Space product assurance - Materials and hardware compatibility tests for sterilization processes

This Standard describes a test protocol to determine the compatibility of materials, components, parts, and assemblies with sterilization processes. It is dedicated to test on non-flight hardware only. Any additional requirements that can be imposed by the potential use of
test samples as flight hardware are not covered in this document (e.g. handling requirements). This Standard covers the following:
•   Identification of critical test parameters to establish functional integrity of the hardware.
•   Typical test protocols.
•   Acceptance criteria.
Statements about compatibility of materials and components with sterilization processes in this document are made in general terms only. Other factors for determination of whether a material or component is suitable for a particular mission system application include:
•   The potential number of sterilization cycles to which the material/component will be subjected in their live cycle.
•   The additional stresses on materials/components introduced when they have become part of a larger unit/equipment/system undergoing sterilization.
•   Compatibility of sterilization processes at e.g. materials level. This compatibility does not automatically guarantee that it will perform to
its requirements in an assembly. The final application and possible interactions at higher assembly level are important considerations for qualification.
•   Qualification of hardware achieved by specific sterilization parameters. They cannot be necessarily extrapolated to other sterilization parameters, not even within the same sterilization process.
•   The drift in performance that can be induced by sterilization processes . This drift can cause equipments to fail to meet their specified performance requirements, even though each individual element/component remains within spec.  An example of this is where ‘Select-on-test’ components are used to operate a component over a critically narrow range its full performance.
To assess ultimately the suitability/compatibility of a material or component for an application requires a full consideration of the impact of sterilization processes to which it is subjected during its whole life. This includes sterilization processes it undergoes from the time it is a standalone component/material right through to when it experiences final sterilization as part of the complete system.
This standard may be tailored for the specific characteristic and constrains of a space project in conformance with ECSS-S-ST-00.

Raumfahrtproduktsicherung - Kompatibilitätstests für Material und Hardware in Sterilisationsprozessen

Assurance produit des projets spatiaux - Essais de compatibilité des matériaux et matériels pour les processus de stérilisation

La présente Norme décrit un protocole d'essai pour déterminer la compatibilité des matériaux, composants, pièces et assemblages avec les processus de stérilisation. Elle est dédiée aux essais sur des matériels non destinés au vol. Aucune des exigences supplémentaires pouvant être imposées par l'utilisation potentielle d'éprouvettes comme matériel de vol n'est abordée dans ce document (par exemple, les exigences de manipulation). La présente Norme couvre les points suivants :
•   identification des paramètres d'essai critiques pour établir l'intégrité fonctionnelle du matériel ;
•   protocoles d'essai types ;
•   critères d'acceptabilité.
Les indications concernant la compatibilité des matériaux et composants avec les processus de stérilisation de ce document ne sont formulées qu'en termes généraux. Les autres facteurs servant à déterminer si un matériau ou composant est adapté à une application de système de mission particulière comprennent :
•   le nombre potentiel de cycles de stérilisation auquel le matériau/composant sera soumis au cours de son cycle de vie ;
•   les contraintes supplémentaires introduites sur les matériaux/composants lorsque ceux-ci font partie d'une unité/d'un équipement/d'un système soumis(e) à stérilisation ;
•   la compatibilité des processus de stérilisation, au niveau des matériaux par exemple. Cette compatibilité ne garantit pas automatiquement une performance conforme aux exigences dans un assemblage. L'application finale et les interactions possibles à un niveau supérieur de l’assemblage représentent des considérations importantes pour la qualification ;
•   la qualification du matériel obtenue au moyen de paramètres de stérilisation particuliers. Ceux-ci ne peuvent pas toujours être extrapolés à d'autres paramètres de stérilisation, même dans le cadre d'un processus de stérilisation identique ;
•   les écarts de performance pouvant être causés par les processus de stérilisation. Ces écarts peuvent entraîner un non-respect par les équipements de leurs exigences de performance spécifiées, même si chaque élément/composant individuel reste dans les limites de la spécification. Ceci peut arriver, par exemple, quand des composants « SOT (Select-on-test) » sont utilisés pour faire fonctionner un composant sur une plage critique étroite de sa performance optimale.
Afin d'évaluer à terme l'adéquation/la compatibilité d'un matériau ou composant avec une application, il est nécessaire de prendre pleinement en compte l'impact des processus de stérilisation auquel ce matériau/composant sera soumis tout au long de sa vie. Ceci comprend les processus de stérilisation auxquels il est soumis à partir du moment où il est autonome, jusqu'au moment où il fait l'objet de la stérilisation finale dans le cadre du système complet.
La présente norme peut être adaptée aux caractéristiques et contraintes spécifiques d'un projet spatial, conformément à l'ECSS-S-ST-00.

