SIST EN 15522-2:2023+A1:2025
(Main + Amendment)Oil spill identification - Petroleum and petroleum related products - Part 2: Analytical method and interpretation of results based on GC-FID and GC-low resolution-MS analyses
Oil spill identification - Petroleum and petroleum related products - Part 2: Analytical method and interpretation of results based on GC-FID and GC-low resolution-MS analyses
This document specifies a method to identify and compare the compositional characteristics of oil samples. Specifically, it describes the detailed analytical and data processing methods for identifying the characteristics of spill samples and establishing their correlation to suspected source oils. Even when samples or data from suspected sources are not available for comparison, establishing the specific nature (e.g. refined petroleum, crude oil, waste oil, etc.) of the spilled oil still helps to constrain the possible source(s).
This methodology is restricted to petroleum related products containing a significant proportion of hydrocarbon-components with a boiling point above 150 °C. Examples are: crude oils, higher boiling condensates, diesel oils, residual bunker or heavy fuel oils, lubricants, and mixtures of bilge and sludge samples, as well as distillate fuels and blends. While the specific analytical methods are perhaps not appropriate for lower boiling oils (e.g. kerosene, jet fuel, or gasoline), the general concepts described in this methodology, i.e. statistical comparison of weathering-resistant diagnostic ratios, are applicable in spills involving these kinds of oils.
Paraffin based products (e.g. waxes, etc.) are outside the scope of this method because too many compounds are removed during the production process [37]. However, the method can be used to identify the type of product involved.
Although not directly intended for identifying oil recovered from groundwater, vegetation, wildlife/tissues, soil, or sediment matrices, they are not precluded. However, caution is needed as extractable compounds can be present in these matrices that alter and/or contribute additional compounds compared to the source sample. If unrecognized, the contribution from the matrix can lead to false “non-matches”. It is therefore advisable to analyse background sample(s) of the matrix that appear unoiled.
When analysing “non-oil” matrices additional sample preparation (e.g. clean-up) is often required prior to analysis and the extent to which the matrix affects the correlation achieved is to be considered. Whether the method is applicable for a specific matrix depends upon the oil concentration compared to the “matrix concentration”. In matrices containing high concentrations of oil, a positive match can still be concluded. In matrices containing lower concentrations of oil, a false “non-match” or an “inconclusive match” can result from matrix effects. Evaluation of possible matrix effects is beyond the scope of this document.
Identifizierung von Ölverschmutzungen - Mineralöl und verwandte Produkte - Teil 2: Analytische Methodik und Interpretation der Ergebnisse, basierend auf GC-FID- und GC-MS-Analysen bei niedriger Auflösung
Dieses Dokument legt eine Methode zur Identifizierung und zum Vergleich der Zusammensetzungsmerkmale von Ölproben fest. Insbesondere werden die detaillierten Analyse- und Datenverarbeitungsmethoden beschrieben, mit denen die Merkmale der Proben von Ölverschmutzungen identifiziert und ihre Korrelation mit den vermuteten Ölquellen festgestellt wird. Selbst wenn keine Proben oder Daten von mutmaßlichen Quellen zum Vergleich zur Verfügung stehen, hilft die Feststellung der spezifischen Beschaffenheit des freigesetzten Öls (z. B. raffiniertes Mineralöl, Rohöl, Ölabfälle usw.) dennoch dabei, die mögliche(n) Quelle(n) einzugrenzen.
Diese Methodik ist auf Mineralölerzeugnisse beschränkt, die einen erheblichen Anteil an Kohlenwasserstoffkomponenten mit einem Siedepunkt über 150 °C enthalten. Beispiele sind: Rohöle, höhersiedende Kondensate, Dieselöle, Rückstände von Bunker oder Schwerölen, Schmierstoffe, !Schlammproben sowie Mischungen aus Bilgen" und Destillattreibstoffe und Mischungen derselben. Während die spezifischen Analysemethoden für Öle mit niedrigerem Siedepunkt (z. B. Kerosin, Düsentreibstoff oder Ottokraftstoff) vielleicht nicht geeignet sind, sind die in dieser Methodik beschriebenen allgemeinen Konzepte, d. h. der statistische Vergleich von witterungsbeständigen diagnostischen Verhältnissen, bei Unfällen mit diesen Arten von Ölen anwendbar.
Paraffin-Erzeugnisse (z. B. Wachse usw.) fallen nicht in den Anwendungsbereich dieser Methode, weil während des Herstellungsprozesses zu viele Verbindungen entfernt werden [37], um sie korrekt voneinander zu unterscheiden. Die Methode kann jedoch zur Identifizierung der Art des betreffenden Produkts verwendet werden.
Obwohl sie nicht direkt zur Identifizierung von Ölproben bestimmt sind, die aus dem Grundwasser, der Vegetation, der Tierwelt oder tierischem Gewebe, aus Böden oder Sediment genommen werden, sind sie nicht ausgeschlossen. Es ist jedoch Vorsicht geboten, da in diesen Matrices extrahierbare Verbindungen vorhanden sein können, die die Ausgangsprobe verändern und/oder zusätzliche Verbindungen in diese einbringen können. Wird dies nicht erkannt, kann der Beitrag der Matrix zu falschen Nicht-Übereinstimmungen führen. Es ist daher ratsam, Hintergrundbelastungsproben der Matrix zu analysieren, die nicht durch Öl verunreinigt sind.
Bei der Analyse von „Nicht-Öl“-Matrices !(z. B. verunreinigte Federn, Pflanzen, Steine, Sand)" ist häufig eine zusätzliche Probenvorbereitung (z. B. Aufreinigung) vor der Analyse erforderlich, und es ist zu berücksichtigen, inwieweit die Matrix die erzielte Korrelation beeinflusst. Ob die Methode für eine spezifische Matrix anwendbar ist, hängt von der Ölkonzentration im Vergleich zur „Matrixkonzentration“ ab. In Matrices, die hohe Konzentrationen an Öl enthalten, kann immer noch auf eine Übereinstimmung geschlossen werden. In Matrices, die geringere Konzentrationen an Öl enthalten, kann eine falsche „Nicht-Übereinstimmung“ oder ein „uneindeutiges Ergebnis“ auf Matrixeffekte zurückzuführen sein. Die Bewertung möglicher Matrixeffekte fällt nicht in den Anwendungsbereich dieses Dokuments.
