ISO 18363-4:2021
(Main)Animal and vegetable fats and oils — Determination of fatty-acid-bound chloropropanediols (MCPDs) and glycidol by GC/MS — Part 4: Method using fast alkaline transesterification and measurement for 2-MCPD, 3-MCPD and glycidol by GC-MS/MS
Animal and vegetable fats and oils — Determination of fatty-acid-bound chloropropanediols (MCPDs) and glycidol by GC/MS — Part 4: Method using fast alkaline transesterification and measurement for 2-MCPD, 3-MCPD and glycidol by GC-MS/MS
This document specifies a rapid procedure for the simultaneous determination of 2-MCPD esters (bound 2-MCPD), 3‐MCPD esters (bound 3‐MCPD) and glycidyl esters (bound glycidol) in a single assay, based on alkaline catalysed ester cleavage and derivatization of cleaved (free) analytes with phenylboronic acid (PBA) prior to GC-MS/MS analysis. Glycidyl ester overestimation is corrected by addition of an isotopic labelled ester bound 3-MCPD which allows the quantification of 3-MCPD induced glycidol during the procedure. This method is applicable to solid and liquid fats and oils. This document also applies to animal fats and used frying oils and fats, but these matrices were not included in the validation. For all three analytes the limit of quantification (LOQ) is 0,1 mg/kg and the limit of detection (LOD) is 0,03 mg/kg. Milk and milk products (or fat coming from milk and milk products), infant formulas, emulsifiers, free fatty acids and other fats- and oils-derived matrices are excluded from the scope of this document.
Corps gras d’origines animale et végétale — Détermination des esters de chloropropanediols (MCPD) et d’acides gras et des esters de glycidol et d’acides gras par CPG/SM — Partie 4: Méthode par transestérification alcaline rapide et mesure pour le 2-MCPD, le 3-MCPD et le glycidol par CPG-SM/SM
Le présent document spécifie un mode opératoire rapide de détermination simultanée des esters de 2-MCPD (2-MCPD lié), des esters de 3-MCPD (3-MCPD lié) et des esters de glycidol (glycidol lié) en une seule analyse, reposant sur un clivage des esters en présence d’un catalyseur alcalin et une dérivation des analytes clivés (libres) avec de l’acide phénylboronique (PBA) avant l’analyse par CPG-SM/SM. La surestimation de la teneur en esters de glycidol est corrigée par l’ajout d’un ester de 3-MCPD marqué aux isotopes, ce qui permet la quantification du glycidol issu du 3-MCPD pendant le mode opératoire. Cette méthode est applicable aux corps gras solides et liquides. Le présent document s’applique également aux graisses animales et aux corps gras de friture usagés, mais ces matrices n’étaient pas incluses dans la validation. Pour ces trois analytes, la limite de quantification (LQ) est de 0,1 mg/kg et la limite de détection (LOD) est de 0,03 mg/kg. Le lait et les produits laitiers (ou les corps gras issus du lait et des produits laitiers), les formules infantiles, les émulsifiants, les acides gras libres et autres matrices dérivées de corps gras sont exclus du domaine d’application du présent document.
General Information
Relations
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 18363-4
First edition
2021-08
Animal and vegetable fats and oils —
Determination of fatty-acid-bound
chloropropanediols (MCPDs) and
glycidol by GC/MS —
Part 4:
Method using fast alkaline
transesterification and measurement
for 2-MCPD, 3-MCPD and glycidol by
GC-MS/MS
Corps gras d’origines animale et végétale — Détermination des
esters de chloropropanediols (MCPD) et d’acides gras et des esters de
glycidol et d’acides gras par CPG/SM —
Partie 4: Méthode par transestérification alcaline rapide et mesure
pour le 2-MCPD, le 3-MCPD et le glycidol par CPG-SM/SM
Reference number
©
ISO 2021
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2021 – All rights reserved
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Principle . 2
5 Reagents . 2
5.1 General . 2
5.2 Standard and reference compounds . 2
5.3 Standard solutions . 3
5.3.1 General. 3
5.3.2 Stock solutions . 3
5.3.3 Working solutions . 3
5.4 Other reagents . 4
5.5 Reagent solutions . 4
6 Apparatus . 5
7 Sample and storage . 5
7.1 Sampling . 5
7.2 Preparation of the test sample . 5
7.3 Storage conditions . 6
8 Procedure. 6
8.1 Test sample preparation . 6
8.2 Preparation of the calibration curve . 7
8.3 Gas chromatography and mass spectrometry settings . 7
9 Expression of results . 8
9.1 General . 8
9.2 Quantification of 2-MCPD- and 3-MCPD esters . 8
9.3 Quantification of glycidyl esters .10
9.4 Quality control .12
10 Notes .13
11 Precision .14
11.1 General .14
11.2 Repeatability .14
11.3 Between-day reproducibility .14
Annex A (normative) Supporting tables .15
Annex B (informative) Statistical results of the ISO collaborative study .17
Annex C (informative) Chromatograms .21
Bibliography .23
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO’s adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 34, Food products, Subcommittee SC 11,
Animal and vegetable fats and oils, in collaboration with the European Committee for Standardization
(CEN) Technical Committee CEN/TC 307, Oilseeds, vegetable and animal fats and oils and their by-
products – Methods of sampling and analysis, in accordance with the Agreement on technical cooperation
between ISO and CEN (Vienna Agreement).
A list of all parts in the ISO 18363 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2021 – All rights reserved
Introduction
The ISO 18363 series is a family of International Standards which can be used for the determination
of ester-bound MCPD and glycidol. This introduction describes the methods specified in the different
parts so that the analyst can decide which methods are suitable for application. The detailed application
of each method is contained within the scope of the individual method.
[9]
ISO 18363-1 is a differential method equivalent to the DGF standard C-VI 18 (10) and identical to
[6]
AOCS Official Method Cd 29c-13 . In brief, it is based on a fast alkaline catalysed release of 3-MCPD
and glycidol from the ester derivatives. Glycidol is subsequently converted into induced 3-MCPD. It
consists of two parts. The first part (A) allows the determination of the sum of ester-bound 3-MCPD and
ester-bound glycidol, whereas the second part (B) determines ester-bound 3-MCPD only. Both assays
are based on the release of the target analytes 3-MCPD and glycidol from the ester-bound form by an
alkaline-catalysed alcoholysis carried out at room temperature. In part A, an acidified sodium chloride
solution is used to stop the reaction and subsequently convert the glycidol into induced 3-MCPD. Thus,
3-MCPD and glycidol become indistinguishable in part A. In part B, the reaction stop is achieved by the
addition of an acidified chloride-free salt solution which also prevents the conversion of glycidol into
induced MCPD. Consequently, part B allows the determination of the genuine 3-MCPD content. Finally,
the glycidol content of the sample is proportional to the difference of both assays (A – B) and can be
calculated when the transformation ratio from glycidol to 3-MCPD has been determined. ISO 18363-1
is applicable to the fast determination of ester-bound 3-MCPD and glycidol in refined and non-refined
vegetable oils and fats. ISO 18363-1 can also apply to animal fats and used frying oils and fats, but a
validation study must be undertaken before the analysis of these matrices. Any free analytes within
the sample would be included in the results, but the document does not allow the distinction between
free and bound analytes. However, as of publication, research has not shown any evidence of a free
analyte content as high as the esterified analyte content in refined vegetable oils and fats. In principle,
ISO 18363-1 can also be modified in such a way that the determination of 2-MCPD is feasible, but again
a validation study must be undertaken before the analysis of this analyte.
[5]
ISO 18363-2 represents the AOCS Official Method Cd 29b-13 . In brief, it is based on a slow alkaline
release of MCPD and glycidol from the ester derivatives. Glycidol is subsequently converted into
3-MBPD. ISO 18363-2 consists of two sample preparations that differ in the use of internal standards.