Zagotavljanje varnih proizvodov v vesoljski tehniki - Preskušanje združljivosti materialov in strojne opreme za procese sterilizacije

Ta standard opisuje preskusni protokol za ugotavljanje združljivosti materialov, komponent, delov in sestavov s procesi sterilizacije. Namenjen je izključno preskušanju strojne opreme, ki ni namenjena letenju. Vse dodatne zahteve, ki jih je mogoče določiti s potencialno uporabo preskusnih vzorcev kot letalska strojna oprema, niso obravnavane v tem dokumentu (npr. zahteve glede ravnanja). Ta standard obravnava naslednje elemente: • identifikacijo kritičnih preskusnih parametrov, da se vzpostavi funkcionalna integriteta strojne opreme; • tipične preskusne protokole; • merila sprejemljivosti. Izjave o združljivosti materialov in komponent s procesi sterilizacije v tem dokumentu so podane samo na splošno. Med druge dejavnike za ugotavljanje, ali je material ali komponenta primerna za določeno uporabo v sistemu misije, spadajo: • potencialno število sterilizacijskih ciklov, ki jim bosta material/komponenta podvržena med življenjskim ciklom; • dodatne obremenitve uvedenih materialov/komponent, ko postanejo del večje enote/opreme/sistema, ki prestaja sterilizacijo; • združljivost procesov sterilizacije na npr. ravni materialov. Ta združljivost ne zagotavlja samodejno doseganja zahtev v sestavu. Končna uporaba in morebitni medsebojni vplivi na višji ravni sestava so pomembni premisleki za kvalifikacijo; • kvalifikacija strojne opreme, ki se doseže s posebnimi sterilizacijskimi parametri. Ni nujno, da jih je mogoče ekstrapolirati na druge sterilizacijske parametre, niti na parametre v okviru istega procesa sterilizacije;  • odstopanje v lastnostih, ki ga lahko povzročijo procesi sterilizacije. Zaradi tega odstopanja lahko oprema ne dosega določenih zahtev glede zmogljivosti, čeprav vsak posamezni element/komponenta ostane znotraj specifikacij.  Primer tega je, kadar se komponente za izbiro pri preskusu uporabljajo za upravljanje komponente v kritično ozkem razponu med celotnim delovanjem. Za končno oceno primernosti/združljivosti materiala ali komponente za določeno uporabo je treba v celoti upoštevati učinek procesov sterilizacije, ki jim je material ali komponenta podvržena med celotno življenjsko dobo. Sem spadajo procesi sterilizacije, ki jim je komponenta ali material podvržen od obdobja, ko deluje kot samostojna komponenta/material, do končne sterilizacije v okviru celotnega sistema. Ta standard se lahko prilagodi posameznim lastnostim in omejitvam vesoljskega projekta v skladu s standardom ECSS-S-ST-00.

General Information

Status
Published
Publication Date
27-Jan-2015
Withdrawal Date
30-Jul-2015
Technical Committee
CEN/CLC/TC 5 - Space
Drafting Committee
CEN/CLC/TC 5 - Space
Current Stage
9093 - Decision to confirm - Review Enquiry
Start Date
13-Jan-2021
Completion Date
14-Apr-2025

Overview

EN 16602-70-53:2015 - Space product assurance: Materials and hardware compatibility tests for sterilization processes - is a CEN standard that defines a test protocol to determine whether materials, components, parts and assemblies are compatible with sterilization processes. The standard is intended for testing non‑flight hardware and focuses on identifying critical test parameters, providing typical test protocols and defining acceptance criteria to support reliable space product assurance.

