Compression and mechanical connectors for power cables for rated voltages up to 36 kV (Um = 42 kV) - Part 1: Test methods and requirements

Applies to compression and mechanical connectors for power cables for rated voltages up to 30 kV (Um = 36 kV), e.g. buried cables or cables installed in buildings, having - conductors complying with EN 60228 and EN 60228A with cross-sectional areas 10 mm2 and greater for copper and 16 mm2 and greater for aluminium, - a maximum continuous conductor temperature not exceeding 90 °C. This standard is not applicable to connectors for overhead conductors, which are designed for special mechanical requirements, or to separable connectors with a sliding contact or multi-core connectors (i.e. ring connectors). Although it is not possible to define precisely the service conditions for all applications, two broad classes of connectors have been identified. Class A These are connectors intended for electricity distribution or industrial networks in which they can be subjected to short-circuits of relatively high intensity and duration. As a consequence, Class A connectors are suitable for the majority of applications. Class B These are connectors for networks in which overloads or short-circuits are rapidly cleared by the installed protective devices, e.g. fast-acting fuses. Depending on the application, the connectors are subjected to the following tests: Class A: heat cycle and short-circuit tests. Class B: heat cycle tests only. The object of this standard is to define the type test methods and requirements, which apply to compression and mechanical connectors for power cables with copper or aluminium conductors. Formerly, approval for such products has been achieved on the basis of national standards and specifications and/or the demonstration of satisfactory service performance. The publication of this IEC standard does not invalidate existing approvals. However, products approved according to these earlier standards or specifications cannot claim approval to this IEC standard unless specifically tested to it. After they have been made, these tests need not be repeated un

Pressverbinder und Schraubverbinder für Starkstromkabel für Nennspannungen bis einschließlich 36 kV (Um = 42 kV) - Teil 1: Prüfverfahren und Anforderungen

Raccords sertis et à serrage mécanique pour câbles d'énergie de tensions assignées inférieures ou égales à 36 kV (Um = 42 kV) - Partie 1: Méthodes et prescriptions d'essais

La présente partie de la EN 61238 est applicable aux raccords sertis et à serrage mécanique pour câbles d'énergie de tensions assignées inférieures ou égales à 30 kV (Um = 36 kV), par exemple pour les câbles enterrés ou ceux installés à l'intérieur des bâtiments, ayant - des âmes conformes aux prescriptions de la EN 60228 et de la EN 60228A, de section nominale au moins égale à 10 mm2 pour le cuivre et au moins égale à 16 mm2 pour l'aluminium, - une température maximale de fonctionnement en service permanent au plus égale à 90 °C. La présente norme n'est pas applicable aux raccords pour conducteurs aériens, qui sont conçus pour des prescriptions mécaniques spécifiques, ni aux raccords des connecteurs séparables équipés d'un contact glissant, ni aux raccords multipolaires (c'est-à-dire les connecteurs à arceau). Bien qu'il ne soit pas possible de définir avec précision les conditions d'utilisation pour toutes les applications, deux grandes classes de raccords ont été définies. Classe A Il s'agit des raccords destinés à la distribution d'électricité ou aux réseaux industriels, dans lesquels ils peuvent être soumis à des courts-circuits d'intensité et de durée relativement élevées. En conséquence, les raccords de Classe A sont adaptés à la majorité des applications. Classe B Il s'agit des raccords destinés aux réseaux dans lesquels les surcharges ou les courts-circuits sont rapidement éliminés par des dispositifs de protection installés, par exemple des fusibles à coupure rapide. Selon leur application, les raccords sont soumis aux essais suivants: Classe A: cycles thermiques et essais de court-circuits; Classe B: cycles thermiques uniquement. L'objet de la présente norme est de définir les méthodes d'essais de type et les prescriptions à appliquer aux raccords sertis et à serrage mécanique utilisables sur les câbles d'énergie à conducteurs en cuivre ou en aluminium. Antérieurement, les acceptations des produits ont été prononcées sur la base de normes et spécification

Stisljivi in vijačni konektorji za električne kable za naznačene napetosti do 36 kV (Um = 42 kV) - 1. del: Preskusne metode in zahteve

General Information

Status
Withdrawn
Publication Date
31-Dec-2003
Withdrawal Date
15-Aug-2022
Technical Committee
IEKA - Electric cables
Current Stage
9900 - Withdrawal (Adopted Project)
Start Date
29-Jul-2022
Due Date
21-Aug-2022
Completion Date
16-Aug-2022

Relations

Effective Date
05-Mar-2019
Effective Date
05-Mar-2019
Effective Date
05-Mar-2019
Standard

SIST EN 61238-1:2004

English language
61 pages
Preview
Preview
e-Library read for
1 day
Standard – translation

SIST EN 61238-1:2004

Slovenian language
55 pages
Preview
Preview
e-Library read for
1 day

Frequently Asked Questions

SIST EN 61238-1:2004 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Compression and mechanical connectors for power cables for rated voltages up to 36 kV (Um = 42 kV) - Part 1: Test methods and requirements". This standard covers: Applies to compression and mechanical connectors for power cables for rated voltages up to 30 kV (Um = 36 kV), e.g. buried cables or cables installed in buildings, having - conductors complying with EN 60228 and EN 60228A with cross-sectional areas 10 mm2 and greater for copper and 16 mm2 and greater for aluminium, - a maximum continuous conductor temperature not exceeding 90 °C. This standard is not applicable to connectors for overhead conductors, which are designed for special mechanical requirements, or to separable connectors with a sliding contact or multi-core connectors (i.e. ring connectors). Although it is not possible to define precisely the service conditions for all applications, two broad classes of connectors have been identified. Class A These are connectors intended for electricity distribution or industrial networks in which they can be subjected to short-circuits of relatively high intensity and duration. As a consequence, Class A connectors are suitable for the majority of applications. Class B These are connectors for networks in which overloads or short-circuits are rapidly cleared by the installed protective devices, e.g. fast-acting fuses. Depending on the application, the connectors are subjected to the following tests: Class A: heat cycle and short-circuit tests. Class B: heat cycle tests only. The object of this standard is to define the type test methods and requirements, which apply to compression and mechanical connectors for power cables with copper or aluminium conductors. Formerly, approval for such products has been achieved on the basis of national standards and specifications and/or the demonstration of satisfactory service performance. The publication of this IEC standard does not invalidate existing approvals. However, products approved according to these earlier standards or specifications cannot claim approval to this IEC standard unless specifically tested to it. After they have been made, these tests need not be repeated un

Applies to compression and mechanical connectors for power cables for rated voltages up to 30 kV (Um = 36 kV), e.g. buried cables or cables installed in buildings, having - conductors complying with EN 60228 and EN 60228A with cross-sectional areas 10 mm2 and greater for copper and 16 mm2 and greater for aluminium, - a maximum continuous conductor temperature not exceeding 90 °C. This standard is not applicable to connectors for overhead conductors, which are designed for special mechanical requirements, or to separable connectors with a sliding contact or multi-core connectors (i.e. ring connectors). Although it is not possible to define precisely the service conditions for all applications, two broad classes of connectors have been identified. Class A These are connectors intended for electricity distribution or industrial networks in which they can be subjected to short-circuits of relatively high intensity and duration. As a consequence, Class A connectors are suitable for the majority of applications. Class B These are connectors for networks in which overloads or short-circuits are rapidly cleared by the installed protective devices, e.g. fast-acting fuses. Depending on the application, the connectors are subjected to the following tests: Class A: heat cycle and short-circuit tests. Class B: heat cycle tests only. The object of this standard is to define the type test methods and requirements, which apply to compression and mechanical connectors for power cables with copper or aluminium conductors. Formerly, approval for such products has been achieved on the basis of national standards and specifications and/or the demonstration of satisfactory service performance. The publication of this IEC standard does not invalidate existing approvals. However, products approved according to these earlier standards or specifications cannot claim approval to this IEC standard unless specifically tested to it. After they have been made, these tests need not be repeated un

SIST EN 61238-1:2004 is classified under the following ICS (International Classification for Standards) categories: 29.060.20 - Cables; 29.120.20 - Connecting devices. The ICS classification helps identify the subject area and facilitates finding related standards.

SIST EN 61238-1:2004 has the following relationships with other standards: It is inter standard links to SIST EN IEC 61238-1-3:2019, SIST EN IEC 61238-1-1:2019, SIST EN IEC 61238-1-2:2019. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase SIST EN 61238-1:2004 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-januar-2004
Stisljivi in vijačni konektorji za električne kable za naznačene napetosti do 36 kV
(Um = 42 kV) - 1. del: Preskusne metode in zahteve
Compression and mechanical connectors for power cables for rated voltages up to 36 kV
(Um = 42 kV) - Part 1: Test methods and requirements
Pressverbinder und Schraubverbinder für Starkstromkabel für Nennspannungen bis
einschließlich 36 kV (Um = 42 kV) -- Teil 1: Prüfverfahren und Anforderungen
Raccords sertis et à serrage mécanique pour câbles d'énergie de tensions assignées
inférieures ou égales à 36 kV (Um = 42 kV) -- Partie 1: Méthodes et prescriptions
d'essais
Ta slovenski standard je istoveten z: EN 61238-1:2003
ICS:
29.060.20 Kabli Cables
29.120.20 Spojni elementi Connecting devices
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EUROPEAN STANDARD EN 61238-1
NORME EUROPÉENNE
EUROPÄISCHE NORM August 2003
ICS 29.060.20
English version
Compression and mechanical connectors for power cables
for rated voltages up to 36 kV (U = 42 kV)
m
Part 1: Test methods and requirements
(IEC 61238-1:2003, modified)
Raccords sertis et à serrage mécanique Pressverbinder und Schraubverbinder
pour câbles d'énergie de tensions für Starkstromkabel für Nennspannungen
assignées inférieures ou égales bis einschließlich 36 kV (U = 42 kV)
m
à 36 kV (U = 42 kV) Teil 1: Prüfverfahren und Anforderungen
m
Partie 1: Méthodes et prescriptions (IEC 61238-1:2003, modifiziert)
d'essais
(CEI 61238-1:2003, modifiée)
This European Standard was approved by CENELEC on 2003-06-01. CENELEC members are bound to
comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European
Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CENELEC member into its own language and
notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Czech Republic,
Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Lithuania, Luxembourg, Malta,
Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland and United Kingdom.

CENELEC
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2003 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Ref. No. EN 61238-1:2003 E
Foreword
The text of document 20/599/FDIS, future edition 2 of IEC 61238-1, prepared by IEC TC 20, Electric
cables, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as
EN 61238-1 on 2003-06-01.
A draft amendment, prepared by the Technical Committee CENELEC TC 20, Electric cables, was
submitted to the formal vote and was approved by CENELEC for inclusion into EN 61238-1 on
2003-06-01.
The following dates were fixed:
– latest date by which the EN has to be implemented
at national level by publication of an identical
national standard or by endorsement (dop) 2004-03-01
– latest date by which the national standards conflicting
with the EN have to be withdrawn (dow) 2006-06-01
Annexes designated "normative" are part of the body of the standard.
Annexes designated "informative" are given for information only.
In this standard, annexes A, B, E and ZA are normative and annexes C, D, F, G and H are informative.
Annex ZA has been added by CENELEC.
__________
Endorsement notice
The text of the International Standard IEC 61238-1:2003 was approved by CENELEC as a European
Standard with agreed common modifications as given below.

