Pelton hydraulic turbines - Model acceptance tests

IEC 63461:2024 applies to laboratory model tests of any type of Pelton hydraulic turbine with unit power greater than 5 MW. It contains the rules governing test conduct and provides measures to be taken if any phase of the tests is disputed. The main objectives of this document are: - to define the terms and quantities used; - to specify methods of testing and of measuring the quantities involved, in order to ascertain the hydraulic performance of the model; - to specify the methods of computation of results and of comparison with guarantees; - to determine if the contract guarantees that fall within the scope of this document have been fulfilled; - and to define the extent, content and structure of the final report. Full application of the procedures herein described is not generally justified for machines with smaller power. Nevertheless, this document can be used for such machines by agreement between the purchaser and the supplier.

Hydraulische Pelton Turbinen - Modellabnahmeprüfungen

Turbines Pelton - Essais de réception sur modèle

IEC 63461:2024 s’applique aux essais de modèles de laboratoire de tout type de turbine Pelton d’une puissance unitaire supérieure à 5 MW. Il fixe les règles de conduite de ces essais et spécifie les mesures à prendre en cas de contestation d’une phase quelconque des essais. Les principaux objectifs du présent document sont les suivants: - définir les termes et les grandeurs utilisés; - spécifier les méthodes d'essai et de mesure des grandeurs concernées, afin de déterminer les performances hydrauliques du modèle; - spécifier les méthodes de calcul des résultats et de comparaison avec les garanties; - déterminer si les garanties contractuelles qui relèvent du domaine d’application du présent document sont respectées; - et définir l’étendue, le contenu et la structure du rapport final. L’application intégrale des procédures décrites dans le présent document ne se justifie généralement pas pour les machines de puissance inférieure. Néanmoins, le présent document peut être utilisé pour de telles machines après accord entre l’acheteur et le fournisseur.

Peltonove vodne turbine - Prevzemni preskusi modela (IEC 63461:2024)

Standard IEC 63461:2024 se uporablja za laboratorijske preskuse modela Peltonove vodne turbine katere koli vrste z močjo enote, večjo od 5 MW. Vsebuje pravila, ki urejajo izvajanje preskusov, in določa ukrepe, ki jih je treba izvesti v primeru sporov glede ene od faz preskusov.
Glavni namen tega dokumenta je:
– opredelitev izrazov in količin, ki se uporabljajo;
– določitev metod za preskušanje in merjenje vključenih količin, da se opredeli hidravlična zmogljivost modela;
– določitev metod za izračun rezultatov in primerjavo z jamstvi;
– ugotovitev, ali so pogodbena jamstva, ki spadajo na področje uporabe tega dokumenta, izpolnjena; ter
– določitev obsega, vsebine in strukture končnega poročila.
Celotna uporaba postopkov, opisanih v tem dokumentu, na splošno ni utemeljena za stroje z manjšo močjo. Kljub temu pa je mogoče po dogovoru med kupcem in dobaviteljem ta dokument uporabiti tudi za take stroje .

General Information

Status
Published
Publication Date
15-Aug-2024
Technical Committee
Drafting Committee
Current Stage
6060 - Document made available - Publishing
Start Date
16-Aug-2024
Due Date
28-Jun-2024
Completion Date
16-Aug-2024

Relations

Overview - IEC 63461:2024 (EN IEC 63461:2024)

IEC 63461:2024 / EN IEC 63461:2024 specifies requirements for laboratory model acceptance tests of Pelton hydraulic turbines with unit power greater than 5 MW. It defines terms and quantities, prescribes test conduct and measurement methods to ascertain hydraulic performance of turbine models, gives rules for computing and comparing results with contractual guarantees, and sets the required content and structure of the final test report. The standard can also be applied to smaller machines by agreement between purchaser and supplier.

SEO keywords: Pelton hydraulic turbines, model acceptance tests, IEC 63461:2024, turbine model tests, hydraulic performance.

Key technical topics and requirements

  • Definitions & units: standardized terms, symbols and units to ensure consistent reporting of performance data.
  • Test installation & model requirements: criteria for choice of laboratory, test rig layout and model construction, including dimensional checks and permissible deviations in geometrical similarity between prototype and model.
  • Measurement methods: accepted procedures for measuring discharge, pressures, free water levels, shaft torque and rotational speed. Emphasis on calibration, selection of measurement sections, pressure taps and transducers.
  • Data acquisition & processing: requirements for data acquisition systems, component performance, sampling of fluctuating quantities, signal processing and verification checks.
  • Uncertainty and error analysis: procedures for estimating measurement uncertainties and reporting confidence levels for test results.
  • Test execution & reporting: organization of tests, inspection and calibration routines, handling of faults and test repetition, preliminary and final test report structure.
  • Contractual acceptance: methods for computing performance metrics, comparing measured results to guarantees, and measures to follow if test phases are disputed.

