prEN 15979
(Main)Testing of ceramic raw materials and ceramic materials - Direct determination of mass fractions of impurities in powders and granules of silicon carbide by optical emission spectrometry by direct current arc excitation (DCArc-OES)
Testing of ceramic raw materials and ceramic materials - Direct determination of mass fractions of impurities in powders and granules of silicon carbide by optical emission spectrometry by direct current arc excitation (DCArc-OES)
This document describes a method for the analysis of mass fractions of the impurities Al, B, Ca, Cr, Cu, Fe, Mg, Ni, Ti, V and Zr in powdered and grain-shaped silicon carbide of ceramic raw materials and ceramic materials. This application can also be extended to other metallic elements and other similar non-metallic powdered and grain-shaped materials such as carbides, nitrides, graphite, carbon blacks, cokes, carbon, as well as a number of further oxidic raw and basic materials after appropriate testing.
NOTE There is positive experience with materials such as, for example, graphite, boron carbide (B4C), boron nitride (BN), tungsten carbide (WC) and several refractory metal oxides.
This testing procedure is applicable to mass fractions of the impurities mentioned above from approximately 1 mg/kg up to approximately 3 000 mg/kg, after verification. In some cases, it is possible to extend the range up to 5 000 mg/kg depending on element, emission lines, DCArc parameters, and sample mass.
Prüfung keramischer Rohstoffe und keramischer Materialien - Direkte Bestimmung der Massenanteile an Verunreinigungen in pulver- und kornförmigem Siliciumcarbid mittels optischer Emissionsspektrometrie und Anregung im Gleichstrombogen (DCArc-OES)
Dieses Dokument legt ein Verfahren zur Bestimmung der Massenanteile der Verunreinigungen Al, B, Ca, Cr, Cu, Fe, Mg, Ni, Ti, V und Zr in pulver- und kornförmigem Siliciumcarbid von keramischen Rohwerkstoffen und keramischen Werkstoffen fest. Die Anwendung ist übertragbar auf weitere metallische Elemente und andere artverwandte nichtmetallische pulver- und kornförmige Werkstoffe, wie Carbide, Nitride, Graphite, Ruße, Kokse, Kohle, sowie eine Reihe weiterer oxidischer Roh- und Werkstoffe nach entsprechender Prüfung.
ANMERKUNG Es liegen positive Erfahrungen zu Materialien wie beispielsweise Graphit, Borcarbid (B4C), Bornitrid (BN), Wolframcarbid (WC) und verschiedenen refraktären Metalloxiden vor.
Das Verfahren ist für Massenanteile der o. g. Verunreinigungen von etwa 1 mg/kg bis etwa 3 000 mg/kg, nach Überprüfung, anwendbar. In manchen Fällen ist es möglich, den Bereich auf bis zu 5 000 mg/kg zu erweitern, je nach Element, Emissionslinien, DCArc-Parametern und Probenmasse.
Essai des matières premières et matériaux de base céramiques - Détermination directe des fractions massiques d'impuretés dans les poudres et granulés de carbure de silicium par OES à l'excitation d'arc DC (DCArc-OES)
Ce document décrit une méthode d'analyse des fractions massiques des impuretés d'Al, B, Ca, Cr, Cu, Fe, Mg, Ni, Ti, V et Zr dans les poudres et granulés de carbure de silicium contenus dans les matières premières céramiques et les matériaux céramiques. Cette application peut également être étendue à d'autres éléments métalliques et d'autres matériaux pulvérulents et granuleux non métalliques similaires, tels que les carbures, les nitrures, le graphite, les noirs de carbone, les cokes, le carbone, ainsi qu'à un certain nombre d'autres matières premières et matériaux de base oxydants après essai approprié.
NOTE Il existe des expériences positives avec des matériaux tels que le graphite, le carbure de bore (B4C), le nitrure de bore (BN), le carbure de tungstène (WC) et plusieurs oxydes métalliques réfractaires.
