SIST EN 14511-3:2018
(Main)Air conditioners, liquid chilling packages and heat pumps for space heating and cooling and process chillers, with electrically driven compressors - Part 3: Test methods
Air conditioners, liquid chilling packages and heat pumps for space heating and cooling and process chillers, with electrically driven compressors - Part 3: Test methods
1.1 Es gilt der Anwendungsbereich von EN 14511-1.
1.2 Diese Europäische Norm legt die Prüfverfahren für die Bemessung und Leistung von Luftkondi-tionierern, Flüssigkeitskühlsätzen und Wärmepumpen, die Luft, Wasser oder Sole als Wärmeträger nutzen und mit elektrisch angetriebenen Verdichtern betrieben werden, für die Raumbeheizung und -kühlung fest. Diese Prüfverfahren gelten auch für die Bemessung und Leistung von Prozess-Kühlern.
Sie legt weiterhin ein Verfahren zur Prüfung und Angabe von Wärmerückgewinnungsleistungen, systemreduzierten Leistungen sowie der Leistung von Einzelgeräten von Multi-Split-Systemen für die Aufstellung im Innenraum, soweit zutreffend, fest.
Diese Europäische Norm bietet außerdem die Möglichkeit, die Leistung von Multi-Split-Systemen und modularen Multi-Split-Systemen mit Wärmerückgewinnung durch getrennte Leistungsbemessung von Geräten für die Aufstellung im Innenraum und Geräten für die Außenaufstellung (Innen- und Außengeräte) zu bemessen.
Luftkonditionierer, Flüssigkeitskühlsätze und Wärmepumpen für die Raumbeheizung und -kühlung und Prozess-Kühler mit elektrisch angetriebenen Verdichtern - Teil 3: Prüfverfahren
1.1 Es gilt der Anwendungsbereich von FprEN 14511 1.
1.2 Diese Europäische Norm legt die Prüfverfahren für die Bemessung und Leistung von Luftkonditionierern, Flüssigkeitskühlsätzen und Wärmepumpen, die Luft, Wasser oder Sole als Wärmeträger nutzen, mit elektrisch angetriebenen Verdichtern für die Raumbeheizung und -kühlung fest. Diese Prüfverfahren gelten auch für die Bemessung und Leistung von Prozess-Kühlern.
Sie legt weiterhin ein Verfahren fest zur Prüfung und Angabe von Wärmerückgewinnungsleistungen, systemreduzierten Leistungen sowie der Leistung von Einzelgeräten von Multi-Split-Systemen für die Aufstellung im Innenraum, soweit zutreffend.
Diese Europäische Norm bietet außerdem die Möglichkeit, die Leistung von Multi-Split-Systemen und modularen Multi-Split-Systemen mit Wärmerückgewinnung durch getrennte Leistungsbemessung von Geräten für die Aufstellung im Innenraum und Geräten für die Außenaufstellung (Innen- und Außengeräte) zu bemessen.
Climatiseurs, groupes refroidisseurs de liquide et pompes à chaleur pour le chauffage et le refroidissement des locaux et refroidisseurs industriels avec compresseur entraîné par moteur électrique - Partie 3: Méthodes d'essai
1.1 Le domaine d’application de l'EN 14511-1 est applicable.
1.2 La présente Norme européenne spécifie les méthodes d’essai pour la détermination des caractéristiques de performance des climatiseurs, groupes refroidisseurs de liquide et pompes à chaleur utilisant l’air, l’eau ou l’eau glycolée comme fluide caloporteur, avec compresseur entraîné par moteur électrique, lorsqu’ils sont utilisés pour le chauffage et le refroidissement des locaux. Ces méthodes d’essai s’appliquent également à la détermination des caractéristiques de performance des refroidisseurs industriels.
Elle spécifie aussi la méthode d’essai et de rapport pour les puissances calorifiques de récupération, les puissances réduites de système et la puissance individuelle des unités intérieures des systèmes multi-splits, le cas échéant.
La présente Norme européenne permet également de déterminer les caractéristiques des systèmes multi-splits et des systèmes multi-splits modulaires à récupération de chaleur en considérant les appareils intérieurs et extérieurs séparément.
Klimatske naprave, enote za hlajenje kapljevine, toplotne črpalke za ogrevanje in hlajenje prostora ter procesne hladilne naprave z električnimi kompresorji - 3. del: Preskusne metode
1.1 Velja področje uporabe standarda prEN 14511 1.
1.2 Ta evropski standard določa preskusne metode za ocenjevanje in delovanje klimatskih naprav, enot za tekočinsko hlajenje in toplotnih črpalk, ki uporabljajo zrak, vodo ali slanico kot medij za prenos toplote, z električnimi kompresorji, kadar se uporabljajo za segrevanje in hlajenje prostora. Določa tudi izraze in definicije za ocenjevanje in delovanje procesnih ohlajevalnikov.
Določa tudi metodo za preskušanje in sporočanje zmogljivosti vračanja toplote, zmanjšanih sistemskih zmogljivosti in zmogljivosti posameznih notranjih enot sistemov z več razcepi, kjer je to primerno.
Ta evropski standard omogoča tudi oceno sistemov z več razcepi in modularnih sistemov z več razcepi za vračanje toplote z ločeno oceno notranjih in zunanjih enot.
