ISO 4414:1998
(Main)Pneumatic fluid power - General rules relating to systems
Pneumatic fluid power - General rules relating to systems
Transmissions pneumatiques — Règles générales relatives aux systèmes
La présente Norme internationale fournit des règles générales relatives aux systèmes pneumatiques des machines utilisées dans les procédés de fabrication industrielle. Elle est destinée à servir de guide à la fois aux fournisseurs et aux acheteurs, afin d'assurer : a) la sécurité ; b) un fonctionnement continu du système ; c) une maintenance facile et économique ; d) la pérennité du système. La présente Norme internationale ne s'applique pas aux compresseurs d'air et aux systèmes associés à la distribution d'air généralement installés dans une usine.
Fluidna tehnika - Pnevmatika - Splošna pravila za uporabo pnevmatičnih sistemov
General Information
Relations
Frequently Asked Questions
ISO 4414:1998 is a standard published by the International Organization for Standardization (ISO). Its full title is "Pneumatic fluid power - General rules relating to systems". This standard covers: La présente Norme internationale fournit des règles générales relatives aux systèmes pneumatiques des machines utilisées dans les procédés de fabrication industrielle. Elle est destinée à servir de guide à la fois aux fournisseurs et aux acheteurs, afin d'assurer : a) la sécurité ; b) un fonctionnement continu du système ; c) une maintenance facile et économique ; d) la pérennité du système. La présente Norme internationale ne s'applique pas aux compresseurs d'air et aux systèmes associés à la distribution d'air généralement installés dans une usine.
La présente Norme internationale fournit des règles générales relatives aux systèmes pneumatiques des machines utilisées dans les procédés de fabrication industrielle. Elle est destinée à servir de guide à la fois aux fournisseurs et aux acheteurs, afin d'assurer : a) la sécurité ; b) un fonctionnement continu du système ; c) une maintenance facile et économique ; d) la pérennité du système. La présente Norme internationale ne s'applique pas aux compresseurs d'air et aux systèmes associés à la distribution d'air généralement installés dans une usine.
ISO 4414:1998 is classified under the following ICS (International Classification for Standards) categories: 23.100.01 - Fluid power systems in general. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO 4414:1998 has the following relationships with other standards: It is inter standard links to SIST ISO 4414:1995, ISO 4414:1982, ISO 4414:2010. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase ISO 4414:1998 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 4414
Second edition
1998-08-15
Pneumatic fluid power — General rules
relating to systems
Transmissions pneumatiques — Règles générales relatives aux systèmes
A
Reference number
Contents Page
.......................................................................................................................... 1
1 Scope
2 Normative references . 1
3 Definitions . 2
4 Requirements . 3
4.1 General . 3
4.2 Hazards . 3
4.3 Safety requirements . 3
4.4 System requirements . 5
4.5 Site conditions . 5
5 System design . 6
5.1 Circuit diagrams .6
5.2 Identification . 7
5.3 Installation, use and maintenance . 11
5.4 Use of standard parts . 11
5.5 Seals and sealing devices . 11
5.6 Maintenance and operating data . 12
5.7 Operation and maintenance manuals . 12
6 Energy conversion components . 12
6.1 Air motors and semi-rotary actuators . 12
6.2 Cylinders . 13
6.3 Surge tanks and other auxiliary reservoirs . 15
.......................................................................................................................... 16
7 Valves
7.1 Selection . 16
7.2 Mounting . 16
7.3 Manifolds . 16
7.4 Electrically operated valves . 17
7.5 Valve function identity . 18
7.6 Relief valves . 18
7.7 Quick exhaust valves . 18
© ISO 1998
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the publisher.