SEO keywords: discharge measurement, pressure measurement, shaft torque, uncertainty analysis, dimensional checks.

Practical applications and users

This standard is essential for:

  • Turbine manufacturers conducting model acceptance tests to validate Pelton turbine hydraulic performance.
  • Independent testing laboratories and research institutes performing scaled model tests.
  • Hydropower project owners and procuring authorities verifying contractual performance guarantees.
  • Design and performance engineers using model test data for prototype validation, efficiency curves and cavitation assessment.

Benefits include consistent, comparable test data, reduced contractual disputes, and traceable uncertainty estimates.

Related standards

Relevant referenced standards (normative and bibliographic) include ISO and IEC measurement standards such as ISO 4373, ISO 5167-1, IEC 60041, and the superseded EN IEC 60193:2019. These provide complementary guidance on flow, pressure and instrumentation best practices.

Standard
EN IEC 63461:2024
English language
174 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
01-oktober-2024
Peltonove vodne turbine - Prevzemni preskusi modela (IEC 63461:2024)
Pelton hydraulic turbines - Model acceptance tests (IEC 63461:2024)
Hydraulische Pelton Turbinen - Modellabnahmeprüfungen (IEC 63461:2024)
Turbines hydrauliques Pelton - Essais de réception sur modèle (IEC 63461:2024)
Ta slovenski standard je istoveten z: EN IEC 63461:2024
ICS:
27.140 Vodna energija Hydraulic energy engineering
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EUROPEAN STANDARD EN IEC 63461

NORME EUROPÉENNE
EUROPÄISCHE NORM August 2024
ICS 27.140 Supersedes EN IEC 60193:2019
English Version
Pelton hydraulic turbines - Model acceptance tests
(IEC 63461:2024)
Turbines Pelton - Essais de réception sur modèle Hydraulische Pelton Turbinen - Modellabnahmeprüfungen
(IEC 63461:2024) (IEC 63461:2024)
This European Standard was approved by CENELEC on 2024-08-02. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN IEC 63461:2024 E
European foreword
The text of document 4/460/CDV, future edition 1 of IEC 63461, prepared by IEC/TC 4 "Hydraulic
turbines" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2025-05-02
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2027-08-02
document have to be withdrawn
This document supersedes EN IEC 60193:2019 and all of its amendments and corrigenda (if any).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Standard IEC 63461:2024 was approved by CENELEC as a European
Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standard indicated:
IEC 60041:1991 NOTE Approved as EN 60041:1994
IEC 60609-1:2004 NOTE Approved as EN 60609-1:2005 (not modified)
IEC 60609-2:1997 NOTE Approved as EN 60609-2:1999 (not modified)
IEC 60994:1991 NOTE Approved as EN 60994:1992 (not modified)
ISO 4006:1991 NOTE Approved as EN 24006:1993 (not modified)
ISO 4373:2022 NOTE Approved as EN ISO 4373:2022 (not modified)
ISO 5167-1:2022 NOTE Approved as EN ISO 5167-1:2022 (not modified)
ISO 20456:2017 NOTE Approved as EN ISO 20456:2019 (not modified)
ISO 80000-4:2019 NOTE Approved as EN ISO 80000-4:2019 (not modified)
ISO 80000-11:2019 NOTE Approved as EN ISO 80000-11:2020 (not modified)
ISO 21920-2:2021 NOTE Approved as EN ISO 21920-2:2022 (not modified)
IEC 60609 series NOTE Approved as EN 60609 series
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1  Where an International Publication has been modified by common modifications, indicated by (mod),
the relevant EN/HD applies.
NOTE 2  Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cencenelec.eu.
Publication Year Title EN/HD Year
ISO 2186 2007 Fluid flow in closed conduits_- Connections - -
for pressure signal transmissions between
primary and secondary elements
ISO 2533 1975 Standard Atmosphere - -
ISO 4185 1980 Measurement of liquid flow in closed EN 24185 1993
conduits - Weighing method
- - + AC 1993
ISO 8316 1987 Measurement of liquid flow in closed EN ISO 8316 1995
conduits - Method by collection of the liquid
in a volumetric tank
IEC 63461 ®
Edition 1.0 2024-06
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Pelton hydraulic turbines – Model acceptance tests

Turbines Pelton – Essais de réception sur modèle

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 27.140  ISBN 978-2-8322-9236-5