Both preparations are used for the determination of ester-bound 2-MCPD and 3-MCPD. In part A, a
preliminary result for ester-bound glycidol is determined. Because the 3-MCPD present in the sample
is converted to some minor extent into induced glycidol by the sample preparation, part B serves to
quantify this amount of induced glycidol that is subsequently subtracted from the preliminary glycidol
result of part A. By the use of isotopically labelled free MCPD isomers in assay A and isotopically
labelled ester-bound 2-MCPD and 3-MCPD in part B, the efficiency of ester cleavage can be monitored.
Both assays, A and B, are based on the release of the target analytes 2-MCPD, 3-MCPD, and glycidol from
the ester-bound form by a slow alkaline catalysed alcoholysis in the cold. In both sample preparations,
the reaction is stopped by the addition of an acidified concentrated sodium bromide solution so as to
convert the unstable and volatile glycidol into 3-MBPD, which shows comparable properties to 3-MCPD
with regard to its stability and chromatographic performance. Moreover, the major excess of bromide
ions prevents the undesired formation of 3-MCPD from glycidol in the case of samples which contain
naturally occurring amounts of chloride. ISO 18363-2 is applicable to the determination of ester-bound
3-MCPD, 2-MCPD and glycidol in refined and unrefined vegetable oils and fats. It also applies to animal
fats and used frying oils and fats, but a validation study must be undertaken before the analysis of
these matrices. Any free analytes within the sample are included in the results, but the document does
not allow a distinction between free and bound analytes. However, as of publication of this document,
research has not shown any evidence of a free analyte content as high as the esterified analyte content
in vegetable oils and fats.
[4]
ISO 18363-3 represents AOCS Official Method Cd 29a-13 . In brief, it is based on the conversion of
glycidyl esters into 3-MBPD esters and a slow acidic catalysed release of MCPD and MBPD from the ester
derivatives. ISO 18363-3 is based on a single sample preparation in which glycidyl esters are converted
into MBPD monoesters and, subsequently, the free analytes 2-MCPD, 3-MCPD and 3-MBPD are released
by a slow acid-catalysed alcoholysis. The 3-MBPD represents the genuine content of bound glycidol.
ISO 18363-3 is applicable to the determination of ester-bound 2-MCPD, 3-MCPD and glycidol in refined
and non-refined vegetable oils and fats. It also applies to animal fats and used frying oils and fats, but
a validation study must be undertaken before the analysis of these matrices. The method is suited for
the analysis of bound (esterified) analytes, but if required ISO 18363-3 can be also performed without
the initial conversion of glycidyl esters. In such a setup, both free and bound 2-MCPD and 3-MCPD forms
are included in the results and the amount of free analytes can be calculated as the difference between
two determinations performed in both setups. However, as of publication, research has not shown any
evidence of a free analyte content as high as the esterified analyte content in vegetable oils and fats.
This document specifies a rapid procedure based on fast alkaline cleavage of the MCPD and glycidyl
esters. The released glycidol is subsequently converted into 3-MBPD. The pH of the fast alkaline
cleavage generally causes the released MCPD to partially convert to glycidol during the cleavage of the
esters, leading to overestimation of the glycidyl ester content of the sample. By adding two distinct
isotopically labelled ester-bound 3-MCPD and glycidol internal standards, it is possible to quantify
the amount of labelled glycidol resulting from the degradation of the released internal standard. This
information can be used to correct for overestimation of the glycidyl ester induced glycidol by 3-MCPD
induced glycidol. The same two internal standards are used for quantification of the bound MCPD
and glycidol, requiring a single sample preparation to quantify bound 2-MCPD-, 3-MCPD- and glycidol
esters. In analogue with ISO 18363-1, ISO 18363-2 and ISO 18363-3, the released MCPDs and 3-MBPD
are derivatized with phenylboronic acid before GC-MS/MS analysis. In contrast to the other parts of the
ISO 18363 series, this document requires GC-MS/MS instrumentation to unambiguously detect each
of the (isotopically labelled) MBPDs required for correct quantification of the glycidyl ester induced
glycidol. This document is applicable to the determination of ester-bound 3-MCPD, 2-MCPD and glycidol
in refined and unrefined vegetable oils and fats. It also applies to animal fats and used frying oils and
fats, but a validation study must be undertaken before analysis of these matrices. Any free analytes
within the sample are included in the results, but the document will not allow the distinction between
free and bound analytes. However, as of publication of this document, research has not shown any
evidence of a free analyte content as high as the esterified analyte content in vegetable oils and fats.
vi © ISO 2021 – All rights reserved
INTERNATIONAL STANDARD ISO 18363-4:2021(E)
Animal and vegetable fats and oils — Determination of
fatty-acid-bound chloropropanediols (MCPDs) and glycidol
by GC/MS —
Part 4:
Method using fast alkaline transesterification and
measurement for 2-MCPD, 3-MCPD and glycidol by GC-MS/
MS
1 Scope
This document specifies a rapid procedure for the simultaneous determination of 2-MCPD esters (bound
2-MCPD), 3-MCPD esters (bound 3-MCPD) and glycidyl esters (bound glycidol) in a single assay, based
on alkaline catalysed ester cleavage and derivatization of cleaved (free) analytes with phenylboronic
acid (PBA) prior to GC-MS/MS analysis. Glycidyl ester overestimation is corrected by addition of an
isotopic labelled ester bound 3-MCPD which allows the quantification of 3-MCPD induced glycidol
during the procedure.
This method is applicable to solid and liquid fats and oils. This document also applies to animal fats and
used frying oils and fats, but these matrices were not included in the validation. For all three analytes
the limit of quantification (LOQ) is 0,1 mg/kg and the limit of detection (LOD) is 0,03 mg/kg.
Milk and milk products (or fat coming from milk and milk products), infant formulas, emulsifiers, free
fatty acids and other fats- and oils-derived matrices are excluded from the scope of this document.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 3696, Water for analytical laboratory use — Specification and test methods
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.1
bound 2-MCPD
amount of 2-MCPD cleaved from its esterified (bound) forms by alkaline-catalysed transesterification
according to the reference method
Note 1 to entry: The content of 2-MCPD is calculated and reported as a mass fraction, in milligrams per kilogram
(mg/kg).
3.2
bound 3-MCPD
amount of 3-MCPD cleaved from its esterified (bound) forms by alkaline-catalysed transesterification
according to the reference method
Note 1 to entry: The content of 3-MCPD is calculated and reported as a mass fraction, in milligrams per kilogram
(mg/kg).
3.3
bound glycidol
amount of glycidol cleaved from its esterified (bound) forms by alkaline-catalysed transesterification
according to the reference method
Note 1 to entry: The content of glycidol is calculated and reported as a mass fraction, in milligrams per kilogram
(mg/kg).
4 Principle
The oil or fat sample is dissolved in toluene and tert-butyl-methyl-ether, and the internal standards
(3-MCPD- C diester and pentadeuterated glycidyl ester) are added. The sample is then cooled down to
10 °C before the alkaline transesterification is initiated by the addition of a sodium methoxide solution
in methanol. After 12 min incubation at 10 °C, the sample mixture is acidified with an acidic solution
of sodium bromide to convert the released glycidol to 3-MBPD. The fatty acid methyl esters generated
during the transesterification are removed by duplicate extraction of the organic layer. Finally, the
purified sample – containing cleaved (free) analytes – is derivatized with phenylboronic acid prior to
GC-MS/MS analysis.
The quantification of ester bound 2-MCPD and 3-MCPD is based on the 2-MCPD/3-MCPD- C and
3-MCPD/3-MCPD- C signal ratio, respectively. The quantification of ester-bound glycidol is based on
the 3-MBPD/3-MBPD-d5 signal ratio. The amount of 3-MBPD- C formed after the transesterification
reaction signifies the amount of released 3-MCPD- C that has degraded to glycidol due to the
conditions of the alkaline transesterification. Because no difference in degradation speed between
3-MCPD and 3-MCPD- C has been observed, it is then used to correct for overestimation of the glycidyl
ester induced glycidol caused by this degradation of 3-MCPD. Under the conditions used the 2-MCPD is
[7][8]
considered stable and thus will not significantly contribute to possible glycidol overestimation .