Key topics and technical requirements

  • Scope and limitations
    • Applies to non‑flight test samples; does not replace handling or flight‑use requirements.
    • Compatibility statements are general; full suitability requires life‑cycle assessment.
  • Critical test parameters
    • Identification of process variables (e.g., temperature, exposure dose, chemical agent, cycle count) that establish functional integrity.
  • Typical sterilization processes covered
    • Dry heat, ionizing radiation (gamma / beta), chemical sterilants (e.g., hydrogen peroxide), steam - with discussion of benefits, limitations and technology risks for each.
  • Test procedures and documentation
    • Preparation, pre‑ and post‑test inspections, sterilization exposure steps and recording/reporting requirements (DRD forms for Request, Work Proposal and Test Report are included as normative annexes).
  • Acceptance criteria and qualification
    • Pass/fail acceptance criteria for materials/hardware; emphasizes that qualification is specific to defined sterilization parameters and cannot be extrapolated to different conditions.
  • Risk and failure modes
    • Direct, indirect and long‑term effects (material degradation, outgassing, phase changes, drift in performance) and technology risks for polymers, metals, lubricants, EEE components, batteries, PCBs, etc. (informative annex).
  • Tailoring
    • The standard may be tailored to project constraints in conformance with ECSS‑S‑ST‑00.

Practical applications

  • Designing and executing sterilization compatibility test campaigns for components and subsystems intended for planetary protection or clean‑environment assembly.
  • Establishing acceptance criteria and test reports for suppliers and test laboratories.
  • Performing risk assessments of proposed sterilization processes on materials, electronics and assemblies.
  • Guiding decisions on selection of sterilization methods and predicting likely degradation mechanisms across the product life cycle.

Who uses this standard

  • Space product assurance and quality engineers
  • Materials and reliability engineers
  • Component suppliers and test laboratories
  • Project managers overseeing contamination control or planetary protection activities

Related standards

  • Originates from ECSS‑Q‑ST‑70‑53C and is intended to be used alongside ECSS‑S‑ST‑00 project tailoring guidance and other standards on sterilization and disinfection for comprehensive mission qualification.

Keywords: EN 16602-70-53:2015, space product assurance, sterilization compatibility tests, materials compatibility, sterilization test protocols, acceptance criteria.

Standard

EN 16602-70-53:2015 - BARVE

English language
53 pages
Preview
Preview
e-Library read for
1 day

Frequently Asked Questions

EN 16602-70-53:2015 is a standard published by the European Committee for Standardization (CEN). Its full title is "Space product assurance - Materials and hardware compatibility tests for sterilization processes". This standard covers: This Standard describes a test protocol to determine the compatibility of materials, components, parts, and assemblies with sterilization processes. It is dedicated to test on non-flight hardware only. Any additional requirements that can be imposed by the potential use of test samples as flight hardware are not covered in this document (e.g. handling requirements). This Standard covers the following: • Identification of critical test parameters to establish functional integrity of the hardware. • Typical test protocols. • Acceptance criteria. Statements about compatibility of materials and components with sterilization processes in this document are made in general terms only. Other factors for determination of whether a material or component is suitable for a particular mission system application include: • The potential number of sterilization cycles to which the material/component will be subjected in their live cycle. • The additional stresses on materials/components introduced when they have become part of a larger unit/equipment/system undergoing sterilization. • Compatibility of sterilization processes at e.g. materials level. This compatibility does not automatically guarantee that it will perform to its requirements in an assembly. The final application and possible interactions at higher assembly level are important considerations for qualification. • Qualification of hardware achieved by specific sterilization parameters. They cannot be necessarily extrapolated to other sterilization parameters, not even within the same sterilization process. • The drift in performance that can be induced by sterilization processes . This drift can cause equipments to fail to meet their specified performance requirements, even though each individual element/component remains within spec. An example of this is where ‘Select-on-test’ components are used to operate a component over a critically narrow range its full performance. To assess ultimately the suitability/compatibility of a material or component for an application requires a full consideration of the impact of sterilization processes to which it is subjected during its whole life. This includes sterilization processes it undergoes from the time it is a standalone component/material right through to when it experiences final sterilization as part of the complete system. This standard may be tailored for the specific characteristic and constrains of a space project in conformance with ECSS-S-ST-00.

