Wind energy generation systems - Part 24: Lightning protection

IEC 61400-24:2019 applies to lightning protection of wind turbine generators and wind power systems. Refer to guidelines for small wind turbines in annex.
This document defines the lightning environment for wind turbines and risk assessment for wind turbines in that environment. It defines requirements for protection of blades, other structural components and electrical and control systems against both direct and indirect effects of lightning. Test methods to validate compliance are included.
Guidance on the use of applicable lightning protection, industrial electrical and EMC standards including earthing is provided.
This second edition cancels and replaces the first edition, published in 2010. This edition includes the following significant technical changes with respect to the previous edition:
a) it is restructured with a main normative part, while informative information is placed in annexes.

Systèmes de génération d’énergie éolienne - Partie 24: Protection contre la foudre

l’IEC 61400-24:2019 s’applique à la protection des aérogénérateurs et des parcs éoliens contre la foudre. Se reporter à l’Annexe M pour les lignes directrices applicables aux éoliennes de petite taille.Le présent document définit l’environnement de foudre applicable aux éoliennes et l’appréciation du risque pour ces mêmes éoliennes dans cet environnement. Il définit les exigences concernant la protection des pales, des autres composants structurels, ainsi que des réseaux de puissance et de commande contre les effets directs et indirects de la foudre. Les méthodes d’essai pour validation de la conformité sont incluses dans le présent document.Des recommandations relatives à l’utilisation des normes applicables en matière de protection contre la foudre, ainsi que des normes électriques industrielles et de CEM, y compris la mise à la terre sont fournies.
Cette deuxième édition annule et remplace la première édition parue en 2010. Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:
a) sa restructuration comprend une partie normative principale, les informations informatives étant intégrées dans des annexes.

General Information

Status
Published
Publication Date
12-Nov-2024
Drafting Committee
Current Stage
PPUB - Publication issued
Start Date
22-Mar-2019
Completion Date
03-Jul-2019
Ref Project

Relations

Overview

IEC 61400-24:2019 - Wind energy generation systems - Part 24: Lightning protection - defines requirements and methods for protecting wind turbines and wind power systems from lightning. This consolidated second edition replaces the 2010 edition and is restructured so the main normative requirements are separated from informative annexes. The standard covers the lightning environment, exposure and risk assessment, protection of blades, structural components, electrical and control systems, earthing, testing, documentation, inspection and maintenance. An annex provides guidance for small wind turbines.

Key topics and requirements

  • Lightning environment & exposure assessment: Defines parameters of the lightning environment for wind turbines and methods to estimate annual lightning flashes and exposure for single turbines and farms.
  • Risk assessment: Provides a framework to assess probability and consequences of lightning events (direct strikes and near flashes) and to quantify risk components for design decisions.
  • Protection requirements:
    • Blades: Requirements, design considerations and test methods for blade lightning protection and verification.
    • Nacelle, hub, spinner, tower: Structural protection and verification methods.
    • Mechanical systems: Guidance for bearings, hydraulic systems, spark gaps and sliding contacts.
    • Electrical & electronic systems: LEMP protection, immunity levels, shielding, routing, surge protective devices (SPDs) and equipotential bonding.
  • Earthing (grounding): Earth electrode arrangements, impedance targets, equipotential bonding and guidance for onshore, offshore and different tower/foundation types.
  • Testing & verification: Laboratory and on-site test methods to validate compliance for components and systems.
  • Documentation, inspection & maintenance: Required design documentation, manuals for LPS inspection, commissioning and periodic checks.

Applications and who uses this standard

IEC 61400-24 is used by:

  • Wind turbine manufacturers (design & testing of blades, nacelles, electrical systems)
  • Wind farm designers and asset owners (site exposure assessment, earthing and mitigation)
  • Electrical and EMC engineers (LEMP protection, SPDs, shielding and routing)
  • Certification bodies and testing laboratories (compliance verification)
  • Field technicians and maintenance teams (inspection, repair, documentation)
  • Safety and risk managers (risk assessment and mitigation planning)

Practical uses include designing lightning protection systems (LPS), specifying SPDs and bonding, defining test protocols, preparing maintenance procedures and demonstrating compliance for certification.

Related standards

  • Other IEC standards covering wind turbines (IEC 61400 series)
  • Applicable lightning protection, industrial electrical, and EMC standards (for earthing and LEMP/EMC compatibility)
  • National/regional earthing and safety regulations

Keywords: IEC 61400-24, lightning protection, wind turbine lightning, risk assessment, LEMP, earthing, blades, surge protection, lightning protection level (LPL), lightning protection zones (LPZ).

Standard
IEC 61400-24:2019 - Wind energy generation systems - Part 24: Lightning protection
English language
191 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
IEC 61400-24:2019+AMD1:2024 CSV - Wind energy generation systems - Part 24: Lightning protection Released:13. 11. 2024 Isbn:9782832700327
English language
404 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
IEC 61400-24:2019 - Wind energy generation systems - Part 24: Lightning protection
English and French language
405 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

IEC 61400-24:2019 is a standard published by the International Electrotechnical Commission (IEC). Its full title is "Wind energy generation systems - Part 24: Lightning protection". This standard covers: IEC 61400-24:2019 applies to lightning protection of wind turbine generators and wind power systems. Refer to guidelines for small wind turbines in annex. This document defines the lightning environment for wind turbines and risk assessment for wind turbines in that environment. It defines requirements for protection of blades, other structural components and electrical and control systems against both direct and indirect effects of lightning. Test methods to validate compliance are included. Guidance on the use of applicable lightning protection, industrial electrical and EMC standards including earthing is provided. This second edition cancels and replaces the first edition, published in 2010. This edition includes the following significant technical changes with respect to the previous edition: a) it is restructured with a main normative part, while informative information is placed in annexes.

IEC 61400-24:2019 applies to lightning protection of wind turbine generators and wind power systems. Refer to guidelines for small wind turbines in annex. This document defines the lightning environment for wind turbines and risk assessment for wind turbines in that environment. It defines requirements for protection of blades, other structural components and electrical and control systems against both direct and indirect effects of lightning. Test methods to validate compliance are included. Guidance on the use of applicable lightning protection, industrial electrical and EMC standards including earthing is provided. This second edition cancels and replaces the first edition, published in 2010. This edition includes the following significant technical changes with respect to the previous edition: a) it is restructured with a main normative part, while informative information is placed in annexes.

IEC 61400-24:2019 is classified under the following ICS (International Classification for Standards) categories: 27.180 - Wind turbine energy systems; 29.060.10 - Wires. The ICS classification helps identify the subject area and facilitates finding related standards.

IEC 61400-24:2019 has the following relationships with other standards: It is inter standard links to IEC 61400-24:2019/AMD1:2024, IEC 61400-24:2010, IEC TR 61400-24:2002. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase IEC 61400-24:2019 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of IEC standards.

Standards Content (Sample)


IEC 61400-24 ®
Edition 2.0 2019-07
INTERNATIONAL
STANDARD
colour
inside
Wind energy generation systems –
Part 24: Lightning protection
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform Electropedia - www.electropedia.org
The advanced search enables to find IEC publications by a The world's leading online dictionary on electrotechnology,
variety of criteria (reference number, text, technical containing more than 22 000 terminological entries in English
committee,…). It also gives information on projects, replaced and French, with equivalent terms in 16 additional languages.
and withdrawn publications. Also known as the International Electrotechnical Vocabulary

(IEV) online.
IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published IEC Glossary - std.iec.ch/glossary
details all new publications released. Available online and 67 000 electrotechnical terminology entries in English and
once a month by email. French extracted from the Terms and Definitions clause of
IEC publications issued since 2002. Some entries have been
IEC Customer Service Centre - webstore.iec.ch/csc collected from earlier publications of IEC TC 37, 77, 86 and
If you wish to give us your feedback on this publication or CISPR.

need further assistance, please contact the Customer Service

Centre: sales@iec.ch.
IEC 61400-24 ®
Edition 2.0 2019-07
INTERNATIONAL
STANDARD
colour
inside
Wind energy generation systems –

Part 24: Lightning protection
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
ICS 27.180 ISBN 978-2-8322-6599-4

– 2 – IEC 61400-24:2019 © IEC 2019
CONTENTS
FOREWORD . 11
1 Scope . 13
2 Normative references . 13
3 Terms and definitions . 15
4 Symbols and units . 21
5 Abbreviated terms . 24
6 Lightning environment for wind turbine . 25
6.1 General . 25
6.2 Lightning current parameters and lightning protection levels (LPL) . 25
7 Lightning exposure assessment . 26
7.1 General . 26
7.2 Assessing the frequency of lightning affecting a single wind turbine or a
group of wind turbines . 28
7.2.1 Categorization of lightning events . 28
7.2.2 Estimation of average number of lightning flashes to a single or a group
of wind turbines . 28
7.2.3 Estimation of average annual number of lightning flashes near the wind
turbine (N ) . 31
M
7.2.4 Estimation of average annual number of lightning flashes to the service
lines connecting the wind turbines (N ) . 32
L
7.2.5 Estimation of average annual number of lightning flashes near the
service lines connecting the wind turbine (N ) . 32
I
7.3 Assessing the risk of damage . 33
7.3.1 Basic equation . 33
7.3.2 Assessment of risk components due to flashes to the wind turbine (S1) . 34
7.3.3 Assessment of the risk component due to flashes near the wind turbine
(S2) . 34
7.3.4 Assessment of risk components due to flashes to a service line
connected to the wind turbine (S3) . 35
7.3.5 Assessment of risk component due to flashes near a service line
connected to the wind turbine (S4) . 35
8 Lightning protection of subcomponents . 36
8.1 General . 36
8.1.1 Lightning protection level (LPL) . 36
8.1.2 Lightning protection zones (LPZ) . 37
8.2 Blades . 37
8.2.1 General . 37
8.2.2 Requirements . 37
8.2.3 Verification . 38
8.2.4 Protection design considerations . 38
8.2.5 Test methods . 41
8.3 Nacelle and other structural components . 42
8.3.1 General . 42
8.3.2 Hub . 42
8.3.3 Spinner . 42
8.3.4 Nacelle . 43
8.3.5 Tower . 43
8.3.6 Verification methods . 44

