IEC 60749-17:2019
(Main)Semiconductor devices - Mechanical and climatic test methods - Part 17: Neutron irradiation
Semiconductor devices - Mechanical and climatic test methods - Part 17: Neutron irradiation
IEC 60749-17:2019 is performed to determine the susceptibility of semiconductor devices to non-ionizing energy loss (NIEL) degradation. The test described herein is applicable to integrated circuits and discrete semiconductor devices and is intended for military- and aerospace-related applications. It is a destructive test.
This edition includes the following significant technical changes with respect to the previous edition:
updates to better align the test method with MIL-STD 883J, method 1017, including removal of restriction of use of the document, and a requirement to limit the total ionization dose;
addition of a Bibliography, including US MIL- and ASTM standards relevant to this test method.
Dispositifs à semiconducteurs - Méthodes d'essais mécaniques et climatiques - Partie 17: Irradiation aux neutrons
L’IEC 60749-17:2019 est réalisé pour déterminer la sensibilité des dispositifs à semiconducteurs à la dégradation par perte d’énergie non ionisante (NIEL, Non-Ionizing Energy Loss). L’essai décrit dans le présent document s’applique aux circuits intégrés et aux dispositifs discrets à semiconducteurs, et est destiné aux applications des domaines militaire et aérospatial. Il s’agit d’un essai destructif.
Cette édition inclut les modifications techniques majeures suivantes par rapport à l’édition précédente:
mises à jour afin de mieux aligner la méthode d’essai avec la méthode 1 017 du document MIL-STD 883J, comprenant la suppression des restrictions d’utilisation du document, et une exigence visant à limiter la dose ionisante totale;
ajout d’une bibliographie, comprenant les normes US MIL- et ASTM correspondant à la présente méthode d’essai.
General Information
Relations
Standards Content (Sample)
IEC 60749-17 ®
Edition 2.0 2019-03
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Semiconductor devices – Mechanical and climatic test methods –
Part 17: Neutron irradiation
Dispositifs à semiconducteurs – Méthodes d’essais mécaniques et climatiques –
Partie 17: Irradiation aux neutrons
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - webstore.iec.ch/advsearchform Electropedia - www.electropedia.org
The advanced search enables to find IEC publications by a The world's leading online dictionary on electrotechnology,
variety of criteria (reference number, text, technical containing more than 22 000 terminological entries in English
committee,…). It also gives information on projects, replaced and French, with equivalent terms in 16 additional languages.
and withdrawn publications. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published IEC Glossary - std.iec.ch/glossary
details all new publications released. Available online and 67 000 electrotechnical terminology entries in English and
once a month by email. French extracted from the Terms and Definitions clause of
IEC publications issued since 2002. Some entries have been
IEC Customer Service Centre - webstore.iec.ch/csc collected from earlier publications of IEC TC 37, 77, 86 and
If you wish to give us your feedback on this publication or CISPR.
need further assistance, please contact the Customer Service
Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Recherche de publications IEC - Electropedia - www.electropedia.org
webstore.iec.ch/advsearchform Le premier dictionnaire d'électrotechnologie en ligne au
La recherche avancée permet de trouver des publications IEC monde, avec plus de 22 000 articles terminologiques en
en utilisant différents critères (numéro de référence, texte, anglais et en français, ainsi que les termes équivalents dans
comité d’études,…). Elle donne aussi des informations sur les 16 langues additionnelles. Egalement appelé Vocabulaire
projets et les publications remplacées ou retirées. Electrotechnique International (IEV) en ligne.
IEC Just Published - webstore.iec.ch/justpublished Glossaire IEC - std.iec.ch/glossary
Restez informé sur les nouvelles publications IEC. Just 67 000 entrées terminologiques électrotechniques, en anglais
Published détaille les nouvelles publications parues. et en français, extraites des articles Termes et Définitions des
Disponible en ligne et une fois par mois par email. publications IEC parues depuis 2002. Plus certaines entrées
antérieures extraites des publications des CE 37, 77, 86 et
Service Clients - webstore.iec.ch/csc CISPR de l'IEC.
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-nous:
sales@iec.ch.
