Eurocode 6 - Design of masonry structures - Part 3: Simplified calculation methods for unreinforced masonry structures

(1)P This Part 3 of Eurocode 6 provides simplified calculation methods to facilitate the design of the following unreinforced masonry walls, subject to certain conditions of application:
   walls subjected to vertical loading and wind loading;
   walls subjected to concentrated loads;
   shear walls;
   basement walls subjected to lateral earth pressure and vertical loads;
   walls subjected to lateral loads but not subjected to vertical loads.
(2)P The rules given in Part 3 are consistent with those given in Part 1-1, but are more conservative in respect of the conditions and limitations of their use.
(3) For those types of masonry structure or parts of structures not covered by (1), the design shall be based on Part 1-1.
(4) This Part 3 applies only to those masonry structures, or parts thereof, that are described in Part 1-1 and Part 2.
(5) The simplified calculation methods given in this Part 3 do not cover the design for accidental situations.

Eurocode 6 - Bemessung und Konstruktion von Mauerwerksbauten - Teil 3: Vereinfachte Berechnungsmethoden für unbewehrte Mauerwerksbauten

(1)P Dieser Teil 3 des Eurocode 6 enthält vereinfachte Berechnungsmethoden, mit denen die Bemessung und Konstruktion der folgenden unbewehrten Mauerwerkswände unter bestimmten Anwendungsbedingungen erleichtert werden:
   vertikal und durch Windlast beanspruchte Wände;
   Wände unter Einzellasten;
   Wandscheiben;
   Kellerwände, beansprucht durch horizontalen Erddruck und vertikale Lasten;
   horizontal beanspruchte Wände, die vertikal nicht beansprucht sind.
(2)P Die in diesem Teil 3 angegebenen Regeln entsprechen denen in Teil 1-1, sind jedoch hinsichtlich der Anwendungsbedingungen und -grenzen konservativer.
(3) Tragwerke oder Teile von Tragwerken aus Mauerwerk, die nicht den unter (1) genannten entsprechen, sind nach Teil 1-1 zu bemessen.
(4) Dieser Teil 3 gilt nur für die Mauerwerksbauten oder Teile von diesen, die in Teil 1-1 und Teil 2 beschrieben sind.
(5) Die in diesem Teil 3 angegebenen vereinfachten Berechnungsmethoden gelten nicht für die Bemessung von außergewöhnlichen Einwirkungen.

Eurocode 6 - Calcul des ouvrages en maçonnerie - Partie 3: Méthodes de calcul simplifiées pour les ouvrages en maçonnerie non armée

(1)P  La présente partie 3 de l'Eurocode 6 énonce des méthodes de calcul simplifiées destinées à faciliter le calcul des murs en maçonnerie non armée suivants, soumis à certaines conditions d'application:
   murs soumis à des charges verticales, et aux charges dues au vent ;
   murs soumis à des charges concentrées ;
   murs de contreventement ;
   murs de soubassement soumis à une poussée latérale des terres et à des charges verticales ;
   murs soumis à des charges latérales mais non soumis à des charges verticales.
(2)P Les règles données dans la présente partie 3 sont cohérentes avec celles données dans la partie 1-1, mais sont plus conservatoires en ce qui concerne les conditions et les limitations de leur emploi.
(3)  Pour les types de structures ou parties de structures en maçonnerie non couverts par (1), le calcul doit être effectué sur la base de la partie 1-1.
(4) La présente partie 3 s'applique uniquement aux structures en maçonnerie, ou aux parties de ces structures, décrites dans les parties 1-1 et 2.
(5)  Les méthodes de calcul simplifiées données dans la présente partie 3 ne s'appliquent pas au calcul des situations accidentelles.

Evrokod 6: Projektiranje zidanih konstrukcij - 3. del: Poenostavljene računske metode za nearmirane zidane konstrukcije

General Information

Status
Published
Publication Date
30-Apr-2006
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
01-May-2006
Due Date
01-May-2006
Completion Date
01-May-2006

Relations

Standard
SIST EN 1996-3:2006
English language
40 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Eurocode 6 - Design of masonry structures - Part 3: Simplified calculation methods for unreinforced masonry structuresEurocode 6 - Calcul des ouvrages en maçonnerie - Partie 3: Méthodes de calcul simplifiées pour les ouvrages en maçonnerie non arméeEurocode 6 - Bemessung und Konstruktion von Mauerwerksbauten - Teil 3: Vereinfachte Berechnungsmethoden für unbewehrte MauerwerksbautenTa slovenski standard je istoveten z:EN 1996-3:2006SIST EN 1996-3:2006en91.080.30Zidane konstrukcijeMasonry91.010.30Technical aspectsICS:SIST ENV 1996-3:20041DGRPHãþDSLOVENSKI
STANDARDSIST EN 1996-3:200601-maj-2006

