ASTM D3764-23
(Practice)Standard Practice for Validation of the Performance of Process Stream Analyzer Systems
Standard Practice for Validation of the Performance of Process Stream Analyzer Systems
SIGNIFICANCE AND USE
5.1 This practice can be used to quantify the performance of a process stream analyzer system or its subsystem in terms of precision and bias relative to those of a primary test method for the property of interest.
5.2 This practice provides developers or manufacturers of process stream analyzer systems with useful procedures for evaluating the capability of newly designed systems for industrial applications that require reliable prediction of measurements of a specific property by a primary test method of a flowing component or product.
5.3 This practice provides purchasers of process stream analyzer systems with some reliable options for specifying acceptance test requirements for process stream analyzer systems at the time of commissioning to ensure the system is capable of making the desired property measurement with the appropriate precision or bias specifications, or both.
5.4 PPTMR from Analyzer Systems validated in accordance with this practice can be used to predict, with a specified confidence, what the PTMR would be, to within a specified tolerance, if the actual primary test method was conducted on the materials that are within the validated property range and type.
5.5 This practice provides the user of a process stream analyzer system with useful information from on-going quality control charts to monitor the variation in δ over time, and trigger update of correlation relationship between the analyzer system and primary test method in a timely manner.
5.6 Validation information obtained in the application of this practice is applicable only to the material type and property range of the materials used to perform the validation. Selection of the property levels and the compositional characteristics of the samples must be suitable for the application of the analyzer system. This practice allows the user to write a comprehensive validation statement for the analyzer system including specific limits for the validated range of application. Th...
SCOPE
1.1 This practice describes procedures and methodologies based on the statistical principles of Practice D6708 to validate whether the degree of agreement between the results produced by a total analyzer system (or its subsystem), versus the results produced by an independent test method that purports to measure the same property, meets user-specified requirements. This is a performance-based validation, to be conducted using a set of materials that are not used a priori in the development of any correlation between the two measurement systems under investigation. A result from the independent test method is herein referred to as a Primary Test Method Result (PTMR).
1.1.1 The degree of agreement described in 1.1 can be either for PPTMRs and PTMRs measured on the same materials, or for PPTMRs measured on basestocks and PTMRs measured on these same basestocks after constant level additivation.
1.1.2 In some cases, a two-step procedure is employed. In the first step, the analyzer and PTM are applied to the measurement of the same blendstock material. If the analyzer employed in Step 1 is a multivariate spectrophotometric analyzer, then Practice D6122 is used to access the agreement between the PPTMRs and the PTMRs for this first step. Otherwise, this practice is used to compare the PPTMRs to the PTMRs measured for this blendstock to determine the degree of agreement. In a second step, the PPTMRs produced in Step 1 are used as inputs to a second model that predicts the results obtained when the PTM is applied to the analysis of the finished blended product. Since this second step does not use analyzer readings, the validation of the second step is done independently. Step 2 is only performed on valid Step 1 results. Note that the second model might accommodate variable levels or multiple material additions to the blendstock.
1.2 This practice assumes any correlation necessary to mitigate systemic biases between the ...
General Information
Relations
Buy Standard
Standards Content (Sample)
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the
Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
Designation: D3764 − 23
Standard Practice for
Validation of the Performance of Process Stream Analyzer
1
Systems
This standard is issued under the fixed designation D3764; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.
INTRODUCTION
Operation of a process stream analyzer system typically involves four sequential activities.
(1) Analyzer Calibration—When an analyzer is initially installed, or after major maintenance has
been performed, diagnostic testing is performed to demonstrate that the analyzer meets the
manufacturer’s specifications and historical performance standards. These diagnostic tests may require
that the analyzer be adjusted so as to provide predetermined output levels for certain reference
materials. (2a) Correlation for the Same Material—Once the diagnostic testing is completed,
process stream samples are analyzed using the analyzer system. For application where the process
analyzer system results are required to agree with results produced from an independent (primary) test
method (PTM), a mathematical function is derived that relates the analyzer results to the primary test
method results (PTMR). The application of this mathematical function to an analyzer result produces
a predicted primary test method result (PPTMR), for the same material. (2b) Correlation for
Material including Effect from Additional Treatment to the Material—The PPTMR in (2a) can be
used as an input to a mathematical model to predict the effect of an additive and/or a blendstock added
to a basestock material as measured by a PTM. (3) Probationary Validation—After the correlation(s)
relationship between the analyzer results and primary test method results has been established, a
probationary validation is performed using an independent but limited set of materials that were not
part of the correlation activity. This probationary validation is intended to demonstrate that the
PPTMRs agree with the PTMRs to within user-specified requirements for the analyzer system
application. (4) General and Continual Validation—After an adequate amount of PPTMRs and
PTMRs have been accrued on materials that were not part of the correlation activity, a comprehensive
statistical assessment is performed to demonstrate that the PPTMRs agree with the PTMRs to within
the tolerances established from the correlation activities. Subsequent to a successful general
validation, quality assurance control chart monitoring of the differences between PPTMR and PTMR
is conducted during normal operation of the process analyzer system to demonstrate that the
agreement between the PPTMRs and PTMRs established in the General Validation is maintained. This
practice deals with the third and fourth of these activities.