IEC 60749-17 ®
Edition 2.0 2019-03
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Semiconductor devices – Mechanical and climatic test methods –
Part 17: Neutron irradiation
Dispositifs à semiconducteurs – Méthodes d’essais mécaniques et climatiques –
Partie 17: Irradiation aux neutrons
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 31.080.01 ISBN 978-2-8322-6702-8
– 2 – IEC 60749-17:2019 © IEC 2019
CONTENTS
FOREWORD . 3
1 Scope . 5
2 Normative references . 5
3 Terms and definitions . 5
4 Test apparatus . 5
4.1 Test instruments . 5
4.2 Radiation source . 5
4.3 Dosimetry equipment . 6
4.4 Dosimetry measurements . 6
4.4.1 Neutron fluences . 6
4.4.2 Dose measurements . 6
5 Procedure . 6
5.1 Safety requirements . 6
5.2 Test samples . 6
5.3 Pre-exposure . 7
5.3.1 Electrical tests . 7
5.3.2 Exposure set-up . 7
5.4 Exposure . 7
5.5 Post-exposure . 7
5.5.1 Electrical tests . 7
5.5.2 Anomaly investigation . 7
5.6 Reporting . 7
6 Summary . 8
Bibliography . 9
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
SEMICONDUCTOR DEVICES –
MECHANICAL AND CLIMATIC TEST METHODS –
Part 17: Neutron irradiation
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 60749-17 has been prepared by IEC technical committee 47:
Semiconductor devices.
This second edition cancels and replaces the first edition published in 2003. This edition
constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) updates to better align the test method with MIL-STD 883J, method 1017, including
removal of restriction of use of the document, and a requirement to limit the total
ionization dose;
b) addition of a Bibliography, including US MIL- and ASTM standards relevant to this test
method.
– 4 – IEC 60749-17:2019 © IEC 2019
The text of this International Standard is based on the following documents:
FDIS Report on voting
47/2538/FDIS 47/2553/RVD
Full information on the voting for the approval of this International Standard can be found in
the report on voting indicated in the above table.
This document has been drafted in accordance with the ISO/IEC Directives, Part 2.
A list of all parts in the IEC 60749 series, published under the general title Semiconductor
devices – Mechanical and climatic test methods, can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to
the specific document. At this date, the document will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
SEMICONDUCTOR DEVICES –
MECHANICAL AND CLIMATIC TEST METHODS –
Part 17: Neutron irradiation
1 Scope
The neutron irradiation test is performed to determine the susceptibility of semiconductor
devices to non-ionizing energy loss (NIEL) degradation. The test described herein is
applicable to integrated circuits and discrete semiconductor devices and is intended for
military- and aerospace-related applications. It is a destructive test.
The objectives of the test are as follows:
a) to detect and measure the degradation of critical semiconductor device parameters as
a function of neutron fluence, and
b) to determine if specified semiconductor device parameters are within specified limits after
exposure to a specified level of neutron fluence (see Clause 6).
2 Normative references
There are no normative references in this document.
3 Terms and definitions
No terms and definitions are listed in this document.
ISO and IEC maintain terminological databases for use in standardization at the following
addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp
4 Test apparatus
4.1 Test instruments
Test instrumentation to be used in the radiation test shall be standard laboratory electronic
test instruments such as power supplies, digital voltmeters, and pico-ammeters, etc., capable
of measuring the electrical parameters required.
4.2 Radiation source
The radiation source used in the test shall be a well characterized neutron source that
produces either a broad neutron energy spectrum (such as a TRIGA® reactor or a fast burst
reactor) or a monoenergetic neutron spectrum such as available from deuterium-tritium or
deuterium-deuterium accelerators) provided that the output can be converted to a 1 MeV
equivalent spectrum.
__________
TRIGA is the trade name of a product supplied by General Atomics. This information is given for the
convenience of users of this document and does not constitute an endorsement by IEC of the product named.
Equivalent products may be used if they can be shown to lead to the same results.
– 6 – IEC 60749-17:2019 © IEC 2019
4.3 Dosimetry equipment
The following dosimetry equipment shall be used (as required):
32 54 58
a) fast-neutron threshold activation foils such as S, Fe, and Ni;
b) CaF2 thermoluminescence dosimeters (TLDs);
c) appropriate activation foil counting and TLD readout equipment.
4.4 Dosimetry measurements
4.4.1 Neutron fluences
The neutron fluence used for device irradiation shall be obtained by measuring the amount of
32 54 58
radioactivity induced in a fast-neutron threshold activation foil such as S, Fe, or Ni,
irradiated simultaneously with the device.
A standard method for converting the measured radioactivity in the specific activation foil
employed into a neutron fluence is given in national and international standards (examples
are given in the Bibliography).
The conversion of the foil radioactivity into a neutron fluence requires a knowledge of the
neutron spectrum incident on the foil. If the spectrum is not known, it shall be determined by
use of a recognised national standard or equivalent (examples are given in the Bibliography).