Identification des pollutions pétrolières - Pétrole et produits pétroliers - Partie 2 : Méthode d'analyse et interprétation des résultats sur la base des analyses par CPG DIF et CPG-SM faible résolution
Le présent document spécifie une méthode d'identification et de comparaison des caractéristiques de composition des échantillons de pétrole. Plus spécifiquement, il décrit en détail les méthodes d'analyse et de traitement des données visant à identifier les caractéristiques des échantillons de déversement, et à établir une corrélation avec les pétroles sources potentiels. Même en l'absence d'échantillons ou de données sur les sources potentielles pour effectuer la comparaison, le fait d'établir la nature propre du pétrole déversé (par exemple pétrole raffiné, pétrole brut, huile usée, etc.) aide malgré tout à restreindre la liste des sources potentielles.
Cette méthodologie est limitée aux produits pétroliers contenant une proportion significative d'hydrocarbures avec un point d'ébullition supérieur à 150 °C, par exemple : les pétroles bruts, les condensats à température d'ébullition élevée, les gazoles, les résidus de soute ou de fiouls lourds, les lubrifiants, les mélanges d'eau de cale et de boues, ainsi que les distillats et les mélanges. Si les méthodes d'analyse spécifiques présentées ici ne sont pas forcément adaptées à des pétroles à plus faible température d'ébullition (par exemple kérosène, carburéacteur ou essence), les concepts généraux associés, par exemple la comparaison statistique des ratios de diagnostic résistants aux intempéries, s'appliquent aux déversements impliquant ces types de pétroles.
Les produits à base de paraffine (par exemple les cires, etc.) sont hors du domaine d'application de la présente méthode, car un nombre trop important de composés sont retirés au cours du processus de production [37] ; ce qui ne permet pas ensuite de correctement les distinguer les uns des autres. Cependant, la méthode peut être utilisée pour identifier le type de produit concerné.
Bien qu'elle ne vise pas directement à identifier le pétrole prélevé dans les eaux souterraines, la végétation, la faune/les tissus, les sols ou les sédiments, ces applications ne sont pas exclues. Cependant, elles nécessitent d'user de prudence, car ces matrices peuvent contenir des composés extractibles susceptibles de s'altérer et/ou de générer des composés supplémentaires par rapport à l'échantillon de la source. Si l'effet de matrice n'est pas pris en compte, cela peut entraîner des « faux négatifs ». Il est donc recommandé d'analyser un ou des échantillons de base de la matrice apparemment non contaminés.
Pour analyser des matrices « non pétrolières », des étapes supplémentaires de préparation des échantillons (par exemple nettoyage) sont souvent nécessaires en amont, et le degré auquel la matrice affecte la corrélation obtenue doit être pris en compte. La question de savoir si cette méthode est applicable à une matrice spécifique dépend de la concentration de pétrole par rapport à la « concentration de la matrice ». Ainsi, dans les matrices contenant des concentrations élevées de pétrole, une correspondance positive peut malgré tout être obtenue. En revanche, dans des matrices contenant de faibles concentrations de pétrole, on peut obtenir un faux négatif ou une correspondance non conclusive. L'évaluation des potentiels effets de matrice ne fait pas partie du domaine d'application du présent document.
Prepoznavanje razlitij olj - Nafta in sorodni naftni proizvodi - 2. del: Analizne metode in podajanje rezultatov, izhajajočih iz GC-FID in GC-MS nizke ločljivosti
Ta dokument določa metodo za ugotavljanje lastnosti sestave vzorcev olja. Opisuje namreč podrobne analizne metode in metode obdelovanja podatkov za prepoznavanje lastnosti vzorcev razlitij ter vzpostavlja korelacijo z možnimi viri olja. Tudi če vzorci ali podatki iz možnih virov niso na voljo za primerjavo, lahko opredelitev specifične narave (npr. rafinirana nafta, surova nafta, odpadno olje itd.) razlitega olja pomaga pri omejevanju možnih virov razlitij. Ta metodologija je omejena na nafto in naftne proizvode z znatnim deležem ogljikovodikovih sestavnih delov z vreliščem nad 150 °C. Primeri vključujejo: surovo olje, kondenzate z višjim vreliščem, dizelska goriva, ostanke goriv iz ladijskih rezervoarjev ali težkih kurilnih olj, maziva ter mešanice vzorcev kaluže in blata, kot tudi destilatna goriva in mešanice. Specifične analizne metode morda niso primerne za olja z nizkim vreliščem (npr. kerozine, goriva za reaktivne letalske motorje ali bencin), vendar se splošni pojmi, opisani v tej metodologiji, npr. statistična primerjava diagnostičnih razmerij odpornosti na pospešeno staranje, uporabljajo pri razlitjih olj z nizkim vreliščem. Parafinski proizvodi (npr. voski itd.) ne spadajo na področje uporabe te metode, saj je iz njih v postopku proizvodnje [37] odstranjenih preveč spojin, vendar pa je to metodo mogoče uporabiti za ugotavljanje tipa zadevnega proizvoda. Čeprav metoda ni neposredno namenjena za ugotavljanje olj, pridobljenih iz podtalnice, vegetacije, prostoživečih živali in rastlin/tkiv, tal ali sedimentov, le-ti niso izključeni. Vseeno pa je potrebna previdnost, saj so spojine, ki jih je mogoče ekstrahirati, lahko prisotne v matricah, ki spremenijo in/ali prispevajo k dodatnim spojinam v primerjavi z izvornim vzorcem. Če se jih ne odkrije, lahko povzročijo »lažna neujemanja«. Zato je priporočljivo analizirati vzorce ozadja matric(-e), ki se zdijo brez olja. Pri analiziranju matric »brez olja« je pogosto pred analizo potreben pripravek dodatnega vzorca (npr. očiščen) in treba je upoštevati obseg, v katerem matrica vpliva na doseženo korelacijo. Možnost uporabe metode za določeno matrico je odvisna od koncentracije olja v primerjavi s »koncentracijo matrice«. Pri matricah z visoko koncentracijo olja je mogoče še vedno ugotoviti pozitivno ujemanje. Pri matricah z nizko koncentracijo olja lahko zaradi učinkov matrice pride do »neujemanja« ali »nedoločnega ujemanja«. Ocena možnih učinkov matrice ne spada na področje uporabe tega dokumenta.
