Energy management system application program interface (EMS-API) - Part 302: Common information model (CIM) dynamics

IEC 61970-302:2018 specifies a Dynamics package which contains extensions to the CIM to support the exchange of models between software applications that perform analysis of the steady-state stability (small-signal stability) or transient stability of a power system as defined by IEEE/CIGRE Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. The model descriptions in this standard provide specifications for each type of dynamic model as well as the information that needs to be included in dynamic case exchanges between planning/study applications.

Schnittstelle für Anwendungsprogramme für Energiemanagementsysteme (EMS-API) - Teil 302: Allgemeines Informationsmodell (CIM) Dynamik

Interface de programmation d'application pour système de gestion d'énergie (EMS-API) – Partie 302: Régimes dynamiques de modèle d'information commun (CIM)

L'IEC 61970-302:2018 spécifie un paquetage dynamique (Dynamics) contenant des extensions du CIM. Il s'agit d'assurer l'échange des modèles entre les applications logicielles qui procèdent à l'analyse de la stabilité en régime établi (stabilité en petits signaux) ou de la stabilité transitoire d'un système de puissance tel que défini dans le document Definition and classification of power system stability (Définition et classification de la stabilité des réseaux d’énergie électrique) du joint task force (groupe de travail commun) IEEE/CIGRE on stability terms and definitions. Les descriptions de modèles indiquées dans la présente norme donnent des spécifications pour chaque type de modèle dynamique, ainsi que des informations nécessaires à inclure dans les échanges de cas dynamiques entre les applications de planification/d'étude.

Aplikacijski programski vmesnik za sistem upravljanja z energijo (EMS-API) - 302. del: Skupni informacijski model (CIM) za dinamiko

Skupni informacijski model (CIM) je abstraktni model, ki predstavlja vse glavne objekte v elektropodjetju, ki običajno opravlja javno službo. Z zagotavljanjem standardnega načina predstavitve elektroenergetskih virov kot objektnih razredov in atributov, skupaj z njihovimi povezavami, skupni informacijski model olajšuje integracijo aplikacij sistema upravljanja z energijo (EMS), ki so jih neodvisno razvili različni prodajalci, med celotnimi samostojno razvitimi sistemi upravljanja z energijo ali med sistemom upravljanja z energijo in drugimi sistemi, ki se ukvarjajo z drugimi vidiki delovanja elektroenergetskega sistema, kot je upravljanje proizvodnje ali distribucije. SCADA je modeliran v obsegu, potrebnem za podporo simulacije elektroenergetskega sistema in komunikacije med nadzornimi centri. Skupni informacijski model olajšuje integracijo z opredelitvijo skupnega jezika (tj. semantike), osnovanega na skupnem informacijskem modelu, ki omogoča, da imajo te aplikacije ali sistemi dostop do javnih podatkov in izmenjujejo informacije neodvisno od tega, kako so te informacije izražene interno.
Zaradi velikosti celotnega modela CIM so objektni razredi, ki jih vsebuje CIM, združeni v številne logične pakete, pri čemer vsak predstavlja določen del celotnega elektroenergetskega sistema. Zbirke teh paketov se razvijajo kot ločeni mednarodni standardi. Ta dokument določa paket dinamike, ki vsebuje razširitve za CIM za podporo izmenjave modelov med programskimi aplikacijami, ki izvajajo analizo ustaljene stabilnosti (stabilnost majhnega signala) ali prehodne stabilnosti elektroenergetskega sistema, kot je opredelila skupna delovna skupina IEEE/CIGRE v opredelitvi in klasifikaciji stabilnosti elektroenergetskega sistema v povezavi s pogoji stabilnosti in definicij.
Opisi modelov v tem standardu določajo specifikacije za vsak tip dinamičnega modela in informacije, ki morajo biti vključene v primere dinamične izmenjave med načrtovalnimi/študijskimi uporabami.
Obseg razširitev CIM, opredeljenih v tem standardu, zajema:
• standardne modele: poenostavljen pristop k opisovanju dinamičnih modelov, pri čemer so modeli, ki predstavljajo dinamično vedenje elementov elektroenergetskega sistema, vsebovani v vnaprej določenih knjižnicah razredov, ki so med seboj povezane na standarden način. Za opis dinamičnega vedenja so potrebna samo imena izbranih elementov modelov z njihovimi atributi.
• lastniški, uporabniško določeni modeli: pristop, ki uporabnikom omogoča določanje parametrov dinamičnega modela vedenja, ki predstavlja lastniško napravo prodajalca ali uporabnika, če standard ne določa eksplicitnega opisa modela. Iste knjižnice in standardne medsebojne povezave se uporabljajo za lastniške, uporabniško določene modele in standardne modele. V standardu so dokumentirani samo parametri modela, vedenjske podrobnosti modela pa ne.