8.4 Mechanical drive train and yaw system . 44
8.4.1 General . 44
8.4.2 Bearings . 44
8.4.3 Hydraulic systems . 45
8.4.4 Spark gaps and sliding contacts . 46
8.4.5 Verification . 46
8.5 Electrical low-voltage systems and electronic systems and installations . 46
8.5.1 General . 46
8.5.2 Equipotential bonding within the wind turbine . 50
8.5.3 LEMP protection and immunity levels . 51
8.5.4 Shielding and line routing . 52
8.5.5 SPD protection . 53
8.5.6 Testing methods for system immunity tests . 57
8.6 Electrical high-voltage (HV) power systems . 57
9 Earthing of wind turbines . 59
9.1 General . 59
9.1.1 Purpose and scope . 59
9.1.2 Basic requirements . 59
9.1.3 Earth electrode arrangements . 59
9.1.4 Earthing system impedance . 60
9.2 Equipotential bonding . 60
9.2.1 General . 60
9.2.2 Lightning equipotential bonding for metal installations . 60
9.3 Structural components . 61
9.3.1 General . 61
9.3.2 Metal tubular type tower . 61
9.3.3 Metal reinforced concrete towers . 61
9.3.4 Lattice tower . 61
9.3.5 Systems inside the tower . 62
9.3.6 Concrete foundation . 62
9.3.7 Rocky area foundation . 62
9.3.8 Metal mono-pile foundation . 63
9.3.9 Offshore foundation . 63
9.4 Electrode shape dimensions . 63
9.5 Execution and maintenance of the earthing system . 64
10 Personal safety . 64
11 Documentation of lightning protection system . 66
11.1 General . 66
11.2 Documentation necessary during assessment for design evaluation. 66
11.2.1 General . 66
11.2.2 General documentation . 66
11.2.3 Documentation for rotor blades . 66
11.2.4 Documentation of mechanical systems . 67
11.2.5 Documentation of electrical and electronic systems . 67
11.2.6 Documentation of earthing and bonding systems . 67
11.2.7 Documentation of nacelle cover, hub and tower lightning protection
systems . 67
11.3 Site-specific information . 68
11.4 Documentation to be provided in the manuals for LPS inspections . 68

– 4 – IEC 61400-24:2019 © IEC 2019
11.5 Manuals . 68
12 Inspection of lightning protection system . 68
12.1 Scope of inspection . 68
12.2 Order of inspections . 68
12.2.1 General . 68
12.2.2 Inspection during production of the wind turbine . 69
12.2.3 Inspection during installation of the wind turbine . 69
12.2.4 Inspection during commissioning of the wind turbine and periodic
inspection . 69
12.2.5 Inspection after dismantling or repair of main parts . 70
12.3 Maintenance . 71
Annex A (informative) The lightning phenomenon in relation to wind turbines . 72
A.1 Lightning environment for wind turbines . 72
A.1.1 General . 72
A.1.2 The properties of lightning . 72
A.1.3 Lightning discharge formation and electrical parameters . 72
A.1.4 Cloud-to-ground flashes . 73
A.1.5 Upward initiated flashes. 79
A.2 Lightning current parameters relevant to the point of strike . 82
A.3 Leader current without return stroke. 83
A.4 Lightning electromagnetic impulse, LEMP, effects . 83
Annex B (informative) Lightning exposure assessment . 84
B.1 General . 84
B.2 Methodology to estimate the average annual flashes or strokes to the wind
turbines of a wind farm and upward lightning activity in wind turbines . 84
B.2.1 General . 84
B.2.2 Methodology to determine average annual flashes to turbines of a wind
farm estimation by increase of the location factor to consider upward
lightning from wind turbines . 84
B.2.3 Upward lightning percentage in wind farms . 88
B.3 Explanation of terms . 88
B.3.1 Damage and loss . 88
B.3.2 Composition of risk . 90
B.3.3 Assessment of risk components . 90
B.3.4 Frequency of damage . 91
B.3.5 Assessment of probability, P , of damage . 92
X
B.4 Assessing the probability of damage to the wind turbine . 93
B.4.1 Probability, P , that a lightning flash to a wind turbine will cause
AT
dangerous touch and step voltage . 93
B.4.2 Probability, P , that a lightning flash to the wind turbine will cause
AD
injury to an exposed person on the structure . 94
B.4.3 Probability, P , that a lightning flash to the wind turbine will cause
B
physical damage . 94
B.4.4 Probability, P , that a lightning flash to the wind turbine will cause
C
failure of internal systems . 96
B.4.5 Probability, P , that a lightning flash near the wind turbine will cause
M
failure of internal systems . 96
B.4.6 Probability, P , that a lightning flash to a service line will cause injury
U
to human beings owing to touch voltage . 96
B.4.7 Probability, P , that a lightning flash to a service line will cause
V
physical damage . 97

B.4.8 Probability, P , that a lightning flash to a service line will cause failure
W
of internal systems . 97
B.4.9 Probability, P , that a lightning flash near an incoming service line will
Z
cause failure of internal systems . 98
B.4.10 Probability P that a person will be in a dangerous place . 99
P
B.4.11 Probability P that equipment will be exposed to damaging event . 99
e
B.5 Assessing the amount of loss L in a wind turbine . 99
X
B.5.1 General . 99
B.5.2 Mean relative loss per dangerous event . 99
Annex C (informative) Protection methods for blades . 101
C.1 General . 101
C.1.1 Types of blades and types of protection methods for blades . 101
C.1.2 Blade damage mechanism . 102
C.2 Protection methods . 103
C.2.1 General . 103
C.2.2 Lightning air-termination systems on the blade surface or embedded in
the surface . 104
C.2.3 Adhesive metallic tapes and segmented diverter strips . 104
C.2.4 Internal down conductor systems . 105
C.2.5 Conducting surface materials . 105
C.3 CFRP structural components . 106
C.4 Particular concerns with conducting components . 107
C.5 Interception efficiency . 108
C.6 Dimensioning of lightning protection systems . 109
C.7 Blade-to-hub connection . 111
C.8 WTG blade field exposure . 111
C.8.1 General . 111
C.8.2 Application . 112
C.8.3 Field exposure . 112
Annex D (normative) Test specifications . 113
D.1 General . 113
D.2 High-voltage strike attachment tests . 113
D.2.1 Verification of air termination system effectiveness . 113
D.2.2 Initial leader attachment test . 113
D.2.3 Subsequent stroke attachment test . 123
D.3 High-current physical damage tests . 127
D.3.1 General . 127
D.3.2 Arc entry test . 127
D.3.3 Conducted current test . 132
Annex E (informative) Application of lightning environment and lightning protection
zones (LPZ) . 137
E.1 Lightning environment for blades . 137
E.1.1 Application . 137
E.1.2 Examples of simplified lightning environment areas . 137
E.1.3 Area transitions . 139
E.2 Definition of lightning protection zones for turbines (not blades). 139
E.2.1 General . 139
E.2.2 LPZ 0 . 140
E.2.3 Other zones . 141

– 6 – IEC 61400-24:2019 © IEC 2019
E.2.4 Zone boundaries . 142
E.2.5 Zone protection requirements . 143
Annex F (informative) Selection and installation of a coordinated SPD protection in
wind turbines . 146
F.1 Location of SPDs . 146
F.2 Selection of SPDs . 146
F.3 Installation of SPDs . 146
F.4 Environmental stresses of SPDs . 147
F.5 SPD status indication and SPD monitoring in case of an SPD failure . 148
F.6 Selection of SPDs with regard to protection level (U ) and system level
p
immunity . 148
F.7 Selection of SPDs with regard to overvoltages created within wind turbines . 148
F.8 Selection of SPDs with regard to discharge current (I ) and impulse current
n
(I ) . 148
imp
Annex G (informative) Information on bonding and shielding and installation technique . 150
G.1 Additional information on bonding . 150
G.2 Additional information on shielding and installation technique . 151
Annex H (informative) Testing methods for system level immunity tests . 154
Annex I (informative) Earth termination system . 159
I.1 General . 159
I.1.1 Types of earthing systems . 159
I.1.2 Construction . 159
I.2 Electrode shape dimensions . 161
I.2.1 Type of arrangement . 161
I.2.2 Frequency dependence on earthing impedance . 163
I.3 Earthing resistance expressions for different electrode configurations . 164
Annex J (informative) Example of defined measuring points . 167
Annex K (informative) Classification of lightning damage based on risk management . 169
K.1 General . 169
K.2 Lightning damage in blade . 169
K.2.1 Classification of blade damage due to lightning . 169
K.2.2 Possible cause of blade damage due to lightning . 170
K.2.3 Countermeasures against blade damage due to lightning . 171
K.3 Lightning damage to other components . 173
K.3.1 Classification of damage in other components due to lightning . 173
K.3.2 Countermeasures against lightning damage to other components . 173
K.4 Typical lightning damage questionnaire . 173
K.4.1 General . 173
K.4.2 Sample of questionnaire . 173
Annex L (informative) Monitoring systems . 177
Annex M (informative) Guidelines for small wind turbines . 179
Annex N (informative) Guidelines for verification of blade similarity . 180
N.1 General . 180
N.2 Similarity constraints . 180
Annex O (informative) Guidelines for validation of numerical analysis methods . 183
O.1 General . 183
O.2 Blade voltage and current distribution . 183
O.3 Indirect effects analysis . 184

Annex P (informative) Testing of rotating components . 185
P.1 General . 185
P.2 Test specimen . 185
P.2.1 Test specimen representing a stationary / quasi stationary bearing . 185
P.2.2 Test specimen representing a rotating bearing . 185
P.3 Test setup . 185
P.3.1 Test set-up representing a stationary/quasi-stationary bearing . 185
P.3.2 Test set-up representing a rotating bearing. 186
P.4 Test procedure . 187
P.5 Pass/fail criteria . 188
Annex Q (informative) Earthing systems for wind farms . 189
Bibliography . 190

Figure 1 – Collection area of the wind turbine . 30
Figure 2 – Example of collection area for a complete wind farm (A ) with 10 wind
DWF
turbines (black points) considering overlapping . 31
Figure 3 – Collection area of wind turbine of height H and another structure of height
a
H connected by underground cable of length L . 33
b c
Figure 4 – Examples of possible SPM (surge protection measures) . 49
Figure 5 – Interconnecting two LPZ 1 using SPDs . 50
Figure 6 – Interconnecting two LPZ 1 using shielded cables or shielded cable ducts. 50
Figure 7 –Magnetic field inside an enclosure due to a long connection cable from
enclosure entrance to the SPD . 53
Figure 8 –Additional protective measures . 54
Figure 9 – Examples of placement of HV arresters in two typical main electrical circuits
of wind turbines . 58
Figure A.1 – Processes involved in the formation of a downward initiated cloud-to-
ground flash . 74
Figure A.2 – Typical profile of a negative cloud-to-ground flash . 75
Figure A.3 – Definitions of short stroke parameters (typically T < 2 ms) . 75
Figure A.4 – Definitions of long stroke parameters (typically 2 ms < T < 1 s) . 76
long
Figure A.5 – Possible components of downward flashes (typical in flat territory and to
lower structures) . 78
Figure A.6 – Typical profile of a positive cloud-to-ground flash. 79
Figure A.7 – Processes involved in the formation of an upward initiated cloud-to-
ground flash during summer and winter conditions . 79
Figure A.8 – Typical profile of a negative upward initiated flash . 80
Figure A.9 – Possible components of upward flashes (typical to exposed and/or higher
structures) . 81
Figure B.1 – Winter lightning world map based on LLS data and weather conditions . 86
Figure B.2 – Detailed winter lightning maps based on LLS data and weather conditions . 87
Figure B.3 – Ratio h/d description . 87
Figure C.1 – Types of wind turbine blades . 101
Figure C.2 – Lightning protection concepts for large modern wind turbine blades. 104
Figure C.3 – Voltages between lightning current path and sensor wiring due to the
mutual coupling and the impedance of the current path . 107
Figure D.1 – Example of initial leader attachment test setup A . 115