EUROPEAN STANDARDNORME EUROPÉENNEEUROPÄISCHE NORMEN 1996-3January 2006ICS 91.010.30; 91.080.30Supersedes ENV 1996-3:1999
English VersionEurocode 6 - Design of masonry structures - Part 3: Simplifiedcalculation methods for unreinforced masonry structuresEurocode 6 - Calcul des ouvrages en maçonnerie - Partie3: Méthodes de calcul simplifiées pour les ouvrages enmaçonnerie non arméeEurocode 6 - Bemessung und Konstruktion vonMauerwerksbauten - Teil 3: VereinfachteBerechnungsmethoden für unbewehrte MauerwerksbautenThis European Standard was approved by CEN on 24 November 2005.CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this EuropeanStandard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such nationalstandards may be obtained on application to the Central Secretariat or to any CEN member.This European Standard exists in three official versions (English, French, German). A version in any other language made by translationunder the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the officialversions.CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania,Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.EUROPEAN COMMITTEE FOR STANDARDIZATIONCOMITÉ EUROPÉEN DE NORMALISATIONEUROPÄISCHES KOMITEE FÜR NORMUNGManagement Centre: rue de Stassart, 36
B-1050 Brussels© 2006 CENAll rights of exploitation in any form and by any means reservedworldwide for CEN national Members.Ref. No. EN 1996-3:2006: E

3 Annex A (Informative)
Simplified calculation method for unreinforced masonry walls of buildings not greater than 3 storeys.23 Annex B (Normative)
Simplified calculation method for the design of internal walls not subject to vertical loads and with limited lateral load.26 Annex C (Informative)
Simplified calculation method for the design of walls subjected to uniform lateral design load and no vertical loads.30 Annex D (Normative)
Simplified method of determining the characteristic strength of masonry.35

1 Agreement between the Commission of the European Communities and the European Committee for Standardisation (CEN) concerning the work on Eurocodes for the design of building and civil engineering works (BC/CEN/03/89).

5 EN 1990, Eurocode: Basis of structural design . EN 1991, Eurocode 1: Actions on structures. EN 1992, Eurocode 2: Design of concrete structures. EN 1993, Eurocode 3: Design of steel structures. EN 1994, Eurocode 4: Design of composite steel and concrete structures. EN 1995, Eurocode 5: Design of timber structures. EN 1996, Eurocode 6: Design of masonry structures. EN 1997, Eurocode 7: Geotechnical design. EN 1998, Eurocode 8: Design of structures for earthquake resistance. EN 1999, Eurocode 9: Design of aluminium structures. Eurocode standards recognise the responsibility of regulatory authorities in each Member State and have safeguarded their right to determine values related to regulatory safety matters at national level where these continue to vary from State to State. Status and field of application of Eurocodes The Member States of the EU and EFTA recognise that Eurocodes serve as reference documents for the following purposes: 
as a means to prove compliance of building and civil engineering works with the essential requirements of Council Directive 89/106/EEC, particularly Essential Requirement N°1 – Mechanical resistance and stability – and Essential Requirement N°2 – Safety in case of fire; 
as a basis for specifying contracts for construction works and related engineering services; 
as a framework for drawing up harmonised technical specifications for construction products (ENs and ETAs). The Eurocodes, as far as they concern the construction works themselves, have a direct relationship with the Interpretative Documents2 referred to in Article 12 of the CPD, although they are of a different nature from harmonised product standards3. Therefore, technical aspects arising from the
2 According to Article 3.3 of the CPD, the essential requirements (ERs) shall be given concrete form in interpretative documents for the creation of the necessary links between the essential requirements and the mandates for harmonised ENs and ETAGs/ETAs. 3 According to Article 12 of the CPD the interpretative documents shall: a) give concrete form to the essential requirements by harmonising the terminology and the technical bases and indicating classes or levels for each requirement where necessary; b) indicate methods of correlating these classes or levels of requirement with the technical specifications, e.g. methods of calculation and of proof, technical rules for project design, etc.;

rules for reinforced and unreinforced masonry.
c) serve as a reference for the establishment of harmonised standards and guidelines for European technical approvals.
The Eurocodes, de facto, play a similar role in the field of the ER 1 and a part of ER 2. 4 See Article 3.3 and Article 12 of the CPD, as well as clauses 4.2, 4.3.1, 4.3.2 and 5.2 of ID 1.

