essai de référence (voir l'ISO 6336-5), qui
F lim
tient compte de l'influence du matériau, du traitement thermique et de l'état de surface du profil
de raccordement en pied de dent de l'engrenage d'essai;
σ est la contrainte de flexion admissible correspondant à la contrainte de base à la flexion d'une
FE
éprouvette polie non entaillée, avec l'hypothèse que le matériau (y compris le traitement
thermique) est parfaitement élastique;
σ = (σ Y )
FE F lim ST
Y est le facteur de concentration de contrainte, relatif aux dimensions de l'engrenage d'essai de
ST
référence (voir 7.4);
Y est le facteur de durée de vie pour la contrainte en pied de dent, relatif aux dimensions de
NT
l'engrenage d'essai de référence (voir l'Article 12), qui tient compte de la plus grande capacité de
charge dans le cas d'un nombre limité de cycles de mise en charge;
σ est la contrainte limite en pied de dent;
FG
σ = (σ S );
FG FP F min
S est le coefficient de sécurité minimum exigé pour la contrainte en pied de dent (voir l'Article 4 et
F min
5.1);
Y est le facteur de sensibilité relative à l'entaille, qui est le quotient du facteur de sensibilité à
δ rel T
l'entaille de l'engrenage considéré, par celui de l'engrenage d'essai de référence (voir l'Article 13),
qui tient compte de l'influence de la sensibilité à l'effet d'entaille du matériau;
Y est le facteur de rugosité relatif, qui est le quotient du facteur d'état de surface du profil de
R rel T
raccordement en pied de dent de l'engrenage considéré, par celui du profil de raccordement en
pied de dent de l'engrenage d'essai de référence (voir l'Article 14) et qui tient compte de
l'influence de l'état de surface du profil de raccordement en pied de dent;
Y est le facteur de dimension pour la résistance en pied de dent (voir l'Article 15), qui tient compte
X
de l'influence des dimensions de la dent sur la résistance à la flexion du pied de dent.
5.3.2.1 Contrainte de flexion admissible (de référence)
La contrainte de flexion admissible (de référence), σ , est donnée par l'Équation (5), avec Y = 1 et les
FP ref NT
valeurs des facteurs σ , Y , Y , Y , Y et S calculées suivant la Méthode B spécifiée.
F lim ST δ rel T R rel T X F min
5.3.2.2 Contrainte de flexion admissible (en statique)
La contrainte de flexion admissible (en statique), σ , est donnée par l'Équation (5), avec les valeurs des
FP stat
facteurs σ , Y , Y , Y , Y et S calculées suivant la Méthode B spécifiée (contrainte statique).
F lim ST δ rel T R rel T X F min
5.3.3 Contrainte de flexion admissible, σ , pour une durée de vie limitée et importante: Méthode B
FP
On détermine σ pour un nombre de cycles souhaité, N , par une interpolation graphique ou analytique à
FP L
partir de la courbe S-N sur une échelle bilogarithmique, entre la valeur obtenue pour la contrainte de
référence d'après 5.3.2.1 et la valeur obtenue pour la contrainte statique (d'après 5.3.2.2). Voir aussi
l'Article 12.
5.3.3.1 Valeurs graphiques
On calcule σ pour la contrainte de référence et σ pour la contrainte statique d'après 5.3.2 et on trace
FPréf FPstat
la courbe S-N correspondant au facteur de durée de vie Y . Le principe est indiqué à la Figure 1. On peut lire,
NT
sur la courbe, la valeur σ pour le nombre de cycles de mise en charge N souhaité.
FP L
6 © ISO 2006 – Tous droits réservés
Légende
X nombre de cycles de mise en charge, N (log)
L
Y contrainte de flexion admissible, σ (log)
FP
1 statique
2 durée de vie limitée
3 grande durée de vie
a
Exemple: contrainte de flexion admissible, σ , pour un nombre de cycles de mise en charge donné.