– 8 – IEC 61400-24:2019 © IEC 2019
Figure D.2 – Possible orientations for the initial leader attachment test setup A . 116
Figure D.3 – Definition of the blade length axis during strike attachment tests . 117
Figure D.4 – Example of the application of angles during the HV test. 117
Figure D.5 – Example of leader connection point away from test specimen . 118
Figure D.6 – Initial leader attachment test setup B . 119
Figure D.7 – Typical switching impulse voltage rise to flashover (100 µs per division) . 121
Figure D.8 – Subsequent stroke attachment test arrangement . 124
Figure D.9 – Lightning impulse voltage waveform . 125
Figure D.10 – Lightning impulse voltage chopped on the front . 125
Figure D.11 – HV electrode positions for the subsequent stroke attachment test . 127
Figure D.12 – High-current test arrangement for the arc entry test . 129
Figure D.13 – Typical jet diverting test electrodes . 130
Figure D.14 – Example of an arrangement for conducted current tests. 134
Figure E.1 – Examples of generic blade lightning environment definition. 138
Figure E.2 – Rolling sphere method applied on wind turbine . 141
Figure E.3 – Mesh with large mesh dimension for nacelle with GFRP cover . 142
Figure E.4 – Mesh with small mesh dimension for nacelle with GFRP cover . 142
Figure E.5 – Two cabinets both defined as LPZ 2 connected via the shield of a
shielded cable . 143
Figure E.6 – Example: division of wind turbine into different lightning protection zones . 144
Figure E.7 – Example of how to document a surge protection measures (SPM) system
by division of the electrical system into protection zones with indication of where
circuits cross LPZ boundaries and showing the long cables running between tower
base and nacelle. 145
Figure F.1 – Point-to-point installation scheme . 147
Figure F.2 – Earthing connection installation scheme. 147
Figure G.1 – Two control cabinets located on different metallic planes inside a nacelle . 150
Figure G.2 – Magnetic coupling mechanism . 151
Figure G.3 – Measuring of transfer impedance . 153
Figure H.1 – Example circuit of a SPD discharge current test under service conditions . 155
Figure H.2 – Typical test set-up for injection of test current . 157
Figure H.3 – Example circuit of an induction test for lightning currents . 158
Figure I.1 – Minimum length (l ) of each earth electrode according to the class of LPS . 162
Figure I.2 – Frequency dependence on the impedance to earth . 163
Figure J.1 – Example of measuring points . 167
Figure K.1 – Recommended countermeasures schemes according to the incident
classification . 171
Figure K.2 – Blade outlines for marking locations of damage . 176
Figure N.1 – Definitions of blade aerofoil nomenclature . 182
Figure O.1 – Example geometry for blade voltage and current distribution simulations . 183
Figure O.2 – Example geometry for nacelle indirect effects simulations . 184
Figure P.1 – Possible test setup for a pitch bearing . 185
Figure P.2 – Possible injection of test current into a pitch bearing. 186
Figure P.3 – Possible test setup for a main bearing . 187
Figure P.4 – Example measurement of the series resistance of the test sample . 188

Table 1 – Maximum values of lightning parameters according to LPL (adapted from
IEC 62305-1) . 25
Table 2 – Minimum values of lightning parameters and related rolling sphere radius
corresponding to LPL (adapted from IEC 62305-1). 26
Table 3 – Collection areas A and A of service line depending on whether aerial or
L l
buried . 33
Table 4 – Parameters relevant to the assessment of risk components for wind turbine
(corresponds to IEC 62305-2) . 36
Table 5 – Verification of bearing and bearing protection design concepts. 45
Table 6 – LPS General inspection intervals . 70
Table A.1 – Cloud-to-ground lightning current parameters . 77
Table A.2 – Upward initiated lightning current parameters . 81
Table A.3 – Summary of the lightning threat parameters to be considered in the calculation
of the test values for the different LPS components and for the different LPL . 82
Table B.1 – Recommended values of individual location factors . 85
Table B.2 – Range of upward lightning activity as a function of winter lightning activity
for wind farm located in flat terrain . 88
Table B.3 – Values of probability, P , that a lightning flash to a wind turbine will cause
A
shock to human beings owing to dangerous touch and step voltages (corresponds to
IEC 62305-2) . 93
Table B.4 – Values of reduction factor r as a function of the type of surface of soil or
t
floor (corresponds to IEC 62305-2) . 93
Table B.5 – Values of factor P according to the position of a person in the exposed
o
area (corresponds to IEC 62305-2) . 94
Table B.6 – Values of probability, P , depending on the protection measures to
LPS
protect the exposed areas of the wind turbine against direst lightning flash and to
reduce physical damage (corresponds to IEC 62305-2) . 94
Table B.7 – Values of probability P that a flash to a wind turbine will cause dangerous
S
sparking (corresponds to IEC 62305-2) . 95
Table B.8 – Values of reduction factor r as a function of provisions taken to reduce
p
the consequences of fire (corresponds to IEC 62305-2) . 95
Table B.9 – Values of reduction factor r as a function of risk of fire of the wind turbine
f
(corresponds to IEC 62305-2) . 95
Table B.10 – Values of probability P depending on the line type and the impulse
LI
withstand voltage U of the equipment (corresponds to IEC 62305-2) . 98
W
Table B.11 – Loss values for each zone (co
...


IEC 61400-24 ®
Edition 2.1 2024-11
CONSOLIDATED VERSION
INTERNATIONAL
STANDARD
colour
inside
Wind energy generation systems –
Part 24: Lightning protection
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform IEC Products & Services Portal - products.iec.ch
The advanced search enables to find IEC publications by a Discover our powerful search engine and read freely all the
variety of criteria (reference number, text, technical publications previews, graphical symbols and the glossary.
committee, …). It also gives information on projects, replaced With a subscription you will always have access to up to date
and withdrawn publications. content tailored to your needs.

IEC Just Published - webstore.iec.ch/justpublished
Electropedia - www.electropedia.org
Stay up to date on all new IEC publications. Just Published
The world's leading online dictionary on electrotechnology,
details all new publications released. Available online and once
containing more than 22 500 terminological entries in English
a month by email.
and French, with equivalent terms in 25 additional languages.

Also known as the International Electrotechnical Vocabulary
IEC Customer Service Centre - webstore.iec.ch/csc
(IEV) online.
If you wish to give us your feedback on this publication or need

further assistance, please contact the Customer Service
Centre: sales@iec.ch.
IEC 61400-24 ®
Edition 2.1 2024-11
CONSOLIDATED VERSION
INTERNATIONAL
STANDARD
colour
inside
Wind energy generation systems –
Part 24: Lightning protection
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
ICS 27.180 ISBN 978-2-8327-0032-7
REDLINE VERSION – 2 – IEC 61400-24:2019+AMD1:2024 CSV
© IEC 2024
CONTENTS
FOREWORD . 11
INTRODUCTION to Amendment 1 . 13
1 Scope . 14
2 Normative references . 14
3 Terms and definitions . 16
4 Symbols and units . 22
5 Abbreviated terms . 25
6 Lightning environment for wind turbine . 26
6.1 General . 26
6.2 Lightning current parameters and lightning protection levels (LPL) . 26
7 Lightning exposure assessment . 27
7.1 General . 27
7.2 Assessing the frequency of lightning affecting a single wind turbine or a
group of wind turbines . 29
7.2.1 Categorization of lightning events . 29
7.2.2 Estimation of average number of lightning flashes to a single or a group
of wind turbines . 29
7.2.3 Estimation of average annual number of lightning flashes near the wind
turbine (N ) . 32
M
7.2.4 Estimation of average annual number of lightning flashes to the service
lines connecting the wind turbines (N ) . 32
L
7.2.5 Estimation of average annual number of lightning flashes near the
service lines connecting the wind turbine (N ) . 33
I
7.3 Assessing the risk of damage . 34
7.3.1 Basic equation . 34
7.3.2 Assessment of risk components due to flashes to the wind turbine (S1) . 35
7.3.3 Assessment of the risk component due to flashes near the wind turbine
(S2) . 35
7.3.4 Assessment of risk components due to flashes to a service line
connected to the wind turbine (S3) . 36
7.3.5 Assessment of risk component due to flashes near a service line
connected to the wind turbine (S4) . 36
8 Lightning protection of subcomponents . 37
8.1 General . 37
8.1.1 Lightning protection level (LPL) . 37
8.1.2 Lightning protection zones (LPZ) . 38
8.2 Blades . 38
8.2.1 General . 38
8.2.2 Requirements . 38
8.2.3 Verification . 39
8.2.4 Protection design considerations . 39
8.2.5 Test methods . 42
8.3 Nacelle and other structural components . 43
8.3.1 General . 43
8.3.2 Hub . 43
8.3.3 Spinner . 43
8.3.4 Nacelle . 44
8.3.5 Tower . 44

© IEC 2024
8.3.6 Verification methods . 45
8.4 Mechanical drive train and yaw system . 45
8.4.1 General . 45
8.4.2 Bearings . 45
8.4.3 Hydraulic systems . 46
8.4.4 Spark gaps and sliding contacts . 47
8.4.5 Verification . 47
8.5 Electrical low-voltage systems and electronic systems and installations . 48
8.5.1 General . 48
8.5.2 Equipotential bonding within the wind turbine . 52
8.5.3 LEMP protection and immunity levels . 53
8.5.4 Shielding and line routing . 54
8.5.5 SPD protection . 55
8.5.6 Testing methods for system immunity tests . 59
8.6 Electrical high-voltage (HV) power systems . 59
9 Earthing of wind turbines . 61
9.1 General . 61
9.1.1 Purpose and scope . 61
9.1.2 Basic requirements . 61
9.1.3 Earth electrode arrangements . 61
9.1.4 Earthing system impedance . 62
9.2 Equipotential bonding . 62
9.2.1 General . 62
9.2.2 Lightning equipotential bonding for metal installations . 62
9.3 Structural components . 63
9.3.1 General . 63
9.3.2 Metal tubular type tower . 63
9.3.3 Metal reinforced concrete towers . 63
9.3.4 Lattice tower . 63
9.3.5 Systems inside the tower . 64
9.3.6 Concrete foundation . 64
9.3.7 Rocky area foundation . 64
9.3.8 Metal mono-pile foundation . 65
9.3.9 Offshore foundation . 65
9.4 Electrode shape dimensions . 65
9.5 Execution and maintenance of the earthing system . 66
10 Personal safety . 66
11 Documentation of lightning protection system . 68
11.1 General . 68
11.2 Documentation necessary during assessment for design evaluation. 68
11.2.1 General . 68
11.2.2 General documentation . 68
11.2.3 Documentation for rotor blades . 69
11.2.4 Documentation of mechanical systems . 69
11.2.5 Documentation of electrical and electronic systems . 69
11.2.6 Documentation of earthing and bonding systems . 69
11.2.7 Documentation of nacelle cover, hub and tower lightning protection