Le présent mode opératoire d'essai est applicable aux fractions massiques des impuretés mentionnées ci-dessus allant d'environ 1 mg/kg à environ 3 000 mg/kg, après vérification. Il est parfois possible, dans certains cas, d'étendre cette gamme jusqu'à 5 000 mg/kg en fonction de l'élément, des raies d’émission, des paramètres DCArc et de la masse de l'échantillon.
Preskušanje keramičnih surovin in keramičnih materialov - Neposredno določevanje masnih frakcij nečistoč v prahu in zrnih silicijevega karbida z optično emisijsko spektrometrijo z vzbujanjem obloka z enosmernim tokom (DCArc-OES)
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2024
Preskušanje keramičnih surovin in keramičnih materialov - Neposredno
določevanje masnih frakcij nečistoč v prahu in zrnih silicijevega karbida z optično
emisijsko spektrometrijo z vzbujanjem obloka z enosmernim tokom (DCArc-OES)
Testing of ceramic raw materials and ceramic materials - Direct determination of mass
fractions of impurities in powders and granules of silicon carbide by optical emission
spectrometry by direct current arc excitation (DCArc-OES)
Prüfung keramischer Rohstoffe und keramischer Materialien - Direkte Bestimmung der
Massenanteile an Verunreinigungen in pulver- und kornförmigem Siliciumcarbid mittels
optischer Emissionsspektrometrie und Anregung im Gleichstrombogen (DCArc-OES)
Essai des matières premières céramiques et des matériaux céramiques - Détermination
directe des fractions massiques d'impuretés dans les poudres et granulés de carbure de
silicium par spectrométrie d'émission optique à excitation par arc de courant continu
(DCArc-OES)
Ta slovenski standard je istoveten z: prEN 15979
ICS:
81.060.10 Surovine Raw materials
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
DRAFT
EUROPEAN STANDARD
NORME EUROPÉENNE
EUROPÄISCHE NORM
July 2024
ICS 81.060.10 Will supersede EN 15979:2011
English Version
Testing of ceramic raw and basic materials - Direct
determination of mass fractions of impurities in powders
and granules of silicon carbide by OES by DC arc excitation
(DCArc-OES)
Essai des matières premières et matériaux de base Prüfung keramischer Roh- und Werkstoffe - Direkte
céramiques - Détermination directe des fractions Bestimmung der Massenanteile an Verunreinigungen
massiques d'impuretés dans les poudres et granulés de in pulver- und kornförmigem Siliciumcarbid mittels
carbure de silicium par OES à l'excitation d'arc DC optischer Emissionsspektrometrie und Anregung im
Gleichstrombogen (DCArc-OES)
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/TC 187.
If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations
which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.
Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CEN All rights of exploitation in any form and by any means reserved Ref. No. prEN 15979:2024 E
worldwide for CEN national Members.
Contents Page
European Foreword . 4
1 Scope . 5
2 Normative references . 5
3 Terms and definitions . 5
4 Principle . 5
5 Spectrometry . 6
6 Apparatus . 6
7 Reagents . 7
8 Sampling and sample preparation . 7
9 Calibration . 7
10 Procedure. 8
11 Calculation . 10
12 Expression of results . 10
13 Precision . 10
14 Test report . 10
Annex A (informative) Results of interlaboratory study . 12
Annex B (informative) Emission lines and working range . 16
Annex C (informative) Possible interferences and their elimination . 18
C.1 General . 18
C.2 Spectral interferences . 18
C.2.1 Line coincidences . 18
C.2.2 Band coincidences . 18
C.2.3 Background influences. 19
C.2.4 Line reversal, self-absorption . 19
C.2.5 Unspecific radiation . 19
C.3 Non spectral interferences . 19
C.3.1 Interferences by the physical characteristics of the sample . 19
C.3.2 Interferences by depositions . 19
C.3.3 Ionization interferences . 19
C.3.4 Change of electric arc-plasma . 20
C.3.5 Conclusion. 20
Annex D (informative) Information regarding the evaluation of the uncertainty of the mean
value . 21
Annex E (informative) Commercial certified reference materials . 22
Bibliography . 23
European foreword
This document (prEN 15979:2024) has been prepared by Technical Committee CEN/TC 187 “Refractory
products and materials”, the secretariat of which is held by BSI.