FP
Figure 1 — Détermination graphique de la contrainte de flexion admissible
pour une durée de vie limitée — Méthode B
5.3.3.2 Détermination par calcul
Calculer σ pour la contrainte de référence et σ pour la contrainte statique conformément à 5.3.2,
FP ref FP stat
d'où l'on déduit ensuite σ pour le nombre de cycles de mise en charge N souhaité dans la zone de durée
FP L
de vie limitée, comme suit (voir l'ISO 6336-1:2006, Tableau 2, pour l'explication des abréviations utilisées):
exp
⎛⎞
31 × 0
σσ==Y σ ⎜⎟ (6)
FP FP ref N FP ref
⎜⎟
N
L
⎝⎠
a) Pour St, V, GGG (perl., bai.) ou GTS (perl.), pour une durée de vie limitée comme sur la Figure 9:
4 6
10 < N u 3 × 10 :
L
σ
FPstat
exp = 0,403 7 log (7)
σ
FP ref
b) Pour IF, Eh, NT (nitr.), NV (nitr.), NV (nitrocar.), GGG (ferr.) ou GG, pour une durée de vie limitée d'après
3 6
la Figure 9: 10 < N u 3 × 10 :
L
σ
FP stat
exp = 0,287 6 log (8)
σ
FP ref
Des calculs analogues peuvent être conduits dans le domaine des longues durées de vie.
6 Facteurs de forme, Y
F
6.1 Généralités
Le facteur de forme Y tient compte de l'influence de la forme de la dent sur la contrainte nominale de flexion.
F
Voir 5.2.1 pour les principes, les hypothèses et les détails d'application. Le facteur Y est relatif à l'application
F
de la charge au point de plus haut contact unique (Méthode B).
La section d'encastrement à utiliser comme base dans les calculs (voir Figures 3 à 4), est définie par les
points de tangence au profil de raccordement de deux droites inclinées à 30° par rapport à l'axe de la dent.
La détermination des facteurs Y , Y , est basée sur la forme nominale de la dent avec le coefficient de
F S
déport x. En général, l'effet de la diminution d'épaisseur de denture sur la résistance à la flexion des dents
d'engrenages cylindriques rectifiées lors de la finition peut être négligée. Les pieds de dent des dentures,
rectifiées ou rasées étant généralement taillés par génération à l'aide d'outils de coupe tels que les
fraises-mères, correspondent en forme et dimensions au coefficient de déport de l'ébauche.
À cause des tolérances appliquées pour les procédés de finition tels que la rectification, la pénétration de
l'outil d'ébauche par rapport à l'axe de la roue dentée inclut très souvent la valeur du déport nominal, xm , de
n
l'outil crémaillère plus une tolérance déterminée pour garantir que la tolérance de finition sera plus grande que
la valeur minimale souhaitée. Ainsi, le calcul de la contrainte en pied de dent tend à une augmentation de la
sécurité.
Si la modification de l'épaisseur de pied revient à une réduction d'épaisseur au niveau du pied de dent de plus
de 0,05 m , celle-ci doit être prise en compte dans le calcul de la contrainte, en prenant le profil de génération
n
relatif à la valeur de déport, m x , au lieu du profil nominal.
n E
Les équations de la présente partie de l'ISO 6336 s'appliquent pour tous les tracés de référence (voir
Figure 2) avec ou sans dégagement de pied, avec toutefois les restrictions suivantes:
a) le point de contact de la tangente à 30° (60°) doit se situer sur le profil de raccordement en pied de dent,
généré par l'arrondi de pied du tracé de référence;
b) le tracé de référence de la denture doit avoir un arrondi de pied ρ > 0;
fP
c) la denture doit être générée à l'aide d'outils tels que les crémaillères ou les fraises-mères;
d) compte tenu que la méthode de calcul se réfère à une denture après finition, l'influence des tolérances
d'épaisseur pour les surépaisseurs de rectification et des tolérances sur l'épaisseur de denture pourra
être négligée, et en pratique, on admettra que les dimensions de la crémaillère de l'outil de taillage soient
les mêmes que celles de la partie complémentaire au tracé de référence de la roue dentée;
e) pour les dentures intérieures, un tracé de référence virtuel est utilisé qui diffère du tracé de référence du
rayon de pied ρ [voir Équation (11)].