This method allows the simultaneous quantification of all three analytes in a single assay.
5 Reagents
5.1 General
WARNING — Attention is drawn to the regulations which specify the handling of hazardous
substances. Technical, organizational and personal safety measures shall be followed.
Unless otherwise stated analytically, pure reagents shall be used. Water shall conform to grade 3 of
ISO 3696.
5.2 Standard and reference compounds
5.2.1 1,2-Dipalmitoyl-3-chloropropanediol (PP-3-MCPD), purity ≥ 95 %.
NOTE 1,2-Dipalmitoyl-3-chloropropanediol can be substituted with 1,2-dioleyl-3-chloropropanediol or
other fatty acid diesters of 3-MCPD with similar chain length (C16 to C18 are preferred as they are the most
abundant in the majority of oils or fats).
5.2.2 1,3-Distearoyl-2-chloropropanediol (SS-2-MCPD), purity ≥ 95 %.
2 © ISO 2021 – All rights reserved
NOTE In analogy with the recommendations given for PP-3-MCPD, 1,3-distearoyl-2-chloropropanediol can
be substituted by other fatty acid diesters of 2-MCPD with similar chain length (C16 to C18 are preferred as they
are the most abundant in the majority of oils or fats).
5.2.3 Carbon-13 labelled 1,2-dipalmitoyl-3-chloropropanediol (PP-3-MCPD- C ), purity ≥ 95 %.
NOTE The same consideration applied to 1,2-dipalmitoyl-3-chloropropanediol is valid also for its carbon-13
labelled analogue, see Note in 5.2.1.
5.2.4 Glycidyl stearate (Gly-S), purity ≥ 98 %.
NOTE Glycidyl stearate can be substituted by glycidyl oleate or other fatty acid esters of glycidol with similar
chain length (C16 to C18 are preferred as they are the most abundant in the majority of oils or fats).
5.2.5 Pentadeuterated glycidyl stearate (Gly-S-d5), purity ≥ 98 %.
NOTE The same consideration applied to glycidyl palmitate is valid also for its pentadeuterated analogue,
see Note in 5.2.4.
5.3 Standard solutions
5.3.1 General
All standard solutions are prepared with toluene (5.4.4). All standards are prepared using ester-bound
reference compounds (5.2). Concentrations are given in the free component equivalent concentration
and shall be corrected for reference compounds (5.2) purity. For an example calculation of ester-bound
to free equivalent concentration conversion, see 10.2.
5.3.2 Stock solutions
NOTE Stock solutions are stable for at least 12 months when stored at −18 °C. Using an ultrasonic bath can
help to ensure all standards are completely dissolved.
5.3.2.1 Calibration stock (3-MCPD: 52,7 µg/ml, glycidol: 52,2 µg/ml, 2-MCPD: 48,1 µg/ml).
Weigh 14,0 mg of PP-3-MCPD (5.2.1), 12,0 mg of Gly-S (5.2.4) and 14,0 mg of SS-2-MCPD (5.2.2) in a
50 ml volumetric flask. Fill up to the mark, making sure that the standards are completely dissolved in
the solvent.
5.3.2.2 Spike stock (3-MCPD: 52,7 µg/ml, glycidol: 52,2 µg/ml, 2-MCPD: 34,4 µg/ml). Weigh 14,0 mg
of PP-3-MCPD (5.2.1), 12,0 mg of Gly-S (5.2.4) and 10,0 mg of SS-2-MCPD (5.2.2) in a 50 ml volumetric
flask. Fill up to the mark, making sure that the standards are completely dissolved in the solvent.
13 13 13
5.3.2.3 PP-3-MCPD- C stock (3-MCPD- C : 38,5 µg/ml). Weigh 20 mg of PP-3-MCPD- C (5.2.3) in
3 3 3
a 100 ml volumetric flask. Fill up to the mark, making sure that the standard is completely dissolved in
the solvent.
5.3.2.4 Gly-S-d5 stock (Glycidol-d5: 45,8 µg/ml). Weigh 10 mg of Gly-S-d5 (5.2.5) in a 50 ml volumetric
flask. Fill up to the mark, making sure that the standard is completely dissolved in the solvent.
5.3.3 Working solutions
It is advisable to freshly prepare the calibration working solutions on the day they are to be used.
The concentrations of all stock and standard solutions shall be corrected for the purity of the used
standards.
NOTE The spike solution (5.3.3.4) and internal standard solution (5.3.3.5) can be stored in the refrigerator
for at least three months.
5.3.3.1 Calibration working solution I (3-MCPD: 7,9 µg/ml, glycidol: 7,8 µg/ml, 2-MCPD: 7,2 µg/ml).
Pipette 300 μl of the stock solution (5.3.2.1) into a 2,5 ml GC vial containing 1 700 µl of toluene (5.4.4)
and homogenize using a vortex mixer.
5.3.3.2 Calibration working solution II (3-MCPD: 3,2 µg/ml, glycidol: 3,1 µg/ml, 2-MCPD: 2,9 µg/ml).
Pipette 120 μl of the stock solution (5.3.2.1) into a 2,5 ml GC vial containing 1 880 µl of toluene (5.4.4)
and homogenize using a vortex mixer.
5.3.3.3 Calibration working solution III (3-MCPD: 0,16 µg/ml, glycidol: 0,16 µg/ml, 2-MCPD: 0,14 µg/
ml). Pipette 40 μl of calibration working solution I (5.3.3.1) into a 2,5 ml GC vial containing 1 960 µl of
toluene (5.4.4) and homogenize using a vortex mixer.
5.3.3.4 Spike solution (3-MCPD: 1,05 µg/ml, glycidol: 1,04 µg/ml, 2-MCPD: 0,69 µg/ml). Pipette 5,0 ml
of the spike stock solution (5.3.2.2) into a 250 ml volumetric flask and fill up to the mark with the solvent.
5.3.3.5 Internal standard solution (3-MCPD- C : 1,54 µg/ml, glycidol-d5: 0,92 µg/ml). Pipette
5,0 ml of the Gly-S-d5 (5.3.2.4) and 10,0 ml of PP-3-MCPD- C (5.3.2.3) into a 250 ml volumetric flask
and fill up to the mark with the solvent.
5.4 Other reagents
5.4.1 Methanol, analytical grade.
5.4.2 Iso-octane, analytical grade.
5.4.3 Acetone, analytical grade.
5.4.4 Toluene, analytical grade.
5.4.5 Tert-butyl-methyl-ether, analytical grade.
5.4.6 Water, ultra-pure.
5.4.7 Sulfuric acid (purity ≥ 95 %).
5.4.8 Phenylboronic acid (purity ≥ 97 %).
5.4.9 Sodium bromide (purity ≥ 99,5 %).
5.4.10 Sodium methoxide solution in methanol (mass fraction of 25 %).
5.4.11 Non-thermally treated, cold pressed vegetable oil (blank oil, see 9.4).
5.5 Reagent solutions
5.5.1 Aqueous sulfuric acid solution (25 %). Transfer 25 ml of sulfuric acid (5.4.7) to a 100 ml
volumetric flask containing 50 ml of H O (5.4.6). Fill up to the mark with H O (5.4.6) and homogenize.
2 2
4 © ISO 2021 – All rights reserved
5.5.2 Acid aqueous solution of sodium bromide (sodium bromide 600 mg/ml, sulfuric acid volume
fraction of 0,9 %). Dissolve 600 g of sodium bromide (5.4.9) into 700 ml of ultrapure water (5.4.6).
Transfer the sodium bromide solution to a 1 000 ml volumetric flask containing 36 ml of sulfuric acid
solution (5.5.1). Fill up to the mark with H O (5.4.6) and homogenize.