General Information
Relations
Frequently Asked Questions
SIST EN 14511-3:2018 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Air conditioners, liquid chilling packages and heat pumps for space heating and cooling and process chillers, with electrically driven compressors - Part 3: Test methods". This standard covers: 1.1 Es gilt der Anwendungsbereich von EN 14511-1. 1.2 Diese Europäische Norm legt die Prüfverfahren für die Bemessung und Leistung von Luftkondi-tionierern, Flüssigkeitskühlsätzen und Wärmepumpen, die Luft, Wasser oder Sole als Wärmeträger nutzen und mit elektrisch angetriebenen Verdichtern betrieben werden, für die Raumbeheizung und -kühlung fest. Diese Prüfverfahren gelten auch für die Bemessung und Leistung von Prozess-Kühlern. Sie legt weiterhin ein Verfahren zur Prüfung und Angabe von Wärmerückgewinnungsleistungen, systemreduzierten Leistungen sowie der Leistung von Einzelgeräten von Multi-Split-Systemen für die Aufstellung im Innenraum, soweit zutreffend, fest. Diese Europäische Norm bietet außerdem die Möglichkeit, die Leistung von Multi-Split-Systemen und modularen Multi-Split-Systemen mit Wärmerückgewinnung durch getrennte Leistungsbemessung von Geräten für die Aufstellung im Innenraum und Geräten für die Außenaufstellung (Innen- und Außengeräte) zu bemessen.
1.1 Es gilt der Anwendungsbereich von EN 14511-1. 1.2 Diese Europäische Norm legt die Prüfverfahren für die Bemessung und Leistung von Luftkondi-tionierern, Flüssigkeitskühlsätzen und Wärmepumpen, die Luft, Wasser oder Sole als Wärmeträger nutzen und mit elektrisch angetriebenen Verdichtern betrieben werden, für die Raumbeheizung und -kühlung fest. Diese Prüfverfahren gelten auch für die Bemessung und Leistung von Prozess-Kühlern. Sie legt weiterhin ein Verfahren zur Prüfung und Angabe von Wärmerückgewinnungsleistungen, systemreduzierten Leistungen sowie der Leistung von Einzelgeräten von Multi-Split-Systemen für die Aufstellung im Innenraum, soweit zutreffend, fest. Diese Europäische Norm bietet außerdem die Möglichkeit, die Leistung von Multi-Split-Systemen und modularen Multi-Split-Systemen mit Wärmerückgewinnung durch getrennte Leistungsbemessung von Geräten für die Aufstellung im Innenraum und Geräten für die Außenaufstellung (Innen- und Außengeräte) zu bemessen.
SIST EN 14511-3:2018 is classified under the following ICS (International Classification for Standards) categories: 23.120 - Ventilators. Fans. Air-conditioners; 27.080 - Heat pumps; 91.140.30 - Ventilation and air-conditioning systems. The ICS classification helps identify the subject area and facilitates finding related standards.
SIST EN 14511-3:2018 has the following relationships with other standards: It is inter standard links to SIST EN 14511-3:2013, SIST EN 14511-3:2022, SIST EN 14511-3:2022. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
SIST EN 14511-3:2018 is associated with the following European legislation: EU Directives/Regulations: 2009/125/EC, 206/2012, 626/2011; Standardization Mandates: M/488, M/495. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.
You can purchase SIST EN 14511-3:2018 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.
Standards Content (Sample)
SLOVENSKI STANDARD
01-maj-2018
1DGRPHãþD
SIST EN 14511-3:2013
.OLPDWVNHQDSUDYHHQRWH]DKODMHQMHNDSOMHYLQHWRSORWQHþUSDONH]DRJUHYDQMHLQ
KODMHQMHSURVWRUDWHUSURFHVQHKODGLOQHQDSUDYH]HOHNWULþQLPLNRPSUHVRUMLGHO
3UHVNXVQHPHWRGH
Air conditioners, liquid chilling packages and heat pumps for space heating and cooling
and process chillers, with electrically driven compressors - Part 3: Test methods
Luftkonditionierer, Flüssigkeitskühlsätze und Wärmepumpen für die Raumbeheizung und
-kühlung und Prozess-Kühler mit elektrisch angetriebenen Verdichtern - Teil 3:
Prüfverfahren
Climatiseurs, groupes refroidisseurs de liquide et pompes à chaleur pour le chauffage et
le refroidissement des locaux et refroidisseurs industriels avec compresseur entraîné par
moteur électrique - Partie 3: Méthodes d'essai
Ta slovenski standard je istoveten z: EN 14511-3:2018
ICS:
23.120 =UDþQLNL9HWUQLNL.OLPDWVNH Ventilators. Fans. Air-
QDSUDYH conditioners
27.080 7RSORWQHþUSDONH Heat pumps
91.140.30 3UH]UDþHYDOQLLQNOLPDWVNL Ventilation and air-
VLVWHPL conditioning systems
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN 14511-3
EUROPEAN STANDARD
NORME EUROPÉENNE
March 2018
EUROPÄISCHE NORM
ICS 27.080; 91.140.30 Supersedes EN 14511-3:2013
English Version
Air conditioners, liquid chilling packages and heat pumps
for space heating and cooling and process chillers, with
electrically driven compressors - Part 3: Test methods
Climatiseurs, groupes refroidisseurs de liquide et Luftkonditionierer, Flüssigkeitskühlsätze und
pompes à chaleur pour le chauffage et le Wärmepumpen für die Raumbeheizung und -kühlung
refroidissement des locaux et refroidisseurs industriels und Prozess-Kühler mit elektrisch angetriebenen
avec compresseur entraîné par moteur électrique - Verdichtern - Teil 3: Prüfverfahren
Partie 3: Méthodes d'essai
This European Standard was approved by CEN on 31 December 2017.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2018 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 14511-3:2018 E
worldwide for CEN national Members.