“Correlation for material including effect from additional treatment to the material” as outlined in
this standard is intended primarily to be applied to biofuels where the biofuel material is added at a
terminal or other facility and not included in the process stream material sampled by the analyzer at
the basestock manufacturing facility. The correlation shall be specific for a constant percentage
addition of the biofuels material to the basestock for each model. This practice may not apply for
physical properties where the source material for the biofuel material or the denaturant/diluent
material used with the biofuel material can significantly affect the finished biofuel’s physical property.
The user of the standard should investigate the effect of changes to biofuels material blend ratios,
biofuels material source material, and blendstock material composition when using this practice.
Limits to any of these may need to be applied when the correlation is used.
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States
1
---------------------- Page: 1 ----------------------
D3764 − 23
1. Scope* ciple that is similar to the measurement principle of the primary
test method. This practice also applies if the process stream
1.1 This practice describes procedures and methodologies
analyzer system uses a different measurement technology from
based on the statistical principles of Practice D6708 to validate
the primary test method, provided that the calibration protocol
whether the degree of agreement between the results produced
for the direct output of the analyzer does not require use of the
by a total analyzer system (or its
...
This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because
it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version
of the standard as published by ASTM is to be considered the official document.
Designation: D3764 − 22 D3764 − 23
Standard Practice for
Validation of the Performance of Process Stream Analyzer
1
Systems
This standard is issued under the fixed designation D3764; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.
INTRODUCTION
Operation of a process stream analyzer system typically involves four sequential activities.
(1) Analyzer Calibration—When an analyzer is initially installed, or after major maintenance has
been performed, diagnostic testing is performed to demonstrate that the analyzer meets the
manufacturer’s specifications and historical performance standards. These diagnostic tests may require
that the analyzer be adjusted so as to provide predetermined output levels for certain reference
materials. (2a) Correlation for the Same Material—Once the diagnostic testing is completed,
process stream samples are analyzed using the analyzer system. For application where the process
analyzer system results are required to agree with results produced from an independent (primary) test
method (PTM), a mathematical function is derived that relates the analyzer results to the primary test
method results (PTMR). The application of this mathematical function to an analyzer result produces
a predicted primary test method result (PPTMR), for the same material. (2b) Correlation for
Material including Effect from Additional Treatment to the Material—The PPTMR in (2a) can be
used as an input to a mathematical model to predict the effect of an additive and/or a blendstock added
to a basestock material as measured by a PTM. (3) Probationary Validation—After the correlation(s)
relationship between the analyzer results and primary test method results has been established, a
probationary validation is performed using an independent but limited set of materials that were not
part of the correlation activity. This probationary validation is intended to demonstrate that the
PPTMRs agree with the PTMRs to within user-specified requirements for the analyzer system
application. (4) General and Continual Validation—After an adequate amount of PPTMRs and
PTMRs have been accrued on materials that were not part of the correlation activity, a comprehensive
statistical assessment is performed to demonstrate that the PPTMRs agree with the PTMRs to within
the tolerances established from the correlation activities. Subsequent to a successful general
validation, quality assurance control chart monitoring of the differences between PPTMR and PTMR
is conducted during normal operation of the process analyzer system to demonstrate that the
agreement between the PPTMRs and PTMRs established in the General Validation is maintained. This
practice deals with the third and fourth of these activities.
“Correlation for material including effect from additional treatment to the material” as outlined in
this standard is intended primarily to be applied to biofuels where the biofuel material is added at a
terminal or other facility and not included in the process stream material sampled by the analyzer at
the basestock manufacturing facility. The correlation shall be specific for a constant percentage
addition of the biofuels material to the basestock for each model. This practice may not apply for
physical properties where the source material for the biofuel material or the denaturant/diluent
material used with the biofuel material can significantly affect the finished biofuel’s physical property.
The user of the standard should investigate the effect of changes to biofuels material blend ratios,
1
This practice is under the jurisdiction of ASTM Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcommittee
D02.25 on Performance Assessment and Validation of Process Stream Analyzer Systems.
Current edition approved April 1, 2022July 1, 2023. Published June 2022July 2023. Originally approved in 1980. Last previous edition approved in 20192022 as
D3764 – 19.D3764 – 22. DOI: 10.1520/D3764-22.10.1520/D3764-23.
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States
1
---------------------- Page: 1 ----------------------
D3764 − 23
biofuels material source material, and blendstock material composition when using this practice.
Limits to any of thes
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.