5.5.3 Sodium methoxide solution (0,35M). Transfer 20 ml of sodium methoxide (mass fraction of
25 %) (5.4.10) to a 250 ml volumetric flask, fill up to the mark with methanol (5.4.1) and homogenize.
NOTE The sodium methoxide solution (0,35M) can be stored in a refrigerator for at least three months.
5.5.4 Phenylboronic acid solution (saturated). Weigh 12,0 g of phenylboronic acid (5.4.8) and add
100 ml volume fraction of 5 % water (5.4.6) in acetone (5.4.3) mixture. Shake vigorously.
NOTE The phenylboronic acid does not dissolve completely in the solvent mixture. Only the supernatant
is used for the derivatization step (see 8.1.11). The solution can be stored at room temperature for at least
three months.
6 Apparatus
6.1 Vortex mixer.
6.2 Cooled sample tray, set to 10 °C ± 0,5 °C.
6.3 Heated sample tray, with agitator capabilities set to 80 °C ± 4,0 °C.
6.4 Ultrasonic bath.
6.5 GC-MS/MS system, with split/splitless injector and backflush option.
6.6 Fused-silica-GC-column, stationary phase 5 % diphenyl to 95 % dimethylpolysiloxane or similar
polarity, length 20 m, ID 0,18 mm, film thickness 0,18 µm. Pre-column: stationary phase 5 % diphenyl to
95 % dimethylpolysiloxane or similar polarity, length 2 m, ID 0,53 mm, film thickness 0,10 µm.
The pre-column is periodically exchanged to retain good peak shape and sensitivity.
6.7 Electronic pipette, capable of pipetting volumes of 1,0 µl to 1 000 µl.
Using an electronic pipette is recommended for the sequential addition of accurate amounts of internal
standard solutions or the dilution of standards for calibration.
7 Sample and storage
7.1 Sampling
Sampling is not part of this method. A recommended sampl
...
NORME ISO
INTERNATIONALE 18363-4
Première édition
2021-08
Corps gras d’origines animale et
végétale — Détermination des esters
de chloropropanediols (MCPD) et
d’acides gras et des esters de glycidol
et d’acides gras par CPG/SM —
Partie 4:
Méthode par transestérification
alcaline rapide et mesure pour le
2-MCPD, le 3-MCPD et le glycidol par
CPG-SM/SM
Animal and vegetable fats and oils — Determination of fatty-acid-
bound chloropropanediols (MCPDs) and glycidol by GC/MS —
Part 4: Method using fast alkaline transesterification and
measurement for 2-MCPD, 3-MCPD and glycidol by GC-MS/MS
Numéro de référence
©
ISO 2021
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2021
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2021 – Tous droits réservés
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Principe . 2
5 Réactifs . 2
5.1 Généralités . 2
5.2 Composés étalons et composés de référence . 3
5.3 Solutions étalons . 3
5.3.1 Généralités . 3
5.3.2 Solutions mères . 3
5.3.3 Solutions de travail . 4
5.4 Autres réactifs . 4
5.5 Solutions de réactifs . 5
6 Appareillage . 5
7 Transport et stockage. 6
7.1 Échantillonnage . 6
7.2 Préparation de l’échantillon pour essai . 6
7.3 Conditions de conservation . 6
8 Mode opératoire. 6
8.1 Préparation de l’échantillon pour essai . 6
8.2 Préparation de la droite d’étalonnage . 7
8.3 Paramétrages relatifs à la chromatographie en phase gazeuse et spectrométrie de
masse (CPG/SM) . 8
9 Expression des résultats. 9
9.1 Généralités . 9
9.2 Quantification des esters de 2-MCPD et 3-MCPD . 9
9.3 Quantification des esters de glycidol .11
9.4 Contrôle qualité .13
10 Notes .14
11 Fidélité .15
11.1 Généralités .15
11.2 Répétabilité .15
11.3 Reproductibilité entre jours .15
Annexe A (normative) Tableaux explicatifs .16
Annexe B (informative) Résultats statistiques de l’étude comparative interlaboratoires ISO .18
Annexe C (informative) Chromatogrammes .22
Bibliographie .24
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier, de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion
de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir www .iso .org/ avant -propos.
Le présent document a été élaboré par le comité technique ISO/TC 34, Produits alimentaires, sous-comité
SC 11, Corps gras d’origines animale et végétale, en collaboration avec le comité technique CEN/TC 307,
Oléagineux, corps gras d’origines végétale et animale et leurs co-produits – Méthodes d’échantillonnage
et d’analyse, du Comité européen de normalisation (CEN), conformément à l’Accord de coopération
technique entre l’ISO et le CEN (Accord de Vienne).
Une liste de toutes les parties de la série ISO 18363 se trouve sur le site web de l’ISO.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www .iso .org/ fr/ members .html.
iv © ISO 2021 – Tous droits réservés
Introduction
La série ISO 18363 est un ensemble de Normes internationales pouvant être utilisé pour la
détermination des esters de MCPD et de glycidol. Cette introduction décrit les méthodes spécifiées
dans les différentes parties pour que les analystes puissent décider des méthodes qui conviennent à
leurs applications. L’application détaillée de chaque méthode figure dans le domaine d’application de la
méthode concernée.
[9]
L’ISO 18363-1 est une méthode différentielle équivalente à la norme C-VI 18 (10) de la DGF et identique
[6]
à la méthode officielle Cd 29c-13 de l’AOCS. En résumé, elle repose sur la libération rapide par catalyse
alcaline de 3-MCPD et de glycidol à partir de leurs dérivés esters. Le glycidol est par la suite converti
en 3-MCPD. Elle comprend deux parties. La première partie (A) permet de déterminer la somme des
esters de 3-MCPD et des esters de glycidol, tandis que la seconde partie (B) ne détermine que les esters
de 3-MCPD. Les deux analyses reposent sur la libération des analytes cibles, le 3-MCPD et le glycidol,
à partir des esters par alcoolyse en présence d’un catalyseur alcalin à température ambiante. Dans
la partie A, une solution acidifiée de chlorure de sodium est utilisée pour interrompre la réaction et
induire par la suite la conversion du glycidol en 3-MCPD. Il n’est par conséquent plus possible de faire la
distinction entre le 3-MCPD et le glycidol dans la partie A. Dans la partie B, la réaction est interrompue
par ajout d’une solution saline acidifiée exempte de chlorure qui évite aussi la conversion du glycidol en
MCPD. La partie B permet ainsi de déterminer la véritable teneur en 3-MCPD. Enfin, la teneur en glycidol
de l’échantillon est proportionnelle à la différence entre les deux analyses (A – B) et peut être calculée
lorsque le coefficient de transformation du glycidol en 3-MCPD a été déterminé. L’ISO 18363-1 s’applique
à la détermination rapide des esters de 3-MCPD et de glycidol dans les corps gras d’origine végétale
raffinés et non raffinés. L’ISO 18363-1 peut également s’appliquer aux graisses animales et aux corps
gras de friture usagés, mais une étude de validation doit être menée avant de procéder à l’analyse de
ces matrices. Les analytes libres éventuellement contenus dans l’échantillon sont habituellement inclus
dans les résultats, mais le document ne permet pas de faire la distinction entre les analytes libres et
les analytes liés. Néanmoins, les études disponibles au moment de la publication de la présente norme
ne révèlent aucune teneur en analytes libres aussi élevée que la teneur en analytes estérifiés dans les
corps gras d’origine végétale raffinés. En principe, l’ISO 18363-1 peut également être modifiée de façon
à permettre la détermination du 2-MCPD, mais une fois encore, une étude de validation doit être menée
avant d’analyser cet analyte.