Contents Page
European foreword . 5
1 Scope . 7
2 Normative references . 7
3 Terms and definitions . 7
4 Tests for determination of capacities . 7
4.1 Basic principles, method of calculation for the determination of capacities . 7
4.1.1 Heating capacity . 7
4.1.2 Cooling capacity . 8
4.1.3 Heat recovery capacity . 9
4.1.4 Capacity correction. 9
4.1.5 Effective power input . 12
4.1.6 Units on a distribution network of pressured water . 13
4.1.7 Units for use with remote condenser . 13
4.2 Test apparatus. 14
4.2.1 Arrangement of the test apparatus. 14
4.2.2 Installation and connection of the test object. 14
4.3 Uncertainties of measurement . 16
4.4 Test procedure . 18
4.4.1 Settings . 18
4.4.2 Output measurement for water (brine)-to-water (brine) and water (brine)-to-air
units . 20
4.4.3 Output measurement for cooling capacity of air-to-water (brine) and air-to-air units . 21
4.4.4 Output measurement for heating capacity of air-to-air and air-to-water units . 21
4.5 Test results . 26
4.5.1 Data to be recorded . 26
4.5.2 Cooling capacity and heat recovery capacity calculation . 29
4.5.3 Heating capacity calculation . 29
4.5.4 Effective power input calculation. 30
5 Electrical consumptions for single duct and double duct units . 30
5.1 Determination of power consumption due to standby mode . 30
5.2 Determination of power consumption in off-mode . 31
5.3 Electricity consumption . 31
6 Air flow rate measurement of ducted units . 31
7 Heat recovery test for air-cooled multisplit system . 31
7.1 Test installation . 31
7.1.1 General . 31
7.1.2 Three-room calorimeter method . 32
7.1.3 Three-room air-enthalpy method . 32
7.1.4 Two-room air-enthalpy method . 32
7.2 Test procedure . 32
7.3 Test results . 32
8 Test report . 32
8.1 General information . 32
8.2 Additional information . 33
8.3 Rating test results . 33
Annex A (normative) Calorimeter test method . 34
A.1 General . 34
A.2 Calibrated room-type calorimeter . 36
A.3 Balanced ambient room-type calorimeter . 37
A.4 Calculations-cooling capacities . 37
A.4.1 General . 37
A.4.2 Total cooling capacity on the indoor-side . 38
A.4.3 Total cooling capacity of liquid (water)-cooled equipment deducted from the
condenser side . 39
A.4.4 Latent cooling capacity (room dehumidifying capacity) . 39
A.4.5 Sensible cooling capacity . 39
A.4.6 Sensible heat ratio . 39
A.5 Calculation-heating capacities . 40
A.5.1 General . 40
A.5.2 Determination of the heating capacity by measurements in the indoor-side room . 40
A.5.3 Determination of the heating capacity by measurements in the outdoor-side room . 40
A.5.4 Total heating capacity of liquid (water)-to-air unit deducted from the water side . 41
Annex B (normative) Indoor air enthalpy test method . 42
B.1 General . 42
B.2 Determination of the air flow rate . 42
B.3 Calculations-cooling capacities . 42
B.4 Calculations-heating capacities . 43
Annex C (informative) Conformance criteria . 44
C.1 Liquid chilling packages . 44
C.2 Calorimeter room method . 44
C.3 Heat recovery of multisplit systems . 44
Annex D (informative) Symbols used in annexes . 45
Annex E (informative) Test at system reduced capacity . 47
E.1 Test at system reduced capacity for multisplit system and modular heat recovery
multisplit system . 47
E.2 Selection of units . 47
E.3 Test results . 47
Annex F (informative) Individual unit tests . 48
F.1 General . 48
F.1.1 Methods . 48
F.1.2 Calorimeter method. 48
F.1.3 Air-enthalpy method . 48
F.2 Test results . 48
F.3 Published results . 48
Annex G (normative) Determination of the liquid pump efficiency . 49
G.1 General . 49
G.2 Hydraulic power of the liquid pump . 49
G.2.1 The liquid pump is an integral part of the unit . 49
G.2.2 The liquid pump is not an integral part of the unit . 49
G.3 Efficiency of integrated pumps . 49
G.3.1 Glandless circulators . 49
G.3.2 Dry motor pumps . 50
G.4 Efficiency of non-integrated pumps . 51
Annex H (informative) Rating of indoor and outdoor units of multisplit and modular heat
recovery multisplit systems . 52
H.1 General . 52
H.2 Terms and definitions . 52
H.3 Rating of indoor units . 53
H.3.1 General . 53
H.3.2 Air flow rate measurement . 53
H.3.3 Measurement of the power input of indoor units . 53
H.4 Rating of outdoor units . 53
H.4.1 General . 53
H.4.2 Test procedure . 53
Annex I (normative) Air flow rate measurement . 54
I.1 General . 54
I.2 Test installation . 54
I.3 Test conditions . 54
I.4 Air flow measurement . 54
Annex ZA (informative) Relationship between this European Standard and the
requirements of Commission regulation (EC) No 206/2012 aimed to be covered . 55
Annex ZB (informative) Relationship between this European Standard and the energy
labelling requirements of Commission Delegated Regulation (EU) No 626/2011
aimed to be covered . 56
Bibliography . 58
European foreword
This document (EN 14511-3:2018) has been prepared by Technical Committee CEN/TC 113 “Heat
pumps and air conditioning units”, the secretariat of which is held by UNE.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by September 2018, and conflicting national standards
shall be withdrawn at the latest by March 2021.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN not be held responsible for identifying any or all such patent rights.