This document is currently submitted to the CEN Enquiry.
This document will supersede EN 15979:2011.
1 Scope
This document describes a method for the analysis of mass fractions of the impurities Al, B, Ca, Cr, Cu, Fe,
Mg, Ni, Ti, V and Zr in powdered and grain-shaped silicon carbide of ceramic raw materials and ceramic
materials. This application can also be extended to other metallic elements and other similar non-metallic
powdered and grain-shaped materials such as carbides, nitrides, graphite, carbon blacks, cokes, carbon,
as well as a number of further oxidic raw and basic materials after appropriate testing.
NOTE There is positive experience with materials such as, for example, graphite, boron carbide (B C), boron
nitride (BN), tungsten carbide (WC) and several refractory metal oxides.
This testing procedure is applicable to mass fractions of the impurities mentioned above from
approximately 1 mg/kg up to approximately 3 000 mg/kg, after verification. In some cases, it is possible
to extend the range up to 5 000 mg/kg depending on element, emission lines, DCArc parameters, and
sample mass.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
No terms and definitions are listed in this document.
4 Principle
With DCArc-OES, the impurities are measured directly from the powdered silicon carbide sample, thus
avoiding the disadvantages of the usually applied wet-chemical digestion of silicon carbide such as high
time-consumption, the use of hazardous chemicals, dilution of the sample and the possibility of
systematic errors due to introduction of impurities as well as analyte losses. Compared to wet-chemical
ICP-OES methods, DCArc-OES requires more effort for method development and is therefore particularly
suitable when many samples of one matrix are to be measured. With DCArc-OES, impurities in silicon
carbide can be measured cost-effective, with high sample throughput and with a detection sensitivity
down to the lower mg/kg level.
In DCArc-OES, the powdered silicon carbide sample is evaporated and excited in the direct current arc
plasma of the DCArc-system. The combustion and evaporation of the powdered sample material takes
place in the arc-plasma in an atmosphere of oxygen, mixed argon and oxygen or in air. The metallic traces
in the silicon carbide sample are excited in the arc-plasma to emission of optical radiation. The optical
radiation from the DCArc-system is guided into a simultaneous emission spectrometer by coupling via
fibre-optics or directly. If the coupling takes place via fibre-optics, the simultaneous emission
spectrometer can be a commercially available ICP-OES device, provided that the measurement can be
started with the plasma switched off.
NOTE As the fibre-optics used for coupling is usually made of quartz, emission lines with wavelengths of less
than around 220 nm can no longer be measured due to absorption.
Literature on DCArc-OES see [1], [3], [4], [5], [6], [8], [9] and [10].
5 Spectrometry
Optical emission spectrometry is based on the generation of line spectra of excited atoms or ions, where
each emission line is associated with an element and the line intensities are proportional to the mass
fractions of the elements in the analysed sample (see [6], [7] & [12]).
In a simultaneous emission spectrometer in, for example Paschen-Runge- or Echelle-configuration, the
optical radiation is dispersed. The intensities of suited emission lines or background positions are
registered with applicable detectors like photomultipliers (PMT), charge coupled devices (CCD),
complementary metal-oxide semiconductor (CMOS), charge injection devices (CID), and serial coupled
devices (SCD). By comparison of the intensities of the element-specific emission lines of the sample with
calibration samples of known composition, the mass fractions of the trace elements in the sample are
determined.
6 Apparatus
6.1 Common laboratory equipment, and the following:
6.2 Emission spectrometer, simultaneous, with the possibility to register transient emission signals
with a sampling rate of at least 5 Hz, suitable for the synchronised start of the DCArc program and the
registration of the emission signals and possibility for coupling to the DCArc-system.
NOTE 1 If the coupling of the DCArc-system to the emission spectrometer takes place via fibre-optics, the
simultaneous emission spectrometer can be a commercially available ICP-OES device, provided that the
measurement can be started with the plasma switched off.
6.3 DCArc-system, with Stallwood jet, controlled gas-flows for argon and oxygen, preferably with
mass-flow control, and controlled se
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.