– 2 – IEC 63461:2024 © IEC 2024
CONTENTS
FOREWORD . 9
1 Scope . 11
2 Normative references . 12
3 Terms, definitions, symbols and units . 12
3.1 General . 12
3.2 Terms and definitions. 12
3.3 Units . 14
3.4 Terms, definitions, symbols and units . 14
3.4.1 List by topics . 14
3.4.2 Subscripts and symbols . 15
3.4.3 Geometry . 16
3.4.4 Physical quantities and properties . 17
3.4.5 Discharge, velocity and speed . 18
3.4.6 Pressure . 18
3.4.7 Specific energy . 19
3.4.8 Height and head . 19
3.4.9 Power and torque . 20
3.4.10 Efficiency . 22
3.4.11 Fluctuating quantities . 22
3.4.12 Fluid dynamics and scaling . 25
3.4.13 Dimensionless terms and definitions . 25
3.4.14 Additional performance data . 26
4 Physical properties . 26
4.1 General . 26
4.2 Acceleration due to gravity . 26
4.3 Physical properties of water . 27
4.3.1 Density of water . 27
4.3.2 Kinematic viscosity . 30
4.3.3 Vapour pressure . 30
4.4 Physical conditions of atmosphere . 31
4.4.1 Density of dry air . 31
4.4.2 Ambient pressure . 31
4.5 Density of mercury . 31
5 Requirements of tests . 32
5.1 Requirement of test installation and model . 32
5.1.1 Choice of laboratory . 32
5.1.2 Test installation . 32
5.1.3 Model requirements . 33
5.2 Dimensional check of model and prototype . 35
5.2.1 General . 35
5.2.2 Explanation of terms used for model and prototype. 36
5.2.3 Purpose of dimensional checks. 36
5.2.4 General rules . 36
5.2.5 Procedure . 37
5.2.6 Methods . 38
5.2.7 Accuracy of measurements . 41
5.2.8 Dimensions of model and prototype to be checked . 41

IEC 63461:2024 © IEC 2024 – 3 –
5.2.9 Permissible maximum deviations in geometrical similarity between
prototype and model . 43
5.2.10 Surface waviness and roughness . 44
5.3 Test procedures . 46
5.3.1 Organization of tests. 46
5.3.2 Inspections and calibrations . 48
5.3.3 Execution of tests . 50
5.3.4 Faults and repetition of tests . 54
5.3.5 Preliminary test report . 55
5.3.6 Final test report . 55
6 Data acquisition . 55
6.1 Data acquisition and data processing . 55
6.1.1 General . 55
6.1.2 General requirements . 56
6.1.3 Data acquisition . 56
6.1.4 Component requirements . 58
6.1.5 Check of the data acquisition system . 61
6.2 Data acquisition and processing for measurement of fluctuating quantities . 63
6.2.1 General . 63
6.2.2 Data acquisition . 64
6.2.3 Data processing. 66
6.3 Error analysis . 67
6.3.1 Definitions . 67
6.3.2 Determination of uncertainties in model tests . 69
7 Methods of measurement . 74
7.1 Discharge measurement . 74
7.1.1 General . 74
7.1.2 Choice of the method of measurement . 75
7.1.3 Accuracy of measurement . 75
7.1.4 Primary methods . 76
7.1.5 Secondary methods . 77
7.2 Pressure measurement . 80
7.2.1 General . 80
7.2.2 Choice of pressure-measuring section . 80
7.2.3 Pressure taps and connecting lines . 81
7.2.4 Apparatus for pressure measurement . 84
7.2.5 Calibration of pressure measurement apparatus . 90
7.2.6 Vacuum measurements . 91
7.2.7 Uncertainty in pressure measurements . 91
7.3 Free water level measurement (see also ISO 4373) . 91
7.3.1 General . 91
7.3.2 Choice of water level measuring sections . 92
7.3.3 Number of measuring points in a measuring section . 92
7.3.4 Measuring methods . 92
7.3.5 Uncertainty in free water level measurement . 93
7.4 Shaft torque measurement . 94
7.4.1 General . 94
7.4.2 Methods of torque measurement . 94
7.4.3 Methods of absorbing/generating power . 95