[5]
L’ISO 18363-2 correspond à la méthode officielle Cd 29b-13 de l’AOCS. En résumé, elle repose sur une
libération alcaline lente de MCPD et de glycidol à partir des formes esters. Le glycidol est par la suite
converti en 3-MBPD. L’ISO 18363-2 comprend deux préparations d’échantillons qui se distinguent par
l’utilisation d’étalons internes. Les deux préparations sont utilisées pour la détermination des esters de
2-MCPD et de 3-MCPD. Un résultat préliminaire pour les esters de glycidol est déterminé dans la partie A.
Comme le 3-MCPD présent dans l’échantillon est partiellement converti en glycidol lors de la préparation
de l’échantillon, la partie B sert à quantifier la teneur en glycidol issue de cette transformation qui
est ensuite soustraite du résultat préliminaire obtenu pour le glycidol dans la partie A. L’utilisation
d’isomères isotopiques de MCPD libres dans l’analyse A et de formes isotopiques d’esters de 2-MCPD
et de 3-MCPD dans la partie B permet de surveiller le rendement du clivage des esters. Les analyses A
et B reposent toutes les deux sur la libération des analytes cibles, 2-MCPD, 3-MCPD et glycidol à partir
des esters dans le cadre d’une alcoolyse lente en présence d’un catalyseur alcalin dans le froid. Dans
les deux préparations d’échantillons, la réaction est interrompue par l’ajout d’une solution acidifiée
et concentrée de bromure de sodium de façon à transformer le glycidol instable et volatil en 3-MBPD
qui présente des propriétés comparables au 3-MCPD en matière de stabilité et de performances
chromatographiques. De plus, l’excès important d’ions bromure empêche la formation non souhaitée de
3-MCPD à partir du glycidol dans les échantillons contenant naturellement des quantités de chlorure.
L’ISO 18363-2 est applicable à la détermination des esters de 3-MCPD, de 2-MCPD et de glycidol dans les
corps gras d’origine végétale raffinés et non raffinés. Elle s’applique également aux graisses animales
et aux corps gras de friture usagés, mais une étude de validation doit être menée avant de procéder
à l’analyse de ces matrices. Les analytes libres éventuellement contenus dans l’échantillon sont inclus
dans les résultats, mais le document ne permet pas de faire la distinction entre les analytes libres et
les analytes liés. Néanmoins, les études disponibles au moment de la publication du présent document
ne révèlent aucune teneur en analytes libres aussi élevée que la teneur en analytes estérifiés dans les
corps gras d’origine végétale.
[4]
L’ISO 18363-3 correspond à la méthode officielle Cd 29a-13 de l’AOCS. En résumé, elle repose sur la
transformation des esters de glycidol en esters de 3-MBPD et une libération lente par catalyse acide du
MCPD et du MBPD à partir des formes esters. L’ISO 18363-3 repose sur la préparation d’un échantillon
unique dans lequel les esters de glycidol sont transformés en monoesters de MBPD puis les analytes
libres 2-MCPD, 3-MCPD et 3-MBPD sont libérés par alcoolyse lente en présence d’un catalyseur acide.
Le 3-MBPD représente la véritable teneur en glycidol issu des formes esters. L’ISO 18363-3 s’applique à
la détermination des esters de 2-MCPD, de 3-MCPD et de glycidol dans les corps gras d’origine végétale
raffinés et non raffinés. Elle s’applique également aux graisses animales et aux corps gras de friture
usagés, mais une étude de validation doit être menée avant de procéder à l’analyse de ces matrices.
La méthode est adaptée à l’analyse d’analytes liés (estérifiés), mais si cela est exigé, l’ISO 18363-3
peut également être mise en œuvre sans la transformation initiale des esters de glycidol. Dans
cette configuration, les formes libres et liées du 2-MCPD et du 3-MCPD sont toutes deux incluses
dans les résultats et la teneur en analytes libres peut être calculée comme la différence entre deux
déterminations réalisées dans les deux configurations. Néanmoins, les études disponibles au moment
de la publication ne révèlent aucune teneur en analytes libres aussi élevée que la teneur en analytes
estérifiés dans les corps gras d’origine végétale.
Le présent document spécifie un mode opératoire rapide reposant sur un clivage alcalin rapide des
esters de MCPD et de glycidol. Le glycidol libéré est par la suite converti en 3-MBPD. Le pH du clivage
alcalin rapide entraîne généralement la transformation partielle des MCPD libérés en glycidol au cours
du clivage des esters, conduisant à une surestimation de la teneur en esters de glycidol de l’échantillon.
En ajoutant deux étalons internes distincts d’ester de 3-MCPD et d’ester de glycidol marqués aux
isotopes, il est possible de quantifier la quantité de glycidol marqué résultant de la dégradation de
l’étalon interne libéré. Cette information peut être utilisée pour corriger la surestimation du glycidol
issu des esters de glycidol par le glycidol issu du 3-MCPD. Les deux mêmes étalons internes sont
utilisés pour la quantification des esters de MCPD et des esters de glycidol, nécessitant la préparation
d’un seul échantillon pour quantifier les esters de 2-MCPD, 3-MCPD et de glycidol. De même que dans
l’ISO 18363-1, l’ISO 18363-2 et l’ISO 18363-3, les MCPD et 3-MBPD libérés sont dérivés avec de l’acide
phénylboronique avant l’analyse par CPG-SM/SM. Au contraire des autres parties de la série ISO 18363,
le présent document exige un appareil de type CPG-SM/SM pour détecter sans ambiguïté chaque MBPD
(marqué aux isotopes) requis pour une quantification exacte du glycidol issu des esters de glycidol. Le
présent document est applicable à la détermination des esters de 3-MCPD, de 2-MCPD et de glycidol
dans les corps gras d’origine végétale raffinés et non raffinés. Elle s’applique également aux graisses
animales et aux corps gras de friture usagés, mais une étude de validation doit être menée avant de
procéder à l’analyse de ces matrices. Les analytes libres éventuellement contenus dans l’échantillon sont
inclus dans les résultats, mais le document ne permettra pas de faire la distinction entre les analytes
libres et les analytes liés. Néanmoins, les études disponibles au moment de la publication du présent
document ne révèlent aucune teneur en analytes libres aussi élevée que la teneur en analytes estérifiés
dans les corps gras d’origine végétale.
vi © ISO 2021 – Tous droits réservés
NORME INTERNATIONALE ISO 18363-4:2021(F)
Corps gras d’origines animale et végétale — Détermination
des esters de chloropropanediols (MCPD) et d’acides gras
et des esters de glycidol et d’acides gras par CPG/SM —
Partie 4:
Méthode par transestérification alcaline rapide et mesure
pour le 2-MCPD, le 3-MCPD et le glycidol par CPG-SM/SM
1 Domaine d’application
Le présent document spécifie un mode opératoire rapide de détermination simultanée des esters de
2-MCPD (2-MCPD lié), des esters de 3-MCPD (3-MCPD lié) et des esters de glycidol (glycidol lié) en une
seule analyse, reposant sur un clivage des esters en présence d’un catalyseur alcalin et une dérivation
des analytes clivés (libres) avec de l’acide phénylboronique (PBA) avant l’analyse par CPG-SM/SM. La
surestimation de la teneur en esters de glycidol est corrigée par l’ajout d’un ester de 3-MCPD marqué
aux isotopes, ce qui permet la quantification du glycidol issu du 3-MCPD pendant le mode opératoire.
Cette méthode est applicable aux corps gras solides et liquides. Le présent document s’applique
également aux graisses animales et aux corps gras de friture usagés, mais ces matrices n’étaient pas
incluses dans la validation. Pour ces trois analytes, la limite de quantification (LQ) est de 0,1 mg/kg et
la limite de détection (LOD) est de 0,03 mg/kg.
Le lait et les produits laitiers (ou les corps gras issus du lait et des produits laitiers), les formules
infantiles, les émulsifiants, les acides gras libres et autres matrices dérivées de corps gras sont exclus
du domaine d’application du présent document.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l’édition citée s’applique.
Pour les références non datées, la dernière édition du document de référence s’applique (y compris les
éventuels amendements).