General Information
Relations
Overview
EN 15522-2:2023+A1:2025 - published by CEN - specifies a validated analytical method and interpretation framework for oil spill identification using GC-FID and GC low‑resolution MS. The standard details laboratory strategy, sample preparation, instrumental conditions, data processing and reporting to compare compositional characteristics of spilled oils and link them to suspected source oils. It applies primarily to petroleum-related products with significant hydrocarbon fractions boiling above 150 °C (e.g., crude oil, diesel, residual bunkers, lubricants, distillates) and includes guidance on weathering effects and matrix considerations.
Key topics and requirements
- Analytical scope: GC-FID (Level 1) for carbon‑number profiling and GC‑MS (Level 2) for diagnostic compound patterns and mass-spectral data.
- Data treatment: Statistical comparison using weathering‑resistant diagnostic ratios and MS-based pattern tools (e.g., MS‑PW plots) to establish matches, non‑matches or inconclusive results.
- Sample preparation: Visual description, extraction, particle removal, asphaltene precipitation and column clean‑up (alumina, silica/Florisil®) tailored for oily and non‑oil matrices.
- Matrix guidance: Advises caution for analyses of groundwater, sediments, vegetation or tissues because matrix contributions can alter results; recommends background (un-oiled) controls and additional clean‑up where needed.
- Quality and reporting: Requirements for analytical standards, injection concentrations, sequence checks, precision evaluation, and structured identification/internal technical reports.
- Limitations: Paraffin/wax‑based products are outside methodological scope; lower‑boiling fuels (gasoline, kerosene, jet fuel) may require different analytical approaches though the ratio/statistical concepts remain applicable.
Applications
- Environmental forensics and spill attribution after marine or shoreline petroleum incidents.
- Regulatory and incident response reporting to support legal, remediation or insurance claims.
- Routine laboratory protocols in accredited analytical and forensic labs for oil sample comparison.
- Oil industry investigations (bunkering disputes, tanker source identification) and consulting services focused on spill source correlation.
Who should use this standard
- Environmental laboratories and GC‑MS/GC‑FID analysts
- Oil spill response teams and environmental consultants
- Regulatory agencies, forensic chemists and legal professionals working on pollution liability
- Oil companies and insurers requiring standardized methods for source identification
Related standards
- Part of the EN 15522 series on oil spill identification; users should consult related parts of the series and national adaptations. EN 15522-2:2023+A1:2025 is the CEN‑approved reference for GC‑FID and GC‑low resolution‑MS based oil forensic workflows.
Standards Content (Sample)
SLOVENSKI STANDARD
01-junij-2025
Prepoznavanje razlitij olj - Nafta in sorodni naftni proizvodi - 2. del: Analizne
metode in podajanje rezultatov, izhajajočih iz GC-FID in GC-MS nizke ločljivosti
Oil spill identification - Petroleum and petroleum related products - Part 2: Analytical
method and interpretation of results based on GC-FID and GC-low resolution-MS
analyses
Identifizierung von Ölverschmutzungen - Mineralöl und verwandte Produkte - Teil 2:
Analytische Methodik und Interpretation der Ergebnisse, basierend auf GC-FID- und GC-
MS-Analysen bei niedriger Auflösung
Identification des pollutions pétrolières - Pétrole et produits pétroliers - Partie 2 :
Méthode d'analyse et interprétation des résultats sur la base des analyses par CPG DIF
et CPG-SM faible résolution
Ta slovenski standard je istoveten z: EN 15522-2:2023+A1:2025
ICS:
13.020.40 Onesnaževanje, nadzor nad Pollution, pollution control
onesnaževanjem in and conservation
ohranjanje
13.060.99 Drugi standardi v zvezi s Other standards related to
kakovostjo vode water quality
75.080 Naftni proizvodi na splošno Petroleum products in
general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN 15522-2:2023+A1
EUROPEAN STANDARD
NORME EUROPÉENNE
April 2025
EUROPÄISCHE NORM
ICS 13.020.40; 75.080 Supersedes EN 15522-2:2023
English Version
Oil spill identification - Petroleum and petroleum related
products - Part 2: Analytical method and interpretation of
results based on GC-FID and GC-low resolution-MS
analyses
Identification des pollutions pétrolières - Pétrole et Identifizierung von Ölverschmutzungen - Mineralöl
produits pétroliers - Partie 2 : Méthode d'analyse et und verwandte Produkte - Teil 2: Analytische Methodik
interprétation des résultats sur la base des analyses und Interpretation der Ergebnisse, basierend auf GC-
par CPG-DIF et CPG-SM faible résolution FID- und GC-MS-Analysen bei niedriger Auflösung
This European Standard was approved by CEN on 25 December 2022 and includes Amendment 1 approved by CEN on 2 March
2025.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2025 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 15522-2:2023+A1:2025 E
worldwide for CEN national Members.