This document supersedes EN 14511-3:2013.
This document has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association, and supports essential requirements of EU Regulation No 206/2012
and EU Regulation No 626/2011.
For relationship with EU Regulation No 206/2012 and EU Regulation No 626/2011, see informative
Annexes ZA and ZB, which are an integral part of this document.
The main changes with respect to the previous edition are listed below:
a) the revision of Annexes A and B on the test methods;
b) deletion of Annex C;
c) the revision of Annex G (Annex H on the previous version) on liquid pumps corrections;
d) the inclusion of process chillers into the scope of the EN 14511 series and of this Part 3.
Although this document has been prepared in the frame of the Commission Regulation (EU)
No 206/2012 implementing Directive 2009/125/EC with regard to ecodesign requirements for air
conditioners and comfort fans, it is also intended to support the Essential Requirements of the
European Directive 2010/30/EU.
EN 14511 currently comprises the following parts:
— Air conditioners, liquid chilling packages and heat pumps for space heating and cooling and process
chillers with electrically driven compressors — Part 1: Terms and definitions,
— Air conditioners, liquid chilling packages and heat pumps for space heating and cooling and process
chillers, with electrically driven compressors — Part 2: Test conditions,
— Air conditioners, liquid chilling packages and heat pumps for space heating and cooling and process
chillers, with electrically driven compressors — Part 3: Test methods,
— Air conditioners, liquid chilling packages and heat pumps for space heating and cooling and process
chillers, with electrically driven compressors — Part 4: Requirements.
According to the CEN/CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta,
Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.
1 Scope
1.1 The scope of EN 14511-1 is applicable.
1.2 This European Standard specifies the test methods for the rating and performance of air
conditioners, liquid chilling packages and heat pumps using either air, water or brine as heat transfer
media, with electrically driven compressors when used for space heating and cooling. These test
methods also apply for the rating and performance of process chillers.
It also specifies the method of testing and reporting for heat recovery capacities, system reduced
capacities and the capacity of individual indoor units of multisplit systems, where applicable.
This European Standard also makes possible to rate multisplit and modular heat recovery multisplit
systems by rating separately the indoor and outdoor units.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 14511-1:2018, Air conditioners, liquid chilling packages and heat pumps for space heating and cooling
and process chillers, with electrically driven compressors — Part 1: Terms and definitions
EN 14511-2:2018, Air conditioners, liquid chilling packages and heat pumps for space heating and cooling
and process chillers, with electrically driven compressors — Part 2: Test conditions
3 Terms and definitions
For the purposes of this document, the terms and definitions given in EN 14511-1:2018 apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp
4 Tests for determination of capacities
4.1 Basic principles, method of calculation for the determination of capacities
4.1.1 Heating capacity
The heating capacity of air conditioners and of air-to-air or water(brine)-to-air heat pumps shall be
determined by measurements in a calorimeter room (see Annex A) or by the air enthalpy method
(see Annex B).
However, the heating capacity of air conditioners and of air-to-air heat pumps having a capacity below
or equal to 12 kW for cooling, or heating if the unit has no cooling function, under the standard rating
conditions of EN 14511-2 shall be determined by measurements in a calorimeter room.
For heating only units the limit of 12 kW applies to the heating capacity as given under the standard
rating conditions of EN 14511-2.
When using the air enthalpy method, in steady-state operation, the heating capacity shall be determined
using the following formula:
Pq× ρ× c ×∆T (1)
Hp
where
P is the heating capacity, expressed in W;
H
q is the air volume flow rate as measured during the test, expressed in m /s;
ρ is the air density as measured during the test, expressed in kg/ m ;
c is the specific heat at constant pressure, expressed in J/(kg.K);
p
ΔT is the difference between outlet and inlet temperatures, expressed in K.
The air density shall be determined for the air conditions at the air flow measuring device.
NOTE 1 The mass flow rate can directly be determined instead of the term (q x ρ).
NOTE 2 The enthalpy change ΔH can directly be used instead of the term (c x ΔT).
p
For the heating capacity calculation in transient operation, refer to 4.5.3.2.
The heating capacity of air-to-water(brine), water(brine)-to-water(brine) heat pumps and liquid
chilling packages shall be determined in accordance with the direct method at the water or brine heat
exchanger, by determination of the volume flow of the heat transfer medium, and the inlet and outlet
temperatures, taking into consideration the specific heat capacity and density of the heat transfer
medium.
The measured heating capacity of air-to-air and water(brine)-to-air units shall be corrected for the heat
from the indoor fan as specified in 4.1.4.1 or 4.1.4.2.
The measured heating capacity of water(brine)-to-water(brine) and air-to-water(brine)units shall be
corrected for the heat from the indoor liquid pump as specified in 4.1.4.3.
4.1.2 Cooling capacity
The cooling capacity of air conditioners and of air-to-air or water(brine)-to-air heat pumps shall be
determined by measurements in a calorimeter room (see Annex A) or by the air enthalpy method
(see Annex B).
However, air conditioners and of air-to-air heat pumps having a cooling capacity below or equal to 12
kW under the standard rating conditions given in EN 14511-2, shall be tested using a calorimeter room.
