This document specifies the method of instrumented indentation test for evaluation of stress change between reference and target states using indentation force differences. This document primarily applies to measuring the stress change in a specific location and the stress difference between different locations.

  • Technical specification
    19 pages
    English language
    sale 15% off

This document specifies the method of linear elastic dynamic instrumented indentation test for determination of indentation hardness and indentation modulus of materials showing elastic-plastic behaviour when oscillatory force or displacement is applied to the indenter while the load or displacement is held constant at a prescribed target value or while the indenter is continuously loaded to a prescribed target load or target depth.

  • Standard
    11 pages
    English language
    sale 15% off

ISO 14577-4:2016 specifies a method for testing coatings which is particularly suitable for testing in the nano/micro range applicable to thin coatings. However, the application of this method of this part of ISO 14577 is not needed if the indentation depth is such a small fraction of the coating thickness that in any possible case a substrate influence can be neglected and the coating can be considered as a bulk material. Limits for such cases are given. This test method is limited to the examination of single layers when the indentation is carried out normal to the test piece surface, but graded and multilayer coatings can also be measured in cross-section if the thickness of the individual layers or gradations is greater than the spatial resolution of the indentation process. The test method is not limited to any particular type of material. Metallic and non-metallic coatings are included in the scope of this part of ISO 14577. In this part of ISO 14577, the term coating is used to refer to any solid layer with homogeneous properties different to that of a substrate it is connected to. The method assumes that coating properties are constant with indentation depth. Composite coatings are considered to be homogenous if the structure size is less than the indentation size. The application of this part of ISO 14577 regarding measurement of indentation hardness is only possible if the indenter is a pyramid or a cone with a radius of tip curvature small enough for plastic deformation to occur within the coating. The hardness of visco-elastic materials or materials exhibiting significant creep will be strongly affected by the time taken to perform the test.

  • Standard
    19 pages
    English language
    sale 15% off
  • Standard
    20 pages
    French language
    sale 15% off

ISO 14577-3:2015 specifies a method for the calibration of reference blocks to use for the indirect verification of testing machines for the instrumented indentation test as specified in ISO 14577‑2:2015.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    8 pages
    French language
    sale 15% off

ISO 14577-2:2015 specifies the method of verification and calibration of testing machines for carrying out the instrumented indentation test in accordance with ISO 14577‑1:2015. It describes a direct verification method for checking the main functions of the testing machine and an indirect verification method suitable for the determination of the repeatability of the testing machine. There is a requirement that the indirect method be used in addition to the direct method and for the periodic routine checking of the testing machine in service. It is a requirement that the indirect method of verification of the testing machine be carried out independently for each test method. ISO 14577-2:2015 is also applicable for transportable testing machines.

  • Standard
    25 pages
    English language
    sale 15% off
  • Standard
    26 pages
    French language
    sale 15% off

ISO 14577-1:2015 specifies the method of instrumented indentation test for determination of hardness and other materials parameters for the following three ranges: macro range: 2 N ≤ F ≤ 30 kN; micro range: 2 N > F; h > 0,2 µm; and nano range: h ≤ 0,2 µm. For the nano range, the mechanical deformation strongly depends on the real shape of indenter tip and the calculated material parameters are significantly influenced by the contact area function of the indenter used in the testing machine. Therefore, careful calibration of both instrument and indenter shape is required in order to achieve an acceptable reproducibility of the materials parameters determined with different machines. The macro and micro ranges are distinguished by the test forces in relation to the indentation depth. Attention is drawn to the fact that the micro range has an upper limit given by the test force (2 N) and a lower limit given by the indentation depth of 0,2 µm. The determination of hardness and other material parameters is given in Annex A. At high contact pressures, damage to the indenter is possible. For this reason in the macro range, hardmetal indenters are often used. For test pieces with very high hardness and modulus of elasticity, permanent indenter deformation can occur and can be detected using suitable reference materials. It is necessary that its influence on the test result be taken into account. This test method can also be applied to thin metallic and non-metallic coatings and non-metallic materials. In this case, it is recommended that the specifications in the relevant standards be taken into account (see also 6.3 and ISO 14577‑4).

  • Standard
    46 pages
    English language
    sale 15% off
  • Standard
    46 pages
    French language
    sale 15% off