systems . 69
11.3 Site-specific information . 70

REDLINE VERSION – 4 – IEC 61400-24:2019+AMD1:2024 CSV
© IEC 2024
11.4 Documentation to be provided in the manuals for LPS inspections . 70
11.5 Manuals . 70
12 Inspection of lightning protection system . 70
12.1 Scope of inspection . 70
12.2 Order of inspections . 71
12.2.1 General . 71
12.2.2 Inspection during production of the wind turbine . 71
12.2.3 Inspection during installation of the wind turbine . 71
12.2.4 Inspection during commissioning of the wind turbine and periodic

inspection . 71
12.2.5 Inspection after dismantling or repair of main parts . 72
12.3 Maintenance . 73
Annex A (informative) The lightning phenomenon in relation to wind turbines . 74
A.1 Lightning environment for wind turbines . 74
A.1.1 General . 74
A.1.2 The properties of lightning . 74
A.1.3 Lightning discharge formation and electrical parameters . 74
A.1.4 Cloud-to-ground flashes . 75
A.1.5 Upward initiated flashes. 81
A.2 Lightning current parameters relevant to the point of strike . 84
A.3 Leader current without return stroke. 85
A.4 Lightning electromagnetic impulse, LEMP, effects . 85
Annex B (informative) Lightning exposure assessment . 86
B.1 General . 86
B.2 Methodology to estimate the average annual flashes or strokes to the wind
turbines of a wind farm and upward lightning activity in wind turbines . 86
B.2.1 General . 86
B.2.2 Methodology to determine average annual flashes to turbines of a wind
farm estimation by increase of the location factor to consider upward

lightning from wind turbines . 86
B.2.3 Upward lightning percentage in wind farms . 90
B.3 Explanation of terms . 90
B.3.1 Damage and loss . 90
B.3.2 Composition of risk . 92
B.3.3 Assessment of risk components . 92
B.3.4 Frequency of damage . 93
B.3.5 Assessment of probability, P , of damage . 94
X
B.4 Assessing the probability of damage to the wind turbine . 95
B.4.1 Probability, P , that a lightning flash to a wind turbine will cause
AT
dangerous touch and step voltage . 95
B.4.2 Probability, P , that a lightning flash to the wind turbine will cause
AD
injury to an exposed person on the structure . 96
B.4.3 Probability, P , that a lightning flash to the wind turbine will cause
B
physical damage . 97
B.4.4 Probability, P , that a lightning flash to the wind turbine will cause
C
failure of internal systems . 98
B.4.5 Probability, P , that a lightning flash near the wind turbine will cause
M
failure of internal systems . 98
B.4.6 Probability, P , that a lightning flash to a service line will cause injury
U
to human beings owing to touch voltage . 98

© IEC 2024
B.4.7 Probability, P , that a lightning flash to a service line will cause
V
physical damage . 99
B.4.8 Probability, P , that a lightning flash to a service line will cause failure
W
of internal systems . 100
B.4.9 Probability, P , that a lightning flash near an incoming service line will
Z
cause failure of internal systems . 100
B.4.10 Probability P that a person will be in a dangerous place . 101
P
B.4.11 Probability P that equipment will be exposed to damaging event . 101
e
B.5 Assessing the amount of loss L in a wind turbine . 101
X
B.5.1 General . 101
B.5.2 Mean relative loss per dangerous event . 101
Annex C (informative) Protection methods for blades . 103
C.1 General . 103
C.1.1 Types of blades and types of protection methods for blades . 103
C.1.2 Blade damage mechanism . 104
C.2 Protection methods . 105
C.2.1 General . 105
C.2.2 Lightning air-termination systems on the blade surface or embedded in
the surface . 106
C.2.3 Adhesive metallic tapes and segmented diverter strips . 106
C.2.4 Internal down conductor systems . 107
C.2.5 Conducting surface materials . 107
C.3 CFRP structural components . 108
C.4 Particular concerns with conducting components . 109
C.5 Interception efficiency . 110
C.6 Dimensioning of lightning protection systems . 111
C.7 Blade-to-hub connection . 113
C.8 WTG blade field exposure . 114
C.8.1 General . 114
C.8.2 Application . 114
C.8.3 Field exposure . 114
Annex D (normative) Test specifications . 115
D.1 General . 115
D.2 High-voltage strike attachment tests . 115
D.2.1 Verification of air termination system effectiveness . 115
D.2.2 Initial leader attachment test . 115
D.2.3 Subsequent stroke attachment test . 125
D.3 High-current physical damage tests . 129
D.3.1 General . 129
D.3.2 Arc entry test . 129
D.3.3 Conducted current test . 134
Annex E (informative) Application of lightning environment and lightning protection
zones (LPZ) . 139
E.1 Lightning environment for blades . 139
E.1.1 Application . 139
E.1.2 Examples of simplified lightning environment areas . 139
E.1.3 Area transitions . 141
E.2 Definition of lightning protection zones for turbines (not blades). 141
E.2.1 General . 141
E.2.2 LPZ 0 . 142

REDLINE VERSION – 6 – IEC 61400-24:2019+AMD1:2024 CSV
© IEC 2024
E.2.3 Other zones . 143
E.2.4 Zone boundaries . 144
E.2.5 Zone protection requirements . 145
Annex F (informative) Selection and installation of a coordinated SPD protection in
wind turbines . 148
F.1 Location of SPDs . 148
F.2 Selection of SPDs . 148
F.3 Installation of SPDs . 148
F.4 Environmental stresses of SPDs . 149
F.5 SPD status indication and SPD monitoring in case of an SPD failure . 150
F.6 Selection of SPDs with regard to protection level (U ) and system level
p
immunity . 150
F.7 Selection of SPDs with regard to overvoltages created within wind turbines . 150
F.8 Selection of SPDs with regard to discharge current (I ) and impulse current
n
(I ) . 150
imp
Annex G (informative) Information on bonding and shielding and installation technique . 152
G.1 Additional information on bonding . 152
G.2 Additional information on shielding and installation technique . 153
Annex H (informative) Testing methods for system level immunity tests . 156
Annex I (informative) Earth termination system . 161
I.1 General . 161
I.1.1 Types of earthing systems . 161
I.1.2 Construction . 161
I.2 Electrode shape dimensions . 163
I.2.1 Type of arrangement . 163
I.2.2 Frequency dependence on earthing impedance . 165
I.3 Earthing resistance expressions for different electrode configurations . 166
Annex J (informative) Example of defined measuring points . 169
Annex K (informative) Classification of lightning damage based on risk management . 171
K.1 General . 171
K.2 Lightning damage in blade . 171
K.2.1 Classification of blade damage due to lightning . 171
K.2.2 Possible cause of blade damage due to lightning . 172
K.2.3 Countermeasures against blade damage due to lightning . 173
K.3 Lightning damage to other components . 175
K.3.1 Classification of damage in other components due to lightning . 175
K.3.2 Countermeasures against lightning damage to other components . 175
K.4 Typical lightning damage questionnaire . 175
K.4.1 General . 175
K.4.2 Sample of questionnaire . 175
Annex L (informative) Monitoring systems Lightning detection and measurement
systems . 179
L.1 General . 181
L.1.1 Purpose . 181
L.1.2 Nomenclature . 181
L.2 Benefits of lightning detection and measurement systems . 181
L.3 Lightning detection and measurement systems . 183
L.3.1 General . 183
L.3.2 Lightning detection systems . 183

© IEC 2024
L.3.3 Lightning measurement systems (LMS) . 184
Annex M (informative) Guidelines for small wind turbines . 191
Annex N (informative) Guidelines for verification of blade similarity . 192
N.1 General . 192
N.2 Similarity constraints . 192
Annex O (informative) Guidelines for validation of numerical analysis methods . 195
O.1 General . 195
O.2 Blade voltage and current distribution . 195
O.3 Indirect effects analysis . 196
Annex P (informative) Testing of rotating components . 197
P.1 General . 197
P.2 Test specimen . 197
P.2.1 Test specimen representing a stationary / quasi stationary bearing . 197
P.2.2 Test specimen representing a rotating bearing . 197
P.3 Test setup . 197
P.3.1 Test set-up representing a stationary/quasi-stationary bearing . 197
P.3.2 Test set-up representing a rotating bearing. 198
P.4 Test procedure . 199
P.5 Pass/fail criteria . 200
Annex Q (informative) Earthing systems for wind farms . 201
Bibliography . 202

Figure 1 – Collection area of the wind turbine . 31
Figure 2 – Example of collection area for a complete wind farm (A ) with 10 wind
DWF
turbines (black points) considering overlapping . 31
Figure 4 – Examples of possible SPM (surge protection measures) . 51
Figure 5 – Interconnecting two LPZ 1 using SPDs . 52
Figure 6 – Interconnecting two LPZ 1 using shielded cables or shielded cable ducts. 52
Figure 7 – Magnetic field inside an enclosure due to a long connection cable from

enclosure entrance to the SPD . 55
Figure 8 – Additional protective measures . 56
Figure 9 – Examples of placement of HV arresters in two typical main electrical circuits
of wind turbines . 60
Figure A.1 – Processes involved in the formation of a downward initiated cloud-to-
ground flash . 76
Figure A.2 – Typical profile of a negative cloud-to-ground flash . 77
Figure A.3 – Definitions of short stroke parameters (typically T < 2 ms) . 77
Figure A.4 – Definitions of long stroke parameters (typically 2 ms < T < 1 s) . 78
long
Figure A.5 – Possible components of downward flashes (typical in flat territory and to
lower structures) . 80
Figure A.6 – Typical profile of a positive cloud-to-ground flash. 81
Figure A.7 – Processes involved in the formation of an upward initiated cloud-to-
ground flash during summer and winter conditions . 81
Figure A.8 – Typical profile of a negative upward initiated flash . 82
Figure A.9 – Possible components of upward flashes (typical to exposed and/or higher
structures) . 83
Figure B.1 – Winter lightning world map based on LLS data and weather conditions . 88