Contents Page
European foreword . 8
Introduction . 10
1 Scope . 12
2 Normative references . 12
3 Terms and definitions . 13
3.1 General. 13
3.2 Sample comparison . 15
3.3 Abbreviations . 15
4 Strategy for the identification of oil spill sources . 16
4.1 General. 16
4.2 Basis for reliable conclusions – Numerical comparisons . 17
5 General lab instructions . 18
5.1 Sampling and sample preparation . 18
5.2 GC-FID and GC-MS analysis . 18
5.3 Conclusions and reporting . 20
6 Sample preparation . 20
6.1 General. 20
6.2 Visual examination and description of samples . 20
6.3 Preparation . 21
6.3.1 Sample storage . 21
6.3.2 Water samples . 21
6.3.3 Oil samples from an Ethylene-tetrafluorethylene (ETFE) net . 22
6.3.4 Thick oil and emulsified oil samples . 22
6.3.5 Tar balls and emulsified lumps . 22
6.3.6 Samples from oiled birds, fish and other animals and vegetation . 23
6.3.7 Sediment . 23
6.4 Sample clean-up . 23
6.4.1 General. 23
6.4.2 Particle removal . 23
6.4.3 Asphaltenes precipitation . 24
6.4.4 Alumina column clean-up of biogenic materials . 24
6.4.5 Silica or Florisil® column clean-up . 25
6.5 Recommended injection concentration . 26
7 Characterization and evaluation of analytical data . 27
7.1 General. 27
7.2 Characterization by GC-FID – Level 1 . 28
7.2.1 General. 28
7.2.2 Evaluation of the influence of weathering on sample comparison . 28
7.2.3 Acyclic isoprenoids ratios – Level 1.2 . 31
7.2.4 Level 1 criteria . 31
7.2.5 Level 1 conclusions . 32
7.3 Characterization by GC-MS – Level 2 . 32
7.3.1 General. 32
7.3.2 Visual inspection and overall characterization - Level 2.1 . 32
7.3.3 Treatment of the GC-MS results – Level 2.2 . 33
7.4 Treatment of the results using the MS-PW-plot– Level 2.2 . 33
7.4.1 General . 33
7.4.2 PW-plot calculations . 34
7.4.3 Evaluation of the variability of the analysis and peak integration . 34
7.4.4 Evaluation of weathering . 36
7.5 Treatment of the results using diagnostic ratios – Level 2.2 . 37
7.5.1 General . 37
7.5.2 Diagnostic ratios calculation . 37
7.5.3 Normative diagnostic ratios . 38
7.5.4 Analytical error . 42
7.5.5 Match-criterion for ratios . 43
7.5.6 Criteria for selecting, eliminating and evaluating diagnostic ratios . 44
7.6 Conclusions . 48
8 Reporting . 50
8.1 General . 50
8.2 Internal documentation – technical report . 50
8.3 Identification report – summary report . 51
9 Quality assurance . 52
Annex A (normative) GC-FID analysis . 53
A.1 General . 53
A.2 Analytical standards for GC-FID analyses . 53
A.2.1 N-alkanes . 53
A.2.2 Injection concentration of the standard GC-FID . 54
A.2.3 Storage of frequently used standard solutions . 54
A.3 Suggested instrumental conditions . 54
A.4 Measures to improve and verify the accuracy of the method – GC-FID . 55
A.4.1 Mass discrimination . 55
A.4.2 Column resolution . 56
A.4.3 Linearity . 58
A.4.4 Mid-level concentration . 59
A.4.5 Variance . 59
A.4.6 GC-FID sequence. 59
Annex B (normative) GC-MS analysis . 60
B.1 General . 60
B.2 Analytical standards for GC-MS analyses . 60
B.2.1 General . 60
B.2.2 Crude oil to be used around each sequence . 61
B.2.3 Oil mixture . 61
B.2.4 Analytical standards for PAH homologues . 61
B.2.5 FAMEs . 62
B.2.6 Storage of frequently used standard solutions . 62
B.3 Suggested instrumental conditions . 62
B.3.1 GC conditions for the exchange of analytical results . 62
B.3.2 GC-MS conditions for full-scan analysis . 65
B.3.3 MS preparation for selected ion monitoring (SIM) analysis . 65
B.4 Measures to improve and verify the accuracy of the GC-MS method . 66
B.4.1 Relative retention time . 66
B.4.2 Mass discrimination . 66
B.4.3 Peak symmetry and column resolution . 66
B.4.4 Patterns . 67
B.4.5 Linearity . 67
B.4.6 Mid-level concentration . 67
B.4.7 Variance. 68
B.4.8 Sample analysis with GC-MS . 68
Annex C (informative) Precision statement . 69
C.1 General. 69
C.2 Precision of the MS-PW-plot . 69
C.3 Precision of the ratio comparison . 70
C.4 Reproducibility . 71
C.5 The effect of the ratio type on the RSD . 72 ®
C.6 Example of a paired ratio calculation in Excel . 73 ®
C.7 Calculation of the evaporation line for the MS-PW-plot in Excel . 74
Annex D (normative) Evaluative reporting using match definitions or likelihood ratios . 76
D.1 General. 76
D.2 Match definitions . 76
D.3 Likelihood ratios (LR) . 77
Annex E (normative) List of compounds and compound groups analysed by GC-MS-SIM . 79
E.1 General. 79
E.2 Compounds. 80
E.2.1 General. 80
E.2.2 Compound type . 85
E.3 Normative ratios and informative ratios. . 86
Annex F (informative) Chromatograms and ratios of compounds and compound groups analysed
by GC-MS-SIM . 90
F.1 General. 90
F.2 Alkanes . 90
F.3 Cyclohexanes and polycyclic alkanes . 92
F.4 Mono-aromatic and poly-aromatic compounds . 97
F.4.1 Alkyl-benzenes and alkyl-toluenes . 97
F.4.2 PAHs, alkyl-PAHs and S-PAHs . 97
F.4.3 Tri-aromatic steranes . 109
F.5 FAMEs . 109
Annex G (informative) General composition of oils – chemical groups . 113
G.1 General . 113
G.2 Hydrocarbons . 114
G.3 Aliphatic compounds . 114
G.3.1 General . 114
G.3.2 Paraffins . 114
G.3.3 Naphthenes . 115
G.4 Aromatic compounds . 115
G.5 Heteroatomic organic compounds . 115
G.5.1 General . 115
G.5.2 Resins . 115
G.5.3 Asphaltenes . 116
Annex H (informative) Weathering of oils spilled on water and land . 117
H.1 General . 117
H.2 Weathering processes . 117
H.2.1 Weathering of oils spilled on water . 117
H.2.2 Weathering of waterborne oils stranded on land or land based oil spills . 119
H.2.3 Mixing and contamination. 119
H.2.4 Dispersion . 120
H.2.5 In-situ burning . 122
H.3 Evaluation of weathering processes . 123
H.3.1 Evaporation . 123
H.3.2 Dissolution . 126
H.3.3 Photo-oxidation . 128
H.3.4 Biodegradation . 134
H.3.5 Wax redistribution . 137
H.3.6 Mixing . 143
H.3.7 Contamination . 145
H.3.8 In-situ burning . 145
Annex I (informative) Characteristic features of different oil types in oil spill identification . 148