fP
8 © ISO 2006 – Tous droits réservés
a) Avec dégagement de pied b) Sans dégagement de pied
Figure 2 — Dimensions et tracé de référence des dents (profil fini)
Les commentaires précédents sont valables pour des dentures droites et hélicoïdales. Pour ces dernières, la
valeur Y est déterminée pour une denture droite virtuelle équivalente; le nombre de dents virtuel z peut être
F n
calculé à partir de l'Équation (21) ou (22). Y est déterminé séparément pour le pignon et pour la roue.
F
6.2 Calcul du facteur de forme Y : Méthode B
F
La détermination de la valeur de la corde normale s dans la section critique en pied de dent et du bras de
Fn
levier du moment de flexion h relatif à l'application de la charge au point de plus haut contact unique d'un
Fe
engrenage suivant la Méthode B est représentée aux Figures 3 et 4.
a
Cercle de base.
Figure 3 — Détermination de la valeur de la corde normale dans la section critique en pied de dent
suivant la Méthode B (dentures extérieures)
a
Cercle de base.
Figure 4 — Détermination de la valeur de la corde normale dans la section critique en pied de dent
suivant la Méthode B (dentures intérieures)
L'équation suivante utilise les symboles des Figures 3 et 4:
6 h
Fe
cosα
Fen
m
n
Y = (9)
F
⎛⎞s
Fn
cosα
⎜⎟
n
m
⎝⎠n
Afin d'évaluer les valeurs précises pour h , α et s , il est nécessaire avant tout de calculer une valeur
Fe Fen Fn
de θ suffisamment précise, obtenue en général après cinq itérations de l'Équation (14). Il n'est pas
recommandé de déterminer Y par une méthode graphique.
F
6.2.1 Corde normale au pied de dent, s , rayon du profil de raccordement en pied de dent, ρ , bras
Fn F
4)
de levier du moment de flexion, h
Fe
On calcule d'abord les paramètres de l'Équation (9):
s
π ρ
pr
fP
Em=−h tanαα+ − 1− sin (10)
()
nfP n n
4cosα cosα
nn
4) Dans le cas d'un sommet de dent arrondi ou chanfreiné, on utilise le diamètre de tête actif d à la place du diamètre
Na
de tête d . d est le diamètre d'un cercle proche du cylindre de tête, qui contient les limites du flanc utilisable.
a Na
10 © ISO 2006 – Tous droits réservés
avec
s = pr − q (voir Figure 2);
pr
s = 0 pour des dentures sans dégagement de pied;
pr
ρ = ρ pour dentures extérieures, ou
fPv fP
1,95
x +− / ρ /
()hm m
0 fP n n
fP
ρρ ≈+ m pour dentures intérieures (11)
fPv fP n
z
3,156 ⋅1,036
où
x est le coefficient de déport de l'outil pignon;
z est le nombre de dents de l'outil pignon;
ρ h
fPv fP
Gx=− + (12)
mm
nn
⎛⎞
2 π E
H=− − Τ (13)
⎜⎟
zm2
nn⎝⎠
avec
Τ = π/3 pour dentures extérieures
Τ = π/6 pour dentures intérieures
2G
θθ=−tan H (14)
z
n
Pour résoudre itérativement l'Équation transcendante (14), on peut prendre comme valeur de départ θ = π/6
pour les dentures extérieures et θ = π/3 pour les dentures intérieures. L'équation converge en général après
cinq itérations.