REDLINE VERSION – 8 – IEC 61400-24:2019+AMD1:2024 CSV
© IEC 2024
Figure B.2 – Detailed winter lightning maps based on LLS data and weather conditions . 89
Figure B.3 – Ratio h/d description . 89
Figure C.1 – Types of wind turbine blades . 103
Figure C.2 – Lightning protection concepts for large modern wind turbine blades. 106
Figure C.3 – Voltages between lightning current path and sensor wiring due to the
mutual coupling and the impedance of the current path . 109
Figure D.1 – Example of initial leader attachment test setup A . 117
Figure D.2 – Possible orientations for the initial leader attachment test setup A . 118
Figure D.3 – Definition of the blade length axis during strike attachment tests . 119
Figure D.4 – Example of the application of angles during the HV test. 119
Figure D.5 – Example of leader connection point away from test specimen . 120
Figure D.6 – Initial leader attachment test setup B . 121
Figure D.7 – Typical switching impulse voltage rise to flashover (100 µs per division) . 123
Figure D.8 – Subsequent stroke attachment test arrangement . 126
Figure D.9 – Lightning impulse voltage waveform . 127
Figure D.10 – Lightning impulse voltage chopped on the front . 127
Figure D.11 – HV electrode positions for the subsequent stroke attachment test . 129
Figure D.12 – High-current test arrangement for the arc entry test . 131
Figure D.13 – Typical jet diverting test electrodes . 132
Figure D.14 – Example of an arrangement for conducted current tests. 136
Figure E.1 – Examples of generic blade lightning environment definition. 140
Figure E.2 – Rolling sphere method applied on wind turbine . 143
Figure E.3 – Mesh with large mesh dimension for nacelle with GFRP cover . 144
Figure E.4 – Mesh with small mesh dimension for nacelle with GFRP cover . 144
Figure E.5 – Two cabinets both defined as LPZ 2 connected via the shield of a
shielded cable . 145
Figure E.6 – Example: division of wind turbine into different lightning protection zones . 146
Figure E.7 – Example of how to document a surge protection measures (SPM) system
by division of the electrical system into protection zones with indication of where
circuits cross LPZ boundaries and showing the long cables running between tower
base and nacelle. 147
Figure F.1 – Point-to-point installation scheme . 149
Figure F.2 – Earthing connection installation scheme. 149
Figure G.1 – Two control cabinets located on different metallic planes inside a nacelle . 152
Figure G.2 – Magnetic coupling mechanism . 153
Figure G.3 – Measuring of transfer impedance . 155
Figure H.1 – Example circuit of a SPD discharge current test under service conditions . 157
Figure H.2 – Typical test set-up for injection of test current . 159
Figure H.3 – Example circuit of an induction test for lightning currents . 160
Figure I.1 – Minimum length (l ) of each earth electrode according to the class of LPS . 164
Figure I.2 – Frequency dependence on the impedance to earth . 165
Figure J.1 – Example of measuring points . 169
Figure K.1 – Recommended countermeasures schemes according to the incident
classification . 173
Figure K.2 – Blade outlines for marking locations of damage . 178

© IEC 2024
Figure L.1 – Example of flow chart for lightning detection and alarm output for LPS
designs sensitive to charge transfer . 190
Figure N.1 – Definitions of blade aerofoil nomenclature . 194
Figure O.1 – Example geometry for blade voltage and current distribution simulations . 195
Figure O.2 – Example geometry for nacelle indirect effects simulations . 196
Figure P.1 – Possible test setup for a pitch bearing . 197
Figure P.2 – Possible injection of test current into a pitch bearing. 198
Figure P.3 – Possible test setup for a main bearing . 199
Figure P.4 – Example measurement of the series resistance of the test sample . 200

Table 1 – Maximum values of lightning parameters according to LPL (adapted from

IEC 62305-1) . 26
Table 2 – Minimum values of lightning parameters and related rolling sphere radius
corresponding to LPL (adapted from IEC 62305-1). 27
Table 3 – Collection areas A and A of service line depending on whether aerial or
L l
buried . 34
Table 4 – Parameters relevant to the assessment of risk components for wind turbine

(corresponds to IEC 62305-2) . 37
Table 5 – Verification of bearing and bearing protection design concepts. 46
Table 6 – LPS General inspection intervals . 72
Table A.1 – Cloud-to-ground lightning current parameters . 79
Table A.2 – Upward initiated lightning current parameters . 83
Table A.3 – Summary of the lightning threat parameters to be considered in the
calculation of the test values for the different LPS components and for
the different LPL . 84
Table B.1 – Recommended values of individual location factors . 87
Table B.2 – Range of upward lightning activity as a function of winter lightning activity

for wind farm located in flat terrain . 90
Table B.3 – Values of probability, P , that a lightning flash to a wind turbine will cause
A
shock to human beings owing to dangerous touch and step voltages (corresponds to
IEC 62305-2) . 95
Table B.4 – Values of reduction factor r as a function of the type of surface of soil or
t
floor (corresponds to IEC 62305-2) .
...


IEC 61400-24 ®
Edition 2.0 2019-07
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Wind energy generation systems –
Part 24: Lightning protection
Systèmes de génération d’énergie éolienne –
Partie 24: Protection contre la foudre

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform Electropedia - www.electropedia.org
The advanced search enables to find IEC publications by a The world's leading online dictionary on electrotechnology,
variety of criteria (reference number, text, technical containing more than 22 000 terminological entries in English
committee,…). It also gives information on projects, replaced and French, with equivalent terms in 16 additional languages.
and withdrawn publications. Also known as the International Electrotechnical Vocabulary

(IEV) online.
IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published IEC Glossary - std.iec.ch/glossary
details all new publications released. Available online and 67 000 electrotechnical terminology entries in English and
once a month by email. French extracted from the Terms and Definitions clause of
IEC publications issued since 2002. Some entries have been
IEC Customer Service Centre - webstore.iec.ch/csc collected from earlier publications of IEC TC 37, 77, 86 and
If you wish to give us your feedback on this publication or CISPR.

need further assistance, please contact the Customer Service

Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC - Electropedia - www.electropedia.org
webstore.iec.ch/advsearchform Le premier dictionnaire d'électrotechnologie en ligne au
La recherche avancée permet de trouver des publications IEC monde, avec plus de 22 000 articles terminologiques en
en utilisant différents critères (numéro de référence, texte, anglais et en français, ainsi que les termes équivalents dans
comité d’études,…). Elle donne aussi des informations sur les 16 langues additionnelles. Egalement appelé Vocabulaire
projets et les publications remplacées ou retirées. Electrotechnique International (IEV) en ligne.

IEC Just Published - webstore.iec.ch/justpublished Glossaire IEC - std.iec.ch/glossary
Restez informé sur les nouvelles publications IEC. Just 67 000 entrées terminologiques électrotechniques, en anglais
Published détaille les nouvelles publications parues. et en français, extraites des articles Termes et Définitions des
Disponible en ligne et une fois par mois par email. publications IEC parues depuis 2002. Plus certaines entrées
antérieures extraites des publications des CE 37, 77, 86 et
Service Clients - webstore.iec.ch/csc CISPR de l'IEC.

Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-nous:
sales@iec.ch.
IEC 61400-24 ®
Edition 2.0 2019-07
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Wind energy generation systems –

Part 24: Lightning protection
Systèmes de génération d’énergie éolienne –

Partie 24: Protection contre la foudre

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 27.180 ISBN 978-2-8322-8688-3

– 2 – IEC 61400-24:2019 © IEC 2019
CONTENTS
FOREWORD . 11
1 Scope . 13
2 Normative references . 13
3 Terms and definitions . 15
4 Symbols and units . 21
5 Abbreviated terms . 24
6 Lightning environment for wind turbine . 25
6.1 General . 25
6.2 Lightning current parameters and lightning protection levels (LPL) . 25
7 Lightning exposure assessment . 26
7.1 General . 26
7.2 Assessing the frequency of lightning affecting a single wind turbine or a
group of wind turbines . 28
7.2.1 Categorization of lightning events . 28
7.2.2 Estimation of average number of lightning flashes to a single or a group
of wind turbines . 28
7.2.3 Estimation of average annual number of lightning flashes near the wind
turbine (N ) . 31
M
7.2.4 Estimation of average annual number of lightning flashes to the service
lines connecting the wind turbines (N ) . 31
L
7.2.5 Estimation of average annual number of lightning flashes near the
service lines connecting the wind turbine (N ) . 32
I
7.3 Assessing the risk of damage . 33
7.3.1 Basic equation . 33
7.3.2 Assessment of risk components due to flashes to the wind turbine (S1) . 34
7.3.3 Assessment of the risk component due to flashes near the wind turbine
(S2) . 34
7.3.4 Assessment of risk components due to flashes to a service line
connected to the wind turbine (S3) . 35
7.3.5 Assessment of risk component due to flashes near a service line
connected to the wind turbine (S4) . 35
8 Lightning protection of subcomponents . 36
8.1 General . 36
8.1.1 Lightning protection level (LPL) . 36
8.1.2 Lightning protection zones (LPZ) . 37
8.2 Blades . 37
8.2.1 General . 37
8.2.2 Requirements . 37
8.2.3 Verification . 38
8.2.4 Protection design considerations . 38
8.2.5 Test methods . 41
8.3 Nacelle and other structural components . 42
8.3.1 General . 42
8.3.2 Hub . 42
8.3.3 Spinner . 42
8.3.4 Nacelle . 43
8.3.5 Tower . 43
8.3.6 Verification methods . 44

8.4 Mechanical drive train and yaw system . 44
8.4.1 General . 44
8.4.2 Bearings . 44
8.4.3 Hydraulic systems . 45
8.4.4 Spark gaps and sliding contacts . 46
8.4.5 Verification . 46
8.5 Electrical low-voltage systems and electronic systems and installations . 47
8.5.1 General . 47
8.5.2 Equipotential bonding within the wind turbine . 51
8.5.3 LEMP protection and immunity levels . 52
8.5.4 Shielding and line routing . 53
8.5.5 SPD protection . 54
8.5.6 Testing methods for system immunity tests . 58
8.6 Electrical high-voltage (HV) power systems . 58
9 Earthing of wind turbines . 60
9.1 General . 60
9.1.1 Purpose and scope . 60
9.1.2 Basic requirements . 60
9.1.3 Earth electrode arrangements . 60
9.1.4 Earthing system impedance . 61
9.2 Equipotential bonding . 61
9.2.1 General . 61
9.2.2 Lightning equipotential bonding for metal installations . 61
9.3 Structural components . 62
9.3.1 General . 62
9.3.2 Metal tubular type tower . 62
9.3.3 Metal reinforced concrete towers . 62
9.3.4 Lattice tower . 62
9.3.5 Systems inside the tower . 63
9.3.6 Concrete foundation . 63
9.3.7 Rocky area foundation . 63
9.3.8 Metal mono-pile foundation . 64
9.3.9 Offshore foundation . 64
9.4 Electrode shape dimensions . 64
9.5 Execution and maintenance of the earthing system . 65
10 Personal safety . 65
11 Documentation of lightning protection system . 67
11.1 General . 67
11.2 Documentation necessary during assessment for design evaluation. 67
11.2.1 General . 67
11.2.2 General documentation . 67
11.2.3 Documentation for rotor blades . 68
11.2.4 Documentation of mechanical systems . 68
11.2.5 Documentation of electrical and electronic systems . 68
11.2.6 Documentation of earthing and bonding systems . 68
11.2.7 Documentation of nacelle cover, hub and tower lightning protection
systems . 68
11.3 Site-specific information . 69
11.4 Documentation to be provided in the manuals for LPS inspections . 69