General Information

Status
Published
Publication Date
07-Jun-2018
Withdrawal Date
16-May-2021
Current Stage
6060 - Document made available - Publishing
Start Date
08-Jun-2018
Completion Date
08-Jun-2018

Relations

Standard
EN IEC 61970-302:2018 - BARVE
English language
476 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
01-oktober-2018
Aplikacijski programski vmesnik za sistem upravljanja z energijo (EMS-API) - 302.
del: Skupni informacijski model (CIM) za dinamiko
Energy Management System Application Program Interface (EMS-API) - Part 302: CIM
for Dynamics
Ta slovenski standard je istoveten z: EN IEC 61970-302:2018
ICS:
29.240.30 Krmilna oprema za Control equipment for electric
elektroenergetske sisteme power systems
35.200 Vmesniška in povezovalna Interface and interconnection
oprema equipment
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EUROPEAN STANDARD EN IEC 61970-302

NORME EUROPÉENNE
EUROPÄISCHE NORM
June 2018
ICS 33.200
English Version
Energy management system application program interface
(EMS-API) - Part 302: Common information model (CIM)
dynamics
(IEC 61970-302:2018)
Interface de programmation d'application pour système de Schnittstelle für Anwendungsprotokolle für
gestion d'énergie (EMS-API) - Partie 302: Régimes Energieverwaltungssysteme (EMS-API) - Teil 302:
dynamiques de modèle d'information commun (CIM) Allgemeines Informationsmodell (CIM) Dynamik
(IEC 61970-302:2018) (IEC 61970-302:2018)
This European Standard was approved by CENELEC on 2018-05-17. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2018 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN IEC 61970-302:2018 E

European foreword
The text of document 57/1954/FDIS, future edition 1 of IEC 61970-302, prepared by IEC/TC 57
"Power systems management and associated information exchange" was submitted to the IEC-
CENELEC parallel vote and approved by CENELEC as EN IEC 61970-302:2018.

The following dates are fixed:
• latest date by which the document has to be (dop) 2019-02-17
implemented at national level by
publication of an identical national
standard or by endorsement
(dow) 2021-05-17
• latest date by which the national
standards conflicting with the
document have to be withdrawn
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CENELEC by the European Commission
and the European Free Trade Association.

Endorsement notice
The text of the International Standard IEC 61970-302:2018 was approved by CENELEC as a
European Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 61400-27-1:2015 NOTE Harmonized as EN 61400-27-1:2015 (not modified).
IEC 61970-501:2006 NOTE Harmonized as EN 61970-501:2006 (not modified).

Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1  Where an International Publication has been modified by common modifications, indicated by (mod), the relevant
EN/HD applies.
NOTE 2  Up-to-date information on the latest versions of the European Standards listed in this annex is available here:
www.cenelec.eu.
Publication Year Title EN/HD Year
IEC 60050 series International electrotechnical vocabulary - -
IEC 61970-301 -  Energy Management System Application EN 61970-301 -
Program Interface (EMS-API) - Part 301:
Common information model (CIM) base
IEC/TS 61970-2 -  Energy management system application CLC/TS 61970-2 -
program interface (EMS-API) - Part 2:
Glossary
IEC 61970-302 ®
Edition 1.0 2018-04
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Energy management system application program interface (EMS-API) –

Part 302: Common information model (CIM) dynamics

Interface de programmation d'application pour système de gestion d'énergie

(EMS-API) –
Partie 302: Régimes dynamiques de modèle d'information commun (CIM)