International Organization for Standardization
Case postale 56 • CH-1211 Genève 20 • Switzerland
Internet iso@iso.ch
Printed in Switzerland
ii
©
ISO ISO 4414:1998(E)
8 Conditioning components . 18
8.1 Filtration . 18
8.2 Pressure regulation . 19
8.3 Lubrication . 19
8.4 Shielding . 20
8.5 Air dryers . 21
9 Piping . 21
9.1 General requirements . 21
9.2 Pipe and tube requirements . 23
9.3 Support of piping .23
9.4 Foreign matter . 24
9.5 Flexible hose assemblies . 24
9.6 Quick-action couplings . 25
9.7 Removal of piping . 25
10 Control systems . 26
10.1 Unintended movement . 26
10.2 System protection . 26
10.3 Components . 26
10.4 Control systems with servo or proportional valves . 27
10.5 Other design considerations . 28
10.6 Location of controls .29
10.7 Emergency controls . 30
11 Diagnostics and monitoring . 30
11.1 Pressure measurement . 30
11.2 Electrical supply indicators . 31
12 Cleaning and painting . 31
13 Preparation for transportation . 31
13.1 Identification of piping .31
13.2 Packaging . 31
13.3 Protection of openings . 31
14 Commissioning . 31
14.1 Verification tests . 31
14.2 Noise . 32
14.3 Fluid leakage . 32
14.4 Final data to be provided . 32
14.5 Modifications . 32
15 Identification statement . 33
iii
©
Annex A (informative) Items requiring supplier/purchaser agreement . 34
(informative) . 35
Annex B List of hazards
Annex C (informative) Cross reference list ISO 4414/EN 983 . 37
Annex D (informative) Example of a parts list . 41
Annex E (informative) Example of pneumatic system data form . 42
Annex F (informative) Bibliography . 49
Index . 51
iv
©
ISO ISO 4414:1998(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is
normally carried out through ISO technical committees. Each member body interested in a
subject for which a technical committee has been established has the right to be represented
on that committee. International organizations, governmental and non-governmental, in liaison
with ISO, also take part in the work. ISO collaborates closely with the International
Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
Draft International Standards adopted by the technical committees are circulated to the member
bodies for voting. Publication as an International Standard requires approval by at least 75 % of
the member bodies casting a vote.
International Standard ISO 4414 was prepared by Technical Committee ISO/TC 131, Fluid
power systems, Subcommittee SC 9, Installations and systems.
This second edition cancels and replaces the first edition (ISO 4414:1982), which has been
technically revised.
Annexes A to F of this International Standard are for information only.
v
©
Introduction
In pneumatic fluid power systems, power is transmitted and controlled through air or a neutral
gas under pressure within a circuit.
The application of pneumatic fluid power systems requires a thorough understanding and
precise communication between the supplier and purchaser. This International Standard was
prepared to assist that understanding and communication and to document many of the good
practices learned from experience with pneumatic systems.
Use of this International Standard assists:
a) the identification and specification of the requirements for pneumatic systems and
components;
b) the identification of the respective areas of responsibility;
c) the design of systems and their components to comply with specific requirements;
d) understanding of the safety requirements of a pneumatic system.
General rules given in this International Standard have no legal status except those paragraphs
that are included in contractual agreements between purchasers and suppliers. Deviation from
those parts of this International Standard included in contractual agreements shall also be
agreed to in writing by the purchaser and supplier. Attention shall be drawn by the purchaser
and/or the supplier to applicable national and local codes or laws.
General rules which contain the verb "shall" are counsels of good engineering practice,
universally applicable with rare exceptions. Use of the word "should" in the document is not an
indication of choice but an indication that the desirable engineering practices described may
have to be modified due to the peculiarities of certain processes, environmental conditions, or
equipment size.
Titles or parts of the text which are marked with an asterisk (*) indicate subclauses that
discussion is needed between the supplier and purchaser to define the requirements and/or
responsibilities. These are also listed in annex A.
vi
©
INTERNATIONAL STANDARD ISO ISO 4414:1998(E)
Pneumatic fluid power — General rules relating to systems
1 Scope
This International Standard provides general rules relating to pneumatic systems used in
industrial manufacturing processes. It is intended as a guide for both suppliers and purchasers,
with a view to ensuring:
a) safety;
b) uninterrupted system operation;
c) ease and economy of maintenance;
d) long life of the system.
This International Standard does not apply to air compressors and the systems associated with
air distribution as typically installed in a factory.
2 Normative references
The following standards contain provisions which, through reference in this text, constitute
provisions of this International Standard. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this
International Standard are encouraged to investigate the possibility of applying the most recent
editions of the standards indicated below. Members of IEC and ISO maintain registers of
currently valid International Standards.
ISO 65:1981, Carbon steel tubes suitable for screwing in accordance with ISO 7-1.