– 4 – IEC 61400-24:2019 © IEC 2019
11.5 Manuals . 69
12 Inspection of lightning protection system . 69
12.1 Scope of inspection . 69
12.2 Order of inspections . 70
12.2.1 General . 70
12.2.2 Inspection during production of the wind turbine . 70
12.2.3 Inspection during installation of the wind turbine . 70
12.2.4 Inspection during commissioning of the wind turbine and periodic
inspection . 70
12.2.5 Inspection after dismantling or repair of main parts . 71
12.3 Maintenance . 72
Annex A (informative) The lightning phenomenon in relation to wind turbines . 73
A.1 Lightning environment for wind turbines . 73
A.1.1 General . 73
A.1.2 The properties of lightning . 73
A.1.3 Lightning discharge formation and electrical parameters . 73
A.1.4 Cloud-to-ground flashes . 74
A.1.5 Upward initiated flashes. 80
A.2 Lightning current parameters relevant to the point of strike . 83
A.3 Leader current without return stroke. 84
A.4 Lightning electromagnetic impulse, LEMP, effects . 84
Annex B (informative) Lightning exposure assessment . 85
B.1 General . 85
B.2 Methodology to estimate the average annual flashes or strokes to the wind
turbines of a wind farm and upward lightning activity in wind turbines . 85
B.2.1 General . 85
B.2.2 Methodology to determine average annual flashes to turbines of a wind
farm estimation by increase of the location factor to consider upward
lightning from wind turbines . 85
B.2.3 Upward lightning percentage in wind farms . 89
B.3 Explanation of terms . 89
B.3.1 Damage and loss . 89
B.3.2 Composition of risk . 91
B.3.3 Assessment of risk components . 91
B.3.4 Frequency of damage . 92
B.3.5 Assessment of probability, P , of damage . 93
X
B.4 Assessing the probability of damage to the wind turbine . 94
B.4.1 Probability, P , that a lightning flash to a wind turbine will cause
AT
dangerous touch and step voltage . 94
B.4.2 Probability, P , that a lightning flash to the wind turbine will cause
AD
injury to an exposed person on the structure . 95
B.4.3 Probability, P , that a lightning flash to the wind turbine will cause
B
physical damage . 96
B.4.4 Probability, P , that a lightning flash to the wind turbine will cause
C
failure of internal systems . 97
B.4.5 Probability, P , that a lightning flash near the wind turbine will cause
M
failure of internal systems . 97
B.4.6 Probability, P , that a lightning flash to a service line will cause injury
U
to human beings owing to touch voltage . 97
B.4.7 Probability, P , that a lightning flash to a service line will cause
V
physical damage . 98

B.4.8 Probability, P , that a lightning flash to a service line will cause failure
W
of internal systems . 99
B.4.9 Probability, P , that a lightning flash near an incoming service line will
Z
cause failure of internal systems . 99
B.4.10 Probability P that a person will be in a dangerous place . 100
P
B.4.11 Probability P that equipment will be exposed to damaging event . 100
e
B.5 Assessing the amount of loss L in a wind turbine . 100
X
B.5.1 General . 100
B.5.2 Mean relative loss per dangerous event . 100
Annex C (informative) Protection methods for blades . 102
C.1 General . 102
C.1.1 Types of blades and types of protection methods for blades . 102
C.1.2 Blade damage mechanism . 103
C.2 Protection methods . 104
C.2.1 General . 104
C.2.2 Lightning air-termination systems on the blade surface or embedded in
the surface . 105
C.2.3 Adhesive metallic tapes and segmented diverter strips . 105
C.2.4 Internal down conductor systems . 106
C.2.5 Conducting surface materials . 106
C.3 CFRP structural components . 107
C.4 Particular concerns with conducting components . 108
C.5 Interception efficiency . 109
C.6 Dimensioning of lightning protection systems . 110
C.7 Blade-to-hub connection . 112
C.8 WTG blade field exposure . 113
C.8.1 General . 113
C.8.2 Application . 113
C.8.3 Field exposure . 113
Annex D (normative) Test specifications . 114
D.1 General . 114
D.2 High-voltage strike attachment tests . 114
D.2.1 Verification of air termination system effectiveness . 114
D.2.2 Initial leader attachment test . 114
D.2.3 Subsequent stroke attachment test . 124
D.3 High-current physical damage tests . 128
D.3.1 General . 128
D.3.2 Arc entry test . 128
D.3.3 Conducted current test . 133
Annex E (informative) Application of lightning environment and lightning protection
zones (LPZ) . 138
E.1 Lightning environment for blades . 138
E.1.1 Application . 138
E.1.2 Examples of simplified lightning environment areas . 138
E.1.3 Area transitions . 140
E.2 Definition of lightning protection zones for turbines (not blades). 140
E.2.1 General . 140
E.2.2 LPZ 0 . 141
E.2.3 Other zones . 142

– 6 – IEC 61400-24:2019 © IEC 2019
E.2.4 Zone boundaries . 143
E.2.5 Zone protection requirements . 144
Annex F (informative) Selection and installation of a coordinated SPD protection in
wind turbines . 147
F.1 Location of SPDs . 147
F.2 Selection of SPDs . 147
F.3 Installation of SPDs . 147
F.4 Environmental stresses of SPDs . 148
F.5 SPD status indication and SPD monitoring in case of an SPD failure . 149
F.6 Selection of SPDs with regard to protection level (U ) and system level
p
immunity . 149
F.7 Selection of SPDs with regard to overvoltages created within wind turbines . 149
F.8 Selection of SPDs with regard to discharge current (I ) and impulse current
n
(I ) . 149
imp
Annex G (informative) Information on bonding and shielding and installation technique . 151
G.1 Additional information on bonding . 151
G.2 Additional information on shielding and installation technique . 152
Annex H (informative) Testing methods for system level immunity tests . 155
Annex I (informative) Earth termination system . 160
I.1 General . 160
I.1.1 Types of earthing systems . 160
I.1.2 Construction . 160
I.2 Electrode shape dimensions . 162
I.2.1 Type of arrangement . 162
I.2.2 Frequency dependence on earthing impedance . 164
I.3 Earthing resistance expressions for different electrode configurations . 165
Annex J (informative) Example of defined measuring points . 168
Annex K (informative) Classification of lightning damage based on risk management . 170
K.1 General . 170
K.2 Lightning damage in blade . 170
K.2.1 Classification of blade damage due to lightning . 170
K.2.2 Possible cause of blade damage due to lightning . 171
K.2.3 Countermeasures against blade damage due to lightning . 172
K.3 Lightning damage to other components . 174
K.3.1 Classification of damage in other components due to lightning . 174
K.3.2 Countermeasures against lightning damage to other components . 174
K.4 Typical lightning damage questionnaire . 174
K.4.1 General . 174
K.4.2 Sample of questionnaire . 174
Annex L (informative) Monitoring systems . 178
Annex M (informative) Guidelines for small wind turbines . 180
Annex N (informative) Guidelines for verification of blade similarity . 181
N.1 General . 181
N.2 Similarity constraints . 181
Annex O (informative) Guidelines for validation of numerical analysis methods . 184
O.1 General . 184
O.2 Blade voltage and current distribution . 184
O.3 Indirect effects analysis . 185

Annex P (informative) Testing of rotating components . 186
P.1 General . 186
P.2 Test specimen . 186
P.2.1 Test specimen representing a stationary / quasi stationary bearing . 186
P.2.2 Test specimen representing a rotating bearing . 186
P.3 Test setup . 186
P.3.1 Test set-up representing a stationary/quasi-stationary bearing . 186
P.3.2 Test set-up representing a rotating bearing. 187
P.4 Test procedure . 188
P.5 Pass/fail criteria . 189
Annex Q (informative) Earthing systems for wind farms . 190
Bibliography . 191

Figure 1 – Collection area of the wind turbine . 30
Figure 2 – Example of collection area for a complete wind farm (A ) with 10 wind
DWF
turbines (black points) considering overlapping . 30
Figure 3 – Collection area of wind turbine of height H and another structure of height
a
H connected by underground cable of length L . 33
b c
Figure 4 – Examples of possible SPM (surge protection measures) . 50
Figure 5 – Interconnecting two LPZ 1 using SPDs . 51
Figure 6 – Interconnecting two LPZ 1 using shielded cables or shielded cable ducts. 51
Figure 7 –Magnetic field inside an enclosure due to a long connection cable from
enclosure entrance to the SPD . 54
Figure 8 –Additional protective measures . 55
Figure 9 – Examples of placement of HV arresters in two typical main electrical circuits
of wind turbines . 59
Figure A.1 – Processes involved in the formation of a downward initiated cloud-to-
ground flash . 75
Figure A.2 – Typical profile of a negative cloud-to-ground flash . 76
Figure A.3 – Definitions of short stroke parameters (typically T < 2 ms) . 76
Figure A.4 – Definitions of long stroke parameters (typically 2 ms < T < 1 s) . 77
long
Figure A.5 – Possible components of downward flashes (typical in flat territory and to
lower structures) . 79
Figure A.6 – Typical profile of a positive cloud-to-ground flash. 80
Figure A.7 – Processes involved in the formation of an upward initiated cloud-to-
ground flash during summer and winter conditions . 80
Figure A.8 – Typical profile of a negative upward initiated flash . 81
Figure A.9 – Possible components of upward flashes (typical to exposed and/or higher
structures) . 82
Figure B.1 – Winter lightning world map based on LLS data and weather conditions . 87
Figure B.2 – Detailed winter lightning maps based on LLS data and weather conditions . 88
Figure B.3 – Ratio h/d description . 88
Figure C.1 – Types of wind turbine blades . 102
Figure C.2 – Lightning protection concepts for large modern wind turbine blades. 105
Figure C.3 – Voltages between lightning current path and sensor wiring due to the
mutual coupling and the impedance of the current path . 108
Figure D.1 – Example of initial leader attachment test setup A . 116