When using the air enthalpy method, the cooling capacity shall be determined using the following
formula:
Pq= ×ρ ×c ×ΔT (2)
Cp
where
P is the cooling capacity, expressed in W;
C
q is the air volume flow rate as measured during the test, expressed in m /s;
ρ is the air density as measured during the test, expressed in kg/m ;
c is the specific heat at constant pressure, expressed in J/(kg.K);
p
=
ΔT is the difference between inlet and outlet temperatures, expressed in K.
The air density shall be determined for the air conditions at the air flow measuring device.
NOTE 1 The mass flow rate can directly be determined instead of the term (q x ρ).
NOTE 2 The enthalpy change ΔH can directly be used instead of the term (cp x ΔT).
The cooling capacity of air-to-water(brine), water(brine)-to-water(brine) heat pumps and liquid
chilling packages shall be determined in accordance with the direct method at the water or brine heat
exchanger, by determination of the volume flow of the heat transfer medium, and the inlet and outlet
temperatures, taking into consideration the specific heat capacity and density of the heat transfer
medium.
The measured cooling capacity of air-to-air and water(brine)-to-air units shall be corrected for the heat
from the indoor fan as specified in 4.1.4.1 or 4.1.4.2.
The measured cooling capacity of water(brine)-to-water(brine) and air-to-water(brine) units shall be
corrected for the heat from the indoor liquid pump as specified in 4.1.4.3
4.1.3 Heat recovery capacity
The heat recovery capacity of air-to-water(brine), water(brine)-to-water(brine) heat pumps and liquid
chilling packages shall be determined in accordance with the direct method at the water or brine heat
recovery heat exchanger, by determination of the volume flow of the heat transfer medium, and the
inlet and outlet temperatures, taking into consideration the specific heat capacity and density of the
heat transfer medium.
The heat recovery capacity shall be determined using the following formula:
P = q××ρ∆cT× (3)
HR p
where
P is the heat recovery capacity, expressed in W;
HR
q is the volume flow rate, expressed in m /s ;
ρ is the density, expressed in kg/m ;
c is the specific heat at constant pressure, expressed in J/(kg.K);
p
ΔT is the difference between outlet and inlet temperatures expressed in K.
NOTE 1 The mass flow rate can directly be determined instead of the term (q x ρ).
NOTE 2 The enthalpy change ΔH can directly be used instead of the term (cp x ΔT).
The measured heat recovery capacity of units shall be corrected for the heat from the liquid pump as
specified in 4.1.4.3.
4.1.4 Capacity correction
4.1.4.1 General
The capacity shall include the correction due to the heat output of indoor and/or outdoor fans and/or
pumps, integrated into the unit or not as follows.
4.1.4.2 Capacity correction of fans for units without duct connection
In the case of units which are not designed for duct connection, i.e. which do not permit any external
pressure difference, and which are equipped with an integral fan, no capacity correction due to heat
provide by the fan shall apply.
4.1.4.3 Capacity correction due to indoor fan for ducted units
4.1.4.3.1 Units with integrated indoor fan
If the fan at the indoor heat exchanger is an integral part of the unit, the power input correction of the
fan, as calculated with Formula (8) (see 4.1.5.3.1) shall be:
— subtracted from the measured heating capacity
— added to the measured cooling capacity
4.1.4.3.2 Units with non-integrated indoor fan
If the fan at the indoor heat exchanger is not an integral part of the unit, the power input correction as
calculated with Formula (9) (see 4.1.5.3.2) shall be:
— added to the measured heating capacity
— subtracted from the measured cooling capacity
4.1.4.4 Capacity correction due to indoor liquid pump
4.1.4.4.1 Units with integrated liquid pump
If the liquid pump is an integrated part of the unit, the capacity correction as defined in 4.1.4.4.3 or
4.1.4.4.4 shall be:
— subtracted from the measured heating capacity.
— added to the measured cooling capacity
— subtracted from the measured heat recovery capacity
4.1.4.4.2 Units with non-integrated liquid pump
If the liquid pump is not an integral part of the unit, the capacity correction as defined in 4.1.4.4.5 shall
be:
— added to the measured heating capacity.
— subtracted from the measured cooling capacity
— added to the measured heat recovery capacity
4.1.4.4.3 Capacity correction for integrated glandless circulators
If the unit is equipped with a glandless circulator, the capacity correction is calculated using formula (4
(q x Δp ) x [(1-η)/η] (4)
e
where
q is the measured liquid flow rate, expressed in m /s.
Δp is the measured available external static pressure difference, expressed in Pa, as defined
e
in EN 14511–1:2018, 3.58;
η is the global efficiency of the pump calculated according to Annex G.
4.1.4.4.4 Capacity correction for integrated dry motor pumps
If the unit is equipped with a dry-motor pump, the capacity correction shall be calculated using Formula
(5).
(q x Δp ) x [(IE - η)/η ] (5)
e
where
q is the measured liquid volume flow rate, expressed in m /s;
Δp is the measured available external static pressure difference, expressed in Pa, as defined
e
in EN 14511–1:2018, 3.58;
IE is the motor efficiency level as defined in the EC No 640/2009 regulation;
η is the global efficiency of the pump calculated according to Annex G.
4.1.4.4.5 Capacity correction for non-integrated liquid pumps
If the measured hydraulic power according to Annex G is ≤ 300 W, the liquid pump is considered as a
glandless circulator. The capacity correction is calculated using Formula (6).