– 4 – IEC 63461:2024 © IEC 2024
7.4.4 Layout of arrangement . 95
7.4.5 Checking of system . 99
7.4.6 Calibration . 100
7.4.7 Uncertainty in torque measurement (at a confidence level of 95 %) . 100
7.5 Rotational speed measurement . 102
7.5.1 General . 102
7.5.2 Methods of speed measurement . 102
7.5.3 Checking . 102
7.5.4 Uncertainty of measurement . 102
8 Test execution and results . 102
8.1 General . 102
8.2 Determination of E . 103
8.2.1 General . 103
8.2.2 Determination of the specific hydraulic energy E . 103
8.2.3 Simplified formulae for E . 106
8.3 Determination of power and efficiency . 108
8.3.1 Hydraulic power . 108
8.3.2 Mechanical power . 109
8.3.3 Hydraulic efficiency . 109
8.4 Hydraulic similitude . 110
8.4.1 Theoretical basic requirements and similitude numbers . 110
8.4.2 Conditions for hydraulic similitude as used in this document . 110
8.4.3 Similitude requirements for various types of model tests . 111
8.4.4 Reynolds similitude . 111
8.4.5 Froude similitude . 111
8.4.6 Other similitude conditions - Weber number . 111
8.5 Test conditions . 112
8.5.1 Determination of test conditions . 112
8.5.2 Minimum values for model size and test conditions to be fulfilled . 112
8.5.3 Stability and fluctuations during measurements . 113
8.5.4 Adjustment of the operating point . 113
8.6 Computation and presentation of test results . 113
8.6.1 General . 113
8.6.2 Power, discharge and efficiency in the guarantee range . 114
8.6.3 Computation of steady-state runaway speed and discharge . 118
9 Nature and extent of guarantees related to hydraulic performance . 119
9.1 General . 119
9.1.1 Design data and coordination . 119
9.1.2 Definition of the hydraulic performance guarantees . 120
9.1.3 Guarantees of correlated quantities . 120
9.1.4 Form of guarantees . 120
9.2 Main hydraulic performance guarantees verifiable by model test . 121
9.2.1 Guaranteed quantities for any machine . 121
9.2.2 Specific application . 121
9.3 Guarantees not verifiable by model test . 121
9.3.1 Guarantees on cavitation erosion . 121
9.3.2 Guarantees on maximum momentary overspeed and maximum
momentary pressure rise . 121
9.3.3 Guarantees covering noise and vibration . 122

IEC 63461:2024 © IEC 2024 – 5 –
9.3.4 Measurements not covered by this document . 122
9.4 Comparison with guarantees . 122
9.4.1 General . 122
9.4.2 Interpolation curve and total uncertainty bandwidth . 122
9.4.3 Power, discharge and/or specific hydraulic energy and efficiency in the

guarantee range . 123
9.4.4 Prototype mechanical losses . 124
9.4.5 Runaway speed and discharge . 124
9.4.6 Penalty and premium . 125
10 Additional performance data – Methods of measurement and results . 125
10.1 Additional data measurement . 125
10.1.1 General . 125
10.1.2 Test conditions and test procedures . 126
10.1.3 Uncertainty in measurements . 126
10.1.4 Model to prototype conversion . 127
10.2 Hydraulic loads on control components . 127
10.2.1 General . 127
10.2.2 Pelton needle force and deflector torque . 128
10.3 Influence of tail water level . 131
10.4 Testing in an extended operating range . 131
10.4.1 General . 131
10.4.2 Scope of tests . 131
10.4.3 Methods of testing in the extended operating range . 132
10.5 Differential pressure measurement in view of prototype index test . 133
10.5.1 General . 133
10.5.2 Purpose of test . 133
10.5.3 Execution of test . 133
10.5.4 Analysis of test results . 134
10.5.5 Transposition to prototype conditions . 135
10.5.6 Uncertainty . 135
10.6 Nozzle flow discharge calibration in view of prototype index test . 135
Annex A (informative) Dimensionless terms . 136
Annex B (normative) Physical properties, data . 138
Annex C (informative) Summarized test and calculation procedure . 146
C.1 General . 146
C.2 Agreements to be reached prior to testing . 146
C.3 Model, test facility and instrumentation . 147
C.3.1 Model manufacture and dimensional checks . 147
C.3.2 Test facility instrumentation and data acquisition system . 147
C.4 Tests and calculation of the model values . 147
C.4.1 Test types. 147
C.4.2 Measurement of the main quantities during the test . 147
C.4.3 Uncertainty of the measured quantities . 148
C.4.4 Calculation of the quantities related to the main hydraulic performance . 148
C.4.5 Calculation of the dimensionless factors or coefficients and of the

Thoma number . 148
C.5 Calculation of prototype quantities . 148
C.6 Plotting of model or prototype results . 149
C.7 Comparison with the guarantees . 149