– 8 – IEC 61400-24:2019 © IEC 2019
Figure D.2 – Possible orientations for the initial leader attachment test setup A . 117
Figure D.3 – Definition of the blade length axis during strike attachment tests . 118
Figure D.4 – Example of the application of angles during the HV test. 118
Figure D.5 – Example of leader connection point away from test specimen . 119
Figure D.6 – Initial leader attachment test setup B . 120
Figure D.7 – Typical switching impulse voltage rise to flashover (100 µs per division) . 122
Figure D.8 – Subsequent stroke attachment test arrangement . 125
Figure D.9 – Lightning impulse voltage waveform . 126
Figure D.10 – Lightning impulse voltage chopped on the front . 126
Figure D.11 – HV electrode positions for the subsequent stroke attachment test . 128
Figure D.12 – High-current test arrangement for the arc entry test . 130
Figure D.13 – Typical jet diverting test electrodes . 131
Figure D.14 – Example of an arrangement for conducted current tests. 135
Figure E.1 – Examples of generic blade lightning environment definition. 139
Figure E.2 – Rolling sphere method applied on wind turbine . 142
Figure E.3 – Mesh with large mesh dimension for nacelle with GFRP cover . 143
Figure E.4 – Mesh with small mesh dimension for nacelle with GFRP cover . 143
Figure E.5 – Two cabinets both defined as LPZ 2 connected via the shield of a
shielded cable . 144
Figure E.6 – Example: division of wind turbine into different lightning protection zones . 145
Figure E.7 – Example of how to document a surge protection measures (SPM) system
by division of the electrical system into protection zones with indication of where
circuits cross LPZ boundaries and showing the long cables running between tower
base and nacelle. 146
Figure F.1 – Point-to-point installation scheme . 148
Figure F.2 – Earthing connection installation scheme. 148
Figure G.1 – Two control cabinets located on different metallic planes inside a nacelle . 151
Figure G.2 – Magnetic coupling mechanism . 152
Figure G.3 – Measuring of transfer impedance . 154
Figure H.1 – Example circuit of a SPD discharge current test under service conditions . 156
Figure H.2 – Typical test set-up for injection of test current . 158
Figure H.3 – Example circuit of an induction test for lightning currents . 159
Figure I.1 – Minimum length (l ) of each earth electrode according to the class of LPS . 163
Figure I.2 – Frequency dependence on the impedance to earth . 164
Figure J.1 – Example of measuring points . 168
Figure K.1 – Recommended countermeasures schemes according to the incident
classification . 172
Figure K.2 – Blade outlines for marking locations of damage . 177
Figure N.1 – Definitions of blade aerofoil nomenclature . 183
Figure O.1 – Example geometry for blade voltage and current distribution simulations . 184
Figure O.2 – Example geometry for nacelle indirect effects simulations . 185
Figure P.1 – Possible test setup for a pitch bearing . 186
Figure P.2 – Possible injection of test current into a pitch bearing. 187
Figure P.3 – Possible test setup for a main bearing . 188
Figure P.4 – Example measurement of the series resistance of the test sample . 189

Table 1 – Maximum values of lightning parameters according to LPL (adapted from
IEC 62305-1) . 25
Table 2 – Minimum values of lightning parameters and related rolling sphere radius

corresponding to LPL (adapted from IEC 62305-1). 26
Table 3 – Collection areas A and A of service line depending on whether aerial or
L l
buried . 33
Table 4 – Parameters relevant to the assessment of risk components for wind turbine
(corresponds to IEC 62305-2) . 36
Table 5 – Verification of bearing and bearing protection design concepts. 45
Table 6
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

IEC 61400-24:2019 문서는 풍력 발전 시스템의 낙뢰 보호에 대한 표준으로, 풍력 터빈 발전기 및 풍력 발전 시스템을 대상으로 합니다. 이 문서는 풍력 터빈이 위치한 낙뢰 환경을 정의하고, 그 환경에서의 위험 평가 방법을 제공하여 보다 안전한 운영을 도모합니다. 특히, 블레이드, 구조 구성 요소, 전기 및 제어 시스템이 낙뢰의 직접적 및 간접적 영향을 받을 수 있는 상황에 대한 보호 요구 사항이 명시되어 있습니다. 이 표준의 강점은 풍력 터빈에 대한 낙뢰 보호에 대한 포괄적인 접근 방식을 제공하는 것입니다. 블레이드와 같은 주요 구성 요소와 시스템을 보호하기 위한 구체적인 요구 사항과 검증을 위한 시험 방법이 포함되어 있어, 실질적인 안전성을 높일 수 있습니다. 또한, 적합한 낙뢰 보호 및 산업 전기, 전자기 간섭(EMC) 표준에 대한 지침을 제공하여, 사용자들이 종합적으로 시스템을 설계하고 진단하는 데 도움을 줍니다. IEC 61400-24:2019 문서의 두 번째 판에서는 첫 번째 판(2010년 발행)을 대체하며, 주요 기술적 변경 사항이 포함되어 있습니다. 이 표준은 주 제정 부분을 중심으로 재구성되었으며, 정보성 정보는 부록에 배치되어 있어 사용자가 필요한 정보를 쉽게 찾을 수 있도록 돕습니다. 이러한 구조적 변화는 문서의 명료성을 높이고, 다양한 이해관계자가 효과적으로 활용할 수 있도록 합니다. 결론적으로, IEC 61400-24:2019 표준은 풍력 발전 시스템의 안전성을 높이기 위한 핵심적인 문서이며, 낙뢰 보호를 위한 가장 신뢰할 수 있는 지침을 제공합니다. 이는 지속 가능한 전력 생산을 위한 필수적인 요소로 자리 잡고 있습니다.

IEC 61400-24:2019は、風力エネルギー生成システムにおける雷保護に関する標準であり、特に風力タービン発電機と風力発電システムに適用されます。この標準は、風力タービンが直面する雷環境を定義し、その環境での風力タービンのリスク評価を行うものです。具体的には、ブレードやその他の構造要素、電気システムおよび制御システムが雷の直接的および間接的な影響から保護されるための要件を定めています。 この文書の強みは、風力発電システムに必要な具体的な保護対策を詳細に提供している点にあります。例えば、落雷からの保護を確実にするための試験方法が含まれており、これにより基準への適合性を検証することができます。また、風力タービン用の適切な雷保護、産業用電気、EMC基準、および接地についてのガイダンスも提供されており、業界の幅広いニーズに応える内容となっています。 IEC 61400-24:2019は、2010年に発行された初版を廃止し、構成を見直した第2版です。この新しい版では、主要な規範部分を中心に再構成され、情報的な内容は付録に整理されています。このように整理された構成は、ユーザーにとっての利便性を向上させ、必要な情報を迅速に見つけやすくしています。 総じて、IEC 61400-24:2019は、風力発電所や風力タービンの雷保護のための基準として、技術的に重要な変更を含んでおり、業界における実用性と関連性が高い標準であると言えるでしょう。

The IEC 61400-24:2019 standard provides a comprehensive framework for lightning protection specifically tailored for wind energy generation systems, particularly focusing on wind turbine generators and broader wind power systems. Its scope is notably inclusive as it also addresses guidelines for small wind turbines in an annex, ensuring that a wide range of applications can benefit from its provisions. One of the significant strengths of IEC 61400-24:2019 is its thorough definition of the lightning environment that wind turbines may encounter. By establishing a clear understanding of the risks associated with lightning, the standard aids in effective risk assessment, a critical component for ensuring the safety and longevity of wind turbine installations. The document sets forth rigorous requirements for the protection of blades, structural components, and both electrical and control systems against the multifaceted impacts of lightning, including both direct and indirect effects. This robust approach significantly enhances the reliability of wind energy systems, making it an essential reference for designers and engineers in the wind energy sector. Additionally, IEC 61400-24:2019 includes detailed test methods to validate compliance with the outlined requirements, thereby ensuring that protection measures can be effectively evaluated. The standard also offers guidance regarding applicable lightning protection, industrial electrical, and EMI (electromagnetic interference) standards, including critical information on earthing practices. This rich inclusion of guidelines facilitates a synergistic approach, allowing professionals to integrate various standards smoothly into their lightning protection schemes. The restructured format seen in this second edition, which cancels and replaces the first edition from 2010, reflects a modernized approach to standardization. The separation of normative and informative content into distinct sections enhances usability, making it easier for stakeholders to navigate the standard and implement necessary protective measures. Overall, IEC 61400-24:2019 stands out as a vital standard within the wind energy sector, not only for its alignment with contemporary technological advancements but also for its focused relevance. It equips industry professionals with the essential tools needed for effective lightning protection, thereby supporting the sustainable development and implementation of wind energy generation systems.

La norme IEC 61400-24:2019 est un document essentiel qui s'applique à la protection contre la foudre des générateurs éoliens et des systèmes de puissance éolienne. Son champ d'application est clairement défini et couvre la protection des éoliennes dans leur ensemble, ce qui en fait une référence incontournable pour les professionnels du secteur. L'une des forces majeures de cette norme est sa capacité à définir l'environnement de foudre auquel les éoliennes sont exposées et à proposer une évaluation des risques dans ce contexte. Cela permet aux concepteurs et aux ingénieurs d'évaluer de manière précise les dangers associés à la foudre et de mettre en place des mesures de protection appropriées. La norme aborde spécifiquement la protection des pales, des composants structurels et des systèmes électriques et de contrôle contre les effets directs et indirects de la foudre. Ce niveau de détail et ces exigences claires sont une véritable avancée et renforcent la sécurité des installations, ce qui est un atout considérable pour le secteur de l'énergie éolienne. De plus, IEC 61400-24:2019 fournit des méthodes d'essai pour valider la conformité aux exigences énoncées, garantissant que les systèmes de protection installés répondent aux normes de sécurité les plus élevées. La norme offre également des conseils sur l'utilisation de normes de protection contre la foudre appliquées, ainsi que sur les standards électriques industriels et les normes de compatibilité électromagnétique (CEM), y compris les recommandations sur la mise à la terre. Enfin, cette seconde édition se distingue par une restructuration qui place la partie normative principale au premier plan, tandis que les informations informatives sont désormais regroupées dans des annexes. Cela améliore l'accès et la compréhension des informations critiques pour les utilisateurs. En résumé, la norme IEC 61400-24:2019 est un document fondamental qui renforce la protection des systèmes d'énergie éolienne contre la foudre, avec des exigences techniques claires et une meilleure structuration par rapport à l'édition précédente de 2010.

IEC 61400-24:2019 표준은 풍력 발전 시스템의 번개 보호에 관한 중요한 문서로, 풍력 발전기와 풍력 발전 시스템의 안전성을 한층 더 강화하는 데 기여합니다. 이 표준은 풍력 터빈이 놓인 번개 환경을 정의하고 해당 환경에서의 위험 평가를 수행하는 방법을 명시하고 있습니다. 주요 강점 중 하나는 풍력 터빈 블레이드, 기타 구조적 구성 요소, 전기 및 제어 시스템을 번개에 의한 직간접적인 영향을 방어하기 위한 요구 사항을 명확히 한다는 점입니다. 이는 풍력 에너지 생성 시스템의 내구성과 신뢰성을 높이는 데 중요한 요소로 작용합니다. 또한, 컴플라이언스 검증을 위한 시험 방법이 포함되어 있어, 실질적인 적용 가능성을 높이고 있습니다. IEC 61400-24:2019는 분리된 부록을 통해 정보성 내용을 제공하고, 산업 전기, EMC 표준 및 접지와 관련하여 적용 가능한 번개 보호에 대한 지침을 제공함으로써, 풍력 시스템에서의 안전한 운영을 지원합니다. 이번 2차 개정판은 2010년에 발행된 최초의 개정판을 대체하며, 주요 기술적 변화로는 표준 구조가 주 규범 부분과 정보성 내용을 부록으로 분리하여 명확하게 재구성된 점이 있습니다. 이러한 변화는 사용자에게 보다 직관적인 접근을 가능하게 하여, 풍력 발전 시스템의 안전성과 효율성을 높이는 데 기여할 것으로 기대됩니다. IEC 61400-24:2019 표준의 적용은 특히 작은 풍력 터빈에 대한 지침을 포함하므로, 다양한 규모의 풍력 발전 시스템에 유용하게 활용될 수 있습니다. 이러한 표준은 풍력 에너지의 지속 가능성과 안전성을 보장하기 위한 필수적인 요소로 자리잡고 있습니다.