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 33.200 ISBN 978-2-8322-5527-8

– 2 – IEC 61970-302:2018  IEC 2018
CONTENTS
FOREWORD . 23
INTRODUCTION . 25
1 Scope . 26
2 Normative references . 26
3 Terms and definitions . 27
4 Document organization . 29
5 Package dynamics . 30
5.1 General . 30
5.2 Package StandardInterconnections . 30
5.2.1 General . 30
5.2.2 RemoteInputSignal . 46
5.2.3 RemoteSignalKind enumeration . 47
5.3 Package StandardModels . 47
5.3.1 General . 47
5.3.2 DynamicsFunctionBlock . 48
5.3.3 RotatingMachineDynamics . 48
5.3.4 Package SynchronousMachineDynamics . 49
5.3.5 Package AsynchronousMachineDynamics . 80
5.3.6 Package TurbineGovernorDynamics . 88
5.3.7 Package TurbineLoadControllerDynamics . 183
5.3.8 Package MechanicalLoadDynamics . 187
5.3.9 Package ExcitationSystemDynamics. 190
5.3.10 Package OverexcitationLimiterDynamics . 311
5.3.11 Package UnderexcitationLimiterDynamics . 319
5.3.12 Package PowerSystemStabilizerDynamics. 328
5.3.13 Package DiscontinuousExcitationControlDynamics . 362
5.3.14 Package PFVArControllerType1Dynamics . 368
5.3.15 Package VoltageAdjusterDynamics . 372
5.3.16 Package PFVArControllerType2Dynamics . 374
5.3.17 Package VoltageCompensatorDynamics . 379
5.3.18 Package WindDynamics . 384
5.3.19 Package LoadDynamics. 424
5.3.20 Package HVDCDynamics . 435
5.3.21 Package StaticVarCompensatorDynamics . 438
5.4 Package UserDefinedModels . 440
5.4.1 General . 440
5.4.2 SynchronousMachineUserDefined . 441
5.4.3 AsynchronousMachineUserDefined . 442
5.4.4 TurbineGovernorUserDefined . 443
5.4.5 TurbineLoadControllerUserDefined . 444
5.4.6 MechanicalLoadUserDefined . 445
5.4.7 ExcitationSystemUserDefined . 446
5.4.8 OverexcitationLimiterUserDefined . 447
5.4.9 UnderexcitationLimiterUserDefined . 448
5.4.10 PowerSystemStabilizerUserDefined . 449
5.4.11 DiscontinuousExcitationControlUserDefined . 449

IEC 61970-302:2018  IEC 2018 – 3 –
5.4.12 PFVArControllerType1UserDefined . 450
5.4.13 VoltageAdjusterUserDefined . 451
5.4.14 PFVArControllerType2UserDefined . 452
5.4.15 VoltageCompensatorUserDefined . 453
5.4.16 LoadUserDefined . 454
5.4.17 WindType1or2UserDefined . 454
5.4.18 WindType3or4UserDefined . 455
5.4.19 WindPlantUserDefined . 456
5.4.20 CSCUserDefined . 457
5.4.21 VSCUserDefined . 457
5.4.22 SVCUserDefined . 458
5.4.23 ProprietaryParameterDynamics root class . 459
5.5 Package Examples . 460
Annex A (informative) Dynamics package symbol representation conventions . 464
Annex B (informative) Use of per unit. 466
Annex C (informative) Updates to CIM dynamics standard models . 468
Bibliography . 473