7 Part 1-2: General rules - Structural fire design. Part 2: Design considerations, selection of materials and execution of masonry. Part 3: Simplified calculation methods for unreinforced
masonry structures. EN 1996-1-1 describes the principles and requirements for safety, serviceability and durability of masonry structures. It is based on the limit state concept used in conjunction with a partial factor method. This EN 1996-3 describes simplified calculation methods to facilitate the design of unreinforced masonry walls based on the principles from EN 1996-1-1. For the design of new structures, EN 1996 is intended to be used, for direct application, together with ENs 1990, 1991, 1992, 1993, 1994, 1995, 1997, 1998 and 1999. EN 1996-3 is intended for use by:  committees drafting standards for structural design and related product, testing and execution standards;  clients (e.g. for the formulation of their specific requirements on reliability levels and durability);  designers and contractors;  relevant authorities. National Annex for EN 1996-3 This standard gives some symbols for which a National value needs to be given, with notes indicating where national choices may have to be made. Therefore the National Standard implementing EN 1996-3 should have a National Annex containing all Nationally Determined Parameters to be used for the design of buildings and civil engineering works to be constructed in the relevant country.
National choice is allowed in EN 1996-3 through clauses: 
2.3 (2)P Verification by the partial factor method 
4.1 (P) Verification of the overall stability of a building 
4.2.1.1 (1)P General conditions 
4.2.2.3 (1) Capacity reduction factor 
D.1 (1) Characteristic compressive strength 
D.2 (1) Characteristic flexural strength 
D.3 (1) Characteristic initial shear strength.

(5) This
EN 1996-3 applies only to those masonry structures, or parts thereof, that are described in EN 1996-1-1 and EN 1996-2. (6) The simplified calculation methods given in this
EN 1996-3 do not cover the design for accidental situations. 1.2 Normative references
(1)P The references in 1.2 of EN 1996-1-1:2005 apply to this EN 1996-3. 1.3 Assumptions (1)P The assumptions given in 1.3 of EN 1990:2002 apply to this EN 1996-3. 1.4 Distinction between Principles and Application Rules (1)P The rules of 1.4 of EN 1990:2002 apply to this EN 1996-3.

9 1.5 Definitions 1.5.1 General (1) The terms and definitions given in 1.5 of EN 1990:2002 apply to this EN 1996-3. (2) The terms and definitions in 1.5 of EN 1996-1-1:2005 apply to this EN 1996-3. (3) Additional terms and definitions used in this EN 1996-2 are given the meanings contained in clause 1.5.2. 1.5.2 Masonry 1.5.2.1 basement wall a retaining wall constructed partly or fully below ground level. 1.6 Symbols
(1)P Material-independent symbols are given in 1.6 of EN 1990. (2)P For the purpose of this standard the symbols given in
EN 1996-1-1 apply. (3)P Other symbols used in this EN 1996-3 are: bc is the distance apart of cross walls or other buttressing elements; c is a constant; fk,s is the characteristic compressive strength of masonry, determined from a simplified method; fvdo is the design value of the initial shear strength; fvdu is the design value of the limit to the shear strength; ha is the average height of the building; he is the height of the wall under ground level hm is the maximum height of a building allowed with the simplified calculation method; kG is a constant;
l is the length of a wall in the horizontal direction; lbx is the plan dimension of a building in the x-direction; lby is the plan dimension of a building in the y-direction; lf is the span of a floor;
lf,ef is the effective span of a floor; lsx is the length of a shear wall orientated in the x-direction;
lsy is the length of a shear wall orientated in the y-direction;

2.3 Verification by the partial factor method (1)P The verification by the partial factor method shall be done according to clause 2.4 of EN 1996-1-1:2005. NOTE: The notes to 2.4.2 of EN 1996-1-1:2005 also apply. (2)P The relevant values of the partial factor for materials γM shall be used for the ultimate limit state for ordinary situations.
NOTE: The numerical values to be ascribed to the symbol γM may be found in the National Annex. Recommended values are those as given in clause 2.4.3 of EN 1996-1-1:2005. The recommended values for masonry are repeated in the table below.