This Standard describes a test protocol to determine the compatibility of materials, components, parts, and assemblies with sterilization processes. It is dedicated to test on non-flight hardware only. Any additional requirements that can be imposed by the potential use of test samples as flight hardware are not covered in this document (e.g. handling requirements). This Standard covers the following: • Identification of critical test parameters to establish functional integrity of the hardware. • Typical test protocols. • Acceptance criteria. Statements about compatibility of materials and components with sterilization processes in this document are made in general terms only. Other factors for determination of whether a material or component is suitable for a particular mission system application include: • The potential number of sterilization cycles to which the material/component will be subjected in their live cycle. • The additional stresses on materials/components introduced when they have become part of a larger unit/equipment/system undergoing sterilization. • Compatibility of sterilization processes at e.g. materials level. This compatibility does not automatically guarantee that it will perform to its requirements in an assembly. The final application and possible interactions at higher assembly level are important considerations for qualification. • Qualification of hardware achieved by specific sterilization parameters. They cannot be necessarily extrapolated to other sterilization parameters, not even within the same sterilization process. • The drift in performance that can be induced by sterilization processes . This drift can cause equipments to fail to meet their specified performance requirements, even though each individual element/component remains within spec. An example of this is where ‘Select-on-test’ components are used to operate a component over a critically narrow range its full performance. To assess ultimately the suitability/compatibility of a material or component for an application requires a full consideration of the impact of sterilization processes to which it is subjected during its whole life. This includes sterilization processes it undergoes from the time it is a standalone component/material right through to when it experiences final sterilization as part of the complete system. This standard may be tailored for the specific characteristic and constrains of a space project in conformance with ECSS-S-ST-00.

EN 16602-70-53:2015 is classified under the following ICS (International Classification for Standards) categories: 49.140 - Space systems and operations. The ICS classification helps identify the subject area and facilitates finding related standards.

EN 16602-70-53:2015 is associated with the following European legislation: Standardization Mandates: M/496. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.

You can purchase EN 16602-70-53:2015 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.

Standards Content (Sample)


2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Zagotavljanje varnih proizvodov v vesoljski tehniki - Preskušanje združljivosti materialov in strojne opreme za procese sterilizacijeRaumfahrtproduktsicherung - Kompatibilitätstests für Material und Hardware in SterilisationsprozessenAssurance produit des projets spatiaux - Essais de compatibilité des matériaux et matériels pour les processus de stérilisationSpace product assurance - Materials and hardware compatibility tests for sterilization processes49.140Vesoljski sistemi in operacijeSpace systems and operations11.080.99Drugi standardi v zvezi s sterilizacijo in dezinfekcijoOther standards related to sterilization and disinfectionICS:Ta slovenski standard je istoveten z:EN 16602-70-53:2015SIST EN 16602-70-53:2015en01-april-2015SIST EN 16602-70-53:2015SLOVENSKI
STANDARD
EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 16602-70-53
January 2015 ICS 49.140
English version
Space product assurance - Materials and hardware compatibility tests for sterilization processes
Assurance produit des projets spatiaux - Essais de compatibilité des matériaux et matériels pour les processus de stérilisation
Raumfahrtproduktsicherung - Kompatibilitätstests für Material und Hardware in Sterilisationsprozessen This European Standard was approved by CEN on 18 October 2014.
CEN and CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN and CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN and CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.
CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels © 2015 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for CENELEC Members. Ref. No. EN 16602-70-53:2015 E SIST EN 16602-70-53:2015