COMMON MODIFICATIONS
Title
Amend the title to show the following upper voltage limit:

“………….for rated voltages up to 36 kV (U = 42 kV)”
m
Introduction
Amend the end of the first sentence of paragraph 1 to read:

“………….for rated voltages up to 36 kV (U = 42 kV)”
m
Scope and object
Amend the voltage reference in paragraph 1 to read:

“………….for rated voltages up to 36 kV (U = 42 kV),………….”
m
In the Bibliography, add the following note for the standard indicated:
IEC 60694 NOTE  Harmonized as EN 60694:1996 (not modified).
__________
– 3 – EN 61238-1:2003
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
This European Standard incorporates by dated or undated reference, provisions from other publications.
These normative references are cited at the appropriate places in the text and the publications are listed
hereafter. For dated references, subsequent amendments to or revisions of any of these publications
apply to this European Standard only when incorporated in it by amendment or revision. For undated
references the latest edition of the publication referred to applies (including amendments).
NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD
applies.
Publication Year Title EN/HD Year
IEC 60050-461 1984 International Electrotechnical - -
Vocabulary (IEV)
Chapter 461: Electric cables
A1 1993 - -
IEC 60228 (mod) 1978 Conductors of insulated cables
+ IEC 60228A 1982 First supplement: Guide to the HD 383 S2 1986
(mod) dimensional limits of circular conductors

IEC 60493-1 1974 Guide for the statistical analysis of - -
ageing test data
Part 1: Methods based on mean values
of normally distributed test results

NORME CEI
INTERNATIONALE IEC
61238-1
INTERNATIONAL
Deuxième édition
STANDARD
Second edition
2003-05
Raccords sertis et à serrage mécanique
pour câbles d'énergie de tensions assignées
inférieures ou égales à 30 kV (U = 36 kV) –
m
Partie 1:
Méthodes et prescriptions d'essais
Compression and mechanical connectors
for power cables for rated voltages
up to 30 kV (U = 36 kV) –
m
Part 1:
Test methods and requirements
 IEC 2003 Droits de reproduction réservés  Copyright - all rights reserved
Aucune partie de cette publication ne peut être reproduite ni No part of this publication may be reproduced or utilized in any
utilisée sous quelque forme que ce soit et par aucun procédé, form or by any means, electronic or mechanical, including
électronique ou mécanique, y compris la photocopie et les photocopying and microfilm, without permission in writing from
microfilms, sans l'accord écrit de l'éditeur. the publisher.
International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch  Web: www.iec.ch
CODE PRIX
XA
Commission Electrotechnique Internationale PRICE CODE
International Electrotechnical Commission
Международная Электротехническая Комиссия
Pour prix, voir catalogue en vigueur
For price, see current catalogue

61238-1  IEC:2003 – 3 –
CONTENTS
FOREWORD . 7
INTRODUCTION .11
1 Scope and object .13
2 Normative references.15
3 Definitions.15
4 Symbols.19
5 General.21
5.1 Conductor.21
5.2 Connectors and tooling .21
5.3 Range of approval.21
6 Electrical tests .23
6.1 Installation .23
6.2 Measurements .25
6.3 Heat cycle test .27
6.4 Assessment of results.33
6.5 Requirements .35
7 Mechanical tests .35
7.1 Method .35
7.2 Requirements .35
8 Test report .37

Annex A (normative) Equalizers and their preparation .51
Annex B (normative) Measurements .55
Annex C (informative) Recommendations to improve accuracy of measurement.57
Annex D (informative) Determination of the value of the short-circuit-current.59
Annex E (normative) Calculation method .61
Annex F (informative) Explanation of the calculation method.71
Annex G (informative) Explanation of the temperature profile .105
Annex H (informative) Explanation of the statistical method of assessing results of tests
on electrical connectors.109
Figure 1 – Typical test circuit for through connectors and terminal lugs .39
Figure 2 – Typical test circuit for branch connectors.41
Figure 3 – Typical cases of resistance measurements .47
Figure 4 – Second heat cycle.49
Figure A.1 – Preparation of equalizers .53
Figure E.1 – Graphic example of assessment of an individual connector for Class A .65
Figure F.1 – Plot of connector resistance factors and parameter δ before heat cycle 1 .81
k
ij
Figure F.2 – Plot of resistance factors k , estimated mean resistance factors  and
i.
k
estimated overall mean .85

61238-1  IEC:2003 – 5 –
k
Figure F.3 – Plot of estimated mean resistance factors k , estimated overall mean
i.
and parameter β .87
Figure F.4 – Typical ageing behaviour of an electrical connector (k limiting resistance
lim
factor; t lifetime).89
L
Figure F.5 – Plot of the resistance factors, fitted values, estimated intercept and
estimated slope .91
i
Figure F.6 – Plot of the fitted values, residuals and parameter M .93
Figure F.7 – Plot of the pointwise 90 % confidence interval for the mean response and
i
parameter S .97
i i i
Figure F.8 – Plot of parameters M , S and D with regression line .99
Table 1 – Minimum elevated current heating time .31
Table 2 – Electrical test requirements .35
Table 3 – Tensile force for mechanical tests .35
Table A.1 – Equalizer dimensions .51
Table F.1 – Indices.71
Table F.2 – Measured variables.71
Table F.3 – Constants .71
Table F.4 – Calculated variables.73
Table F.5 – Repeatedly measured parameters .75
ij
Table F.6 – Number of calculated connector resistance factors k for Class A
connectors .77
ij
Table F.7 – Connector resistance factors k for Class A connectors related to the
dummy variable x, the initial scatter δ and the mean scatter β .83
Table F.8 – Number of resistance factor ratios for connectors of Class A .101
Table F.9 – Recorded maximum temperatures during heat cycling .103
Table H.1 – Summary of requirements.113

61238-1  IEC:2003 – 7 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
COMPRESSION AND MECHANICAL CONNECTORS
FOR POWER CABLES FOR RATED VOLTAGES
UP TO 30 kV (U = 36 kV) –
m
Part 1: Test methods and requirements
FOREWORD
1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, the IEC publishes International Standards. Their preparation is
entrusted to technical committees; any IEC National Committee interested in the subject dealt with may
participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization
for Standardization (ISO) in accordance with conditions determined by agreement between the two
organizations.
2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested National Committees.
3) The documents produced have the form of recommendations for international use and are published in the form
of standards, technical specifications, technical reports or guides and they are accepted by the National
Committees in that sense.
4) In order to promote international unification, IEC National Committees undertake to apply IEC International
Standards transparently to the maximum extent possible in their national and regional standards. Any
divergence between the IEC Standard and the corresponding national or regional standard shall be clearly
indicated in the latter.
5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with one of its standards.
6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 61238-1 has been prepared by IEC technical committee 20: Electric
cables.
This second edition cancels and replaces the first edition published in 1993 and constitutes
a technical revision.
Significant technical changes with respect to the previous edition are as follows:
a) The scope is now restricted to connectors to be used on power cables for rated voltages up
to 30 kV (U = 36 kV);
m
b) The concept of direct measurement of resistance has been introduced as an alternative to
the indirect measurement, with associated tolerances;
c) Temperature limits have been given for insulation piercing connectors, depending on the
type of cable insulation;
d) For short-circuit tests, tolerances have been given on the duration and recommendations
have been given for large cross-sections;
e) Some approval criteria have been revised and harmonized between mechanical connectors
and compression connectors;
f) The information to be included in the test report has been added;
g) Informative annexes have been added, with information on measuring accuracy, the calcul-
ation method, the temperature profile and the statistical method.

61238-1  IEC:2003 – 9 –
The text of this standard is based on the following documents:
FDIS Report on voting
20/599/FDIS 20/632/RVD
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
The committee has decided that the contents of this publication will remain unchanged until 2012.
At this date, the publication will be
• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.
61238-1  IEC:2003 – 11 –
INTRODUCTION
This part of IEC 61238 deals with type tests for compression and mechanical connectors for
use on copper or aluminium conductors of power cables for rated voltages up to 30 kV
(U = 36 kV). When a design of connector meets the requirements of this standard, then it is
m
expected that in service:
a) the resistance of the connection will remain stable;
b) the temperature of the connector will be of the same order or less than that of the
conductor;
c) the mechanical strength will be fit for the purpose;
d) if the intended use demands it, application of short-circuit currents will not affect a) and b).
It should be stressed that, although the electrical and mechanical tests specified in this
standard are to prove the suitability of connectors for most operating conditions, they do not
necessarily apply to situations where a connector may be raised to a high temperature by virtue
of connection to highly rated plant, or where the connector is subjected to excessive
mechanical vibration or shock or to corrosive conditions. In these instances, the tests in
this standard may need to be supplemented by special tests agreed between supplier and
purchaser.
61238-1  IEC:2003 – 13 –
COMPRESSION AND MECHANICAL CONNECTORS
FOR POWER CABLES FOR RATED VOLTAGES
UP TO 30 kV (U = 36 kV) –
m
Part 1: Test methods and requirements
1 Scope and object
This part of IEC 61238 applies to compression and mechanical connectors for power cables for
rated voltages up to 30 kV (U = 36 kV), e.g. buried cables or cables installed in buildings,
m
having
a) conductors complying with IEC 60228 and IEC 60228A with cross-sectional areas 10 mm
and greater for copper and 16 mm and greater for aluminium,
b) a maximum continuous conductor temperature not exceeding 90 °C.
This standard is not applicable to connectors for overhead conductors, which are designed for
special mechanical requirements, or to separable connectors with a sliding contact or multi-
core connectors (i.e. ring connectors).
Although it is not possible to define precisely the service conditions for all applications, two
broad classes of connectors have been identified.
Class A
These are connectors intended for electricity distribution or industrial networks in which they
can be subjected to short-circuits of relatively high intensity and duration. As a consequence,
Class A connectors are suitable for the majority of applications.
Class B
These are connectors for networks in which overloads or short-circuits are rapidly cleared by
the installed protective devices, e.g. fast-acting fuses.
Depending on the application, the connectors are subjected to the following tests:
Class A: heat cycle and short-circuit tests;
Class B: heat cycle tests only.
The object of this standard is to define the type test methods and requirements, which apply
to compression and mechanical connectors for power cables with copper or aluminium
conductors.
Formerly, approval for such products has been achieved on the basis of national standards and
specifications and/or the demonstration of satisfactory service performance. The publication of
this IEC standard does not invalidate existing approvals. However, products approved
according to these earlier standards or specifications cannot claim approval to this IEC
standard unless specifically tested to it.

61238-1  IEC:2003 – 15 –
After they have been made, these tests need not be repeated unless changes are made in the
connector material, design or manufacturing process which might affect the performance
characteristics.
2 Normative references
The following referenced documents are indispensable for the application of this document. For
dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments) applies.
IEC 60050(461):1984, International Electrotechnical Vocabulary (IEV) – Chapter 461: Electric
cables
Amendment 1 (1993)
IEC 60228:1978, Conductors of insulated cables
IEC 60228A:1982, First supplement – Conductors of insulated cables – Guide to the dimen-
sional limits of circular conductors
IEC 60493-1:1974, Guide for the statistical analysis of ageing test data – Part 1: Methods
based on mean values of normally distributed test results
3 Definitions
For the purposes of part of IEC 61238, the following definitions apply. Where possible, the
definitions used are in accordance with IEC 60050(461).
3.1
connector (of cables)
metallic device for connecting a conductor to an equipment terminal or for connecting two or
more conductors to each other
[IEV 461-17-03, modified]
3.2
through connector
metallic device for connecting two consecutive lengths of conductor
[IEV 461-17-04]
3.3
branch connector
metallic device for connecting a branch conductor to a main conductor at an intermediate point
on the latter
[IEV 461-17-05]
3.4
(terminal) lug
metallic device to connect a cable conductor to other electrical equipment
[IEV 461-17-01]
61238-1  IEC:2003 – 17 –
3.5
palm (of terminal lug)
part of a terminal lug used to make the connection to electrical equipment
[IEV 461-17-07]
3.6
barrel (of terminal lug, of connector, etc.)
part of a device into which the conductor to be connected is introduced
[IEV 461-17-06]
3.7
reference conductor
length of unjointed bare conductor or conductor with the insulation removed, which is included
in the test loop and which enables the reference temperature and reference resistance to be
determined
3.8
equalizer
arrangement used in the test loop to ensure a point of equipotential in a stranded conductor
3.9
compression jointing
method of securing a connector to a conductor by using a special tool to produce permanent
deformation of the connector and the conductor
3.10
mechanical jointing
method of securing a connector to a conductor, for example by means of a bolt or screw acting
on the latter or by alternative methods
3.11
median connector
connector which during the first heat cycle records the third highest temperature of the six
connectors in the test loop
3.12
insulation piercing connector (IPC)
connector in which electrical contact with the conductor is made by metallic protrusions which
pierce the insulation of the cable core
[IEV 461-11-08]
NOTE The abbreviation IPC will be used throughout the standard.