ISO 3696, Eau pour laboratoire à usage analytique — Spécification et méthodes d’essai
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l’adresse http:// www .electropedia .org/
3.1
2-MCPD lié
quantité de 2-MCPD obtenu par clivage de ses formes estérifiées (liées) par transestérification en
présence d’un catalyseur alcalin conformément à la méthode de référence
Note 1 à l'article: La teneur en 2-MCPD est calculée et consignée sous forme de fraction massique, exprimée en
milligrammes par kilogramme (mg/kg).
3.2
3-MCPD lié
quantité de 3-MCPD obtenu par clivage de ses formes estérifiées (liées) par transestérification en
présence d’un catalyseur alcalin conformément à la méthode de référence
Note 1 à l'article: La teneur en 3-MCPD est calculée et consignée sous forme de fraction massique, exprimée en
milligrammes par kilogramme (mg/kg).
3.3
glycidol lié
quantité de glycidol obtenu par clivage de ses formes estérifiées (liées) par transestérification en
présence d’un catalyseur alcalin conformément à la méthode de référence
Note 1 à l'article: La teneur en glycidol est calculée et consignée sous forme de fraction massique, exprimée en
milligrammes par kilogramme (mg/kg).
4 Principe
L’échantillon de corps gras est dissous dans du toluène et du tert-butyl-méthyl-éther, et les étalons
internes (diester 3-MCPD- C et ester de glycidol pentadeutéré) sont ajoutés. L’échantillon est ensuite
refroidi à 10 °C avant de commencer la transestérification alcaline par l’ajout d’une solution de
méthylate de sodium dans du méthanol. Après 12 min d’incubation à 10 °C, le mélange échantillon est
acidifié avec une solution acide de bromure de sodium pour transformer le glycidol libéré en 3-MBPD.
Les esters méthyliques d’acides gras produits au cours de la transestérification sont éliminés par une
double extraction de la phase organique. Pour finir, l’échantillon purifié (contenant les analytes clivés
[libres]) est dérivé avec de l’acide phénylboronique avant l’analyse par CPG-SM/SM.
La quantification des esters de 2-MCPD et de 3-MCPD repose sur le rapport des signaux 2-MCPD/3-
13 13
MCPD- C et 3-MCPD/3-MCPD- C , respectivement. La quantification des esters de glycidol repose sur
3 3
le rapport des signaux 3-MBPD/3-MBPD-d5. La quantité de 3-MBPD- C formée après la réaction de
transestérification correspond à la quantité de 3-MCPD- C libérée qui s’est transformée en glycidol du
fait des conditions de la transestérification alcaline. Comme aucune différence de vitesse de dégradation
n’a été observée entre le 3-MCPD et le 3-MCPD- C , cette quantité est ensuite utilisée pour corriger la
surestimation du glycidol issu des esters de glycidol, causée par cette dégradation du 3-MCPD. Dans
les conditions appliquées, le 2-MCPD est considéré comme stable et ne contribue donc pas de manière
[7][8]
significative à une éventuelle surestimation du glycidol .
Cette méthode permet la quantification simultanée des trois analytes en une seule analyse.
5 Réactifs
5.1 Généralités
AVERTISSEMENT — L’attention du lecteur est attirée sur les règlements qui régissent la
manipulation des substances dangereuses. Les mesures de sécurité sur les plans technique,
organisationnel et du personnel doivent être suivies.
Sauf indication contraire, des réactifs analytiquement purs doivent être utilisés. L’eau doit être de
qualité 3 conformément à l’ISO 3696.
2 © ISO 2021 – Tous droits réservés
5.2 Composés étalons et composés de référence
5.2.1 1,2-Dipalmitoyl-3-chloropropanediol (PP-3-MCPD), pureté ≥ 95 %.
NOTE Le 1,2-dipalmitoyl-3-chloropropanediol peut être remplacé par le 1,2-dioléyl-3-chloropropanediol ou
d’autres diesters d’acide gras du 3-MCPD de longueur de chaîne similaire (les C16 à C18 sont préférés, car ils sont
les plus abondants dans la plupart des corps gras).
5.2.2 1,3-Distéaroyl-2-chloropropanediol (SS-2-MCPD), pureté ≥ 95 %.
NOTE Par analogie avec les recommandations fournies pour le PP-3-MCPD, le 1,3-distéaroyl-2-
chloropropanediol peut être remplacé par d’autres diesters d’acide gras du 2-MCPD de longueur de chaîne
similaire (les C16 à C18 sont préférés, car ils sont les plus abondants dans la plupart des corps gras).
5.2.3 1,2-Dipalmitoyl-3-chloropropanediol marqué au carbone 13 (PP-3-MCPD- C ),
pureté ≥ 95 %.
NOTE La même considération que celle appliquée au 1,2-dipalmitoyl-3-chloropropanediol est également
valable pour son analogue marqué au carbone 13; voir Note en 5.2.1.
5.2.4 Stéarate de glycidyle (Gly-S), pureté ≥ 98 %.
NOTE Le stéarate de glycidyle peut être remplacé par l’oléate de glycidyle ou d’autres esters d’acide gras
du glycidol de longueur de chaîne similaire (les C16 à C18 sont préférés, car ils sont les plus abondants dans la
plupart des corps gras).
5.2.5 Stéarate de glycidyle pentadeutéré (Gly-S-d5), pureté ≥ 98 %.
NOTE La même considération que celle appliquée au palmitate de glycidyle est également valable pour son
analogue pentadeutéré; voir Note en 5.2.4.
5.3 Solutions étalons
5.3.1 Généralités
Toutes les solutions étalons sont préparées avec du toluène (5.4.4). Tous les étalons sont préparés
en utilisant des composés d’ester de référence (5.2). Les concentrations sont indiquées dans la
concentration équivalente en composants libres et elles doivent être corrigées en fonction de la pureté
des composés de référence (5.2). Pour un exemple de calcul de conversion de la concentration des esters
en concentration équivalente libre, voir 10.2.
5.3.2 Solutions mères
NOTE Les solutions mères sont stables pendant au moins 12 mois en étant conservées à −18 °C. L’utilisation
d’un bain à ultrasons peut aider à garantir que tous les étalons sont entièrement dissous.
5.3.2.1 Solution mère d’étalonnage (3-MCPD: 52,7 µg/ml, glycidol: 52,2 µg/ml, 2-MCPD: 48,1 µg/
ml). Peser 14,0 mg de PP-3-MCPD (5.2.1), 12,0 mg de Gly-S (5.2.4) et 14,0 mg de SS-2-MCPD (5.2.2) dans
une fiole jaugée de 50 ml. Compléter jusqu’au trait, en s’assurant que les étalons sont totalement dissous
dans le solvant.
5.3.2.2 Solution mère de dopage (3-MCPD: 52,7 µg/ml, glycidol: 52,2 µg/ml, 2-MCPD: 34,4 µg/ml).
Peser 14,0 mg de PP-3-MCPD (5.2.1), 12,0 mg de Gly-S (5.2.4) et 10,0 mg de SS-2-MCPD (5.2.2) dans une
fiole jaugée de 50 ml. Compléter jusqu’au trait, en s’assurant que les étalons sont totalement dissous
dans le solvant.
13 13
5.3.2.3 Solution mère de PP-3-MCPD- C (3-MCPD- C : 38,5 µg/ml). Peser 20 mg de PP-3-MCPD-
3 3
C (5.2.3) dans une fiole jaugée de 100 ml. Compléter jusqu’au trait, en s’assurant que l’étalon est
totalement dissous dans le solvant.
5.3.2.4 Solution mère de Gly-S-d5 (Glycidol-d5: 45,8 µg/ml). Peser 10 mg de Gly-S-d5 (5.2.5) dans
une fiole jaugée de 50 ml. Compléter jusqu’au trait, en s’assurant que l’étalon est totalement dissous dans
le solvant.