Figures Figure 4-1: Sterilization parameters . 15 Figure 4-2: Test procedure flow diagram for sterilization . 21 Figure D-1 : Relative radiation stability of polymers (see ref 1) . 36
Tables Table 4-1:Time/temperature equivalences for SAL 10-6 . 16 Table 4-2: Main sterilization methods used for space missions . 19 Table D-1 :
Risk identification linked to dry heat sterilization. 39 Table D-2 :
Risk identification linked to hydrogen peroxide sterilization . 43 Table D--radiation sterilization . 47
• Direct effects: Materials degradation by heat, particulate and electromagnetic radiation, chemical interaction, cracking/fracture of materials or assemblies due to dimensional changes by expansion, out or off-gassing, etc. • Indirect effects: Change in crystallinity of materials, accelerated ageing (e.g. burn-in of components), heating due to radiation, generation of secondary radiation, re-contamination after out or off-gassing, etc. • Long-term effects: Generation of long-lived active centres (e.g. radicals) and subsequent post-degradation reactions, etc. The objective of this Standard is to ensure a successful mission by the definition of a test protocol and acceptance criteria for the determination of hardware compatibility with sterilization processes.
• The drift in performance that can be induced by sterilization processes . This drift can cause equipments to fail to meet their specified performance requirements, even though each individual element/component remains within spec.
An example of this is where ‘Select-on-test’ components are used to operate a component over a critically narrow range its full performance. To assess ultimately the suitability/compatibility of a material or component for an application requires a full consideration of the impact of sterilization SIST EN 16602-70-53:2015

EN reference Reference in text Title EN 16601-00-01 ECSS-S-ST-00-01 ECSS system – Glossary of terms EN 16602-10-09 ECSS-Q-ST-10-09 Space product assurance – Nonconformance control system EN 16602-20 ECSS-Q-ST-20 Space product assurance – Quality assurance EN 16602-20-07 ECSS-Q-ST-20-07 Space product assurance – Quality assurance for test centres
A direct effect might not be observed immediately after sterilization, but can be manifested over longer duration, see also ‘long duration effect’. 3.2.2 D-value, D10 value time or dose required to achieve inactivation of 90 % of a population of the test micro-organism under stated conditions [ISO 11139] 3.2.3 exposure time period for which the process parameters are maintained within their specified tolerances [ISO 11139] 3.2.4 indirect effect effect that is not manifested as change in an intrinsic materials property but is the consequence of secondary interactions
NOTE
Typical examples include molecular contamination during chemical sterilization, formation of radiolysis gas during -sterilization, bond breakage due to CTE mismatch during thermal sterilization. effect that is caused by the interaction with a non-process parameter after application of a sterilization process SIST EN 16602-70-53:2015

NOTE
The specification for a sterilization process includes the process parameters and their tolerances. [ISO 11139] 3.2.8 sterility
state of being free from viable micro-organisms NOTE 1 In practice, no such absolute statement regarding the absence of micro-organisms can be proven. NOTE 2 The definition of sterility in the context of this standard refers to the achievement of a required sterility assurance level. [adapted from ISO 11139] 3.2.9 sterility assurance level probability of a single viable micro-organism occurring on an item after sterilization SIST EN 16602-70-53:2015

The term SAL takes a quantitative value, generally 10º\ or 10ºY. When applying this quantitative value to assurance of sterility, an SAL of 10º\ has a lower value but provides a greater assurance of sterility than an SAL of 10ºY. [ISO 11139] 3.2.10 sterilization validated process used to render product free from viable micro-organisms NOTE
In a sterilization process, the nature of microbial inactivation is exponential and thus the survival of a micro-organism on an individual item can be expressed in terms of probability. While this probability can be reduced to a very low number, it can never be reduced to zero. [ISO 11139] 3.2.11 sterilization process series of actions or operations needed to achieve the specified requirements for sterility NOTE
This series of actions includes pre-treatment of product (if necessary), exposure under defined conditions to the sterilizing agent and any necessary post treatment. The sterilization process does not include any cleaning, disinfection or packaging operations that precede sterilization. [ISO 11139] 3.3 Abbreviated terms For the purpose of this Standard, the abbreviated terms from ECSS-S-ST-00-01 and the following apply:
Abbreviation Meaning CTE coefficient of thermal expansion DSM Deutsche Sammlung von Mikroorganismen (German Collection of Microorganisms) DML declared materials list DMPL declared mechanical parts list DPL declared process list EEE electrical, electronic, electromechanical ESCC European Space Components Coordination SIST EN 16602-70-53:2015