Figure 1 – StandardInterconnectionSynchronousMachine . 31
Figure 2 – StandardInterconnectionSynchronousGeneratorCrossCompound . 32
Figure 3 – StandardInterconnectionAsynchronousMachine . 33
Figure 4 – StandardInterconnectionWindTurbineType1Aand1B . 34
Figure 5 – StandardInterconnectionWindTurbineType2 . 35
Figure 6 – StandardInterconnectionWindTurbineType3 . 36
Figure 7 – StandardInterconnectionWindTurbineType4Aand4B . 37
Figure 8 – StandardInterconnectionSingleLoad . 38
Figure 9 – Class diagram
StandardInterconnections::StandardSynchronousMachineInterconnection . 39
Figure 10 – Class diagram
StandardInterconnections::StandardAsynchronousMachineInterconnection . 40
Figure 11 – Class diagram
StandardInterconnections::StandardWindType1and2Interconnection . 41
Figure 12 – Class diagram
StandardInterconnections::StandardWindType3and4Interconnection . 43
Figure 13 – Class diagram StandardInterconnections::StandardLoadInterconnection . 44
Figure 14 – Class diagram StandardInterconnections::StandardHVDCInterconnection . 45
Figure 15 – Class diagram
StandardInterconnections::StandardStaticVarCompensatorInterconnection . 46
Figure 16 – SynchronousGeneratorInterconnectionAndVariables . 50
Figure 17 – SynchronousMotorInterconnectionAndVariables . 51
Figure 18 – Class diagram
SynchronousMachineDynamics::SynchronousMachineDynamics . 52
Figure 19 – SynchronousMachineSaturationParameters . 53
Figure 20 – SynchronousGeneratorMechanicalEquation . 54
Figure 21 – SynchronousMotorMechanicalEquation . 54
Figure 22 – SynchronousGeneratorPhasor . 55

– 4 – IEC 61970-302:2018  IEC 2018
Figure 23 – SynchronousMotorPhasor . 56
Figure 24 – Simplified . 58
Figure 25 – SubtransientRoundRotor . 62
Figure 26 – SubtransientSalientPole . 63
Figure 27 – SubtransientTypeF . 64
Figure 28 – SubtransientTypeJ . 65
Figure 29 – SubtransientRoundRotorSimplified . 66
Figure 30 – SubtransientSalientPoleSimplified . 68
Figure 31 – SubtransientRoundRotorSimplifiedDirectAxis . 70
Figure 32 – SubtransientSalientPoleSimplifiedDirectAxis . 72
Figure 33 – SynchronousEquivalentCircuit . 77
Figure 34 – AsynchronousGeneratorInterconnectionAndVariables . 81
Figure 35 – AsynchronousMotorInterconnectionAndVariables . 81
Figure 36 – Class diagram
AsynchronousMachineDynamics::AsynchronousMachineDynamics . 82
Figure 37 – AsynchronousGeneratorMechanicalEquation . 83
Figure 38 – AsynchronousMotorMechanicalEquation . 83
Figure 39 – AsynchronousEquivalentCircuit . 87
Figure 40 – TurbineGovernorInterconnectionAndVariables . 89
Figure 41 – Class diagram TurbineGovernorDynamics::TurbineGovernorDynamics . 90
Figure 42 – GovHydroIEEE0 . 92
Figure 43 – GovHydroIEEE2 . 94
Figure 44 – GovSteamIEEE1 . 96
Figure 45 – GovCT1 . 99
Figure 46 – GovCT2 . 103
Figure 47 – GovGAST . 107
Figure 48 – GovGAST1 . 109
Figure 49 – GovGAST2 . 111
Figure 50 – GovGAST3 . 114
Figure 51 – GovGAST3ExhaustTemperature . 114
Figure 52 – GovGAST4 . 116
Figure 53 – GovGASTWD . 118
Figure 54 – GovHydro1 . 120
Figure 55 – GovHydro2 . 122
Figure 56 – GovHydro3 . 125
Figure 57 – GovHydro4 . 128
Figure 58 – GovHydro4SimpleHydroTurbine . 129
Figure 59 – GovHydro4FrancisPeltonTurbine . 130
Figure 60 – GovHydro4KaplanTurbine . 131
Figure 61 – GovHydroDD . 134
Figure 62 – GovHydroFrancis . 137
Figure 63 – GovHydroFrancisNonLinearGainAndEfficiency . 138
Figure 64 – DetailedHydroModelHydraulicSystem . 139