61238-1  IEC:2003 – 19 –
4 Symbols
A nominal cross-sectional area of the conductor
D change in the resistance factor of the connector
I direct current flowing through a connection during resistance measurement
I equivalent r.m.s. short-circuit current
rms
I alternating current necessary to maintain the reference conductor at its equilibrium
N
temperature
I direct current flowing through the reference conductor/conductors during resistance
r
measurement
k connector resistance factor: ratio of the resistance of a connector to that of the
resistance of the equivalent length of the reference conductor
l , l , l lengths of the connector assembly associated with the measurement points after
a b j
jointing
l length of the reference conductor between measurement points
r
t heating time
t time necessary for the connectors and the reference conductor to cool to a value
equal to or less than 35 °C
U potential difference between measurement points when current I is flowing
U potential difference between measuring points on a reference conductor when current
r
I is flowing
r
α temperature coefficient of resistance at 20 °C
β mean scatter of the connector resistance factors
δ initial scatter of the connector resistance factors
λ resistance factor ratio: change in the resistance factor of the connector, relative to its
initial resistance factor
θ temperature of a connector
θ maximum temperature recorded on a connector over the total period of test
max
θ temperature of the reference conductor determined in the first heat cycle
R
θ temperature of the reference conductor at the moment of measuring θ
ref max
NOTE Suffixes may be used to indicate values for the individual connector, see Annex F.

61238-1  IEC:2003 – 21 –
5 General
5.1 Conductor
The following information shall be recorded in the test report:
– conductor material;
– nominal cross-sectional area, dimensions and shape. It is recommended that the actual
cross-sectional area should also be given;
– type of conductor, i.e. solid or stranded. In the case of stranded conductors, details of
conductor constructions shall be given when known, or can be determined by inspection,
e.g:
– compacted;
– non-compacted;
– flexible (Class 5 and 6, according to IEC 60228);
– number and arrangement of strands;
– type of plating, if applicable;
– type of impregnation, water blocking, etc., if applicable;
– approximate indication of hardness, e.g. annealed, half-hard, hard;
– in the case of insulation-piercing connectors, material and thickness of insulation.
5.2 Connectors and tooling
The following information shall be recorded in the test report:
– the assembly technique that is to be used;
– tooling, dies and necessary setting;
– bolts, nuts, washers, torque, etc.;
– preparation of contact surfaces, if applicable;
– type, reference number and any other identification of the connector;
– in the case of insulation piercing connectors, type of insulation and installation temperature.
5.3 Range of approval
In general, tests made on one type of connector/conductor combination apply to that
arrangement only. However, to limit the number of tests the following is permitted:
– a connector which can be used on stranded round conductors or on stranded sector-
shaped conductors which have been rounded, is approved for both types if satisfactory
results are obtained on a compacted round conductor;
– a connector which covers a range of cross-sectional areas shall be approved, if satisfactory
results are obtained on the smallest and the largest cross-sectional area (see Note 2
below);
– if a connector is a through connector for two conductors of different cross-sectional areas,
shapes, or materials, and if the technique and the connector barrels used have already
been tested separately for each cross-sectional area, no additional test is necessary. If not,
and if it is required for bimetallic through connectors, additional tests shall be made using
the conductor having the highest temperature of the two conductors, as reference
conductor;
61238-1  IEC:2003 – 23 –
– if a manufacturer can clearly demonstrate that common and relevant connector design
criteria were used for a family of connectors, conformity to this standard is achieved by
successfully testing the largest, the smallest and two intermediate connector sizes;
Exception no.1: for a family of connectors consisting of five sizes, only the largest
connector, the smallest connector, and one connector of a representative intermediate size
need to be tested.
Exception no.2: for a family of connectors consisting of four sizes or less, only the largest
connector and the smallest connector need to be tested.
– in the case of range-taking connectors, the maximum and minimum conductor cross-
sectional area for the selected connectors shall be tested;
– satisfactory test results on insulation piercing connectors tested on PVC insulation at lower
temperatures for heat cycles and for short-circuits shall give approval of such connectors
for PVC insulation only;
– satisfactory test results of a connector on dry conductor shall give approval for its use on a
conductor of the same type from an impregnated paper insulated cable;
– for connectors where one or both sides are designed for a range of cross-sectional areas,
and a common clamping or crimping arrangement serves for the connection of the different
cross-sectional areas, then mechanical tests on conductors with the largest and smallest
cross-sectional areas shall be carried out according to Clause 7.
NOTE 1 Examples of relevant design criteria include
– compression reduction,
– number of contact screws or crimps,
– force per unit area of contact screw or crimp,
– ratio of amount of material of connector to that of conductor.
NOTE 2  Different types of water blocking may affect the performance.
6 Electrical tests
6.1 Installation
All conductors of the same cross-sectional area in the test loop shall be taken from the same
continuous core.
For each series of tests, six connectors shall be fitted in accordance with the manufacturer’s
instructions, on a bare conductor or on a conductor that has had the insulation removed before
assembly, to form a test loop together with the corresponding reference conductor.
For stranded conductors, potential between the strands at measuring points can cause errors
in measuring electrical resistance. Equalizers (see Annex A) shall be used to overcome this
problem and to ensure uniform current distribution in the reference conductor and between
connectors at the equalizer points.
In the case of insulation piercing connectors, the insulation shall be retained on the conductor
under the connector and for a distance of at least 100 mm outside the connector. Reference
conductor(s) with the insulation retained shall also be included in the test loop. If the connector
is to be tested according to Class B, there is no need for bare reference conductors.
The test loop shall be installed in a location where the air is calm. The ambient temperature of
the test location shall be between 15 °C and 30 °C.
For assembly of the IPC, the temperature shall be (23 ± 3) °C.

61238-1  IEC:2003 – 25 –
In the case of solid conductors, the potential measuring points shall be as close as possible to
the connector in order to reduce l and l close to zero.
a b
The test loop may be of any shape provided that it is arranged in such a way that there is no
adverse affect from the floor, walls and ceiling.
To permit the short-circuit tests (Class A connectors only) to be made easily, the loop can be
made dismantleable. In this case, the technology of the sectioning connections shall be such
that they do not influence the measurements, particularly from the point of view of temperature.
Retightening of bolts or screws of the connectors under test is not permitted.
6.1.1 Through connectors and terminal lugs
The test loop is shown in Figure 1, which indicates the dimensions that shall be used.
Where terminal lugs are to be tested, the palms shall be bolted to linking bars in accordance
with the manufacturer's instructions. These linking bars shall, at the point of connection, be of
the same dimensions and thickness as the palm, and also of the same material.
It may be necessary to adjust the thermal characteristics of the linking bar outside the point of
connection, to achieve the temperatures specified in 6.3. As an alternative to linking bars, tests
can be made on terminal lugs with palm connected direct to palm. In case of disagreement, the
method with linking bars shall be used.
If however it is requested that the terminal lug test includes an evaluation of the performance of
the bolted palm when connected to a plant terminal, then linking bar ends, or an intermediate
piece, shall be used of a material, size and surface coating agreed between the parties.
6.1.2 Branch connectors
When the branch connector is intended for a branch cross-sectional area equal to the main, or
a cross-sectional area immediately above or below the main, it is treated as a through
connector between the main and the branch, and the test method for through connectors is
applicable. In other cases, the test loop shall be as shown in Figure 2. Where a type of
connector makes it necessary for the main conductor to be cut, that part of the connector which
acts as a through connector, shall also be tested as for through connectors.
6.2 Measurements
6.2.1 Electrical resistance measurements
Measurements of electrical resistance shall be made at stages throughout the test as specified
in 6.3.
These measurements of resistance shall be made under steady temperature conditions of both
the test loop and test location. The ambient temperature shall be between 15 °C and 30 °C.