Figure 4-1: Sterilization parameters SIST EN 16602-70-53:2015

Table 4-1:Time/temperature equivalences for SAL 10-6 T (°C) D-value (h) 110 22 120 10 125 6 130 4 140 2 150 1
4.1.3 Beta or gamma radiation Radiation is one of the most usual bulk sterilization processes used for medical devices. The typical dose for medical application is 25 kGy determined for the reference microorganism named B. pumilus DSM 492. Depending on the specification, other radiation doses can be used, validated via microbiological indicators. Gamma rays are photons emitted from high activity radioactive cobalt 60 sources, a few 107 GBq usually, for a half life period of 5,27 years. The photon energies (1,17 and 1,33 MeV) are able to penetrate into several centimetres of steel. Beta radiations are electrons produced by particle generators and accelerators (30kV max). The electron energy, between 1 and 10 MeV max in order to avoid to break atom nuclei, allows a penetration depth of a few millimetre of steel. Compared to gamma radiations requiring minutes to hours of exposition, the dose rate of the beta process is very high and achieves a sterilization in only a few seconds to a few minutes. SIST EN 16602-70-53:2015

Typical process parameters are the following:
• Temperature: Typically (40 – 60) °C • Gas concentration typically between (4 - 10) g/m3 H2O2 in gas phase • Pressure: Ambient or mixed (vacuum/ambient) cycles • Duration typically 1 hour per cycle
Typical bioindicators for verification of the SAL for medical devices contain the B. Stearothermophilus DSM 5934. Gas sterilization methods are in general not suitable for parametric release. 4.1.4.3 Ethylene oxide (C2H4O) This process results in extremely effective sterilization, using clearly established procedures. It is carried out in a closed medium (autoclaves) equipped with a gas stirring system. Typical parameters with an impact on the effectiveness of such sterilization are the following:
• Temperature: 40 °C to 70 °C generally in a slightly depressurized atmosphere • Gas concentration of nominally between (5 - 8) g/m3 of pure gas (15 g/m3 max) • Relative humidity of minimum 30 % • Duration usually between 6 and 14 hours.
Typical bioindicators for verification of the SAL for medical devices contain typically the B. atrophaeus DSM 675 and B. Stearothermophilus DSM 5934. SIST EN 16602-70-53:2015

4.1.5 Steam sterilization It is performed in autoclave in overpressure, at 100% of humidity, and therefore limited to sterilization of surfaces accessible for gas exchange. The efficiency depends on temperature, time and pressure (generally at 2 bar), typical procedures used for medical application require 20 minutes for 120 °C and 3 minutes for 134 °C.
The sterilization effect is limited to surface. Although not intended for flight hardware, steam sterilization can be a very useful process for e.g. GSE and tools. 4.1.6 Main methods used and studied in the field of space application A summary of sterilization methods used for previous Mars missions is given in Table 4-2. SIST EN 16602-70-53:2015

4.2 Potential effects on hardware caused by sterilization 4.2.1 Direct effects Changes of intrinsic materials properties as a consequence of the interaction with a process parameter from a sterilization process can depend on a variety of parameters, e.g. environment, material, assembly state, time, post environment. A direct effect might not be observed immediately after sterilization, but can be manifested over longer duration (see clause 4.2.3) 4.2.2 Indirect effects Indirect effects can be caused by different mechanisms and are here classified into two categories: • Effects that are the consequence of secondary interactions. Typical examples include molecular contamination during chemical sterilization, formation of radiolysis -sterilization, bond breakage due to CTE mismatch during thermal sterilization. • Effects that are caused by the interaction with a non-process parameter after application of a sterilization process. A typical example is post degradation because of interaction of oxygen from air with ‘active’ centres generated during the sterilization process. SIST EN 16602-70-53:2015

If the alternative to dry heat sterilization (bulk) results in the application of a surface sterilization process, the remaining presence of bulk bioburden can be an issue for the overall bioburden of the spacecraft • Waiving sterilization. NOTE
Non-sterilized items can be used taking into account a conservative assessment of the present bioburden based on the applicable planetary protection requirements. 4.3 Qualification approach As a consequence of potential detrimental effects on sterilized items (see clause 4.2), qualification of hardware is starting from materials/components level up to higher assembly level as appropriate. The qualification test flow diagram is shown in Figure 4-2. To assess ultimately the suitability/compatibility of a material or component for an application requires a full consideration of the impact of sterilization processes to which it is subjected during its whole life. This includes sterilization processes it undergoes from the time it is a standalone component/material right through to when it experiences final sterilization as part of the complete system. SIST EN 16602-70-53:2015