(q x (-Δp )) x [(1-η)/η] (6)
i
where
q is the measured liquid flow rate, expressed in m /s;
Δp is the measured internal static pressure difference, expressed in Pa, as defined in
i
EN 14511–1:2018, 3.59;
η is the global efficiency of the pump calculated according to Annex G.
If the measured hydraulic power according to Annex G is > 300 W, the liquid pump is considered as a
dry-motor pump. The capacity correction is calculated using Formula (7).
[q x (-Δp )] x [(IE - η) /η)] (7)
i
where
q is the liquid volume flow rate, expressed in m /s;
Δpi is the measured internal static pressure difference, expressed in Pascal, as defined in 3.59 of
EN 14511-1:2018;
IE is equal to 0,88 (the average the motor efficiency level defined in the EC No 640/2009
regulation for IE3 efficiency level);
η is the global efficiency of the pump calculated according to Annex G.
4.1.5 Effective power input
4.1.5.1 General
The effective power input shall include the correction due to power input of indoor and/or outdoor fans
and/or pumps, integrated or no to the unit as follows.
4.1.5.2 Power input correction of fans for units without duct connection
In the case of units which are not designed for duct connection, i.e. which do not permit any external
pressure differences, and which are equipped with an integral fan, the power absorbed by the fan shall
be included in the effective power absorbed by the unit.
4.1.5.3 Power input correction of fans for units with duct connection
4.1.5.3.1 Power input correction for integrated fans
If a fan is an integral part of the unit, only a fraction of the power input of the fan motor shall be
included in the effective power absorbed by the unit. The fraction that is to be excluded from the total
power absorbed by the unit shall be calculated using Formula (8):
qp× ∆
e()corr
(8)
η
where
q is the air volume flow rate, expressed in m /s and set according to 4.4.1.3 or 4.4.1.4;
Δp is the available external static pressure difference, expressed in Pa, as defined in
e (corr)
EN 14511–1:2018, 3.58 and set according to 4.4.1.3 or 4.4.1.4;
η is equal to η as declared by the fan manufacturer according to the ecodesign
target
regulation n°327/2011 for fans driven by motors between 125 W and 500 kW; otherwise
is equal to 0,3 by convention.
4.1.5.3.2 Power input correction for non-integrated fans
If no fan is provided with the unit, the proportional power input which is to be included in the effective
power absorbed by the unit shall be calculated using the Formula (9):
qp×−∆
( )
i
(9)
η
where
q is the air volume flow rate, expressed in m /s and set according to 4.4.1.3 or 4.4.1.4;
Δp is the measured internal static pressure difference, expressed in Pa, as defined in
i
EN 14511–1:2018, 3.59;
η is 0,3 by convention.
4.1.5.4 Power input correction of liquid pumps
4.1.5.4.1 Power input correction for integrated liquid pumps
When the liquid pump is integrated into the unit, it shall be connected for operation. When the liquid
pump is delivered by the manufacturer apart from the unit, it shall be connected for operation
according to the manufacturer’s instructions and be then considered as an integral part of the unit.
For an integrated liquid pump, only a fraction of the input to the pump motor shall be included in the
effective power absorbed by the unit. The fraction which is to be excluded from the total power
absorbed by the unit shall be calculated using Formula (10):
qp× ∆
e
(10)
η
where
q is the measured liquid flow rate, expressed in m /s;
Δp is the measured available external static pressure difference, expressed in Pa, as defined
e
in EN 14511–1:2018, 3.58;
η is the efficiency of the pump calculated according to Annex G.
In case the liquid pump is not able to provide any external static pressure difference, then this
correction does not apply but the correction shall be made according to 4.1.5.4.2.
4.1.5.4.2 Power input correction for non-integrated liquid pumps
If no liquid pump is provided with the unit, the proportional power input which is to be included in the
effective power absorbed by the unit shall be calculated using Formula (11):
qp×−∆
( )
i
(11)
η
where
q is the measured liquid flow rate, expressed in m /s;
Δp is the measured internal static pressure difference, expressed in Pa, as defined in
i
EN 14511–1:2018, 3.59;
η is the efficiency of the pump calculated according to Annex G.
4.1.6 Units on a distribution network of pressured water
In the case of appliances designed especially to operate on a distributing network of pressurized water
without water-pump, no correction shall be applied to the power input.
4.1.7 Units for use with remote condenser
The power from the auxiliary liquid pump of the remote condenser shall not be taken into account in
the effective power input.
4.2 Test apparatus
4.2.1 Arrangement of the test apparatus
4.2.1.1 General requirements
The test apparatus shall be designed in such a way that all requirements on adjustment of set values,
stability criteria and uncertainties of measurement according to this European Standard can be fulfilled.
4.2.1.2 Test room for the air side
The size of the test room shall be selected such that any resistance to air flow at the air inlet and air
outlet orifices of the test object is avoided. The air flow through the room shall not be capable of
initiating any short circuit between these two orifices, and therefore the velocity of the air flows
through the room at these two locations shall not exceed 1,5 m/s when the test object is switched off.
The air velocity in the room shall also not be greater than the mean velocity through the unit inlet.
Unless otherwise stated by the manufacturer, the air inlet or air outlet orifices shall be not less than 1 m
distant from the surfaces of the test room.
Any direct heat radiation by heating units in the test room onto the unit or onto the temperature
measuring points shall be avoided.
4.2.1.3 Appliances with duct connection
The connections of a ducted air unit to the test facility shall be sufficiently air tight to ensure that the
measured results are not significantly influenced by exchange of air with the surroundings.
4.2.1.4 Appliances with integrated pumps
For appliances with integrated and adjustable water or brine pumps, the pump speed shall be set at the
same time as the temperature difference.