IEC 61970-302:2018  IEC 2018 – 5 –
Figure 65 – GovHydroPelton . 142
Figure 66 – GovHydroPeltonNonLinearGainAndEfficiency . 143
Figure 67 – GovHydroPID . 146
Figure 68 – GovHydroPID2 . 149
Figure 69 – GovHydroR . 152
Figure 70 – GovHydroWEH . 155
Figure 71 – GovHydroWPID . 159
Figure 72 – GovSteam0 . 161
Figure 73 – GovSteam1 . 162
Figure 74 – GovSteam1BacklashHysteresis . 163
Figure 75 – GovSteam1InputSpeedDeadband . 164
Figure 76 – GovSteam2 . 166
Figure 77 – GovSteamBB . 168
Figure 78 – GovSteamCC . 169
Figure 79 – GovSteamEU . 171
Figure 80 – GovSteamFV2 . 173
Figure 81 – GovSteamFV3 . 175
Figure 82 – GovSteamFV4 . 178
Figure 83 – GovSteamSGO. 181
Figure 84 – Class diagram
TurbineLoadControllerDynamics::TurbineLoadControllerDynamics . 183
Figure 85 – TurbLCFB1 . 185
Figure 86 – MechanicalLoadInterconnectionAndVariables . 187
Figure 87 – MechanicalLoadEquations . 187
Figure 88 – Class diagram MechanicalLoadDynamics::MechanicalLoadDynamics . 188
Figure 89 – ExcitationSystemInterconnectionAndVariables . 190
Figure 90 – Class diagram ExcitationSystemDynamics::ExcitationSystemDynamics . 191
Figure 91 – ExcAC1A . 229
Figure 92 – ExcAC2A . 231
Figure 93 – ExcAC3A . 234
Figure 94 – ExcAC4A . 236
Figure 95 – ExcAC5A . 238
Figure 96 – ExcAC6A . 240
Figure 97 – ExcAC8B . 242
Figure 98 – ExcANS . 245
Figure 99 – ExcAVR1 . 247
Figure 100 – ExcAVR2 . 249
Figure 101 – ExcAVR3 . 250
Figure 102 – ExcAVR4 . 252
Figure 103 – ExcAVR5 . 254
Figure 104 – ExcAVR7 . 256
Figure 105 – ExcBBC . 259
Figure 106 – ExcCZ . 261

– 6 – IEC 61970-302:2018  IEC 2018
Figure 107 – ExcDC1A . 263
Figure 108 – ExcDC2A . 265
Figure 109 – ExcDC3A . 267
Figure 110 – ExcDC3A1 . 269
Figure 111 – ExcELIN1 . 271
Figure 112 – ExcELIN2 . 273
Figure 113 – ExcHU . 275
Figure 114 – ExcNI . 277
Figure 115 – ExcOEX3T . 280
Figure 116 – ExcPIC . 282
Figure 117 – ExcREXS . 285
Figure 118 – ExcRQB . 289
Figure 119 – ExcSCRX . 290
Figure 120 – ExcSEXS . 292
Figure 121 – ExcSK . 294
Figure 122 – ExcST1A . 297
Figure 123 – ExcST2A . 299
Figure 124 – ExcST3A . 301
Figure 125 – ExcST4B . 303
Figure 126 – ExcST6B . 305
Figure 127 – ExcST7B . 308
Figure 128 – Class diagram
OverexcitationLimiterDynamics::OverexcitationLimiterDynamics . 312
Figure 129 – OverexcLim2 . 314
Figure 130 – OverexcLimX1 . 315
Figure 131 – OverexcLimX1TimeCharacteristic . 316
Figure 132 – OverexcLimX2 . 318
Figure 133 – OverexcLimX2TimeCharacteristic . 318
Figure 134 – Class diagram
UnderexcitationLimiterDynamics::UnderexcitationLimiterDynamics . 320
Figure 135 – UnderexcLim2Simplified . 324
Figure 136 – UnderexcLimX1 . 326
Figure 137 – UnderexcLimX2 . 327
Figure 138 – PowerSystemStabilizerInterconnectionAndVariables . 329
Figure 139 – Class diagram
PowerSystemStabilizerDynamics::PowerSystemStabilizerDynamics . 330
Figure 140 – Pss1 . 338
Figure 141 – Pss1A . 340
Figure 142 – Pss2B . 342
Figure 143 – Pss2ST . 344
Figure 144 – Pss5 . 346
Figure 145 – PssELIN2 . 348
Figure 146 – PssPTIST1 . 349
Figure 147 – PssPTIST3 . 351