Figure 4-2: Test procedure flow diagram for sterilization SIST EN 16602-70-53:2015

Examples of safety issues are hazard and health. Example of security issues is access control. e. The supplier shall provide a sterilization compatibility test proposal in conformance with Annex B. 5.1.2 Specifying the test means 5.1.2.1 Facilities a. The work area shall be at a cleanliness level that does not compromise the functionality of the test items or fulfil the imposed cleanliness requirements of the hardware. b. The ambient conditions for the work areas shall be (22 ± 3) °C with a relative humidity of (55 ± 10) % unless otherwise stated. c. The supplier shall use sterilization facilities as described in Annex B. NOTE 1 Dry heat sterilization is described in ECSS-Q-ST-70-57, vapour phase (e.g. hydrogen peroxide) sterilization is described in ECSS-Q-ST-70-56. NOTE 2 Sterilization compatibility tests need to be conducted with the same process parameters intended for the flight hardware. For example SIST EN 16602-70-53:2015

Required process parameters for dry heat sterilization are described in ECSS-Q-ST-70-57, and for vapour phase (e.g. hydrogen peroxide) sterilization are described in ECSS-Q-ST-70-56. 2. SAL. 3. Contamination. b. The test procedure for controlling and monitoring the process parameters shall contain the following information:
1. Process parameter measurement and recording methods. 2. Process parameter acquisition during testing. 5.1.3.2 Controlling sterilization efficiency a. In case of requirements to prove the sterilization efficiency (SAL), appropriate microbiological indicators shall be incorporated during sterilization and the following information provided for the test procedure: 1. Microbiological indicator used during tests. 2. SAL results. NOTE 1 Bioburden assessment procedures are described in ECSS-Q-ST-70-55. NOTE 2 Required microbiological indicators for dry heat sterilization are described in ECSS-Q-ST-70-57, and for vapour phase (e.g. hydrogen peroxide) sterilization are described in ECSS-Q-ST-70-56. NOTE 3 Besides the use of microbiological indicators, validation of process parameters can be used to SIST EN 16602-70-53:2015

Contamination can be induced by the sterilization process, e.g. in case of gas phase sterilization. 5.2 Preparing and performing test 5.2.1 General a. The customer shall approve the sterilization compatibility test proposal including the procedures. b. ECSS-Q-ST-20 shall apply for the establishment of the test procedures. 5.2.2 Preparation of hardware 5.2.2.1 Configuration a. The material samples shall be prepared according to the relevant process specifications or manufacturer’s data, representative for its end-function a
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