61238-1  IEC:2003 – 27 –
The recommended method is to pass a direct current of up to 10 % of the heat cycling current,
through the connectors and the reference conductor, without increasing the temperature and to
measure the potential difference between specific potential points. The ratio of potential
difference and direct current is the resistance between those points.
NOTE To improve the accuracy of the resistance measurement, it is recommended that the same direct current is
used throughout the test programme.
For branch conductors assembled in accordance with Figure 2, the whole of the measuring
current shall flow through that part of the connector whose potential difference is being
measured. Switches or disconnect points may be provided for this purpose.
Thermoelectric voltages may affect the accuracy of low resistance measurements (of the order
of 10 μΩ). If this is suspected, two resistance measurements shall be taken with the direct
measuring current reversed between readings. The mean of the two readings is then the actual
resistance of the sample.
The potential points shall be as indicated in Figure 3, and Annex B, and the various lengths
shown shall also be measured to enable the actual connector resistances to be determined.
The temperature of connector and reference conductor shall be recorded when resistance
measurements are made. For direct comparison, the resistance values shall be corrected to
20 °C. Information on the recommended method is also given in Annex B. Temperature
measurements at these locations shall be made during the heat cycling test.
Indirect resistance readings:
– voltage measurements shall have an accuracy within ±0,5 % or ±10 μV, whichever is the
greater;
– current measurements shall have an accuracy within ±0,5 % or ±0,1 A, whichever is
the greater.
Direct resistance readings:
Resistance measurements shall have an accuracy within ±1 % or ±0,5 μΩ, whichever is the
greater when the instrument is calibrated against a certified standard resistance.
6.2.2 Temperature measurements
The temperature measurements shall be made at stages throughout the test, as specified
in 6.3.
Temperatures of both connectors and reference conductors shall be measured at the points
indicated in Figure 3. The recommended method of temperature measurement is to use
thermocouples. Temperature readings shall have an accuracy within ±2 K.
6.3 Heat cycle test
The heat cycling test shall be made with alternating current.
6.3.1 First heat cycle
The object of the first heat cycle is to determine the reference conductor temperature to be
used for subsequent cycles and also to identify the median connector.
a) Non-IPC through connectors and terminal lugs
Current is circulated in the test loop, bringing the reference conductor to 120 °C at
equilibrium.
61238-1  IEC:2003 – 29 –
Equilibrium is defined as the moment when the reference conductor and the connectors do
not vary in temperature by more than ±2 K for 15 min.
If the temperature of the median connector (see 3.11) is equal to or greater than 100 °C,
the reference conductor temperature for subsequent heat cycles shall be deemed to be
120 °C. If not, then the current shall be increased until the median connector temperature
reaches 100 °C at equilibrium, subject to the reference conductor temperature not
exceeding 140 °C. If the temperature of the median connector does not reach 100 °C, even
with a reference conductor temperature of 140 °C, the test shall be continued at that
temperature. The measured reference conductor temperature θ shall then be used for
R
subsequent heat cycles (120 °C ≤ θ ≤ 140 °C). The current I at equilibrium temperature
R N
shall be recorded in the test report.
NOTE 1 Where linking bars are used for terminal lugs, the temperature at the midpoint of the bar linking the palms
should also be measured. This temperature should be equal to the temperature of the reference conductor θ , with
R
a tolerance of ±5 K.
b) Non-IPC branch connectors
Where it is necessary to use the circuit shown in Figure 2, current shall be circulated in the
test loop, bringing the main reference conductor and the three branch reference conductors
to 120 °C at equilibrium. To achieve this, the currents in the three branches shall be
adjusted by current injection or impedance control. If the median connector temperature
(see 3.11) is then equal to or greater than 100 °C, the reference conductor temperature for
subsequent heat cycles shall be deemed to be 120 °C. If not, then the current shall be
increased in the loop until the median connector temperature reaches 100 °C at
equilibrium, provided the reference conductors do not exceed 140 °C. It may be necessary
at this stage, and also at intervals throughout the test, to adjust the current in an individual
branch so as to ensure that each branch reference temperature is the same as the main
reference temperature. The measured reference conductor temperature θ on the main and
R
branch conductors, shall then be used for subsequent heat cycles (120 °C ≤ θ ≤ 140 °C).
R
The current(s) I at equilibrium temperature in the main and branch conductors shall be
N
recorded in the test report.
c) IPC
For tests of IPCs, the same test loop as in Figure 1 or 2 shall be used except that
the insulated reference conductor(s) is (are) added in the circuit. During cycling, the
temperature on the median connector shall be modified to be 10 K higher than the
maximum conductor temperature in normal operation for which these type of connectors
are intended. However, the circulated current shall be limited so that the temperature of the
insulated reference conductor at equilibrium is not more than 10 K to 15 K above
the maximum conductor temperature in normal operation. In the case of branch connectors,
it may be necessary at intervals throughout the test, to adjust the current in an individual
branch so as to ensure that each branch reference temperature is the same as the main
reference temperature. The current(s) I at equilibrium temperature in the main and
N
possible branch conductors shall be recorded in the test report.
NOTE 2 If a connector is used in an application where considerably higher temperatures are reached than the
maximum conductor temperature in normal operation, additional tests at higher temperature of the test loop may be
made, after agreement between manufacturer and user. The additional increase in temperature of the test loop
should be achieved by the application of thermal insulation.
6.3.2 Second heat cycle
The object of this second heat cycle is to determine the heat cycle duration and temperature
profile which will be used on the test loop for all subsequent heat cycles. Current is circulated
in the loop until the main reference conductor temperature reaches the value θ determined in
R
+6
6.3.1, with a tolerance of K and the median connector temperature is stable within a band
of 2 K over a 10 min period.
61238-1  IEC:2003 – 31 –
An elevated current may be used to reduce the heating period. The duration of this elevated
current is given in Table 1. The current shall thereafter be decreased or regulated to a mean
value of the current close to I to ensure stable conditions during the median-connector control
N
period. It may be necessary to use more than one cycle to determine the second heat cycle.
The reference conductor temperature shall be the control parameter, in order to keep the
temperature profile during the heat cycle test. In this way, the fluctuation of the ambient
temperature will not affect the temperature profile of the reference conductor.
Table 1 – Minimum elevated current heating time
Al 16 ≤ A ≤ 50 50 < A ≤ 150 150 < A ≤ 630 A > 630
Nominal conductor
mm
cross-sectional area, A
Cu A > 400
10 ≤ A ≤ 35 35 < A ≤ 95 95 < A ≤ 400
5 10 15 20
Time min
The reference temperature time (t ) heating profile, see Figure 4, determined in this way shall
be recorded and used for all subsequent cycles.
After the period t , follows a period t of cooling to bring the temperature of all con
...


ba
SLOVENSKI SIST EN 61238-1
STANDARD  januar 2004
Stisljivi in vijačni konektorji za električne kable za naznačene napetosti do
36 kV (Um = 42 kV) – 1. del: Preskusne metode in zahteve

Compression and mechanical connectors for power cables for rated voltages up
to 36 kV (U = 42 kV) – Part 1: Test methods and requirements
m
Pressverbinder und Schraubverbinder für Starkstromkabel für Nennspannungen
bis einschließlich 36 kV (Um = 42 kV) – Teil 1: Prüfverfahren und Anforderungen

Raccords sertis et à serrage mécanique pour câbles d'énergie de tensions
assignées inférieures ou égales à 36 kV (U = 42 kV) – Partie 1: Méthodes et
m
prescriptions d'essais
Referenčna oznaka
ICS 29.120.20 SIST EN 61238-1:2004 (sl)

Nadaljevanje na straneh II in od 1 do 54

© 2019-07. Slovenski inštitut za standardizacijo. Razmnoževanje ali kopiranje celote ali delov tega standarda ni dovoljeno.

SIST EN 61238-1 : 2004
NACIONALNI UVOD
Standard SIST EN 61238-1 (sl), Stisljivi in vijačni konektorji za električne kable za naznačene napetosti
do 36 kV (U = 42 kV) – 1. del: Preskusne metode in zahteve, 2004, ima status slovenskega standarda
m
in je istoveten evropskemu standardu EN 61238-1 (en), Compression and mechanical connectors for
power cables for rated voltages up to 36 kV (U = 42 kV) – Part 1: Test methods and requirements,
m
2003.
NACIONALNI PREDGOVOR
Mednarodni standard IEC 61238-1:2003 je pripravil tehnični odbor Mednarodne elektrotehniške komisije
IEC/TC 20 Električni kabli. Vzporedno je standard potrdil tehnični odbor Evropskega komiteja za
standardizacijo v elektrotehniki CLC/TC 20 Električni kabli. Slovenski standard SIST EN 61238-1:2004
je prevod evropskega standarda EN 61238-1:2003. V primeru spora glede besedila slovenskega
prevoda v tem standardu je odločilen izvirni evropski standard v angleškem jeziku. Slovensko izdajo
standarda je potrdil Strokovni svet SIST za področja elektrotehnike, informacijske tehnologije in
telekomunikacij.
Odločitev za privzem tega standarda je v januarju 2004 sprejel Strokovni svet SIST za področja
elektrotehnike, informacijske tehnologije in telekomunikacij.

ZVEZA Z NACIONALNIMI STANDARDI

S privzemom tega evropskega standarda veljajo za omejeni namen referenčnih standardov vsi
standardi, navedeni v izvirniku, razen tistih, ki so že sprejeti v nacionalno standardizacijo:
SIST IEC 60050-461:2017 Mednarodni elektrotehniški slovar – 461. del: Električni kabli
SIST IEC 60050-461:1997/A1:1997 Mednarodni elektrotehniški slovar – 461. del: Električni kabli –
Dopolnilo A1
SIST HD 383 S2:1998 Vodniki izoliranih kablov (nadomeščen s SIST IEC 60228:2005)
SIST HD 383 S2:1998/A1:1998 Prva priloga: Vodniki izoliranih kablov – Vodilo za dimenzijske
meje okroglih prevodnikov
OSNOVA ZA IZDAJO STANDARDA
– privzem standarda EN 61238-1:2003

OPOMBE
– Povsod, kjer se v besedilu standarda uporablja izraz "evropski standard" ali "mednarodni standard",
v SIST EN 61238-1:2004 to pomeni "slovenski standard".

– Nacionalni uvod in nacionalni predgovor nista sestavni del standarda.

– Ta nacionalni dokument je istoveten EN 61238-1:2003 in je objavljen z dovoljenjem

CEN/CENELEC
Upravni center
Avenue Marnix 17
B-1000 Bruselj
This national document is identical with EN 61238-1:2003 and is published with the permission of

CEN-CENELEC
Management Centre
Avenue Marnix 17
B-1000 Brussels
II
EVROPSKI STANDARD             EN 61238-1
EUROPEAN STANDARD
NORME EUROPÉENNE
avgust 2003
EUROPÄISCHE NORM
ICS 29.080.20
Slovenska izdaja
Stisljivi in vijačni konektorji za električne kable za naznačene napetosti
do 36 kV (Um = 42 kV) – 1. del: Preskusne metode in zahteve
(IEC 61238-1:2003, spremenjen)

Compression and mechanical Raccords sertis et à serrage Pressverbinder und Schraub-
connectors for power cables for mécanique pour câbles verbinder für Starkstromkabel für
rated voltages up to 36 kV d'énergie de tensions assignées Nennspannungen bis einschließlich
(Um = 42 kV) – Part 1: Test inférieures ou égales à 36 kV 36 kV (Um = 42 kV) – Teil 1:
methods and requirements (U = 42 kV) – Partie 1: Prüfverfahren und Anforderungen
m
(IEC 61238-1.2003, modified) Méthodes et prescriptions (IEC 61238-1:2003, modifiziert)
d'essais (CEI 61238-1:2003,
modifiée)
Ta evropski standard je CENELEC sprejel 1. junija 2003. Člani CENELEC morajo izpolnjevati notranje
predpise CEN/CENELEC, s katerimi so predpisani pogoji za privzem tega evropskega standarda na
nacionalno raven brez kakršnihkoli sprememb.

Najnovejši seznami teh nacionalnih standardov z njihovimi bibliografskimi podatki se na zahtevo lahko
dobijo pri Centralnem sekretariatu ali kateremkoli članu CENELEC.

Ta evropski standard obstaja v treh uradnih izdajah (angleški, francoski in nemški). Izdaje v drugih
jezikih, ki jih člani CENELEC na lastno odgovornost prevedejo in izdajo ter prijavijo pri Centralnem
sekretariatu, veljajo kot uradne izdaje.

Člani CENELEC so nacionalni elektrotehniški komiteji Avstrije, Belgije, Češke republike, Danske,
Finske, Francije, Grčije, Islandije, Irske, Italije, Litve, Luksemburga, Madžarske, Malte, Nemčije,
Nizozemske, Norveške, Portugalske, Slovaške, Španije, Švedske, Švice in Združenega kraljestva.

CENELEC
Evropski komite za standardizacijo v elektrotehniki
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung

Centralni sekretariat: Rue de Stassart 35, B-1050 Bruselj

© 2003 CENELEC Lastnice avtorskih pravic so vse države članice CENELEC. Ref. št. EN 61238-1:2003 E

SIST EN 61238-1 : 2004
Evropski predgovor
Besedilo dokumenta 20/599/FDIS, prihodnje druge izdaje IEC 61238-1, ki ga je pripravil tehnični odbor
IEC/TC 20 Električni kabli, je CENELEC po vzporednem glasovanju v IEC in CENELEC 1. junija 2003
sprejel kot EN 61238-1.
Osnutek dopolnila, ki ga je pripravil tehnični odbor CENELEC/TC 20 Električni kabli, je CENELEC po
formalnem glasovanju vključil v EN 61238-1 s 1. junijem 2003.

Določena sta bila naslednja datuma:
– zadnji datum, do katerega mora EN dobiti status
nacionalnega standarda bodisi z objavo istovetnega besedila
ali z razglasitvijo (dop) 2004-03-01
– zadnji datum, ko je treba razveljaviti nacionalne standarde,
ki so z EN v nasprotju (dow) 2006-06-01
Dodatki, označeni z "normativni", so sestavni del standarda.
Dodatki, označeni z "informativni", so dani samo v informacijo.
V tem standardu so dodatki A, B, E in ZA normativni in dodatki C, D, F, G in H so informativni.
Dodatek ZA je dodal CENELEC.
Razglasitvena objava
Besedilo mednarodnega standarda IEC 61238-1:2003 je CENELEC odobril kot evropski standard z
naslednjimi dogovorjenimi skupnimi spremembami.