– 6 – IEC 63461:2024 © IEC 2024
C.8 Final protocol . 149
C.9 Final test report . 149
Annex D (normative) Computation of the prototype runaway characteristics taking into
account friction and windage losses of the unit . 150
Annex E (informative) Example of determination of the best smooth curve: method of
separate segments . 151
E.1 General . 151
E.2 Principle of the method . 151
E.3 Choice of the minimum width of the intervals . 153
E.4 Determination of the intervals . 153
Annex F (informative) Examples of analysis of sources of error and uncertainty
evaluation . 154
F.1 General . 154
F.2 Example of analysis of sources of error and of uncertainty evaluation in the
measurement of a physical quantity . 154
F.2.1 General . 154
F.2.2 Errors arising during calibration . 155
F.2.3 Errors arising during the tests . 156
F.3 Example of calculation of uncertainty due to systematic errors in the
determination of the specific hydraulic energy, mechanical runner power and
hydraulic efficiency . 157
F.3.1 General . 157
F.3.2 Discharge . 157
F.3.3 Pressure . 157
F.3.4 Specific hydraulic energy . 157
F.3.5 Power . 158
F.3.6 Hydraulic efficiency . 159
Annex G (normative) The scale effect on hydraulic efficiency for Pelton turbines . 160
G.1 General . 160
G.2 Similarity considerations . 160
G.3 Transposition formula . 162
Annex H (normative) Analysis of random errors for a test at constant operating
conditions . 163
H.1 General . 163
H.2 Standard deviation . 163
H.3 Confidence levels . 164
H.4 Student's t distribution . 164
H.5 Maximum permissible value of uncertainty due to random errors. 165
H.6 Example of calculation . 166
Annex I (informative) Flux diagram of specific hydraulic energy and power . 167
Bibliography . 169

Figure 1 – Schematic representation of a Pelton machine . 16
Figure 2 – Reference diameter and bucket width . 17
Figure 3 – Reference level of a Pelton machine . 19
Figure 4 – Flux diagram for power . 21
Figure 5 – Illustration of some definitions related to oscillating quantities . 24
-2
Figure 6 – Acceleration due to gravity g (m ⋅ s ) . 27

IEC 63461:2024 © IEC 2024 – 7 –
−3
Figure 7 – Density of distilled water ρ (kg ⋅ m ) . 30
wd
Figure 8 – Example for homology limits for wetted parts of a vertical Pelton turbine . 34
Figure 9 – Example for homology limit for wetted parts of a horizontal Pelton turbine . 34
Figure 10 – Procedure for dimensional checks, comparison of results "steel to steel"
and application of tolerances for model and prototype . 37
Figure 11 – Pelton turbine: example of dimensions to be checked on the distributor and
the housing of vertical and horizontal shaft machines . 39
Figure 12 – Pelton turbine: example of dimensions to be checked on the buckets and
nozzles . 40
Figure 13 – Definition of waviness and surface roughness . 45
Figure 14 – Time multiplexing data acquisition system . 57
Figure 15 – Bus operated data acquisition system . 57
Figure 16 – Time delay . 59
Figure 17 – Typical low-pass filter attenuation characteristics . 59
Figure 18 – Different measurement chains and their recommended checkpoints . 62
Figure 19 – Typical data acquisition system . 64
Figure 20 – Frequency response of analogue anti-aliasing filter . 65
Figure 21 – Example of calibration curve . 70
Figure 22 – Examples of pressure taps . 82
Figure 23 – Types of pressure manifolds . 83
Figure 24 – Dead weight manometer with compensation by pressure or force
transducer (example of experimental set-up) . 88
Figure 25 – Pressure weighbeam (example of experimental set-up) . 89
Figure 26 – Stilling well . 92
Figure 27 – Point and hook gauges . 93
Figure 28 – Balance arrangement . 96
Figure 29 – Balance arrangement with two separate frames . 97
Figure 30 – Arrangement with machine bearings and seals not in balance . 97
Figure 31 – Arrangement using a torquemeter . 98
Figure 32 – Arrangement using a torquemeter with machine bearings and seals in
balance . 98
Figure 33 – Arrangement using a torquemeter with machine bearings and seals not in
balance . 99
Figure 34 – Example showing main elevations, heights and reference levels of the test
rig and model machine . 105
Figure 35 – Pelton turbines with horizontal axis: determination of specific hydraulic
energy of the machine . 108
Figure 36 – Pelton model turbine: performance hill diagram (example for a six-nozzle
machine) . 114
Figure 37 – Three-dimensional surface of hydraulic efficiency and curves of
performance at E constant . 116
nD
Figure 38 – Runaway curves for a six-nozzle Pelton turbine . 118
Figure 39 – Runaway speed determined by extrapolation . 118
Figure 40 – Measured hydraulic efficiency compared to guarantee point . 123
Figure 41 – Comparison between guarantees and measurements . 124