IEC 61400-24:2019は、風力発電システムにおける雷保護に関する標準であり、特に風力発電機の保護に焦点を当てています。この標準は、風力タービンや風力発電システムに関連する雷環境を定義し、その環境における風力タービンのリスク評価を行います。風力タービンのブレードやその他の構造部品、さらには電気および制御システムを、直接および間接の雷の影響から保護するための要求事項が明確に示されています。これは、風力発電システムの安全性を向上させるために不可欠な要素です。 特筆すべきは、IEC 61400-24:2019がテスト方法を含むことで、標準に準拠しているかどうかを検証できる点です。具体的な試験手法が提供されているため、風力発電機の設計者や製造者は、確実に適切な雷保護が施されていることを確認することができます。 また、適用可能な雷保護、工業電気、およびEMC基準(電磁両立性)に関するガイダンスが含まれていることで、風力発電システムの設計と運用における全体的な安全性が向上します。接地に関連する基準も考慮されており、風力タービンの運用におけるトラブルを未然に防ぐための礎ともなっています。 この標準の第二版は、2010年に発行された第一版を取り消し、置き換えています。前版に比べて、技術的な変更が多数加えられており、特に主要な規範的部分が再構築され、情報的な内容は別途付録に配置された点が挙げられます。このような再構成は、標準の可読性と実用性を高め、利用者にとって実施しやすいものとなっています。 IEC 61400-24:2019は、風力発電および雷保護に関心のあるすべての関係者にとって、重要で信頼性の高い指針を提供します。風力発電システムにおける雷によるリスクを低減するための最良の実践を促進するこの標準は、持続可能なエネルギーの未来において欠かせないものであり、革新と安全性の向上に寄与しています。

Die Norm IEC 61400-24:2019 bietet einen umfassenden Rahmen für den Blitzschutz von Windenergieanlagen und Windkraftsystemen. Der Geltungsbereich dieser Norm ist klar umrissen und umfasst sowohl große Windturbinen als auch spezifische Richtlinien für kleine Windturbinen, die im Anhang zu finden sind. Diese klare Strukturierung erleichtert den Anwendern das Verständnis und die Anwendung des Dokuments. Eine der Stärken der IEC 61400-24:2019 liegt in der detaillierten Beschreibung der Blitzumgebung, die für Windturbinen relevant ist. Die Norm definiert präzise Risiken, die durch direkte und indirekte Blitzschläge entstehen können, und gibt Anforderungen an den Schutz von Rotorblättern, anderen strukturellen Komponenten sowie elektrischen und Steuerungssystemen an. Dies ist entscheidend, um die Zuverlässigkeit der Windenergieanlagen zu gewährleisten und ihre Lebensdauer zu verlängern. Darüber hinaus enthält die Norm Testmethoden, die notwendig sind, um die Einhaltung der Schutzanforderungen zu validieren. Diese Tests tragen dazu bei, das Vertrauen in die Sicherheitsstandards von Windkraftanlagen zu stärken und legen einen wichtigen Grundstein für die Qualitätssicherung in der Branche. Die IEC 61400-24:2019 bietet zudem wichtige Hinweise zur Anwendung der relevanten Blitzschutz- und industriellen Elektromagnetischen Verträglichkeitsstandards (EMV) sowie zur Erdungstechnik. Diese umfassende Herangehensweise stellt sicher, dass alle Aspekte des Blitzschutzes berücksichtigt werden, was zu einer höheren Sicherheit und Effizienz von Windkraftanlagen führt. Die vorliegende zweite Auflage ersetzt die erste Ausgabe von 2010 und beinhaltet signifikante technische Änderungen. Die Neustrukturierung der Norm mit einem Hauptnormteil und dem informativen Inhalt in den Anhängen spiegelt den aktuellen Stand der Technik wider und verbessert die Benutzerfreundlichkeit. Insgesamt ist die IEC 61400-24:2019 eine wesentliche Norm, die die Sicherheit und Effizienz von Windenergieanlagen im Hinblick auf Blitzschutz maßgeblich unterstützt. Ihre Relevanz in der Branche ist unbestreitbar und leistet einen wichtigen Beitrag zur Weiterentwicklung der Windenergietechnologie.

The standard IEC 61400-24:2019 provides a comprehensive framework for lightning protection specifically tailored for wind energy generation systems. Its primary scope focuses on the lightning protection of wind turbine generators and associated power systems, fulfilling a critical need in the renewable energy sector. One of the significant strengths of this standard is its thorough definition of the lightning environment that wind turbines operate in, accompanied by a detailed risk assessment specifically designed for these systems. This allows manufacturers and stakeholders to understand the unique challenges posed by lightning strikes and implement appropriate protective measures. Moreover, IEC 61400-24:2019 elaborates on specific requirements for safeguarding various components of wind turbine systems, including blades, structural elements, and both electrical and control systems. This holistic approach ensures that all aspects of wind power systems are properly defended against the direct and indirect effects of lightning, thereby minimizing potential damages and operational downtime. The inclusion of test methods for validating compliance with these requirements adds further value, providing a practical means to verify that systems meet the established safety standards. Additionally, the guidance on using applicable lightning protection, industrial electrical, and electromagnetic compatibility (EMC) standards enhances the document’s utility by facilitating a comprehensive understanding of the necessary earthing practices and protection measures. This second edition of the standard presents a significant improvement over its predecessor from 2010, as it has been thoughtfully restructured. The normative part of the document is now clearly delineated, while informative sections are conveniently placed in annexes, making it easier for users to navigate and apply the information effectively. Overall, IEC 61400-24:2019 is a crucial document for anyone involved in the design, operation, and maintenance of wind energy generation systems. Its focus on lightning protection underscores the standard's relevance in ensuring the safety and reliability of renewable energy technologies in various weather conditions.

IEC 61400-24:2019 is a standard that focuses on the lightning protection of wind turbine generators and wind power systems. The document covers guidelines for small wind turbines as well. It identifies the lightning environment for wind turbines and provides a risk assessment for them. The standard also outlines the requirements for protecting the blades, structural components, and electrical and control systems from both direct and indirect lightning effects. It includes test methods to ensure compliance. The document also offers guidance on applicable lightning protection, industrial electrical, and EMC standards, including earthing. This second edition restructures the standard, moving informative information to annexes, and it replaces the first edition published in 2010.

기사 제목: IEC 61400-24:2019 - 풍력 발전 시스템 - 제 24 부: 번개 보호 내용: IEC 61400-24:2019은 풍력 터빈 발전기와 풍력 발전 시스템의 번개 보호에 적용됩니다. 부록에서 소형 풍력 터빈에 대한 지침을 참조하십시오. 이 문서는 풍력 터빈을 위한 번개 환경 및 해당 환경에서의 위험 평가를 정의합니다. 번개의 직접적 및 간접적 효과에 대한 날개, 기타 구조적 구성 요소 및 전기 및 제어 시스템의 보호 요구 사항을 정의합니다. 규정 준수를 확인하기 위한 시험 방법이 포함되어 있습니다. 접지를 포함하여 해당 번개 보호, 산업용 전기 및 EMC 표준의 사용에 대한 지침이 제공됩니다. 이 번째 판은 2010년에 출판된 첫 판을 취소하고 대체합니다. 이번 판에는 다음과 같은 이전 판에 비해 중요한 기술적 변경 사항이 포함되어 있습니다. a) 주요 규범 부분은 구조적 설명이 부록에 배치된 상태에서 재구조화되었습니다.

記事のタイトル:IEC 61400-24:2019 - 風力発電システム - 第24部:稲妻保護 記事の内容:IEC 61400-24:2019は、風力タービン発電機および風力発電システムの稲妻保護に関して適用されます。付録では小型風力タービンのガイドラインを参照してください。 本文では、風力タービンの稲妻環境とその環境におけるリスク評価を定義しています。直接および間接的な稲妻の影響から風車の羽根、他の構造部品、および電気および制御システムを保護するための要件を定義しています。規格遵守を検証するための試験方法も含まれています。 接地を含む、適用可能な稲妻保護、産業用電気およびEMC規格の使用に関するガイダンスも提供されています。 この第2版は、2010年に発行された初版を取り消し、代わりになります。この版では、以下の重要な技術的変更が初版に比べて含まれています: a)主要な規定部分は、情報が付録に配置されたまま、再構築されました。

記事のタイトル:IEC 61400-24:2019 - 風力発電システム- Part 24: 雷保護 記事内容:IEC 61400-24:2019は、風力タービン発電機と風力発電システムの雷保護に適用されます。付録では、小型風力タービンに関するガイドラインを参照してください。 この文書では、風力タービンの雷環境とその環境におけるリスク評価を定義しています。直接的および間接的な雷の影響から風力タービンのブレード、他の構造部品、電気および制御システムを保護するための要件を定義しています。コンプライアンスを検証するためのテスト方法も含まれています。 該当する雷保護、工業用電気およびEMC規格、接地に関するガイドラインも提供されています。 第2版は、2010年に発行された第1版をキャンセルおよび置き換えるものであり、前版と比較して以下の重要な技術的変更が含まれています: a) 主要な規範的部分に再構成され、情報的な内容は付録に配置されています。

기사 제목: IEC 61400-24:2019 - 풍력 발전 시스템 - 제 24부: 번개 보호 기사 내용: IEC 61400-24:2019는 풍력 터빈 발전기와 풍력 발전 시스템의 번개 보호에 적용됩니다. 부록에서 소형 풍력 터빈에 대한 지침을 참조하십시오. 이 문서는 풍력 터빈의 번개 환경 및 해당 환경에서의 위험 평가를 정의합니다. 직접 및 간접적인 번개 영향으로부터 날개, 기타 구조 부품 및 전기 및 제어 시스템을 보호하기 위한 요구 사항을 정의합니다. 컴플라이언스를 검증하기 위한 테스트 방법이 포함되어 있습니다. 지적된 번개 보호, 산업용 전기 및 EMC 표준 및 접지에 대한 가이드라인을 제공합니다. 이번 두 번째 에디션은 2010년에 출판된 첫 번째 에디션을 대체하며, 이전 에디션과 비교하여 다음과 같은 중요한 기술적 변경 사항이 포함되어 있습니다: a) 주요 규범적인 부분으로 재구성되었으며, 정보적인 내용은 부록에 위치합니다.

The article discusses the IEC 61400-24:2019 standard, which relates to the protection of wind turbine generators and wind power systems from lightning strikes. The document outlines the lightning environment for wind turbines and provides guidelines for assessing and mitigating the risks associated with lightning. It sets out requirements for protecting various components of wind turbines from direct and indirect lightning effects and includes test methods for ensuring compliance. The article also mentions that the second edition of the standard has been released, with a restructured format that separates normative information from informative information placed in annexes.