SKUPNE SPREMEMBE
Naslov
Spremeniti naslov, da je razvidna naslednja zgornja napetostna meja:

". za naznačene napetosti do 36 kV (U = 42 kV)"
m
Uvod
Spremeniti na koncu prvega stavka prvega odstavka:

". za naznačene napetosti do 36 kV (U = 42 kV)"
m
Področje uporabe in namen
Spremeniti navedbo napetosti v prvem odstavku:

". za naznačene napetosti do 36 kV (U = 42 kV) ."
m
Dodati v Literaturi naslednjo opombo k navedenemu standardu:

IEC 60694 OPOMBA Harmoniziran kot EN 60694 (nespremenjen)

SIST EN 61238-1 : 2004
Dodatek ZA
(normativni)
Normativna sklicevanja na mednarodne publikacije z njihovimi ustreznimi
evropskimi publikacijami
Ta standard vključuje z datiranim ali nedatiranim sklicevanjem določila iz drugih publikacij. Sklicevanja
na standarde so navedena na ustreznih mestih v besedilu, publikacije pa so naštete spodaj. Pri datiranih
sklicevanjih se pri uporabi tega standarda upoštevajo poznejša dopolnila ali spremembe katerekoli od
navedenih publikacij le, če so z dopolnilom ali spremembo vključene vanj. Pri nedatiranih sklicevanjih
se uporablja zadnja izdaja publikacije (vključno z dopolnili).

OPOMBA: Kadar je bila mednarodna publikacija spremenjena s skupnimi spremembami, označenimi z (mod), se uporablja
ustrezni EN/HD.
Publikacija Leto Naslov EN/HD Leto
IEC 60050-461 1984 Mednarodni elektrotehniški slovar – - -
A1 1993 461. del: Električni kabli - -
IEC 60228 (mod) 1978 Vodniki izoliranih kablov – HD 383 S2 1986
+ IEC 60228A 1982 Prva priloga: Vodilo za dimenzijske
(mod) meje okroglih vodnikov
IEC 60493-1 1974 Navodilo za statistično analizo - -
podatkov pri preskusu staranja –
1. del: Metode na podlagi srednjih
vrednosti normalno porazdeljenih
preskusnih rezultatov
SIST EN 61238-1 : 2004
VSEBINA Stran
Evropski predgovor . 2
Dodatek ZA: Normativna sklicevanja na mednarodne publikacije z njihovimi ustreznimi
evropskimi publikacijami . 3
Predgovor k mednarodnemu standardu . 6
Uvod . 8
1 Področje uporabe in namen . 9
2 Zveze s standardi . 9
3 Definicije . 10
4 Simboli . 11
5 Splošno . 12
5.1 Vodnik . 12
5.2 Konektorji in orodni pripomočki . 12
5.3 Območje odobritve . 12
6 Električni preskusi . 13
6.1 Namestitev . 13
6.2 Meritve . 14
6.3 Preskus z grelnim ciklom . 15
6.4 Ocena rezultatov . 18
6.5 Zahteve . 18
7 Mehanski preskusi . 19
7.1 Metoda . 19
7.2 Zahteve . 19
8 Poročilo o preskusu . 19
Dodatek A (normativni): Izenačevalniki in njihova priprava . 26
Dodatek B (normativni): Meritve . 28
Dodatek C (informativni): Priporočila za izboljšanje točnosti meritev . 29
Dodatek D (informativni): Ugotavljanje vrednosti kratkostičnega toka . 30
Dodatek E (normativni): Metoda izračunavanja . 31
Dodatek F (informativni): Razlaga metode izračunavanja . 36
Dodatek G (informativni): Razlaga temperaturnega profila . 50
Dodatek H (informativni): Razlaga statistične metode za ocenjevanje rezultatov preskusov na
električnih konektorjih . 52
Literatura . 54
Slika 1: Tipično preskusno vezje za spojne kabelske tulke in kabelske čevlje . 20
Slika 2: Tipično preskusno vezje za odcepne kabelske tulke . 21
Slika 3: Tipični primeri merjenja upornosti . 24
Slika 4: Drugi grelni cikel . 25
Slika A.1: Priprava izenačevalnikov . 27
Slika E.1: Grafični primer ocene posameznega konektorja za razred A . 33
SIST EN 61238-1 : 2004
Slika F.1: Grafični prikaz faktorjev upornosti konektorja in parametra δ pred prvim grelnim ciklom . 40
ij
Slika F.2: Grafični prikaz faktorjev upornosti k , ocenjena srednja vrednost faktorjev upornosti
��� �
𝑘 in ocenjena skupna srednja vrednost 𝑘 . 42
i.
���
Slika F.3: Grafični prikaz ocenjenih srednjih vrednosti faktorjev upornosti 𝑘 ,
i.

ocenjena skupna srednja vrednot 𝑘 in parameter ß . 43
Slika F.4: Tipično obnašanje staranja električnega konektorja (klim = mejni faktor upornosti;
t = življenjska doba) . 44
L
Slika F.5: Grafični prikaz faktorjev upornosti, prilagojenih vrednosti, ocenjenega prestrezanja in
ocenjenega nagiba . 45
i
Slika F.6: Grafični prikaz prilagojenih vrednosti, ostankov in parametra M . 46
Slika F.7: Grafični prikaz točkovnega 90-odstotnega intervala zaupanja za povprečni odziv in
i
parameter S . 47
i i i
Slika F.8: Grafični prikaz parametrov M , S in D z regresijsko linijo . 48

Preglednica 1: Najkrajši čas segrevanja pri povečanem toku . 16
Preglednica 2: Zahteve za električni preskus . 18
Preglednica 3: Natezna sila za mehanske preskuse . 19
Preglednica A.1: Mere izenačevalnika . 26
Preglednica F.1: Indeksi . 36
Preglednica F.2: Izmerjene spremenljivke . 36
Preglednica F.3: Konstante . 36
Preglednica F.4: Izračunane spremenljivke . 37
Preglednica F.5: Večkratno izmerjeni parametri . 38
ij
Preglednica F.6: Število izračunanih faktorjev upornosti konektorja k za konektorje razreda A . 39
ij
Preglednica F.7: Faktorji upornosti konektorja k za konektorje razreda A v povezavi
s slepo spremenljivko x, začeto razpršenostjo δ in povprečno razpršenostjo ß . 41
Preglednica F.8: Število relativnih sprememb faktorja upornosti za konektorje razreda A . 49
Preglednica F.9: Zapis najvišjih temperatur med grelnim ciklom . 49
Preglednica H.1: Povzetek zahtev . 53

SIST EN 61238-1 : 2004
MEDNARODNA ELEKTROTEHNIŠKA KOMISIJA

Stisljivi in vijačni konektorji za električne kable za naznačene napetosti
do 30 kV (Um = 36 kV) –
1. del: Preskusne metode in zahteve

Predgovor k mednarodnemu standardu

1) IEC (Mednarodna elektrotehniška komisija) je svetovna organizacija za standardizacijo, ki združuje vse nacionalne
elektrotehnične komiteje (nacionalni komiteji IEC). Cilj IEC je pospeševati mednarodno sodelovanje v vseh vprašanjih
standardizacije s področja elektrotehnike in elektronike. V ta namen poleg drugih aktivnosti izdaja mednarodne standarde,
tehnične specifikacije, tehnična poročila, javno dostopne specifikacije in vodila (v nadaljevanju: publikacije IEC). Za njihovo
pripravo so odgovorni tehnični odbori (TC). Vsak nacionalni komite IEC, ki ga zanima obravnavana tema, lahko sodeluje v
tem pripravljalnem delu. Prav tako lahko v pripravi sodelujejo mednarodne organizacije ter vladne in nevladne ustanove, ki
so povezane z IEC. IEC deluje v tesni povezavi z mednarodno organizacijo za standardizacijo ISO skladno s pogoji,
določenimi v soglasju med obema organizacijama.
2) Uradne odločitve ali sporazumi IEC o tehničnih vprašanjih, pripravljeni v tehničnih odborih, v katerih so prisotni vsi nacionalni
komiteji, ki jih tema zanima, izražajo, kolikor je mogoče, mednarodno soglasje o obravnavani temi.
3) Publikacije IEC imajo obliko priporočil za njihovo uporabo na mednarodni ravni in so izdane v obliki standardov, tehničnih
specifikacij, tehničnih poročil ali vodila ter jih kot takšne sprejmejo nacionalni komiteji
4) Da bi pospeševali mednarodno poenotenje, so se nacionalni komiteji IEC zavezali, da bodo v svojih nacionalnih in regionalnih
standardih čim pregledneje uporabljali mednarodne standarde. Vsako odstopanje med standardom IEC in ustreznim
nacionalnim ali regionalnim standardom je treba v slednjem jasno označiti.
5) IEC ni določil nobenega postopka označevanja, ki bi kazal na njegovo potrditev in ne more biti odgovoren za katero koli
opremo, ki bi bila deklarirana kot skladna z eno od njegovih publikacij.
7) Opozoriti je treba na možnost, da bi lahko bil kateri od elementov tega mednarodnega standarda predmet patentnih pravic.
IEC ni odgovoren za identificiranje nobene od teh patentnih pravic.
Mednarodni standard IEC 61238-1 je pripravil tehnični odbor IEC/TC 20 Električni kabli.

Ta druga izdaja razveljavlja in nadomešča prvo izdajo, objavljeno leta 1993, ter je tehnično revidirana.

Pomembne tehnične spremembe glede na prejšnjo izdajo so naslednje:

a) področje uporabe je sedaj omejeno na konektorje, ki se uporabljajo za električne kable za
naznačene napetosti do 30 kV (U = 36 kV);
m
b) koncept neposrednega merjenja upornosti je uveden kot alternativa posredni meritvi z ustreznimi
tolerancami (odstopanji);
c) temperaturne meje so podane za prebodne konektorje, odvisno od vrste kabelske izolacije;

d) navedene so tolerance (odstopanja) glede trajanja kratkostičnih preskusov in podana so priporočila
za velike prereze;
e) nekatera merila za odobravanje so bila spremenjena in usklajena med vijačnimi in stisljivimi
konektorji;
f) dodane so informacije, ki jih je treba vključiti v poročilo o preskusu;

g) dodani so informativni dodatki z informacijami o merilni točnosti, računski metodi, temperaturnem
profilu in statistični metodi.

Besedilo tega standarda temelji na naslednjih dokumentih:

FDIS Poročilo na glasovanju
20/599/FDIS 20/632/RVD
SIST EN 61238-1 : 2004
Vse informacije o glasovanju za potrditev tega standarda so na voljo v poročilu o glasovanju,
navedenem v gornji preglednici.
Ta publikacija je bila pripravljena v skladu z 2. delom Direktiv ISO/IEC.
Tehnični odbor je sklenil, da bo vsebina tega standarda ostala nespremenjena do leta 2012. Po tem
datumu bo publikacija:
– ponovno potrjena,
– razveljavljena,
– zamenjana z novo izdajo ali
– dopolnjena.
SIST EN 61238-1 : 2004
Uvod
Ta del IEC 61238 obravnava preskuse tipa za stisljive in vijačne konektorje, ki se uporabljajo za bakrene
ali aluminijaste vodnike električnih kablov za naznačene napetosti do 30 kV (U = 36 kV). Kadar zasnova
m
konektorja izpolnjuje zahteve tega standarda, potem se pričakuje, da v času uporabe:

a) upornost spoja ostaja nespremenjena;

b) je temperatura konektorja istega reda ali manj, kot jo ima vodnik;

c) je mehanska trdnost primerna za namene uporabe;

d) če predvidena raba tako zahteva, kratkostični toki ne vplivajo na a) in b).