5.3.3 Solutions de travail
Il est recommandé de préparer les solutions de travail d’étalonnage le jour où elles sont à utiliser.
Les concentrations de toutes les solutions mères et étalons doivent être corrigées en fonction de la
pureté des étalons utilisés.
NOTE La solution de dopage (5.3.3.4) et la solution étalon interne (5.3.3.5) peuvent se conserver au
réfrigérateur pendant au moins 3 mois.
5.3.3.1 Solution de travail d’étalonnage I (3-MCPD: 7,9 µg/ml, glycidol: 7,8 µg/ml, 2-MCPD: 7,2 µg/
ml). Prélever à la pipette 300 μl de solution mère (5.3.2.1) et les introduire dans un flacon pour CPG de
2,5 ml contenant 1 700 µl de toluène (5.4.4), puis homogénéiser à l’aide d’un agitateur de type vortex.
5.3.3.2 Solution de travail d’étalonnage II (3-MCPD: 3,2 µg/ml, glycidol: 3,1 µg/ml, 2-MCPD: 2,9 µg/
ml). Prélever à la pipette 120 μl de solution mère (5.3.2.1) et les introduire dans un flacon pour CPG de
2,5 ml contenant 1 880 µl de toluène (5.4.4), puis homogénéiser à l’aide d’un agitateur de type vortex.
5.3.3.3 Solution de travail d’étalonnage III (3-MCPD: 0,16 µg/ml, glycidol: 0,16 µg/ml, 2-MCPD:
0,14 µg/ml). Prélever à la pipette 40 μl de la solution de travail d’étalonnage I (5.3.3.1) et les introduire
dans un flacon pour CPG de 2,5 ml contenant 1 960 µl de toluène (5.4.4), puis homogénéiser à l’aide d’un
agitateur de type vortex.
5.3.3.4 Solution de dopage (3-MCPD: 1,05 µg/ml, glycidol: 1,04 µg/ml, 2-MCPD: 0,69 µg/ml). Prélever
à la pipette 5,0 ml de la solution mère de dopage (5.3.2.2), les introduire dans une fiole jaugée de 250 ml
et compléter jusqu’au trait avec le solvant.
5.3.3.5 Solution étalon interne (3-MCPD- C : 1,54 µg/ml, glycidol-d5: 0,92 µg/ml). Prélever à la
pipette 5,0 ml de la solution de Gly-S-d5 (5.3.2.4) et 10,0 ml de solution de PP-3-MCPD- C (5.3.2.3), les
introduire dans une fiole jaugée de 250 ml et compléter jusqu’au trait avec le solvant.
5.4 Autres réactifs
5.4.1 Méthanol, de qualité analytique.
5.4.2 Iso-octane, de qualité analytique.
5.4.3 Acétone, de qualité analytique.
5.4.4 Toluène, de qualité analytique.
5.4.5 Tert-butyl-méthyl-éther, de qualité analytique.
5.4.6 Eau, ultrapure.
5.4.7 Acide sulfurique (pureté ≥ 95 %).
4 © ISO 2021 – Tous droits réservés
5.4.8 Acide phénylboronique (pureté ≥ 97 %).
5.4.9 Bromure de sodium (pureté ≥ 99,5 %).
5.4.10 Solution de méthylate de sodium dans du méthanol (fraction massique de 25 %).
5.4.11 Huile végétale pressée à froid, sans traitement thermique (blanc d’huile, voir 9.4).
5.5 Solutions de réactifs
5.5.1 Solution aqueuse d’acide sulfurique (25 %). Transférer 25 ml d’acide sulfurique (5.4.7) dans
une fiole jaugée de 100 ml contenant 50 ml d’H O (5.4.6). Compléter avec de l’H O (5.4.6) jusqu’au trait
2 2
et homogénéiser.
5.5.2 Solution aqueuse acidifiée de bromure de sodium (bromure de sodium 600 mg/ml, acide
sulfurique à une fraction volumique de 0,9 %). Dissoudre 600 g de bromure de sodium (5.4.9) dans
700 ml d’eau ultrapure (5.4.6). Transférer la solution de bromure de sodium dans une fiole jaugée de
1 000 ml contenant 36 ml de solution d’acide sulfurique (5.5.1). Compléter avec de l’H O (5.4.6) jusqu’au
trait et homogénéiser.
5.5.3 Solution de méthylate de sodium (0,35 M). Transférer 20 ml de méthylate de sodium
(fraction massique de 25 %) (5.4.10) dans une fiole jaugée de 250 ml, compléter jusqu’au trait avec du
méthanol (5.4.1) et homogénéiser.
NOTE La solution de méthylate de sodium (0,35 M) peut se conserver au réfrigérateur pendant au moins
trois mois.
5.5.4 Solution d’acide phénylboronique (saturée). Peser 12,0 g d’acide phénylboronique (5.4.8) et
ajouter 100 ml d’un mélange d’eau à une fraction volumique de 5 % (5.4.6) dans l’acétone (5.4.3). Agiter
vigoureusement.
NOTE L’acide phénylboronique ne se dissout pas totalement dans le mélange de solvants. Seul le surnageant
est employé pour l’étape de dérivatisation (voir 8.1.11). La solution peut se conserver pendant au moins trois
mois à température ambiante.
6 Appareillage
6.1 Agitateur de type vortex
6.2 Porte-échantillon refroidi à 10 °C ± 0,5 °C.
6.3 Porte-échantillon chauffé à 80 °C ± 4,0 °C avec fonction d’agitateur.
6.4 Bain à ultrasons
6.5 Système CPG-SM/SM avec injecteur avec division/sans division (split/splitless) et option de
rétrobalayage.
6.6 Colonne de CPG en silice fondue, phase stationnaire 5 % diphényle à 95 % diméthylpolysiloxane
ou de polarité similaire, longueur 20 m, diamètre interne 0,18 mm, épaisseur du film 0,18 µm. Précolonne:
phase stationnaire 5 % diphényle à 95 % diméthylpolysiloxane ou de polarité similaire, longueur 2 m,
diamètre interne 0,53 mm, épaisseur du film 0,10 µm.
La précolonne est régulièrement remplacée pour conserver une forme de pic et une sensibilité
appropriées.
6.7 Pipette électronique, capable de pipeter des volumes allant de 1,0 µl à 1 000 µl.
L’utilisation d’une pipette électronique est recommandée pour l’ajout successif de volumes exacts de
solutions étalons internes ou la dilution d’étalons pour étalonnage.
7 Transport et stockage
7.1 Échantillonnage
L’échantillonnage ne fait pas partie de la présente méthode. Une méthode d’échantillonnage
recommandée est donnée dans l’ISO 5555.
7.2 Préparation de l’échantillon pour essai
Les échantillons liquides doivent être utilisés sans traitement supplémentaire. Les matières grasses
solides ou présentant un trouble doivent être placées avec précaution dans une étuve ou un bain-marie
à environ 60 °C jusqu’à fusion. Pour les matières grasses ayant un point de fusion élevé, la température
doit être augmentée avec précaution par palier de 10 °C jusqu’à déclenchement du processus de fusion.
Les échantillons ayant une forte teneur en eau doivent être séchés avant l’échantillonnage (par exemple,
à l’aide de Na SO anhydre).
2 4
Les corps gras dont le point de fusion est supérieur à 60 °C se solidifient souvent lorsqu’ils sont incubés
à 10 °C en présence du milieu réactionnel (voir 8.1.4). Cela influence la complétude du clivage des esters,
car la vitesse de réaction diminue considérablement. Il est important que les matières grasses à haut
point de fusion forment une solution laiteuse pour que la réaction se poursuive. Les échantillons qui
se solidifient complètement présentent généralement des signaux de faible intensité et les résultats ne
sont pas reproductibles. Les signaux des étalons internes sont des marqueurs efficaces pour repérer les
échantillons qui n’ont pas entièrement subi la réaction de clivage. Si les signaux des étalons internes de
l’échantillon sont < 50 % des signaux moyens des étalons internes des échantillons de récupération, la
préparation de l’échantillon doit être recommencée avec une plus petite quantité de corps gras.