Once the neutron energy spectrum has been determined and the equivalent monoenergetic
32 54 58
S, Fe, or Ni) should be
fluence calculated, then an appropriate monitor foil (such as
used in subsequent irradiations to determine the neutron fluence. Thus, the neutron fluence is
described in terms of the equivalent monoenergetic neutron fluence per unit monitor
response. Use of a monitor foil to predict the equivalent monoenergetic neutron fluence is
valid only if the energy spectrum remains constant.
4.4.2 Dose measurements
If absorbed dose measurements of the gamma-ray component during the device test
irradiations are required, then such measurements shall be made with CaF2 thermo-
luminescence dosimeters (TLDs), or their equivalent. These TLDs shall be used in
accordance with the recommendations of recognised national standards or their equivalent
(examples are given in the Bibliography).
5 Procedure
5.1 Safety requirements
Neutron irradiated devices may be radioactive. Handling and storage of test specimens or
equipment subjected to radiation environments shall be governed by the procedures
established by the local Radiation Safety Officer or Health Physicist.
5.2 Test samples
A test sample shall be randomly selected and consist of a minimum of 10 devices, unless
otherwise specified. All sample devices shall have met all the requirements of the relevant
specification for that device. Each device shall be serialised to enable pre- and post-test
identification and comparison.
5.3 Pre-exposure
5.3.1 Electrical tests
Pre-exposure electrical tests shall be performed on each device as required. Where delta
parameter limits are specified, the pre-exposure data shall be recorded.
5.3.2 Exposure set-up
Each device shall be mounted unbiased and have its terminal leads either all shorted or all
open. For MOS devices or any microcircuit containing an MOS element, all leads shall be
shorted. An appropriate mounting fixture shall be used. The mounting fixture shall
accommodate the units-under-test as well as any required dosimeters. The configuration of
the mounting fixture will depend on the type of facility used and should be discussed with
facility personnel. Test devices shall be mounted such that the total variation of fluence over
the entire sample does not exceed 20 %.
5.4 Exposure
The test devices and dosimeters shall be exposed to the neutron fluence as specified.
If multiple exposures are required, the post-radiation electrical tests shall be performed
(see 5.5.1) after each exposure. A new set of dosimeters is required for each exposure level.
Since the effects of neutrons are cumulative, each additional exposure will have to be
determined to give the specified total accumulated fluence. All exposures shall be made at
24 °C ± 6 °C and shall be correlated to a 1 MeV equivalent fluence. To avoid confounding
NIEL effects with total ionizing dose (TID) damage effects, units-under-test shall not be
exposed to a neutron fluence that causes the unit-under-test to receive a TID in excess of
10 % of its rated value. If necessary, the use of shielding to reduce the accompanying gamma
TID exposure is acceptable.
5.5 Post-exposure
5.5.1 Electrical tests
Test items shall be removed only after clearance has been obtained from the Health physicist
at the test facility. The temperature of the sample devices shall be maintained at
20 °C ± 10 °C from the time of the exposure until the post-electrical tests are made. The post-
exposure electrical tests as specified shall be made within 24 h after the completion of the
exposure. If the residual radioactivity level is too high for safe handling – this level to be
determined by the local Radiation Safety Officer –, the elapsed time before post-test electrical
measurements may be extended to one week. Alternatively, provisions may be made for
remote testing. All required data shall be recorded for each device after each exposure.
5.5.2 Anomaly investigation
Devices which exhibit previously defined anomalous behaviour (e.g., non-linear degradation
of 0,125) shall be subjected to failure analysis, in accordance with national and international
standards (an example is given in the Bibliography, [10]).
5.6 Reporting
As a minimum, the report shall include the device type number, serial number, manufacturer,
controlling specification, the date code and other identifying numbers given by the manu-
facturer. Each data sheet shall include radiation test date, electrical test conditions, radiation
exposure levels, ambient conditions as well as the test data. Where other than specified
electrical test circuits are employed, the parameter measurement circuits shall accompany the
data. Any anomalous incidents during the test shall be fully explained in footnotes to the data.
– 8 – IEC 60749-17:2019 © IEC 2019
6 Summary
The following details shall be specified in the request for test or, when applicable, the relevant
specification:
a) device types (see 5.6);
b) quantities of each device type to be tested, if other than specified in 5.2;
c) electrical parameters to be measured in pre- and post-exposure tests (see 5.3.1 and 5.5.1);
d) criteria for pass, fail, record actions on tested devices (see 5.3.1, 5.5.1 and 5.6);
e) criteria for anomalous behaviour designation (see 5.5.2);
f) radiation exposure levels (see 5.4);
g) test instrument requirements (see Clause 4);
h) radiation dosimetry requirements, if other than 4.3;
i) ambient temperature, if other than specified herein (see 5.4 and 5.5.1);
j) requirements for data reporting and submission, where applicable (see
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...