– 8 – IEC 63461:2024 © IEC 2024
Figure 42 – Pelton turbine runaway speed and discharge curves: comparison between
guarantees and measurements . 125
Figure 43 – Pelton needle force factor as a function of relative needle stroke . 130
Figure 44 – Example of pressure tap location for index test . 134
Figure 45 – Example of graphical representation of index test data . 134
Figure D.1 – Determination of the maximum runaway speed of the prototype taking into
account the friction and windage losses of the unit . 150
Figure E.1 – Principle of the method of separate segments . 152
Figure E.2 – Example of determination of intervals . 152
Figure G.1 – Influence of Froude number . 161
Figure G.2 – Influence of Weber number. 162
Figure G.3 – Influence of Reynolds number . 162
Figure I.1 – Turbine . 167

Table 1 – Coefficients of the Herbst and Roegener formula . 29
Table 2 – Permissible maximum deviations . 43
Table 3 – Maximum recommended prototype surface roughness Ra . 46
Table 4 – Summary of errors that determine total measurement uncertainty . 71
Table 5 – Examples of experimental setup of liquid column manometers . 85
Table 6 – Nomenclature for Figure 28 to Figure 33 . 96
Table 7 – Similitude numbers . 110
Table 8 – Similitude requirements for various types of model tests . 111
Table 9 – Minimum values for model size and test parameters . 113
Table 10 – Variables defining the operating point of a machine . 114
Table A.1 – Dimensionless terms . 137
−2
Table B.1 – Acceleration due to gravity g (m·s ) . 138
−3
Table B.2 – Density of distilled water ρ (kg·m ) . 139
wd
2 −1
Table B.3 – Kinematic viscosity of distilled water ν (m ·s ) . 141
Table B.4 – Vapour pressure of distilled water p (Pa) . 142
va
−3
Table B.5 – Density of dry air ρ (kg·m ) . 143
a
Table B.6 – Ambient pressure p (Pa) . 144
amb
−3
Table B.7 – Density of mercury ρ (kg·m ) . 145
Hg
Table G.1 – Numerical data for surface tension σ* . 161
Table H.1 – Confidence levels . 164
Table H.2 – Values of Student's t . 165
Table H.3 – Computation of the estimated standard deviation and the uncertainty for
eight observations . 166

IEC 63461:2024 © IEC 2024 – 9 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
PELTON HYDRAULIC TURBINES –
MODEL ACCEPTANCE TESTS
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote inter
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

Frequently Asked Questions

EN IEC 63461:2024 is a standard published by CLC. Its full title is "Pelton hydraulic turbines - Model acceptance tests". This standard covers: IEC 63461:2024 applies to laboratory model tests of any type of Pelton hydraulic turbine with unit power greater than 5 MW. It contains the rules governing test conduct and provides measures to be taken if any phase of the tests is disputed. The main objectives of this document are: - to define the terms and quantities used; - to specify methods of testing and of measuring the quantities involved, in order to ascertain the hydraulic performance of the model; - to specify the methods of computation of results and of comparison with guarantees; - to determine if the contract guarantees that fall within the scope of this document have been fulfilled; - and to define the extent, content and structure of the final report. Full application of the procedures herein described is not generally justified for machines with smaller power. Nevertheless, this document can be used for such machines by agreement between the purchaser and the supplier.

IEC 63461:2024 applies to laboratory model tests of any type of Pelton hydraulic turbine with unit power greater than 5 MW. It contains the rules governing test conduct and provides measures to be taken if any phase of the tests is disputed. The main objectives of this document are: - to define the terms and quantities used; - to specify methods of testing and of measuring the quantities involved, in order to ascertain the hydraulic performance of the model; - to specify the methods of computation of results and of comparison with guarantees; - to determine if the contract guarantees that fall within the scope of this document have been fulfilled; - and to define the extent, content and structure of the final report. Full application of the procedures herein described is not generally justified for machines with smaller power. Nevertheless, this document can be used for such machines by agreement between the purchaser and the supplier.

EN IEC 63461:2024 is classified under the following ICS (International Classification for Standards) categories: 27.140 - Hydraulic energy engineering. The ICS classification helps identify the subject area and facilitates finding related standards.

EN IEC 63461:2024 has the following relationships with other standards: It is inter standard links to EN IEC 60193:2019, EN IEC 63461:2024/AC:2025-03. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase EN IEC 63461:2024 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CLC standards.