Poudariti je treba, da so električni in mehanski preskusi v tem standardu namenjeni dokazovanju
primernosti konektorjev za večino obratovalnih pogojev, ni pa nujno, da bodo zadoščali za situacije, ko
se temperatura konektorja lahko zelo dvigne zaradi priključitve na močno obremenjene naprave ali če
je konektor izpostavljen čezmernim mehanskim vibracijam, udarcem ali jedkim pogojem. V teh primerih
je treba preskuse iz tega standarda dopolniti s posebnimi preskusi, za katere se dogovorita dobavitelj
in kupec.
SIST EN 61238-1 : 2004
Stisljivi in vijačni konektorji za električne kable za naznačene napetosti do
30 kV (Um = 36 kV) – 1. del: Preskusne metode in zahteve

1 Področje uporabe in namen
Ta del IEC 61238 se uporablja za stisljive in vijačne konektorje za električne kable za naznačene
napetosti do 30 kV (U = 36 kV), na primer za vkopane kable ali kable v stavbah, ki:
m
2 2
a) imajo vodnike v skladu z IEC 60228 in IEC 60228A s prerezom 10 mm ali več za baker ter 16 mm
ali več za aluminij,
b) najvišja stalna temperatura vodnika ne presega 90 °C.

Ta standard se ne uporablja za konektorje nadzemnih vodnikov, zasnovane za posebne mehanske
zahteve, ali za ločljive konektorje z drsnim kontaktom ali za večjedrne konektorje (tj. obročne
konektorje).
Čeprav ni mogoče natančno določiti obratovalnih pogojev za vse vrste uporabe, sta opredeljena dva
razreda konektorjev.
Razred A
Konektorji, namenjeni za uporabo v distribuciji električne energije ali industrijskih omrežjih, kjer so lahko
izpostavljeni kratkim stikom z relativno visoko jakostjo in dolgim trajanjem. Posledično so konektorji
razreda A primerni za večino namenov uporabe.

Razred B
Konektorji za uporabo v omrežjih, kjer nameščene zaščitne naprave, npr. hitre varovalke, hitro odpravijo
preobremenitve ali kratke stike.

Glede na namen uporabe se konektorji preskusijo z naslednjimi preskusi:

Razred A: preskusi z grelnim ciklom in kratkim stikom,

Razred B: samo preskusi z grelnim ciklom.

Cilj tega standarda je določiti metode preskusov tipa in zahteve, ki se uporabljajo za stisljive in vijačne
konektorje za električne kable z bakrenimi ali aluminijastimi vodniki.

Pred tem so bili takšni izdelki odobreni na podlagi nacionalnih standardov in specifikacij in/ali dokaza
zadovoljivega delovanja. Objava tega standarda IEC ne razveljavlja obstoječih odobritev. Vendar pa
izdelki, odobreni v skladu s predhodnimi standardi ali specifikacijami, ne morejo pridobiti odobritve po
tem standardu IEC, razen če niso še posebej preskušeni po njem.

Za že izdelane izdelke teh preskusov ni treba ponavljati, razen če so bile izvedene spremembe v
materialu konektorja, njegovi zasnovi ali proizvodnem procesu, ki bi lahko vplivale na tehnične lastnosti.

2 Zveze s standardi
Za uporabo tega standarda so nujno potrebni spodaj navedeni referenčni dokumenti. Pri datiranih
sklicevanjih se uporablja le navedena izdaja. Pri nedatiranih sklicevanjih se uporablja zadnja izdaja
publikacije (vključno z dopolnili).
IEC 60050(461):1984 Mednarodni elektrotehniški slovar – 461. del: Električni kabli
Dopolnilo 1 (1993)
IEC 60228:1978 Vodniki izoliranih kablov

SIST EN 61238-1 : 2004
IEC 60228A:1982 Prva priloga – Vodniki izoliranih kablov – Vodilo za dimenzijske meje okroglih
vodnikov
IEC 60493-1:1974, Navodilo za statistično analizo podatkov pri preskusu staranja – 1. del:
Metode na podlagi srednjih vrednosti normalno porazdeljenih preskusnih
rezultatov
3 Definicije
V tem delu IEC 61238 se uporabljajo naslednje definicije. Kjer je mogoče, so uporabljene definicije v
skladu z IEC 60050(461).
3.1
(kabelski) konektor
kovinski element za priključevanje vodnika na priključek opreme ali za medsebojno ločljivo spajanje
dveh ali več vodnikov
[IEV 461-17-03, spremenjen]
3.2
spojna (kabelska) tulka
kovinski element, ki omogoča spajanje vodnikov dveh zaporednih dolžin kabla

[IEV 461-17-04]
3.3
odcepna (kabelska) tulka
kovinski element za spajanje vodnika odcepnega kabla z vodnikom glavnega kabla na vmesni točki
glavnega kabla
[IEV 461-17-05]
3.4
kabelski čevelj
kovinski element za povezovanje kabelskega vodnika z drugo električno opremo

[IEV 461-17-01]
3.5
uho kabelskega čevlja
del kabelskega čevlja, ki se uporablja za spajanje z električno opremo

[IEV 461-17-07]
3.6
tulec (kabelskega čevlja, konektorja itd.)
del elementa, v katerega se uvede vodnik, ki ga je treba povezati

[IEV 461-17-06]
3.7
referenčni vodnik
dolžina nespojenega golega vodnika ali vodnika z odstranjeno izolacijo, ki je vključen v preskusno zanko
ter omogoča ugotavljanje referenčne temperature in upornosti

3.8
izenačevalnik
vezava v preskusni zanki, ki zagotavlja točko izenačitve potencialov v pramenastem vodniku
SIST EN 61238-1 : 2004
3.9
stiskalno spajanje
metoda pritrditve konektorja na vodnik z uporabo posebnega orodja, ki trajno deformira konektor in
vodnik
3.10
mehansko spajanje
metoda pritrditve konektorja na vodnik, na primer z vijačnim vzvodom ali vijakom, ki deluje na vodnik,
ali z alternativnimi metodami
3.11
srednji konektor
konektor, ki v prvem grelnem ciklu zabeleži tretjo najvišjo temperaturo za šest konektorjev v preskusni
zanki
3.12
prebodni konektor (IPC)
konektor, pri katerem je električni stik z vodnikom narejen s kovinskimi zobmi, ki prebodejo izolacijo
kabelske žile
[IEV 461-11-08]
OPOMBA: Okrajšava IPC bo uporabljena v celotnem standardu.

4 Simboli
A nazivni prečni prerez vodnika

D sprememba faktorja upornosti konektorja

I enosmerni tok, ki teče skozi spoj med merjenjem upornosti

Irms ekvivalentni efektivni kratkostični tok

I izmenični tok, potreben za vzdrževanje ravnovesne temperature v referenčnem vodniku
N
Ir enosmerni tok, ki teče skozi referenčni vodnik/vodnike v času merjenja upornosti

k faktor upornosti konektorja: količnik upornosti konektorja in upornosti ekvivalentne dolžine
referenčnega vodnika
ℓ , ℓ , ℓ dolžine konektorskega sestava, ki pripadajo merilnim točkam po spajanju
a b j
ℓr dolžina referenčnega vodnika med merilnima točkama

t čas segrevanja
t čas, potreben za ohladitev konektorjev in referenčnega vodnika na vrednost, ki je enaka ali
manjša od 35 °C
U potencialna razlika med merilnima točkama, ko skoznju teče tok I

Ur potencialna razlika med merilnima točkama na referenčnem vodniku, ko skoznju teče tok Ir

 temperaturni koeficient upornosti pri 20 °C

β povprečna razpršenost faktorjev upornosti konektorja

δ začetna razpršenost faktorjev upornosti konektorja

λ razmerje faktorja upornosti: sprememba faktorja upornosti konektorja glede na začetni faktor
upornosti
θ temperatura konektorja
SIST EN 61238-1 : 2004
θmax najvišja temperatura konektorja, zabeležena v celotni periodi preskusa

θ temperatura referenčnega vodnika, ugotovljena v prvem grelnem ciklu
R
θref temperatura referenčnega vodnika v trenutku merjenja θmax

OPOMBA: Pripone se lahko uporabijo za indikacijo posameznega konektorja, glej dodatek F.

5 Splošno
5.1 Vodnik
V poročilu o preskusu je treba navesti naslednje podatke:

– material vodnika,
– nazivni prerez z dimenzijo in obliko vodnika. Priporočljivo je, da se poda tudi dejanski prerez,

– tip vodnika, tj. masivna ali pramenasta izvedba. Pri pramenastem vodniku je treba navesti podatke
o konstrukciji vodnika, če so ti znani, ali pa se z inšpekcijskim pregledom ugotovi npr.:

– stisnjenost,
– nestisnjenost (upogljivost),

– zvijavost (razreda 5 in 6 v skladu z IEC 60228),

– število in razporeditev pramenov,

– vrsta površinske obdelave, če je uporabljena,

– vrsta impregnacije, vodna tesnitev itd., če obstaja,

– približna indikacija trdote, npr. žarjen, poltrd, trd,

– pri prebodnih konektorjih material in debelina izolacije.

5.2 Konektorji in orodni pripomočki

V poročilu o preskusu morajo biti navedeni naslednji podatki:

– tehnika montaže, ki jo je treba uporabiti,

– orodni pripomočki, matrice in potrebna nastavitev,

– vijaki, matice, podložke, navor itd.,

– priprava kontaktnih površin, če je potrebna,

– tip, referenčna številka in vsaka druga identifikacija konektorja,

– pri prebodnih konektorjih je treba navesti vrsto izolacije in temperaturo pri uporabi konektorja.

5.3 Območje odobritve
Na splošno velja, da preskusi, opravljeni na eni vrsti kombinacije konektor/vodnik, veljajo samo za tako
sestavo. Vendar je za omejitev števila preskusov dovoljeno naslednje:

– uporaba konektorja, ki se lahko uporabi za okrogle pramenaste vodnike ali za pramenaste na
pritrdilnem mestu zaokrožene vodnike, se dovoli za oba tipa vodnikov, če so zadovoljivi rezultati
doseženi na stisnjenem okroglem vodniku;

– uporaba konektorja, ki zajema določeno območje prerezov, se dovoli, če so zadovoljivi rezultati
preskusov na najmanjši in največji površini prereza (glej opombo 2 spodaj);

– če je za konektor uporabljena spojka tulka za dva vodnika z različnimi prerezi, oblikami, materiali
ter če so bili tehnika in uporabljeni tulci spojke že posebej za vsak prerez preskušeni, ni potreben
SIST EN 61238-1 : 2004
noben dodaten preskus. V nasprotnem primeru in če se to zahteva za bimetalne spojne tulke, je
treba opraviti dodatne preskuse z uporabo vodnika, ki ima od dveh vodnikov najvišjo temperaturo,
kot referenčnega vodnika;
– če lahko proizvajalec jasno dokaže, da so bila pri družini konektorjev uporabljena splošna in
ustrezna snovalska merila za družino konektorjev, se skladnost s tem standardom doseže z
uspešnim preskusom največje, najmanjše in dveh vmesnih velikosti konektorjev;

Izjema št. 1: Za družino konektorjev s petimi velikostmi je treba preskusiti samo največji konektor,
najmanjši konektor in en konektor z reprezentativno vmesno velikostjo.