I.1 General . 148
I.2 Crude oil . 148
I.2.1 General. 148
I.2.2 Analysis . 149
I.3 Light fuel oil (gas oil, diesel, fuel No 2, biofuels, GTL) . 155
I.3.1 General. 155
I.3.2 Analysis, GC screening . 156
I.3.3 GC-MS analysis . 158
I.3.4 Biofuels . 161
I.3.5 Gas to liquid products . 162
I.4 Lubricating oil . 163
I.4.1 General. 163
I.4.2 Analysis . 165
I.5 Heavy fuel oil (HFO, Bunker C, Fuel No 6) and low sulfur fuel oil . 169
I.5.1 General. 169
I.5.2 Analysis . 170
I.6 Waste oil (bilge oil, sludge, slops) . 178
I.6.1 General. 178
I.6.2 Analysis . 179
I.7 Conclusion . 183
Annex J (informative) Example of external documentation – identification report of an oil spill
case . 185
J.1 General. 185
J.2 Sample information . 185
J.3 Analytical procedure . 185
J.3.1 Method . 185
J.3.2 Dilution/extraction . 185
J.3.3 Analyses. 185
J.4 Results . 185
J.5 Interpretation . 186
J.5.1 General. 186
J.5.2 Positive match . 186
J.5.3 Probable match . 186
J.5.4 Inconclusive . 186
J.5.5 Non-match . 186
J.6 Conclusions . 186
Annex K (informative) Example of internal documentation – technical report of an oil spill case
.......................................................................................................................................................................... 188
K.1 General . 188
K.2 Sample information . 188
K.2.1 Samples . 188
K.2.2 Contact information . 188
K.2.3 Request . 188
K.2.4 Photo(s) of the samples . 189
K.3 Sample preparation and analyses . 189
K.4 Quality assurance . 191
K.5 GC-FID results – Level 1 . 193
K.5.1 GC-FID chromatograms – Level 1.1 . 193
K.5.2 GC-FID numerical comparisons – Level 1.2 . 195
K.5.3 GC-FID conclusions . 200
K.6 GC-MS results – Level 2 . 201
K.6.1 General . 201
K.6.2 GC-MS chromatograms – Level 2.1 . 201
K.6.3 GC-MS numerical comparisons – Level 2.2 . 203
K.6.4 Visual inspection . 210
K.6.5 Overall conclusions . 211
Bibliography . 212
European foreword
This document (EN 15522-2:2023+A1:2025) has been prepared by Technical Committee CEN/TC 19
“Gaseous and liquid fuels, lubricants and related products of petroleum, synthetic and biological origin”,
the secretariat of which is held by NEN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by October 2025, and conflicting national standards shall
be withdrawn at the latest by October 2025.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document includes Amendment 1 approved by CEN on 2 March 2025.
This document supersedes !EN 15522-2:2023".
The start and finish of text introduced or altered by amendment is indicated in the text by tags !".
In comparison with the previous edition CEN/TR 15522-2:2012, the following technical modifications
have been made:
— adding compounds to be analysed in order to include light products in the diesel range;
— adding more information about biodegradation;
— adding a Reporting and a Quality assurance chapter;
— adding Annex C with precision data;
— adding Annex D with likelihood grade conclusions;
— introduction of characterization of FAME in Annex I;
— serious revision of Annexes H, I, J and K, adding new pictures and chromatograms.
EN 15522 is composed of two parts that describe the following:
— Part 1 on sampling, describing good sampling practice, detailing sampling equipment, sampling
techniques and the handling of oil samples prior to their arrival at the forensic laboratory;
— Part 2 giving the analytical method, which covers the general concepts and laboratory procedures of
oil spill identification, analytical techniques, data processing, data treatment,
interpretation/evaluation and reporting of results.
This document has been prepared under a standardization request addressed to CEN by the European
Commission. The Standing Committee of the EFTA States subsequently approves these requests for its
Member States.
A list of all parts in a series can be found on the CEN website.
Any feedback and questions on this document should be directed to the users’ national standards body.
A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United
Kingdom.
Introduction
This document describes a forensic method for characterizing and identifying the source of oil spills in
the environment resulting from accidents or intentional discharges. By following this method, data
generated can be used as evidence in support of the legal process. This method is based on the experience
gained from use of the earlier revisions.
This document is composed of two parts that describe the following:
— Part 1 on sampling, describing good sampling practice, detailing sampling equipment, sampling
techniques and the handling of oil samples prior to their arrival at the forensic laboratory;
— Part 2 giving the analytical method, which covers the general concepts and laboratory procedures of
oil spill identification, analytical techniques, data processing, data treatment,
interpretation/evaluation and reporting of results.
Oil spill source identification is a complex process due to the large variation in sample types and oil spill
situations that can be encountered. Part 1 is a compilation of instructions and experiences from experts
all over the world which will guide the user in sampling, storing and delivering oil samples for laboratory
analysis. Part 2 will guide the reader through the analytical process. It prescribes how to prepare and
analyse oil samples using Gas Chromatography with Flame Ionization Detection (GC-FID) and GC with
low-resolution Mass Spectrometry (GC-MS). Any compositional difference found between samples is only
relevant if this difference is larger than the variability of the method itself. Good analytical performance
and strict quality assurance are therefore essential. In the Annexes of Part 2, relevant information
concerning different types of oil and oil comparison techniques are presented.
In a typical standard method for testing, instructions are given on performing an “analytical” procedure.