ISO 1219-1:1991, Fluid power systems and components — Graphic symbols and circuit
diagrams — Part 1: Graphic symbols.
ISO 1219-2:1995, Fluid power systems and components — Graphic symbols and circuit
diagrams — Part 2: Circuit diagrams.
ISO 5598:1985, Fluid power systems and components — Vocabulary.
©
ISO
ISO 5782-1:1997, Pneumatic fluid power — Compressed air filters — Part 1: Main
characteristics to be included in suppliers' literature and product marking requirements.
Pneumatic fluid power — Compressed air lubricators — Part 1: Main
ISO 6301-1:1997,
characteristics to be included in suppliers' literature and product marking requirements.
ISO 6953-1:1990, Pneumatic fluid power — Air line pressure regulators — Part 1: Main
characteristics to be included in commercial literature and specific requirements.
Pneumatic fluid power — Standard reference atmosphere.
ISO 8778:1990,
Electrical equipment of industrial machines — Part 1: General requirements.
IEC 204-1:1997,
Degrees of protection provided by enclosures (IP code).
IEC 529:1989,
3 Definitions
For the purposes of this International Standard, the definitions given in ISO 5598 and the
following definitions apply.
3.1 actuator: Component (e.g. motor or cylinder) that transforms fluid energy into mechanical
energy.
3.2 commissioning: Procedure by which a system is formally accepted by the purchaser.
3.3 component: Individual unit (e.g. cylinder, motor, valve or filter, but excluding piping)
comprising one or more parts designed to be a functional part of a fluid power system.
3.4 control mechanism: Device that provides an input signal to a component (e.g. lever,
solenoid).
3.5 emergency control: Control function that brings a system to a safe condition.
Surface that contains information describing either the performance of a
3.6 function plate:
manually operated device (e.g. on/off, up/down) or the status of a function performed by the
system (e.g. clamp, lift, advance).
Gas that has properties similar to air and does not react to the effects of
3.7 neutral gas:
pressure and/or temperature in a manner different to air.
3.8 operating device: Device that provides an input signal to a control mechanism (e.g. cam,
electrical switch).
3.9 piping: Any combination of fittings, couplings or connectors with pipes, hoses or tubes
which allow fluid flow between components.
©
ISO
3.10 pneumatics: Science and technology which deals with the use of air or neutral gases as
the fluid power medium.
3.11 purchaser: Party that stipulates the requirements of a machine, equipment, system or
component and judges whether the product satisfies those requirements.
3.12 supplier: Party that contracts to provide the product(s) to satisfy the purchasers
requirements.
3.13 system: Arrangement of interconnected components which transmits and controls fluid
power energy.
4 Requirements
4.1 General
The requirements stated in 4.1.1 to 4.5 apply to all systems within the scope of this
International Standard.
4.1.1 Instructions
Pneumatic systems shall be installed and used in accordance with the instructions and
recommendations of the system supplier.
4.1.2 Language*
The supplier and purchaser shall agree on the language to be used for machine marking and
applicable documentation. The supplier shall be responsible for ensuring that any translation
has the same meaning as the original text.
4.2 Hazards*
When agreed between purchaser and supplier, an assessment of the hazards listed in annex B
shall be performed. This assessment may include the influence of the pneumatic fluid power
system with other parts of the machine, system or environment. Standards listed in annex B
may be used in this assessment.
So far as is practicable, the hazards identified shall be eliminated by design and, where this is
not practicable, the design shall incorporate safeguards against such hazards.
4.3 Safety requirements
4.3.1 Design considerations
When designing pneumatic systems, all intended operations and use of the systems shall be
considered.
©
ISO
Pneumatic systems shall be designed and components selected, applied, mounted and
adjusted to provide uninterrupted operation, extended life and safe operation.
In the event of a failure, safety of personnel shall be the prime consideration, and damage to
equipment and the environment minimized. Possible modes of failure and intended operations
and use shall be considered.
4.3.2 Component selection
All components in the system shall be selected or specified to provide for safety in use, and
they shall operate within their rated limits when the system is put to its intended use.
Components shall be selected or specified to operate reliably under all intended uses of the
system. Particular attention shall be paid to the failure mode of components that could cause a
hazard in the event of their failure or malfunction.