Izjema št. 2: Za družino konektorjev s štirimi velikostmi ali manj je treba preskusiti samo največji in
najmanjši konektor.
– pri konektorjih, namenjenih za več različnih prerezov vodnikov, je treba preskusiti največji in
najmanjši prerez za izbrane konektorje;

– če so rezultati preskusov prebodnih konektorjev na PVC-izolaciji zadovoljivi in če so bili preskušeni
z grelnimi cikli pri nižjih temperaturah in s kratkimi stiki, se uporaba takih konektorjev odobri le za
PVC-izolacijo;
– če so rezultati preskusov konektorja na suhem vodniku zadovoljivi, se uporaba takega konektorja
odobri za enak tip vodnika v kablu s papirno izolacijo;

– za konektorje, pri katerih je ena stran ali sta obe strani oblikovani za več različnih prerezov in se za
priključevanje različnih prerezov uporabljata običajno vpenjanje ali stiskanje, je treba izvesti
mehanske preskuse na vodnikih z največjim in najmanjšim prerezom v skladu s točko 7.

OPOMBA 1: Primeri ustreznih snovalskih meril vključujejo:

– zmanjšanje sile stiskanja,
– število kontaktnih vijakov ali stiskalnih priključkov,

– silo na enoto površine kontaktnega vijaka ali stiskalnega priključka,

– razmerje med količino materiala v spojni točki in v vodniku.

OPOMBA 2: Različne vrste vodnih tesnitev lahko vplivajo na izvedbo.

6 Električni preskusi
6.1 Namestitev
Vse vodnike z enakim prerezom v preskusni zanki je treba vzeti iz istega neprekinjenega jedra.

Za vsako serijo preskusov je treba v skladu z navodili proizvajalca povezati šest konektorjev na goli
vodnik ali na vodnik s predhodno odstranjeno izolacijo, da skupaj z ustreznim referenčnim vodnikom
tvorijo preskusno zanko.
Pri pramenastih vodnikih lahko potencial med prameni na merilnih točkah povzroči pogreške pri
merjenju električne upornosti. Za premostitev tega problema se uporabijo izenačevalniki, ki zagotovijo
enakomerno porazdelitev toka v referenčnem vodniku in med konektorji v priključnih točkah
izenačevalnika (glej dodatek A).

Pri prebodnih konektorjih se izolacija ohrani na vodniku, ki je v konektorju, in v razdalji najmanj 100 mm
zunaj konektorja. V preskusno zanko mora(-jo) biti vključen(-i) tudi referenčni vodnik(-i) z obdržano
izolacijo. Če je treba preskusiti konektor v skladu z razredom B, niso potrebni nobeni goli referenčni
vodniki.
Preskusna zanka mora biti nameščena na mestu, kjer zrak miruje. Temperatura okolja na preskusnem
mestu mora biti med 15 °C in 30 °C.

Za montažo IPC mora biti temperatura (23 ± 3) °C.
SIST EN 61238-1 : 2004
Pri masivnih vodnikih morajo biti merilne točke potenciala izbrane čim bližje konektorju, da se znižata ℓa
in ℓ na vrednosti blizu nič.
b
Preskusna zanka je lahko katerekoli oblike, če je izvedena tako, da ne pride do nobenega neželenega
vpliva s tal, sten in stropa.
Zaradi lažje izvedbe kratkostičnih preskusov (samo konektorji razreda A) je zanka lahko razstavljiva. V
tem primeru mora biti tehnologija deljenja povezav takšna, da ne vplivajo na meritve, zlasti s stališča
temperature.
Ponovno privitje vijakov konektorjev med preskušanjem ni dovoljeno.

6.1.1 Spojne kabelske tulke in kabelski čevlji

Preskusna zanka je prikazana na sliki 1 in označuje dimenzije, ki jih je treba uporabiti.

Če je treba preskusiti kabelske čevlje, se ušesa čevljev privijačijo na zbiralke po navodilih proizvajalca.
Te zbiralke morajo biti v točki povezave iz istega materiala ter enake dimenzije in debeline kot uho
kabelskega čevlja.
Morda je treba prilagoditi grelne lastnosti zbiralke zunaj točke povezave tako, da se dosežejo
temperature, določene v 6.3. Kot alternativa zbiralkam se lahko preskusi izvedejo na kabelskih čevljih,
kjer je uho kabelskega čevlja neposredno povezano z ušesom drugega kabelskega čevlja. V primeru
nesoglasja se uporabi metoda z zbiralkami.

Če pa se zahteva, da preskus kabelskega čevlja vključuje oceno tehničnih lastnosti vijačenega ušesa
(čevlja), ki je pritrjeno na priključek opreme, se o uporabi koncev zbiralke ali vmesnega dela, ki morajo
biti iz materiala, velikosti in s površinsko prevleko, stranki dogovorita.

6.1.2 Odcepne (kabelske) tulke

Če je odcepna tulka namenjena za območje odcepnih prerezov, ki so enaki prerezu glavnega vodnika
ali tik nad ali pod njim, se obravnava kot spojna kabelska tulka (prehodni konektor) med glavnim
vodnikom in odcepom ter se pri tem lahko uporabi preskusna metoda za spojne tulke. V drugih primerih
se uporabi preskusna zanka, prikazana na sliki 2. Če tip konektorja nujno zahteva prekinitev glavnega
vodnika, je treba tisti del konektorja, ki deluje kot spojna tulka, preskusiti kot spojno tulko.

6.2 Meritve
6.2.1 Meritve električne upornosti

Meritve električne upornosti se izvajajo po stopnjah ves čas preskusa, kakor je določeno v 6.3.

Te meritve upornosti se izvedejo v ustaljenih temperaturnih pogojih za preskusno zanko in preskusno
lokacijo. Temperatura okolja mora biti med 15 °C in 30 °C.

Priporočena metoda navaja uporabo enosmernega toka do 10 % toka grelnega cikla, da teče skozi
konektorje in referenčni vodnik brez povišanja temperature, in meritev potencialne razlike med
posameznimi potencialnimi točkami. Razmerje potencialne razlike in enosmernega toka pomeni
upornost med tema točkama.
OPOMBA: Za izboljšanje točnosti merjenja upora je priporočljivo v celotnem preskusnem programu (postopku) uporabiti isti
enosmerni tok.
Za odcepne kabelske tulke, izvedene v skladu s sliko 2, mora celoten merilni tok teči skozi tisti del
konektorja, katerega potencialna razlika se meri. Za ta namen se uporabijo stikala ali izklopne točke.

SIST EN 61238-1 : 2004
Termoelektrične napetosti lahko vplivajo na točnost meritev nizkih upornosti (reda 10 μΩ). Če obstaja
dvom, je treba izvesti dve meritvi upornosti z enosmernim merilnim tokom, ki se obrne med odčitkoma.
Srednja vrednost obeh odčitkov je dejanska upornost vzorca.

Potencialne točke morajo ustrezati sliki 3 in dodatku B in treba je izmeriti tudi prikazane različne dolžine,
da se lahko ugotovijo dejanske upornosti konektorjev. Pri meritvah upornosti se zabeleži temperatura
konektorja in referenčnega vodnika. Za neposredno primerjavo se vrednosti upora korigirajo na 20 °C.
Informacije o priporočeni metodi so navedene tudi v dodatku B. Meritve temperature na teh mestih se
opravijo med preskusom z grelnim ciklom.

Posredni odčitki upornosti:
– za meritve napetosti je zahtevana točnost v okviru ± 0,5 % ali ± 10 μV, kar je večje;

– za meritve toka je zahtevana točnost v okviru ± 0,5 % ali ± 0,1 A, kar je večje.

Neposredni odčitki upornosti:
Meritve upornosti morajo imeti točnost v okviru ± 1 % ali ± 0,5 μΩ, kar je večje, če je instrument kalibriran
v skladu s potrjenim standardom upornosti.

6.2.2 Meritve temperature
Meritve temperature se izvajajo po stopnjah ves čas preskusa, kakor je določeno v 6.3.

Temperatura konektorjev in referenčnih vodnikov se meri v točkah, prikazanih na sliki 3. Priporočena je
metoda merjenja temperature z uporabo termočlenov. Temperaturni odčitki morajo biti v območju
točnosti ± 2 K.
6.3 Preskus z grelnim ciklom
Preskus z grelnim ciklom se opravi z izmeničnim tokom.

6.3.1 Prvi grelni cikel
Cilj prvega grelnega cikla je ugotoviti temperaturo referenčnega vodnika, ki se bo uporabila za naslednje
cikle, in tudi določiti srednji konektor.

a) Ne-IPC-spojne kabelske tulke in kabelski čevlji

Tok v preskusni zanki kroži, da se referenčni vodnik uravnoteži na temperaturi 120 °C.

Ravnotežje je določeno kot trenutek, ko se temperatura referenčnega vodnika in konektorjev
15 minut ne spreminja za več kot ± 2 K.

Če je temperatura srednjega konektorja (glej točko 3.11) enaka ali večja od 100 °C, se šteje, da je
temperatura referenčnega vodnika za naslednje grelne cikle 120 °C. Če ni, se tok povečuje, dokler
temperatura srednjega konektorja ne doseže ravnotežnih 100 °C, pod pogojem, da temperatura
referenčnega vodnika ne preseže 140 °C. Če temperatura srednjega konektorja ne doseže 100 °C
niti pri referenčni temperaturi vodnika 140 °C, se preskus nadaljuje pri tej temperaturi. Izmerjena
temperatura referenčnega vodnika θ se nato uporabi za naslednje grelne cikle (120 °C ≤ θ ≤
R R
140 °C). V poročilu o preskusu je treba zabeležiti tok I pri ravnotežni temperaturi.
N
OPOMBA 1: Če se za kabelske čevlje uporabljajo zbiralke, je treba izmeriti tudi temperaturo na srednji točki zbiralke, ki
povezuje ušesa kabelskih čevljev. Ta temperatura naj bo enaka temperaturi referenčnega vodnika θ s toleranco
R
± 5 K.
b) Ne-IPC-odcepne tulke
Če je treba uporabiti vezje, prikazano na sliki 2, mora tok krožiti v preskusni zanki, da glavni
referenčni vodnik in tri referenčne odcepne tulke dosežejo ravnotežno temperaturo 120 °C. Da se
SIST EN 61238-1 : 2004
to doseže, je treba toke v treh vejah prilagoditi z regulacijo primarnega toka ali krmiljenjem
impedance. Če je temperatura srednjega konektorja (glej točko 3.11) enaka ali večja od 100 °C, se
šteje, da je temperatura referenčnega vodnika za naslednje grelne cikle 120 °C. Če ne, se tok v
zanki povečuje, dokler temperatura srednjega konektorja ne doseže ravnotežne temperature
100 °C, pod pogojem, da temperatura referenčnega vodnika ne preseže 140 °C. Na tej stopnji in
tudi v intervalih ves čas preskusa je morda treba prilagoditi tok v posameznem odcepu, da se
zagotovi, da je referenčna temperatura vsakega odcepa enaka glavni referenčni temperaturi.
Izmerjena temperatura referenčnega vodnika θ na glavnem vodniku in odcepnih tulkah se nato
R
uporabi v naslednjih grelnih ciklih (120 °C ≤ θ ≤ 140 °C). V poročilu o preskusu je treba zabeležiti
R
toke I v glavnem vodniku in odcepnih tulkah pri ravnotežni temperaturi.
N
c) IPC
Za preskuse konektorjev IPC se uporablja ista preskusna zanka, kot je prikazana na sliki 1 ali 2,
razen da je (so) tokokrogu dodan(-i) izoliran(-i) referenčni vodnik(-i). Med cikliranjem je treba
prilagoditi temperaturo na srednjem konektorju tako, da je za 10 K višja od najvišje temperature
vodnika pri normalnem delovanju, za katero so ti konektorji namenjeni. Vendar je treba kroženje
toka omejiti tako, da temperatura izoliranega referenčnega vodnika pri ravnotežju ni več kot 10 K
do 15 K višja od najvišje temperature vodnika pri normalnem delovanju. V primeru odcepnih tulk
bo morda treba v intervalih skozi ves preskus prilagajati tok v posamezni veji, da se zagotovi, da je
referenčna temperatura vsakega odcepa enaka referenčni temperaturi glavnega odcepa. V
poročilu o preskusu je treba zabeležiti tok(-e) I v glavnem vodniku in možnih odcepnih tulkah pri
N
ravnotežni temperaturi.
OPOMBA 2: Če je konektor uporabljen v napravi, kjer se dosegajo znatno višje temperature od najvišje temperature vodnika
pri normalnem delovanju, se lahko po dogovoru med proizvajalcem in uporabnikom opravijo dodatni preskusi pri
višji temperaturi preskusne zanke. Dodatno povišanje temperature preskusne zanke naj se doseže z uporabo
toplotne izolacije.
6.3.2 Drugi grelni cikel
Cilj tega drugega grelnega cikla je določiti trajanje in temperaturni potek (profil) grelnega cikla, ki bo
uporabljen na preskusni zanki pri vseh nadaljnjih grelnih ciklih. Tok teče v zanki, dokler temperatura
�6
glavnega referenčnega vodnika ne doseže vrednosti θ , določene v 6.3.1, s toleranco K,
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