However, oil spill identification comprises both analytical and assessment components. Sample
preparation is described in Chapter 6. Analytical methodology for GC-FID is provided in Annex A, while
GC-MS is covered in Annexes B, E and F. Other parts of the document describe how to assess the analytical
data utilizing various tools to draw a conclusion. As every case can differ in situation, size, products and
weathering, the evaluation part of the method is described as a toolbox. Annexes J and K provide example
documents for an oil spill case and show how the assessment tools may be applied. Further examples of
specific oil spill cases are available as summary reports of the annual round robins (RR-tests) organized
by Bonn-OSINet [11] and in literature.
The purpose of this document is to assist the reader in defensibly identifying the source of an oil spill by
comparing the chemical composition of spill samples against suspected source oils. The basis for this
method is the widely variable chemical compositions of oils, which allows oils from different sources to
be distinguished by analytical techniques. The method relies upon detailed chemical characterization and
statistical comparison between samples (i.e. a spilled oil and a suspected source) diagnostic features in
order to determine whether they “match”. To minimize the danger of “false positive matches”, good
laboratory practices are to be maintained. A “positive match” between a spilled oil and suspected source
sample may not be sufficient to identify the PRP (potential responsible party) on its own. However, this
result can be critical evidence in proving a
...
Frequently Asked Questions
SIST EN 15522-2:2023+A1:2025 is a standard published by the Slovenian Institute for Standardization (SIST). Its full title is "Oil spill identification - Petroleum and petroleum related products - Part 2: Analytical method and interpretation of results based on GC-FID and GC-low resolution-MS analyses". This standard covers: This document specifies a method to identify and compare the compositional characteristics of oil samples. Specifically, it describes the detailed analytical and data processing methods for identifying the characteristics of spill samples and establishing their correlation to suspected source oils. Even when samples or data from suspected sources are not available for comparison, establishing the specific nature (e.g. refined petroleum, crude oil, waste oil, etc.) of the spilled oil still helps to constrain the possible source(s). This methodology is restricted to petroleum related products containing a significant proportion of hydrocarbon-components with a boiling point above 150 °C. Examples are: crude oils, higher boiling condensates, diesel oils, residual bunker or heavy fuel oils, lubricants, and mixtures of bilge and sludge samples, as well as distillate fuels and blends. While the specific analytical methods are perhaps not appropriate for lower boiling oils (e.g. kerosene, jet fuel, or gasoline), the general concepts described in this methodology, i.e. statistical comparison of weathering-resistant diagnostic ratios, are applicable in spills involving these kinds of oils. Paraffin based products (e.g. waxes, etc.) are outside the scope of this method because too many compounds are removed during the production process [37]. However, the method can be used to identify the type of product involved. Although not directly intended for identifying oil recovered from groundwater, vegetation, wildlife/tissues, soil, or sediment matrices, they are not precluded. However, caution is needed as extractable compounds can be present in these matrices that alter and/or contribute additional compounds compared to the source sample. If unrecognized, the contribution from the matrix can lead to false “non-matches”. It is therefore advisable to analyse background sample(s) of the matrix that appear unoiled. When analysing “non-oil” matrices additional sample preparation (e.g. clean-up) is often required prior to analysis and the extent to which the matrix affects the correlation achieved is to be considered. Whether the method is applicable for a specific matrix depends upon the oil concentration compared to the “matrix concentration”. In matrices containing high concentrations of oil, a positive match can still be concluded. In matrices containing lower concentrations of oil, a false “non-match” or an “inconclusive match” can result from matrix effects. Evaluation of possible matrix effects is beyond the scope of this document.
This document specifies a method to identify and compare the compositional characteristics of oil samples. Specifically, it describes the detailed analytical and data processing methods for identifying the characteristics of spill samples and establishing their correlation to suspected source oils. Even when samples or data from suspected sources are not available for comparison, establishing the specific nature (e.g. refined petroleum, crude oil, waste oil, etc.) of the spilled oil still helps to constrain the possible source(s). This methodology is restricted to petroleum related products containing a significant proportion of hydrocarbon-components with a boiling point above 150 °C. Examples are: crude oils, higher boiling condensates, diesel oils, residual bunker or heavy fuel oils, lubricants, and mixtures of bilge and sludge samples, as well as distillate fuels and blends. While the specific analytical methods are perhaps not appropriate for lower boiling oils (e.g. kerosene, jet fuel, or gasoline), the general concepts described in this methodology, i.e. statistical comparison of weathering-resistant diagnostic ratios, are applicable in spills involving these kinds of oils. Paraffin based products (e.g. waxes, etc.) are outside the scope of this method because too many compounds are removed during the production process [37]. However, the method can be used to identify the type of product involved. Although not directly intended for identifying oil recovered from groundwater, vegetation, wildlife/tissues, soil, or sediment matrices, they are not precluded. However, caution is needed as extractable compounds can be present in these matrices that alter and/or contribute additional compounds compared to the source sample. If unrecognized, the contribution from the matrix can lead to false “non-matches”. It is therefore advisable to analyse background sample(s) of the matrix that appear unoiled. When analysing “non-oil” matrices additional sample preparation (e.g. clean-up) is often required prior to analysis and the extent to which the matrix affects the correlation achieved is to be considered. Whether the method is applicable for a specific matrix depends upon the oil concentration compared to the “matrix concentration”. In matrices containing high concentrations of oil, a positive match can still be concluded. In matrices containing lower concentrations of oil, a false “non-match” or an “inconclusive match” can result from matrix effects. Evaluation of possible matrix effects is beyond the scope of this document.
SIST EN 15522-2:2023+A1:2025 is classified under the following ICS (International Classification for Standards) categories: 13.020.40 - Pollution, pollution control and conservation; 13.060.99 - Other standards related to water quality; 75.080 - Petroleum products in general. The ICS classification helps identify the subject area and facilitates finding related standards.
SIST EN 15522-2:2023+A1:2025 has the following relationships with other standards: It is inter standard links to SIST EN 15522-2:2023, SIST EN 15522-2:2023/kFprA1:2024. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase SIST EN 15522-2:2023+A1:2025 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.