Die Norm EN IEC 63461:2024, die sich mit Modellakzeptanzprüfungen von Pelton-Wasserturbinen beschäftigt, bietet einen umfassenden Rahmen für Laborprüfungen dieser spezifischen Turbine mit einer Nennleistung von über 5 MW. Diese Norm ist von wesentlicher Bedeutung für die standardisierte Durchführung von Tests und bietet klare Richtlinien, die für die Validierung der hydrodynamischen Leistung entscheidend sind. Die Stärken dieser Norm liegen in ihrer klaren Definition von Begriffen und Größen, die für die Tests benannt werden, sowie in der Angabe von Methoden zur Durchführung und Messung der relevanten Größen. Diese Struktur gewährleistet eine eindeutige Vergleichbarkeit der Ergebnisse, was für die Hersteller und Prüfer gleichermaßen von Vorteil ist. Ein zentrales Ziel dieser Norm ist es, die Berechnungsmethoden für die Testergebnisse sowie deren Vergleich mit den vertraglich vereinbarten Garantien zu spezifizieren, wodurch die Transparenz und Zuverlässigkeit der Prüfung erhöht wird. Darüber hinaus definiert die Norm den Umfang, den Inhalt und die Struktur des Abschlussberichts, was für die Dokumentation der Testergebnisse entscheidend ist. Diese Details tragen dazu bei, dass alle beteiligten Parteien klare Informationen über die Testergebnisse und deren Bedeutung erhalten, insbesondere im Falle von Streitfragen während der Testdurchführung. Obwohl die vollständige Anwendung der beschriebenen Verfahren in der Regel nicht für Maschinen mit geringerer Leistung gerechtfertigt ist, bietet die Norm auch die Möglichkeit, diese Verfahren im Einvernehmen zwischen Käufer und Anbieter anzuwenden. Dies schafft eine Flexibilität, die in der Praxis oft notwendig ist und die Relevanz der Norm in verschiedenen Kontexten erhöht. Zusammenfassend lässt sich sagen, dass die Norm EN IEC 63461:2024 eine entscheidende Leitlinie für die Durchführung von Modellakzeptanztests für Pelton-Wasserturbinen darstellt und somit einen wichtigen Beitrag zur Standardisierung und Optimierung im Bereich der hydrologischen Maschinen leistet.

EN IEC 63461:2024は、5 MWを超える出力を持つペルトン水力タービンのモデル受入試験に関する重要な基準です。この標準は、試験の実施方法に関するルールを定めており、試験のいずれかの段階において異議がある場合に講じるべき措置も提供しています。標準の主な目的は、用語および関連する数量の定義、モデルの水力性能を評価するための試験および測定方法の明確化、結果の計算方法と保証との比較方法の特定、契約上の保証がこの文書の範囲内で満たされているかを判断すること、最終報告書の範囲、内容、構造を定義することです。 この文書は、試験の標準化を通じて、ペルトン水力タービンの性能評価を確実に行うための信頼性の高い枠組みを提供しています。特に、水力性能の測定と結果の計算方法が具体的に示されていることにより、製品の品質保証にも寄与します。また、顧客と供給者の合意により、出力が小さい機械にも適用可能である点は、この標準の柔軟性を示しています。 さらに、試験の紛争に対する対応策が明記されていることで、関連する企業間のトラブルシューティングにも役立ちます。全体として、EN IEC 63461:2024は、ペルトン水力タービンのモデル試験における信頼性、整合性、および透明性を確保するための基盤を提供しており、その適用は業界において非常に重要な意義を持っています。

The EN IEC 63461:2024 standard titled "Pelton hydraulic turbines - Model acceptance tests" provides a comprehensive framework specifically for laboratory model tests of Pelton hydraulic turbines with a unit power exceeding 5 MW. The standard's well-defined scope establishes its relevance for entities engaged in the design, testing, and certification of Pelton turbines, ensuring adherence to rigorous testing protocols. One of the main strengths of this standard lies in its systematic approach to defining critical terms and quantities pertinent to the hydraulic performance evaluation of Pelton turbines. By specifying precise methods for testing and measuring performance-related quantities, the document enhances the accuracy and reliability of test results. This is essential for validating the turbine's performance against contractual guarantees, thus fostering trust between the purchaser and the supplier. Moreover, the standard provides clear directives for computational methods that facilitate the analysis of test results. This structured approach supports consistent benchmarking against guarantee criteria, which is vital for both regulatory compliance and commercial negotiations in the energy sector. Importantly, the flexibility of the standard is also a noteworthy feature. While it is primarily designed for turbines with higher unit power, the document allows application for smaller machines when mutually agreed upon by the involved parties. This adaptability increases its usability across a broader range of turbine operation scenarios. The design of the final report as detailed in the standard ensures that all critical aspects of the testing process are documented systematically, which aids in the retention of essential information and supports transparency in the operational characteristics of Pelton hydraulic turbines. Overall, EN IEC 63461:2024 represents a significant advancement in standardization for Pelton hydraulic turbines, emphasizing thorough testing procedures, performance accountability, and mutual agreement flexibility, affirming its vital role in enhancing operational efficiency and safety within the hydropower industry.