이 기사에서는 EN 16602-70-53:2015이라는 표준에 대해 설명하고 있습니다. 이 표준은 소독 공정과 재료, 구성품, 부품 및 조립품의 호환성을 결정하기 위한 테스트 프로토콜을 다룹니다. 이 표준은 비행 하드웨어에 대해서만 적용되며, 비행 하드웨어로 사용될 경우 추가적인 요구 사항은 다루지 않습니다 (예: 처리 요구 사항). 이 표준은 다음을 다룹니다: - 하드웨어의 기능적 무결성을 확인하기 위한 중요한 테스트 매개변수의 식별 - 일반적인 테스트 프로토콜 - 승인 기준 이 문서에서 재료와 구성품의 소독 공정과의 호환성에 대한 명시적인 언급은 일반적인 용어로만 진행됩니다. 재료 또는 구성요소가 특정 임무 시스템 응용에 적합한지를 결정하는 데 필요한 다른 요소에는 다음이 포함됩니다: - 재료/구성요소가 생애주기 동안 소독 주기에 노출될 수 있는 잠재적인 수. - 소독 중 대형 단위/장비/시스템의 일부가 된 재료/구성요소에 대한 추가적인 응력. - 재료 수준에서의 소독 공정의 호환성. 이러한 호환성은 어셈블리에서 요구 사항을 충족할 것을 자동으로 보장하지 않습니다. 규격 확인을 위해 최종적인 응용 및 더 높은 어셈블리 수준에서의 가능한 상호작용이 중요한 고려 사항입니다. - 특정 소독 매개변수에 의해 달성된 하드웨어의 자격증명. 이러한 매개변수는 동일한 소독 공정 내에서라도 다른 소독 매개변수로 확장될 수 없습니다. - 소독 공정에 의해 유발될 수 있는 성능 변경. 이러한 변경은 각 개별 요소/구성 요소가 사양 내에 있는 상태에서도 장비가 명시된 성능 요구 사항을 충족하지 못할 수 있습니다. 이는 '테스트 선택' 구성 요소를 사용하여 요소를 단색 범위 내에 가동하는 경우에 해당됩니다. 재료 또는 부품을 응용에 대해 궁극적으로 적합/호환성을 평가하려면, 이를 전체 시스템으로 완전히 소독하는 동안 노출되는 소독 공정의 영향을 전체적으로 고려해야 합니다. 이는 독립적인 구성 요소/재료로부터 최종 소독까지 경험하는 소독 공정을 포함합니다. 이 표준은 ECSS-S-ST-00에 따라 공간 프로젝트의 특성 및 제약 조건에 맞게 사용자 정의될 수 있습니다.

この記事では、EN 16602-70-53:2015という規格について説明されています。この規格は、滅菌プロセスと材料、構成部品、パーツ、および組立物の互換性を判断するためのテストプロトコルについて記述しています。この規格は非飛行用ハードウェアに対してのみ適用され、飛行用ハードウェアとしての使用時の追加要件はカバーされていません(例:取り扱い要件)。この規格は以下をカバーしています: - ハードウェアの機能的完全性を確立するための重要なテストパラメータの特定 - 典型的なテストプロトコル - 受け入れ基準 この文書では、材料や構成部品と滅菌プロセスの互換性については一般的な言葉で述べられています。材料や構成部品が特定のミッションシステムのアプリケーションに適しているかを判断するためには、以下の他の要素も考慮する必要があります: - 材料/構成部品がライフサイクル中で受ける可能性のある滅菌サイクルの数 - 構成部品が大型のユニット/装置/システムの一部となった場合に導入される追加的な応力 - 材料レベルでの滅菌プロセスの互換性。この互換性は、組み立て時に要件を満たすことを自動的に保証するものではありません。最終的なアプリケーションとより高い組み立てレベルでの可能な相互作用は、認証の重要な考慮事項です。 - 特定の滅菌パラメータで達成されたハードウェアの認証。これらのパラメータは、同じ滅菌プロセス内でも他の滅菌パラメータに必ずしも拡張できません。 - 滅菌プロセスによって誘発されるパフォーマンスの変化。この変化により、個々の要素/構成部品が仕様内にあっても、装置が指定された性能要件を満たさなくなる可能性があります。これは、フルパフォーマンスの範囲で構成部品を操作するために「テスト選択」構成部品が使用される場合に当てはまります。 材料または構成部品の特定の用途に対する適合性/互換性を最終的に評価するには、単体のコンポーネント/材料から完全なシステムの一部としての最終的な滅菌までの間における滅菌プロセスの影響を総合的に考慮する必要があります。 この規格はECSS-S-ST-00に従って特定の特性や制約に合わせてカスタマイズすることが可能です。

The article discusses a standard, EN 16602-70-53:2015, that outlines a test protocol for determining the compatibility of materials, components, parts, and assemblies with sterilization processes. This standard is specifically for testing non-flight hardware and does not cover any additional requirements for potential use as flight hardware. The article mentions that compatibility of materials and components with sterilization processes is discussed in general terms, and other factors to consider when determining suitability for a particular mission system application include the number of sterilization cycles, additional stresses on materials/components when part of a larger unit undergoing sterilization, compatibility at the materials level versus performance in an assembly, and the qualification of hardware based on specific sterilization parameters. The article also mentions the possibility of performance drift induced by sterilization processes and the need to assess the impact of sterilization processes on a material or component throughout its entire life cycle. The standard can be customized for specific space projects.