SIST EN 15522-2:2023+A1:2025は、石油流出識別に関する標準の一部であり、石油および石油関連製品の特性を識別および比較する方法を詳細に定義しています。この標準は、GC-FIDおよびGC-低分解能MS分析に基づく分析手法と結果の解釈を主眼に置いています。石油流出事故の解析においては、流出した油の特定の特性を特定し、疑わしい供給源の油との相関関係を確立するための明確な手法が提供される点が特筆に値します。 この標準の強みは、150 °C以上の沸点を持つ炭化水素成分が含まれる石油関連製品を対象としている点にあります。具体的には、原油、高沸点の凝縮物、ディーゼル油、重油、潤滑油、ビルジ及びスラッジの混合物、さらには蒸留燃料やブレンド品などが含まれます。したがって、この方法は、さまざまな石油製品の特性を分析するための幅広いアプローチを提供します。 さらに、流出油の特定がなされていない場合でも、流出した油の特定の性質(例えば、精製石油や原油、廃油など)を確立することができ、可能性のある供給源を絞り込む助けになります。これは、油流出事故の対応および環境保護の観点から非常に重要です。 ただし、この標準はパラフィン系製品(例えば、ワックスなど)を対象外としていますが、流出油の特定には役立つ可能性があります。さらに、地下水、植生、動物組織、土壌、堆積物などから回収した油の分析については直接の意図はありませんが、一定の配慮を持って適用できる可能性があるため、実際の現場での利用に際しては注意が必要です。 最後に、この標準に含まれるメソッドの適用性は、特定のマトリックスにおける油濃度とマトリックス濃度のバランスに依存し、マトリックスの影響を評価することが必要ですが、これを超えた評価は文書の範囲を超えています。このことは、油流出の特定およびその影響評価のために重要となります。全体として、SIST EN 15522-2:2023+A1:2025は、石油流出の特性分析に関する充実したガイドラインを提供し、環境保護および石油関連の問題における重要な資源となるでしょう。
Die Norm SIST EN 15522-2:2023+A1:2025 bietet eine umfassende Methode zur Identifizierung und zum Vergleich der Zusammensetzung von Ölmuster, insbesondere im Kontext von Ölverschmutzungen. Der Anwendungsbereich dieser Norm ist klar definiert und konzentriert sich auf petrochemische Produkte, die einen signifikanten Anteil an Kohlenwasserstoffen mit einem Siedepunkt von über 150 °C enthalten. Dazu gehören Rohöle, höher siedende Kondensate, Dieselöle, Rückstands- und Schweröle sowie Schmierstoffe und Gemische von Bilgen- und Schlammproben. Diese klare Eingrenzung gewährleistet eine präzise Analyse der relevanten Produkte und trägt zur effektiven Bewältigung von Ölverschmutzungen bei. Ein herausragendes Merkmal dieser Norm ist die detaillierte Beschreibung der analytischen und datentechnischen Methoden zur Bestimmung der Eigenschaften von Verschmutzungsproben und zur Herstellung der Korrelation zu verdächtigen Quellölen. Der Einsatz von GC-FID und GC-niedrigauflösender MS-Analysen ermöglicht eine präzise Identifikation, selbst wenn keine Proben oder Daten von Verdächtigen Quellen zur Verfügung stehen. Dies ist besonders relevant, da es hilft, die spezifische Natur des verschütteten Öls zu bestimmen, was die Einschränkung möglicher Quellen erleichtert. Die Anwendung dieser Methodologie auf eine breite Palette von Produkten macht sie besonders wertvoll. Auch wenn die spezifischen analytischen Methoden nicht für Öle mit niedrigeren Siedepunkten wie Kerosin oder Benzin geeignet sind, können die allgemeinen Konzepte, wie die statistische Vergleichung von wetterfesten diagnostischen Verhältnissen, weiterhin auf diese Ölsorten angewendet werden. Dies unterstreicht die Vielseitigkeit der Norm und ihre Bedeutung in verschiedenen Kontexten von Ölverschmutzungen. Es ist zu beachten, dass diese Norm Produkte auf Paraffinbasis, wie Wachs, ausschließt, da zu viele Verbindungen während des Produktionsprozesses entfernt werden. Dennoch kann die Methode verwendet werden, um den Produkttyp zu identifizieren, was die Flexibilität der Norm weiter erhöht. Die Norm ermutigt außerdem zur Vorsicht bei der Analyse von "Nicht-Öl"-Matrizen, da hier zusätzliche Probenvorbereitungen erforderlich sein können. Die Berücksichtigung möglicher Matrixeffekte wird als wichtig erachtet, um falsche "Nicht-Zuordnungen" zu vermeiden. Diese proaktive Herangehensweise an die Analyse unterstreicht die Robustheit der Methodik und ihre Relevanz für die praktische Anwendung. Insgesamt stellt die SIST EN 15522-2:2023+A1:2025 eine zeitgemäße und gut durchdachte Standardisierung dar, die es ermöglicht, Ölverschmutzungen effektiv zu identifizieren und zu analysieren, was für den Umweltschutz und die Schadensbegrenzung von entscheidender Bedeutung ist.