記事のタイトル:SIST EN 61238-1:2004-定格電圧36 kV(Um = 42 kV)までの電力ケーブル用の圧縮および機械コネクタ-Part 1:試験方法と要件 記事内容:この基準は、埋設ケーブルや建物に設置されたケーブルなど、定格電圧が30 kV(Um = 36 kV)以下の電力ケーブル用の圧縮および機械コネクタに適用されます。例えば、銅製で断面積が10 mm2以上の導体、アルミニウム製で断面積が16 mm2以上の導体を持ち、最大連続導体温度が90℃を超えないものです。この基準は、特別な機械要件のある架線用コネクタや滑動接触または多芯コネクタ(リングコネクタ)には適用されません。すべての応用に正確にサービス条件を定義することは不可能ですが、二つの広範なコネクタクラスが特定されています。 Aクラス:比較的高い強度と継続時間の短絡にさらされる、主に電力配電や産業ネットワークに使用されるコネクタです。そのため、Aクラスのコネクタはほとんどの応用に適しています。 Bクラス:過負荷や短絡が迅速にクリアされるネットワークに使用されるコネクタです。例えば、高速動作ヒューズなどの設置された保護装置があります。応用に応じて、コネクタは以下のテストにさらされます。 Aクラス:熱サイクルテストと短絡テスト Bクラス:熱サイクルテストのみ この基準の目的は、銅またはアルミニウム導体を持つ電力ケーブル用の圧縮および機械コネクタのタイプ試験方法と要件を定義することです。以前の国家基準や仕様に基づいて承認された製品は有効ですが、このIEC規格の承認を主張するためには、この規格に特にテストされなければなりません。テストが行われた後は、再度テストする必要はありません。

The article discusses the standard SIST EN 61238-1:2004, which applies to compression and mechanical connectors for power cables with rated voltages up to 30 kV. The standard does not apply to connectors for overhead conductors or separable connectors with sliding contacts. It identifies two broad classes of connectors: Class A, which are designed for high-intensity and duration short-circuits, and Class B, which are designed for networks with rapid overload or short-circuit clearance. Class A connectors undergo heat cycle and short-circuit tests, while Class B connectors undergo heat cycle tests only. The purpose of the standard is to define test methods and requirements for compression and mechanical connectors for power cables with copper or aluminum conductors. Previous approvals based on national standards or specifications still hold, but products must be specifically tested to this IEC standard to claim approval to it.

The article discusses the SIST EN 61238-1:2004 standard, which applies to compression and mechanical connectors for power cables with rated voltages up to 30 kV. The standard specifies test methods and requirements for these connectors. It does not apply to connectors for overhead conductors or separable connectors with sliding contacts or multi-core connectors. The standard categorizes connectors into two classes: Class A for electricity distribution or industrial networks subjected to high-intensity short-circuits, and Class B for networks with fast-acting protective devices. Depending on the class, connectors undergo heat cycle tests and short-circuit tests or heat cycle tests only. The purpose of this standard is to define type test methods and requirements for connectors with copper or aluminium conductors. Existing approvals based on national standards or specifications are still valid, but products must be specifically tested to this standard to claim approval.

기사 제목: SIST EN 61238-1: 2004 - 등급 전압이 36 kV (Um = 42 kV) 이하인 전력 케이블을 위한 압축 및 기계식 커넥터 - 파트 1: 시험 방법 및 요구 사항 기사 내용: 이 기준은 등급 전압이 30 kV (Um = 36 kV) 이하인 전력 케이블을 위한 압축 및 기계식 커넥터(예: 지하 케이블 또는 건물에 설치된 케이블)에 적용됩니다. 구리의 경우 10 mm2 이상의 단면적, 알루미늄의 경우 16 mm2 이상의 단면적을 가진 EN 60228 및 EN 60228A을 준수하는 도체를 가지고 있으며, 최대 연속 도체 온도는 90ºC를 초과하지 않아야합니다. 이 표준은 특수한 기계 요건을 갖추고 있는 공중 도체용 커넥터 또는 슬라이딩 접점이나 다중 코어 커넥터(즉, 링 커넥터)에는 적용되지 않습니다. 모든 응용 분야에 대한 정확한 서비스 조건을 정의하는 것은 불가능하지만, 두 가지 주요 커넥터 클래스가 식별되었습니다. A 클래스: 주로 전기 배전 또는 산업 네트워크에 사용되는 커넥터로, 비교적 높은 강도와 지속 시간의 단락에 노출될 수 있습니다. 따라서 A 클래스 커넥터는 대부분의 응용 분야에 적합합니다. B 클래스: 과부하나 단락이 설치된 보호 장치(예: 빠른 작동 퓨즈)에 의해 신속하게 제거되는 네트워크에 사용되는 커넥터입니다. 응용 분야에 따라 다음 시험을 거칩니다. A 클래스: 열주기 및 단락 시험 B 클래스: 열주기 시험만 진행합니다. 이 표준의 목적은 구리 또는 알루미늄 도체를 가진 전력 케이블을 위한 압축 및 기계식 커넥터의 유형 시험 방법과 요구 사항을 정의하는 것입니다. 이전의 국가 기준이나 사양에 따라 승인을 받은 제품은 여전히 유효하지만, 이 IEC 표준에 맞게 특별히 테스트되지 않으면 이 IEC 표준에 대한 승인을 주장할 수 없습니다. 테스트가 완료된 후에는 다시 테스트할 필요가 없습니다.

기사 제목: SIST EN 61238-1:2004 - 36 kV (Um = 42 kV) 이하의 정격 전압용 압축 및 기계적 커넥터 - 제1부: 시험 방법과 요구 사항 기사 내용: 이 기준은 36 kV (Um = 42 kV) 이하의 정격 전압용 전원 케이블을 위한 압축 및 기계적 커넥터에 적용됩니다. 예를 들어 범용 케이블이나 건물에 설치된 케이블 등을 포함합니다. 이들은 다음과 같은 특징을 가지고 있습니다: - 동일면적을 가지는 동선은 EN 60228 및 EN 60228A에 준하는 동도체를 사용합니다. 동선 면적은 구리의 경우 10 mm2 이상, 알루미늄의 경우 16 mm2 이상입니다. - 연속적인 동선 온도는 90 °C를 초과하지 않습니다. 그러나 이 기준은 특수한 기계적 요건을 갖추어 설계되는 공중 동선용 커넥터나 슬라이딩 접촉 또는 다중 코어 커넥터(링 커넥터)에는 적용되지 않습니다. 모든 응용 분야에 대해 정확한 서비스 조건을 정의하는 것은 불가능하지만, 두 가지의 넓은 범주의 커넥터가 식별됩니다. A급: 이들은 비교적 높은 강도와 지속시간의 단락을 겪을 수 있는 전력 분배나 산업망을 위한 커넥터입니다. 이에 따라 A급 커넥터는 대부분의 응용 분야에 적합합니다. B급: 이들은 오버로드 또는 단락이 설치된 보호 장치(예: 신속작동 퓨즈)에 의해 신속하게 해소되는 네트워크용 커넥터입니다. 응용 분야에 따라 커넥터는 다음과 같은 시험에 노출됩니다. A급: 열 주기 및 단락 시험. B급: 열 주기 시험만. 이 기준의 목적은 구리 또는 알루미늄 동도체를 갖춘 전원 케이블용 압축 및 기계적 커넥터에 대한 유형 시험 방법과 요구 사항을 정의하는 것입니다. 예전에는 국가 표준 및 명세에 따라 제품 승인이 이루어졌거나 서비스 성능이 만족스러운 경우에 승인을 받았습니다. 이 IEC 표준의 게시는 기존 승인을 무효화하지 않습니다. 그러나 이전 표준이나 명세에 따라 승인된 제품은 특정 테스트를 통과해야만 이 IEC 표준에 대한 승인을 요구할 수 있습니다. 이들 시험은 한 번 완료된 후 별도로 반복할 필요가 없습니다.

記事タイトル:SIST EN 61238-1:2004 - 電力ケーブル用圧縮および機械的コネクターに関する規格 - 電圧等級36 kV(Um = 42 kV)まで-第1部:試験方法と要求事項 記事内容:この規格は、電圧等級30 kV(Um = 36 kV)までの電力ケーブルに使用される圧縮および機械的コネクターに適用されます。例えば、埋設ケーブルや建物に設置されたケーブルなどが該当します。この規格は、以下の条件を満たす導体(銅:10 mm²以上、アルミニウム:16 mm²以上)を備えるもので、最大連続導体温度は90℃以下です。ただし、この規格は特殊な機械的要件を満たす架空導体用のコネクター、スライドコンタクトまたはマルチコアコネクター(リングコネクター)には適用されません。すべての応用状況について正確に定義することはできませんが、コネクターは大まかに2つのクラスに分類されています。 クラスA:比較的高い強度と持続時間の短絡にさらされる配電や産業ネットワーク向けのコネクターで、多くの応用に適しています。 クラスB:過負荷または短絡が設置された保護装置(例:高速ヒューズ)によって迅速に解消されるネットワーク向けのコネクターです。応用に応じて、クラスAは熱サイクル試験と短絡試験を、クラスBは熱サイクル試験のみを受けます。この規格の目的は、銅またはアルミニウム導体を備えた電力ケーブル用の圧縮および機械的コネクターの型式試験方法と要求事項を定義することです。以前は国内規格や仕様に基づく製品認可が行われ、または満足のいくサービス性能が示されることにより認可を取得していました。本IEC規格の発行は既存の認可を無効にしません。ただし、これら以前の規格や仕様に準拠した製品は、明示的にこのIEC規格に対してテストされた場合にのみこの規格に対する承認を主張することができます。これらのテストは一度行われた後、再度行う必要はありません。