7.3 Conditions de conservation
La concentration en esters de glycidol est influencée par les conditions de conservation, alors que ce n’est
pas le cas des esters de MCPD. Il a été démontré que la température ambiante (22 °C) offre la meilleure
stabilité pour les esters de glycidol et de MCPD et il convient donc de conserver les échantillons dans ces
conditions. Les échantillons ne peuvent pas être conservés dans des conditions réfrigérées (4 °C), car la
dégradation des esters de glycidol est susceptible de se produire avec le temps.
8 Mode opératoire
8.1 Préparation de l’échantillon pour essai
NOTE Les modes opératoires sont indiqués pour un seul échantillon. Les temps nécessaires pour la
préparation en parallèle d’un lot de 20 échantillons pour les étapes 8.1.5 et 8.1.6 sont donnés dans le Tableau A.2.
8.1.1 Peser de 100 mg à 120 mg d’échantillon de corps gras (avec une fidélité de 0,01 mg) dans un
flacon pour CPG de 2,5 ml. Pour les graisses et les matrices d'huile avec des points de fusion > 60 °C, une
quantité maximale de 100 mg est pesée afin de prévenir la solidification du mélange réactionnel durant
la transestérification (voir 10.1).
6 © ISO 2021 – Tous droits réservés
8.1.2 Ajouter 100 μl de toluène (5.4.4) et 200 μl de tBME (5.4.5), suivis de 100 μl de solution de travail
étalon interne (5.3.3.5) à tous les échantillons.
Les étapes 8.1.3 à 8.1.9 doivent être réalisées sans interruption afin de garantir une quantification
correcte.
8.1.3 Agiter tous les échantillons à l’aide d’un agitateur chauffé (80 °C, 250 r/min) pendant 120 s ou
jusqu’à ce que toutes les matières grasses aient fondu et se soient dissoutes.
8.1.4 Homogénéiser pendant 10 s à l’aide d’un agitateur de type vortex et placer les flacons dans un
porte-échantillon refroidi (10 °C). Les laisser refroidir pendant exactement 240 s.
8.1.5 Commencer la transestérification en ajoutant 200 µl de solution de méthylate de sodium (5.5.3).
Homogénéiser pendant 10 s après l’ajout de la solution de méthylate de sodium (5.5.3) à l’aide d’un
agitateur de type vortex et replacer l’échantillon dans le porte-échantillon refroidi.
8.1.6 Après exactement 12 min, arrêter la réaction en ajoutant 700 μl de solution aqueuse acidifiée de
bromure de sodium (5.5.2). Homogénéiser pendant 10 s en utilisant un agitateur de type vortex et laisser
la température se stabiliser à température ambiante pendant au moins 5 min pour la transformation
complète de tout le glycidol en 3-MBPD.
8.1.7 Ajouter 300 µl d’iso-octane (5.4.2) à tous les échantillons et homogénéiser à l’aide d’un agitateur
de type vortex pendant 10 s.
8.1.8 Agiter tous les échantillons à l’aide d’un agitateur chauffé (80 °C, 400 r/min) pendant 270 s ± 10 s
ou jusqu’à ce que la phase supérieure (partiellement) solidifiée ou gélifiée soit totalement dissoute et
homogénéisée (voir 7.2).
8.1.9 Laisser les échantillons refroidir pendant 3 min avant d’extraire la phase organique, tout en
veillant à ne rien extraire de la phase aqueuse, et jeter l’extrait.
8.1.10 Ajouter 600 μl d’iso-octane frais (5.4.2) et homogénéiser à l’aide d’un agitateur de type vortex
pendant 10 s, puis extraire la phase organique en veillant à ne rien extraire de la phase aqueuse. Jeter
l’extrait.
8.1.11 Ajouter 100 µl de solution de PBA (5.5.4) et homogénéiser à l’aide d’un agitateur de type vortex
pendant 10 s.
8.1.12 Ajouter 600 μl d’iso-octane frais (5.4.2) et homogénéiser à l’aide d’un agitateur de type vortex
pendant 10 s pour extraire les dérivés et les analyser à l’aide d’un système de CPG-SM/SM par injection
de 2,0 µl de la phase organique.
8.2 Préparation de la droite d’étalonnage
8.2.1 Peser de 100 mg à 120 mg de blanc d’huile (5.4.11) dans 10 flacons distincts pour CPG de 2,5 ml.
Ajouter du toluène (5.4.4), du tBME (5.4.5), la solution étalon interne (5.3.3.5) et la solution d’étalonnage
correspondante (5.3.3.1 à 5.3.3.3) comme indiqué dans le Tableau A.1.
8.2.2 Traiter les échantillons d’étalonnage conformément au mode opératoire utilisé pour les
échantillons pour essai, en commençant par la dissolution de l’échantillon (8.1.3).
Il convient que tous les rapports entre le solvant et les réactifs soient égaux pour tous les échantillons
d’étalonnage et les échantillons inconnus, comme décrit en 8.1.
8.3 Paramétrages relatifs à la chromatographie en phase gazeuse et spectrométrie de
masse (CPG/SM)
8.3.1 Volume d’injection: 2,0 μl.
8.3.2 Mode d’injection: sans division, temps sans division = 2,0 min.
8.3.3 Température d’injection: 350 °C.
8.3.4 Gaz vecteur: hélium, débit: 1,7 ml/min, débit de purge constant: 5,0 ml/min, débit avec
division = 100 ml/min.
8.3.5 Temps d’initiation du rétrobalayage: 6,0 min. Le paramétrage de l’initiation du rétrobalayage doit
être redéfini après chaque changement de la colonne analytique ou de la précolonne.
8.3.6 Programme de température du four CPG: 70 °C (en isotherme pendant 1 min), de 70 °C à 120 °C
à 15 °C/min (en isotherme pendant 0,5 min), de 120 °C à 350 °C à 40 °C/min (en isotherme pendant
2,5 min).
8.3.7 Détecteur par spectrométrie de masse en tandem: impact électronique (EI), suivi de réactions
sélectionnées (SRM), température de la ligne de transfert: 315 °C, température de la source ionique:
290 °C.
8.3.8 Exemple de temps de rétention ± fenêtre d’acquisition: 3-MCPD (6,70 ± 0,3) min, 2-MCPD
(6,80 ± 0,3) min et 3-MBPD (7,00 ± 0,3) min. Les temps de rétention réels peuvent différer entre les
colonnes.
Les paramètres pour les transitions de masse SM/SM sont donnés dans le Tableau 1. Des exemples de
chromatogrammes sont fournis dans l’Annexe C.
Tableau 1 — Aperçu du paramétrage du détecteur par spectrométrie de masse en tandem pour
les transitions de masse de chaque paire d’ions
Fragment parent Cellule de collision Fragment fils
Nom du compo- Objectif de la transition de
Q1 Q2 Q3
sant masse
a
m/z eV m/z
3-MCPD 196 8 147 Quantification du 3-MCPD
3-MCPD 198 8 147 Qualification du 3-MCPD
3-MCPD- C 199 8 149 Quantification
Étalon interne de 3-MCPD/2-
MCPD
3-MCPD- C 201 8 149 Qualification
Étalon interne de 3-MCPD/2-
MCPD
2-MCPD 196 14 104 Quantification du 2-MCPD
2-MCPD 198 14 104 Qualification du 2-MCPD
3-MBPD 240 8 147 Quantification du glycidol
3-MBPD 242 8 147 Qualification du glycidol
a Le paramétrage de la cellule de collision eV peut différer selon les types de spectromètres de masse en tandem, les
systèmes de divers fabricants ou les deux, et nécessite d’être optimisé pour chaque système individuel.
b
...










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...