La norme SIST EN 15522-2:2023+A1:2025 aborde de manière précise et détaillée l'identification des déversements de pétrole et des produits pétroliers associés. Sa portée est clairement définie, concentrée sur les méthodes analytiques permettant d'identifier et de comparer les caractéristiques compositionnelles des échantillons de pétrole. Cette norme est particulièrement pertinente pour les professionnels travaillant dans le domaine de l'analyse des hydrocarbures, car elle propose des approches robustes pour établir la nature spécifique des huiles déversées, qu'il s'agisse de pétrole raffiné, de pétrole brut ou d'huiles usées. Une des forces majeures de cette norme réside dans la méthodologie analytique qu'elle décrit, qui s'appuie sur des analyses basées sur le GC-FID et le GC-MS à basse résolution. Ces méthodes permettent non seulement d'identifier les caractéristiques des échantillons de déversements, mais également d'établir des corrélations avec des huiles sources suspectées, même en l'absence d'échantillons comparatifs directs. Cela est essentiel pour la gestion des incidents liés aux déversements et pour la mise en place des mesures appropriées. La norme précise également l'exclusion des produits à base de paraffine, tels que les cires, qui ne sont pas pertinents en raison des nombreux composés éliminés lors de leur production. Toutefois, elle reste claire sur la possibilité d'identifier le type de produit impliqué dans le déversement, ajoutant une dimension supplémentaire à son utilité. Un autre aspect important est la reconnaissance que les matrices non pétrolières (comme les sols ou les sédiments) peuvent contenir des composés extraits qui altèrent les résultats. Cela souligne la nécessité de prudence et d'efficacité dans la préparation des échantillons, notamment en analysant des échantillons de fond non contaminés pour éviter des "non-correspondances" erronées. La notion que le degré d'impact de la matrice sur les résultats doit être évalué est un ajout pertinent qui enrichit l'expertise des analystes sur les défis d'identification dans des contextes complexes. En résumé, la norme SIST EN 15522-2:2023+A1:2025 se démarque par sa méthodologie robuste et sa capacité à fournir des résultats d'identification fiables tout en abordant les subtilités liées aux matrices des échantillons. Son application dès lors est cruciale pour un large éventail d'intervenants impliqués dans les analyses environnementales et la gestion des risques liés aux déversements.
The standard SIST EN 15522-2:2023+A1:2025 provides a comprehensive framework for the analytical identification of petroleum and petroleum-related products in oil spills. Its primary focus is to establish a method for identifying and comparing the compositional characteristics of oil samples. The document excels in detailing the analytical techniques, specifically gas chromatography with flame ionization detection (GC-FID) and low resolution mass spectrometry (GC-low resolution-MS), that are crucial for accurately determining the characteristics of spill samples. One of the key strengths of this standard is its extensive scope, which accommodates various types of hydrocarbons, such as crude oils, higher boiling condensates, diesel oils, and residual fuels. This inclusivity is critical as it allows the methodology to address a wide range of petroleum-related products, enhancing its practical applicability in real-world spill scenarios. Furthermore, the document underscores the significance of statistical comparison techniques and weathering-resistant diagnostic ratios that provide a robust analytical framework, even in the absence of direct comparison samples. The relevance of SIST EN 15522-2:2023+A1:2025 cannot be overstated, as it serves not only to identify the type of oil spilled but also to facilitate the tracing of its source, which is essential for effective remediation efforts. With its guidance, environmental professionals can make informed decisions about the nature of the spill and implement appropriate response strategies. While it notes certain limitations, such as its restricted applicability to matrices containing significant hydrocarbons above 150 °C and its cautious stance toward non-oil matrices, the document provides ample guidance on handling such complexities. It advises analysts on the potential challenges associated with matrix effects and the importance of considering background samples to avoid misinterpretation of results. In summary, the standard SIST EN 15522-2:2023+A1:2025 effectively equips users with a detailed methodology for oil spill analysis. Its strengths in analytical rigor, comprehensive scope, and practical relevance make it a vital tool in environmental assessment and resource management when dealing with petroleum-related spills.
SIST EN 15522-2:2023+A1:2025 표준 문서는 석유 및 석유 관련 제품의 유출 식별을 위한 분석 방법과 결과 해석을 명확히 규명하고 있습니다. 이 표준의 주요 목적은 유출 샘플의 조성을 식별하고 비교하는 방법을 명시하는 것입니다. 특히, 이 표준은 GC-FID 및 GC-저해상도-MS 분석 기반의 구체적인 분석 및 데이터 처리 방법을 다루고 있어, 의심되는 원유와 유출 샘플 간의 상관관계를 도출하는 데 중요한 역할을 합니다. 이 표준의 범위는 150 °C 이상의 끓는점을 가진 탄화수소 성분을 포함한 석유 관련 제품에 국한되어 있습니다. 이는 원유, 높은 끓는 점의 응축액, 디젤유, 잔여 벙커유 또는 중유, 윤활유, 배수 및 슬러지 샘플의 혼합물, 그리고 증류 연료 및 혼합물 등을 포함합니다. 이러한 범위 설정은 정확한 유출 원인을 파악하는 데 필요한 기초 데이터를 제공하며, 석유의 특정 성질(예: 정제 석유, 원유, 폐유 등)을 파악하는 데 크게 기여합니다. SIST EN 15522-2 표준의 강점은 다양합니다. 첫째, 기후 변화 및 환경 오염의 틀 안에서 유출 사고에 대응할 수 있는 체계적인 방법론을 제공합니다. 둘째, 비록 저온에서 끓는 석유(예: 등유, 항공 연료, 가솔린 등)에 대한 직접적인 분석 방법은 적합하지 않지만, 이 표준의 통계적 비교 개념은 그러한 유출사고에서도 적용 가능한 아이디어를 제시합니다. 셋째, 이 방법은 특정하더라도 수질 및 토양 등 다양한 매트릭스에서의 오염물 분석에 유용할 수 있으며, 유출 물질과 매트릭스 간의 영향을 고려해야 할 필요성을 강조함으로써 보다 명확한 분석 결과를 가능하게 합니다. 이 표준 문서는 또한 분석 과정에서 발생할 수 있는 매트릭스 효과에 대한 주의를 요구하며, 이것은 분석의 정확성을 높이는 데 필수적입니다. 유출 사고의 특성상, 환경에서의 다양한 물질과의 상호작용이 결과에 미치는 영향을 고려하는 것은 매우 중요하며, 이는 실제 분석에 있어 신뢰성을 높여주는 요소로 작용합니다. 결론적으로, SIST EN 15522-2:2023+A1:2025 표준은 석유 유출 사건 분석에 있어 필수적인 도구를 제공하며, 유출 물질의 유형 및 특성을 정확히 분석하는 데 있어 뛰어난 적합성과 전문성을 보여줍니다. 이러한 점에서 이 표준은 석유 및 환경 과학 분야의 전문가들이 반드시 참고해야 할 중요한 문서입니다.








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...