In case of a liquid pump with several fixed speeds or with variable speed, the manufacturer shall
provide information on the settings of pump (speed or external static pressure to achieve).
4.2.1.5 Liquid chilling package for use with remote condenser
Units for use with remote condenser are tested by using a water (brine)-cooled condenser, the
characteristics of which shall enable the intended operating conditions to be achieved.
4.2.2 Installation and connection of the test object
4.2.2.1 General
The test object shall be installed and connected for the test as recommended by the manufacturer in the
installation and operation manual. The accessories provided by option are not included in the test. If a
back-up heater is provided in option or not, it shall be switched off or disconnected to be excluded from
the testing.
For single ducts, regardless of the manufacturer’s instructions, the discharge duct shall be as short and
straight as possible compatibly with minimum distance between the unit and the wall for correct air
inlet but not less than 50 cm. No accessory shall be connected to the discharge end of the duct.
For double duct units, the same requirements apply to both suction and discharge ducts, unless the
appliance is designed to be installed directly on the wall.
For multisplit systems, the test shall be performed with the system operating at a capacity ratio of 1, or
as close as possible.
When performing measures in heating mode, set the highest room temperature on the unit/system
control device; when performing measures in cooling mode, set the lowest room temperature on the
unit/system control device. If in the instructions, the manufacturer indicates a value for the
temperature set on the control device for a given rating condition, then this value shall be used.
For unit with open-type compressor the electric motor shall be supplied or specified by the
manufacturer. The compressor shall be operated at the rotational speed specified by the manufacturer.
For inverter type control units, the setting of the frequency shall be done for each rating condition. The
manufacturer shall provide in the documentation information about how to obtain the necessary data
to set the required frequencies.
If skilled personnel with knowledge of control software is required for the start of the system, the
manufacturer or the nominated agent should be in attendance when the system is being installed and
prepared for tests.
4.2.2.2 Installation of unit consisting of several parts
In the case of a unit consisting of several parts, the following installation conditions shall be complied
for the test.
a) The refrigerant lines shall be installed in accordance with the manufacturer's instructions. The
length of the lines shall be 5 m except if the con
...
La norme SIST EN 14511-3:2018 constitue une référence essentielle dans le domaine des climatiseurs, des unités de refroidissement par liquide et des pompes à chaleur pour le chauffage et le refroidissement des espaces, ainsi que pour les refroidisseurs de processus, alimentés par des compresseurs électriques. Son objectif principal est de définir des méthodes d'essai précises pour évaluer les performances et les capacités de ces équipements. Parmi les points forts de cette norme, on observe sa portée exhaustive qui couvre non seulement le dimensionnement et la performance des systèmes de chauffage et de refroidissement, mais aussi ceux des refroidisseurs de processus. Elle inclut un cadre d'évaluation des performances des systèmes multi-split et des systèmes modulaires multi-split, en se concentrant sur les capacités de récupération de chaleur, ce qui est particulièrement pertinent dans le contexte actuel de durabilité et d’efficacité énergétique. De plus, la norme établit des procédés de vérification des performances pour les appareils installés à l'intérieur, ce qui permet une évaluation complète du fonctionnement des systèmes de climatisation dans des conditions pratiques. Cela est crucial pour les professionnels du secteur, leur offrant des directives claires pour s'assurer que les équipements correspondent aux exigences de performance spécifiées. La SAN 14511-3:2018 se distingue également par sa pertinence dans le cadre réglementaire européen, soutenant des pratiques cohérentes et normalisées à travers les pays membres. En facilitant l'harmonisation des méthodes de test, cette norme contribue à la transparence et à la comparabilité des performances des équipements, favorisant ainsi une concurrence saine entre les fabricants. En somme, la norme SIST EN 14511-3:2018 s'affirme comme un outil fondamental pour les professionnels cherchant à garantir la qualité et la fiabilité des systèmes de chauffage et de refroidissement, tout en répondant aux exigences écologiques contemporaines. Les méthodes d'essai définies dans ce document sont cruciales pour assurer que les performances constatées dans des conditions réelles reflètent fidèlement celles reportées par les fabricants.
SIST EN 14511-3:2018 표준은 공기 조화기, 액체 냉각 패키지 및 열 펌프의 시험 방법에 대한 명확한 지침을 제공합니다. 이 표준은 EN 14511-1의 적용 범위를 따르며, 공기, 물 또는 냉매를 열매체로 사용하는 전기 구동 압축기로 운영되는 장비의 성능 평가를 다룹니다. 특히 공간 난방 및 냉방을 위한 에어컨, 냉각 시스템 및 프로세스 냉각기에 대한 시험 절차를 명시하고 있습니다. 이 표준의 강점은 전기를 이용한 압축기가 장착된 다양한 시스템에 대한 효과적인 측정을 가능하게 하여 사용자의 요구를 충족시키는 데 도움을 준다는 점입니다. 성능의 정확하고 표준화된 측정 방법을 통해 제조업체와 소비자는 제품의 효율성을 보다 신뢰성 있게 비교할 수 있습니다. 또한, 시스템의 열 회수 성능 및 개별 장치의 성능을 평가하는 절차를 포함하여, 다중 분할 시스템에서의 성능을 세밀하게 규명할 수 있는 기회를 제공합니다. SIST EN 14511-3:2018은 실내 및 실외 장비에 대한 별도의 성능 등급 निर्धारण을 통해 복잡한 시스템 구성에서도 각 구성 요소의 성능을 독립적으로 평가할 수 있는 기초를 마련합니다. 이러한 점에서 이 표준은 HVAC 산업에서의 적용 가능성을 높이며, 사용자와 제조업체 모두에게 중요한 참고 자료로 작용합니다. 이 표준의 도입은 다양한 기후 조건과 운영 요구 사항에 맞춰 성능 테스트를 수행할 수 있는 유연성을 제공합니다, 이는 HVAC 시스템의 효율성을 더욱 높이는 데 기여합니다.