γM Class Material
Masonry made with 1 2 3 4 5 Units of Category I, designed mortar 1,5 1,7 2,0 2,2 2,5 Units of Category I, prescribed mortar 1,7 2,0 2,2 2,5 2,7 Units of Category II 2,0 2,2 2,5 2,7 3,0
END of NOTE 3 Materials 3.1 General (1)P The materials used in the masonry walls referred to in this EN 1996-3 shall be in accordance with Section 3 of EN 1996-1-1:2005. (2) Masonry units should be grouped as Group 1, Group 2, Group 3 or Group 4 according to clause 3.1.1 of EN 1996-1-1:2005. NOTE: Normally the manufacturer will state the grouping of his units in his product declaration. 3.2 Characteristic compressive strength of masonry (1) The characteristic compressive strength of masonry should be determined according to 3.6.1 of EN 1996-1-1:2005.
(2) A simplified method to determine the characteristic compressive strength of masonry for use in this document is provided in Annex D. 3.3 Characteristic flexural strength of masonry (1) The characteristic flexural strength of masonry should be determined according to 3.6.3 of EN 1996-1-1:2005. (2) A simplified method to determine the characteristic flexural strengths of masonry for use in this document is provided in Annex D. 3.4 Characteristic initial shear strength of masonry (1) The characteristic initial shear strength of masonry, fvko, should be determined according to 3.6.2 of EN 1996-1-1:2005.

Figure 4.1. ha ha ha ha
Figure 4.1 F
Determination of average height NOTE The numerical value to be ascribed to the symbol hm for use in a country may be found in its National Annex. Recommended values, given as classes, are given in the table below. Class 1 2 3 hm 20 m 16 m 12 m
 the span of the floors supported by the walls shall not exceed 7,0 m;  the span of the roof supported by the walls shall not exceed 7,0 m, except in the case of a lightweight trussed roof structure where the span shall not exceed 14,0 m;  the clear storey height shall not exceed 3,2 m unless the overall height of the building is greater than 7,0 m, in which case the clear storey height of the ground storey may be 4,0 m.

13  the characteristic values of the variable actions on the floors and the roof shall not exceed 5,0 kN/m²;  the walls are laterally restrained by the floors and roof in the horizontal direction at right angles to the plane of the wall, either by the floors and roof themselves or by suitable methods, e.g. ring beams with sufficient stiffness according to 8.5.1.1 of EN 1996-1-1:2005  the walls are vertically aligned throughout their height.  the floors and roof have a bearing on the wall of at least 0,4 t of the thickness of the wall but not less than 75 mm;  the final creep coefficient of the masonry φ∞ does not exceed 2,0;  the thickness of the wall and the compressive strength of the masonry shall be checked at each storey level, unless these variables are the same at all storeys.
NOTE A further simplified calculation method, applicable to buildings not exceeding 3 storeys in height, is given in Annex A. 4.2.1.2 Additional conditions (1) For walls acting as end supports to floors (see
Figure 4.2), the simplified calculation method given in 4.2.2 may be applied only if the floor span lf is not greater than: 7,0 m when NEd ≤ kG t b fd (4.1a) or the lesser of
4,5 + 10 t (in m) and 7,0 m when fd > 2,5 N/mm² (4.1b) or
the lesser of
4,5 + 10 t (in m) and 6,0 m when fd ≤ 2,5 N/mm² (4.1c) where:
NEd is the design vertical load on the level being considered; t
is the actual thickness of the wall, or the load bearing leaf of a cavity wall, acting as an end support, in metres; b is the width over which the vertical load is effective; fd is the design compressive strength of the masonry; kG is 0,2 for Group 1 masonry units is 0,1 for Group 2, Group 3 and Group 4 masonry units.

F Wall acting as end support (2)P Walls acting as end supports to floors or roofs that are subjected to wind loading shall be designed according to 4.2.2 only if:
hcNtbhqc2Ed2Ewd1+≥ (4.2) where: h is the clear storey height; qEwd is the design wind load on the wall per unit area of the wall; NEd is the design value of the vertical load giving the least severe effect on the wall at the top of the storey considered;
b is the width over which the vertical load is effective; t is the actual thickness of the wall, or the load bearing leaf of a cavity wall, acting as an end support; α is dEdfbtN; c1, c2 are constants derived from
Table 4.1. Table 4.1 : Constants c1 and c2 α c1 c2 0,05 0.12 0,017 0,10 0,12 0,019 0,20 0,14 0,022 0,30 0,15 0,025 0,50 0,23 0,031 NOTE
Linear interpolation is permitted.

15 NOTE Annex C gives a simplified method for lateral load design, but it may be used to obtain the thickness t instead of equation (4.2) if the design vertical load giving the most severe effect is k b t fd or less, where k, b, t and fd are as described in 4.2.1.2. 4.2.2 Determination of design vertical load resistance of a wall 4.2.2.1 General (1)P Under the ultimate limit state it shall be verified that: NEd ≤ NRd (4.3) where: NEd
is the design vertical load on the wall; NRd
is the design vertical load resistance of the wall according to clause 4.2.2.2. 4.2.2.2 Design vertical load resistance (1) The design vertical load resistance N
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...