La norme EN IEC 63461:2024, intitulée « Turbines hydrauliques Pelton - Tests d'acceptation de modèle », présente un cadre normatif essentiel pour les essais en laboratoire des turbines hydrauliques Pelton dont la puissance unitaire dépasse 5 MW. Cette norme définit un périmètre clair pour la réalisation de tests, en établissant des règles précises sur la conduite des essais et en proposant des mesures à adopter en cas de litige lors de n'importe quelle phase des tests. Un des points forts de cette norme est sa capacité à harmoniser les processus en matière de tests de performance hydraulique. Elle précise les termes et les quantités à utiliser, ce qui permet une compréhension uniforme entre les différentes parties prenantes. De plus, la norme spécifie des méthodes rigoureuses pour le test et la mesure des quantités impliquées, garantissant ainsi que les résultats obtenus soient fiables et comparables. Cela est particulièrement pertinent pour l'évaluation de la performance hydrauliques des modèles de turbines. L'énoncé des méthodes de calcul des résultats ainsi que les directives pour la comparaison avec les garanties contractuelles renforcent la pertinence de la norme. En s'assurant que les garanties contractuelles sont respectées et en définissant clairement la structure du rapport final, la norme facilite une communication efficace entre le fournisseur et l'acheteur. Bien que l'application intégrale des procédures ne soit pas justifiée pour des machines de puissance inférieure à 5 MW, la norme EN IEC 63461:2024 offre néanmoins une flexibilité appréciable. Elle peut être appliquée à ces machines moyennant un accord entre les parties, ce qui permet une adaptation des règles aux besoins spécifiques du projet. Dans l'ensemble, la norme EN IEC 63461:2024 est un document pertinent qui répond aux exigences actuelles du secteur des turbines hydrauliques. Sa mise en œuvre contribue non seulement à une meilleure standardisation des procédés de test, mais également à l'amélioration continue de la performance des turbines, consolidant ainsi la confiance entre les fabricants et les utilisateurs.

표준 EN IEC 63461:2024는 5 MW 이상의 단위 전력을 가진 펠튼 수력 터빈의 실험실 모델 테스트에 적용됩니다. 이 문서에는 시험 수행을 위한 규정과 시험의 어느 단계에서 논란이 발생할 경우 취해야 할 조치가 포함되어 있습니다. 이 표준의 주요 목적은 다음과 같습니다. 우선, 사용되는 용어와 양을 정의하고, 모델의 수력 성능을 확인하기 위한 시험 및 양 측정 방법을 명시합니다. 이로써 검사 과정에서 일관성과 정확성을 담보하고 있습니다. 또한, 결과 계산 방법과 보장 사항과의 비교 방법을 구체화하여, 모든 이해 당사자가 합의된 기준에 따라 결과를 평가할 수 있도록 합니다. 계약 보장이 이 문서의 범위 내에서 충족되었는지 여부를 판단하는 데에도 이 문서가 유용합니다. 마찬가지로, 최종 보고서의 범위, 내용 및 구조를 정립하여 명료한 커뮤니케이션을 가능하게 합니다. EN IEC 63461:2024는 펠튼 수력 터빈 모델 테스트에 대한 표준화된 접근 방식을 제공함으로써, 연구자와 엔지니어들이 신뢰할 수 있는 데이터를 얻을 수 있도록 하고 있습니다. 작은 전력의 기계에 대해서는 기본적으로 이 표준 전체의 적용이 정당화되지 않지만, 구매자와 공급자 간의 합의가 있을 경우 다양한 상황에서도 유용하게 활용될 수 있습니다. 이러한 유연성 덕분에 이 표준은 수력발전 분야에서의 표준화 및 기술발전에 중요한 역할을 하고 있습니다. 결론적으로, EN IEC 63461:2024는 펠튼 수력 터빈 모델 테스트를 위한 명확한 지침을 제공하며, 관련 산업 실무자들에게 필수적인 법적 및 기술적 기준을 제시합니다. 이 표준은 수력 터빈의 성능을 정확히 평가하기 위한 기준이므로, 해당 분야의 전문가들에게 큰 의미를 지니고 있습니다.