a) Corde réelle au pied de dent s
Fn
⎯ Pour dentures extérieures:
⎛⎞
s π G ρ
⎛⎞
Fn fPv
=−z sin θ+ 3 − (15)
⎜⎟
n
⎜⎟
mm3cosθ
⎝⎠
nn⎝⎠
⎯ Pour dentures intérieures:
⎛⎞
s π G ρ
⎛⎞
Fn fPv
=−z sin θ+ − (16)
⎜⎟
n
⎜⎟
mm6cosθ
⎝⎠
nn
⎝⎠
b) Rayon du profil de raccordement en pied de dent ρ (voir Figures 3 et 4):
F
ρρ 2G
FfPv
=+ (17)
mm
nn cosθθz cos − 2G
()n
c) Bras de levier du moment de flexion h
Fe
⎯ Pour dentures extérieures:
⎡⎤
⎛⎞
1 π G ρ
hd ⎛⎞
Fe en
fPv
=−(cos siγγn tanαθ)− zcos−− − (18)
⎢⎥⎜⎟
Fen n
ee ⎜⎟
23cos θ
mm ⎝⎠m
nn⎢⎥⎝⎠n
⎣⎦
⎯ Pour dentures intérieures:
⎡⎤
1 π ⎛⎞G ρ
hd ⎛⎞
Fe en fPv
z=− (cos γγsin tanαθ)− cos−− 3 − (19)
⎢⎥
⎜⎟
ee Fen n ⎜⎟
26cos θ
mm ⎝⎠m
nn⎢⎥⎝⎠n
⎣⎦
6.2.2 Paramètres de dentures virtuelles
Ces paramètres sont comme suit:
β=−arccos 1 sinβαcos = arcsin sinβαcos (20)
() ()
bn n
z
z = (21)
n
cos β cos β
b
Approximation:
z
z ≈ (22)
n
cos β
ε
α
ε = (23)
α n
cos β
b
d
dm==z (24)
nnn
cos β
b
p = π m cos α (25)
bn n n
d = d cos α (26)
bn n n
d = d + d − d (27)
an n a
⎡⎤
22 2
dd d
z ⎛⎞ ⎛ ⎞ π d cosβαcos ⎛ ⎞
an bn n bn
⎢⎥
d=−21− ε−+ (28)
()
en ⎜⎟ ⎜ ⎟ αn ⎜ ⎟
⎢⎥
zz22 2
⎝⎠ ⎝ ⎠ ⎝ ⎠
⎢⎥
⎣⎦
Le nombre de dents, z, est positif pour les dentures extérieures et z est négatif pour les dentures intérieures.
⎛⎞
d
bn
α = arccos (29)
⎜⎟
en
d
⎝⎠en
0,5π+ 2 tan α x
n
γ=+ invαα− inv (30)
enen
z
n
12 © ISO 2006 – Tous droits réservés
0,5π+ 2 tan α x
n
αα=−γ= tanα − invα− (31)
Fen en e en n
z
n
6.3 Détermination de la charge normale à la dent pour une denture droite
Moment de flexion
Contrainte nominale de flexion = ,
Section d'encastrement de la roue à s
Fn
conformément à l'équation suivante, avec les symboles conformes aux Figures 3 et 4:
F cosα
bFen
σ = h (32)
Fe
bs
()
Fn
d d
d
b w
FF==F (33)
bt w
22 2
où
d est le diamètre de base;
b
d est le diamètre de référence;
d est le diamètre primitif;
w
F est la force tangentielle nominale au cylindre de référence;
t
F est la force tangentielle nominale au cylindre primitif.
w
F F
t w
F== (34)
b
cos α cos α
w
⎡⎤
h
Fe
⎢⎥
cos α
Fen
FF
⎢⎥
m tt
σ== Y (35)
F
⎢⎥
bm bm
1⎛⎞s
⎢⎥
Fn
cos α
⎜⎟
⎢⎥
6 m
⎝⎠
⎣⎦
où
α est l'angle de pression du tracé de référence;
α est l'angle de pression de fonctionnement.
w
Lorsque σ est exprimé comme une fonction de F , un facteur de forme Y peut être déterminé à partir de
t F
l'Équation (35).
7 Facteurs de concentration de contraintes, Y
S
7.1 Usage de base
Le facteur de concentration de contraintes, Y , est utilisé pour convertir la contrainte nominale de flexion en
S
une contrainte locale en pied de dent, ce qui permet de prendre en compte:
a) l'effet de l'augmentation de contrainte due à la variation de la courbure du profil de raccordement en pied
5)
de dent
b
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...