SIST EN 14511-3:2018 provides a comprehensive framework for testing methods relevant to air conditioners, liquid chilling packages, and heat pumps utilized for both space heating and cooling, as well as process chillers that are equipped with electrically driven compressors. This standard extends the application scope established in EN 14511-1, ensuring a consistent approach to performance verification across these systems. A key strength of this standard lies in its detailed testing procedures which encompass a range of operational scenarios, thereby promoting reliability and accuracy in performance measurements. The standard specifically addresses the performance assessment of systems using air, water, or brine as heat transfer media, making it highly relevant for manufacturers and stakeholders in HVAC and cooling technology. The inclusion of systematic test methods for recovery efficiencies, reduced system performances, and specific performance criteria for indoor units within multi-split systems enhances its practicality for diverse installation requirements. Moreover, SIST EN 14511-3:2018 contributes to the efficiency and effectiveness of multi-split and modular multi-split systems by allowing for independent performance measurement of indoor and outdoor units. This dual focus on equipment configuration not only supports better system design but also aids compliance with energy efficiency regulations. Overall, this standard is crucial for ensuring that manufacturers and service providers adhere to consistent performance metrics, facilitating clear communication and comparison within the industry and supporting advancements in energy efficiency in heating, cooling, and refrigeration systems. Its relevance to current market demands for reliable and energy-efficient systems cannot be overstated.
Die Norm SIST EN 14511-3:2018 ist eine umfassende und strukturierte europäische Norm, die sich auf die Prüfmethoden von Luftkonditionierern, Flüssigkeitskühlsätzen und Wärmepumpen konzentriert. Ihr Anwendungsbereich umfasst nicht nur die Bemessung und Leistung dieser Systeme für die Raumbeheizung und -kühlung, sondern auch für Prozesskühler. Die Norm legt präzise Prüfverfahren fest, die sicherstellen, dass diese Systeme effektiv und effizient arbeiten. Ein herausragendes Merkmal dieser Norm ist die Berücksichtigung von verschiedenen Wärmeträgern, wie Luft, Wasser oder Sole, und die Tatsache, dass sie Systeme mit elektrisch angetriebenen Verdichtern einbezieht. Dadurch wird eine breite Anwendbarkeit in verschiedenen klimatischen Bedingungen und für unterschiedliche Einsatzgebiete gewährleistet. Ein weiterer Stärke der SIST EN 14511-3:2018 ist die detaillierte Festlegung von Prüfverfahren zur Ermittlung der Wärmerückgewinnungsleistungen sowie der systemreduzierten Leistungen. Dies ist besonders relevant für die zunehmend geforderte Energieeffizienz in modernen Gebäuden und Anwendungen. Die Norm fördert die Transparenz und Vergleichbarkeit der Leistungsdaten, was für Planer, Hersteller und Endverbraucher von großem Nutzen ist. Zusätzlich wird durch die Möglichkeit, die Leistung von Multi-Split-Systemen und modularen Multi-Split-Systemen differenziert zu bewerten, sichergestellt, dass sowohl Innen- als auch Außengeräte angemessen berücksichtigt werden. Dies bietet eine wertvolle Grundlage für die Planung und den Betrieb von Klimasystemen und unterstützt die Nutzer dabei, informierte Entscheidungen zu treffen. Insgesamt ist die SIST EN 14511-3:2018 eine wesentliche Norm, die nicht nur die technischen Anforderungen an Luftkonditionierer, Flüssigkeitskühlsätze und Wärmepumpen klar definiert, sondern auch die Relevanz der Energieeffizienz und der Umweltstandards in der Branche unterstützt.
SIST EN 14511-3:2018は、空調機器、液体冷却装置、そして電動コンプレッサーを使用する熱ポンプに関する試験方法を定めた重要な規格です。この標準は、空間の加熱と冷却、およびプロセス冷却における評価と性能を測定するための具体的な試験手順を提供します。 この規格の強みは、空気、水、または不凍液を熱媒として使用する機器に対する試験方法を包括的にカバーしている点です。これにより、ユーザーは様々なタイプの機器の性能を一貫して評価でき、結果として市場での信頼性を高めることが可能です。また、暖房と冷却の両方に関連する性能を測定するアプローチは、節エネルギーの観点からも重要性を持っています。 さらに、SIST EN 14511-3:2018は、プロセス冷却装置の性能評価にも適用されるため、産業用途でも広く利用されます。特に、室内設置されるマルチスプリットシステムの個別性能評価を行うためのメカニズムを提供し、効率的な熱回収機能を可能にします。この点は、環境への配慮とエネルギー効率の向上に貢献する要素でもあります。 このように、SIST EN 14511-3:2018は、空調及び冷却機器における試験標準としての枠組みを提供するだけでなく、それぞれの機器がどのように性能評価されるべきかを具体的に示すことにより、業界のスタンダードの確立に寄与しています。そのため、規格は技術者やメーカーにとっても非常に重要なリソースです。








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...