IEC 61970-302:2018  IEC 2018 – 7 –
Figure 148 – PssRQB . 353
Figure 149 – PssSB4 . 354
Figure 150 – PssSH . 356
Figure 151 – PssSK . 357
Figure 152 – PssSTAB2A . 359
Figure 153 – PssWECC . 360
Figure 154 – DiscontinuousExcitationControlInterconnectionAndVariables . 363
Figure 155 – Class diagram
DiscontinuousExcitationControlDynamics::DiscontinuousExcitationControlDynamics . 364
Figure 156 – Class diagram
PFVArControllerType1Dynamics::PFVArControllerType1Dynamics . 369
Figure 157 – Class diagram VoltageAdjusterDynamics::VoltageAdjusterDynamics . 372
Figure 158 – Class diagram
PFVArControllerType2Dynamics::PFVArControllerType2Dynamics . 375
Figure 159 – PFVArType2Common1 . 378
Figure 160 – VoltageCompensatorInterconnectionAndVariables . 380
Figure 161 – Class diagram
VoltageCompensatorDynamics::VoltageCompensatorDynamics . 381
Figure 162 – Class diagram WindDynamics::WindDynamicsType1or2 . 385
Figure 163 – Class diagram WindDynamics::WindDynamicsType3 . 386
Figure 164 – Class diagram WindDynamics::WindDynamicsType4 . 387
Figure 165 – Class diagram WindDynamics::WindDynamicsPlant . 388
Figure 166 – LoadInterconnectionAndVariables . 424
Figure 167 – Class diagram LoadDynamics::LoadDynamics . 425
Figure 168 – LoadCompositeEquations . 426
Figure 169 – LoadGenericNonLinearTypeEquations. 427
Figure 170 – LoadStaticTypeEquations . 430
Figure 171 – LoadMotor . 433
Figure 172 – Class diagram HVDCDynamics::HVDCDynamics . 436
Figure 173 – Class diagram
StaticVarCompensatorDynamics::StaticVarCompensatorDynamics . 439
Figure 174 – Class diagram UserDefinedModels::ProprietaryUserDefinedModels . 441
Figure 175 – Object diagram Examples::ExampleStandardModel . 461
Figure 176 – Object diagram Examples::ExampleFunctionBlockProprietaryModel . 462
Figure 177 – Object diagram Examples::ExampleCompleteProprietaryModel . 463

Table 1 – Attributes of StandardInterconnections::RemoteInputSignal . 46
Table 2 – Association ends of StandardInterconnections::RemoteInputSignal with other
classes . 47
Table 3 – Literals of StandardInterconnections::RemoteSignalKind . 47
Table 4 – Attributes of StandardModels::DynamicsFunctionBlock . 48
Table 5 – Association ends of StandardModels::DynamicsFunctionBlock with other
classes . 48
Table 6 – Attributes of StandardModels::RotatingMachineDynamics . 49
Table 7 – Association ends of StandardModels::RotatingMachineDynamics with other
classes . 49

– 8 – IEC 61970-302:2018  IEC 2018
Table 8 – Attributes of SynchronousMachineDynamics::SynchronousMachineDynamics . 57
Table 9 – Association ends of
SynchronousMachineDynamics::SynchronousMachineDynamics with other classes. 57
Table 10 – Attributes of
SynchronousMachineDynamics::SynchronousMachineSimplified . 59
Table 11 – Association ends of
SynchronousMachineDynamics::SynchronousMachineSimplified with other classes . 59
Table 12 – Attributes of SynchronousMachineDynamics::SynchronousMachineDetailed . 60
Table 13 – Association ends of
SynchronousMachineDynamics::SynchronousMachineDetailed with other classes . 61
Table 14 – Attributes of
SynchronousMachineDynamics::SynchronousMachineTimeConstantReactance . 74
Table 15 – Association ends of
SynchronousMachineDynamics::SynchronousMachineTimeConstantReactance with
other classes . 75
Table 16 – Attributes of
SynchronousMachineDynamics::SynchronousMachineEquivalentCircuit . 78
Table 17 – Association ends of
SynchronousMachineDynamics::SynchronousMachineEquivalentCircuit with other
classes . 79
Table 18 – Literals of SynchronousMachineDynamics::IfdBaseKind . 79
Table 19 – Literals of SynchronousMachineDynamics::SynchronousMachineModelKind . 80
Table 20 – Literals of SynchronousMachineDynamics::RotorKind . 80
Table 21 – Attributes of
AsynchronousMachineDynamics::AsynchronousMachineDynamics . 84
Table 22 – Association ends of
AsynchronousMachineDynamics::AsynchronousMachineDynamics with other classes . 85
Table 23 – Attributes of
AsynchronousMachineDynamics::AsynchronousMachineTimeConstantReactance . 86
Table 24 – Association ends of
AsynchronousMachineDynamics::AsynchronousMachineTimeConstantReactance with
other classes . 86
Table 25 – Attributes of
AsynchronousMachineDynamics::AsynchronousMachineEquivalentCircuit . 88
Table 26 – Association ends of
AsynchronousMachineDynamics::AsynchronousMachineEquivalentCircuit with other
classes . 88
Table 27 – Attributes of
TurbineGovernorDynamics::CrossCompoundTurbineGovernorDyanmics . 91
Table 28 – Association ends of
TurbineGovernorDynamics::CrossCompoundTurbineGovernorDyanmics with other
classes . 91
Table 29 – Attributes of TurbineGovernorDynamics::TurbineGovernorDynamics . 91
Table 30 – Association ends of TurbineGovernorDynamics::TurbineGovernorDynamics
with other classes . 92
Table 31 – Attributes of TurbineGovernorDynamics::GovHydroIEEE0 . 93
Table 32 – Association ends of TurbineGovernorDynamics::GovHydroIEEE0 with other
classes . 93
Table 33 – Attributes of TurbineGovernorDynamics::GovHydroIEEE2 . 95

IEC 61970-302:2018  IEC 2018 – 9 –
Table 34 – Association ends of TurbineGovernorDynamics::GovHydroIEEE2 with other
classes . 96
Table 35 – Attributes of TurbineGovernorDynamics::GovSteamIEEE1 . 97
Table 36 – Association ends of TurbineGovernorDynamics::GovSteamIEEE1 with other
classes . 98
Table 37 – Attributes of TurbineGovernorDynamics::GovCT1 . 101
Table 38 – Association ends of TurbineGovernorDynamics::GovCT1 with other classes . 103
Table 39 – Attributes of TurbineGovernorDynamics::GovCT2 . 104
Table 40 – Association ends of TurbineGovernorDynamics::GovCT2 with other classes . 107
Table 41 – Attributes of TurbineGovernorDynamics::GovGAST . 108
Table 42 – Association ends of TurbineGovernorDynamics::GovGAST with other
classes . 108
Table 43 – Attributes of TurbineGovernorDynamics::GovGAST1 . 110
Table 44 – Association ends of TurbineGovernorDynamics::GovGAST1 with other
classes . 111
Table 45 – Attributes of TurbineGovernorDynamics::GovGAST2 . 112
Table 46 – Association ends of TurbineGovernorDynamics::GovGAST2 with other
classes . 113
Table 47 – Attributes of TurbineGovernorDynamics::GovGAST3 . 115
Table 48 – Association ends of TurbineGovernorDynamics::GovGAST3 with other
classes . 115
Table 49 – Attributes of TurbineGovernorDynamics::GovGAST4 . 117
Table 50 – Association ends of TurbineGovernorDynamics::GovGAST4 with other
classes . 117
Table 51 – Attributes of TurbineGovernorDynamics::GovGASTWD . 119
Table 52 – Association ends of TurbineGovernorDynamics::GovGASTWD with other
classes . 120
Table 53 – Attributes of TurbineGovernorDynamics::GovHydro1 . 121
Table 54 – Association ends of TurbineGovernorDynamics::GovHydro1 with other
classes . 121
Table 55 – Attributes of TurbineGovernorDynamics::GovHydro2 . 123
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...