4.3.3 Unintended pressures
All parts of the system shall be designed or otherwise protected against pressures exceeding
the maximum working pressure of a system or any part of the system or the rated pressure of
any specific component.
Systems shall be designed, constructed and adjusted to minimise surge pressures and
intensified pressures. Surge pressures and intensified pressure shall not cause hazards.
Attention should also be paid to the consequences of blockages, pressure drops or leaks which
could affect safe operation of components.
4.3.4 Mechanical movements
Mechanical movements, whether intended or unintended (including effects from, for example
acceleration, deceleration or lifting/holding of masses), shall not result in a situation which is
hazardous to persons.
4.3.5 Noise
Silencers shall be used where the sound pressure level caused by exhausting air is above that
permitted by applicable codes and standards. The use of exhaust port silencers, in themselves,
shall not create a hazard. Silencers should not create detrimental back pressure.
4.3.6 Leakage
Leakage (internal or external) shall not cause a hazard.
4.3.7 Airborne hazardous substances
Systems shall be so designed, constructed and/or equipped that hazards due to airborne
hazardous substances included in the exhausting air can be minimized.
©
ISO
4.4 System requirements*
The supplier and purchaser shall establish specifications for the operation and function of the
system, including
a) working pressure range;
b) operating temperature range;
c) type of fluid to be used;
d) cycle rates;
e) duty cycle;
f) service life of components;
g) sequence of events;
h) lubrication;
i) lifting requirements;
j) emergency and safety requirements;
k) details of painting or protective coating.
4.5 Site conditions*
4.5.1 Specifications*
The supplier and purchaser shall define site conditions and the design of the system shall take
account of these conditions.
Examples of information required are
a) ambient temperature range of the installation;
b) humidity range of the installation;
c) available utilities, e.g. electricity, water, waste;
d) electric network details, e.g. voltage and its tolerance, frequency, available power
(if limited), etc.;
e) protection for electrical circuits;
f) altitudes of installations over 1 000 m above sea level;
g) pressure, flow capability, moisture content and cleanliness of compressed air, if supplied
from a source not included in the pneumatic system (see ISO 8573-1);
©
ISO
h) sources of vibration;
i) emergency resources, e.g. possibility of fire, explosion or other hazards and availability of
related emergency resources;
j) unusual environmental conditions;
k) requirements for guarding;
l) legal factors, including environmental regulations;
m) other safety and special requirements.
4.5.2 Drawings*
Where specified and agreed between the purchaser and supplier, the supplier shall provide
system drawings that indicate
a) floor plan, including location and installation dimensions;
b) foundation requirements, including floor loading;
c) water supply reqirements;
d) electrical supply requirements;
e) piping layout (photographs may be used by agreement).
5 System design
5.1 Circuit diagrams
The supplier shall provide a circuit diagram in accordance with ISO 1219-2 which reflects the
system design, identifies the components and satisfies the requirements of clause 4.
The following information shall be included on the circuit diagram or with supplementary
literature:
a) identification of all equipment by name, catalogue number, serial or design number, and
the name of the manufacturer or supplier;
b) the size, wall thickness and specification of pipe and tube and the size and specification of
hose assemblies;
c) the bore diameter of each cylinder, the diameter of each cylinder piston rod, the length of
stroke, the estimated maximum force and the speed required for the intended service;
d) the displacement per revolution, the maximum torque output, speeds and direction of
rotation required for the intended service of each air motor;
©
ISO
e) the pressure settings of pressure control valves;
f) the types of strainers, filters and replacement elements;
g) when specified, the time sequence charts, e.g. the time range of the cycle and data or
text, or both, showing the operations performed, including the function(s) of the related
electrical and mechanical controls and actuators;
h) clear indication of any circuitry contained within circuit manifolds. Where boundary lines or
boundary envelopes are used for this purpose, the boundary indicated shall include only
symbols of components mounted on or within the manifold;
i) clear indication of the function of each actuator in each direction;
j) identification of all component or manifold ports (as marked on the component or
manifold);
k) identification of all electrical signal converters, as marked on the electrical circuit diagram.
5.2 Identification
5.2.1 Components
The following particulars shall be provided by the supplier and shown, if practicable, in a
permanent and readily visible form on all components:
a) the manufacturer's or supplier’s name and brief address;
b) the manufacturer's or supplier’s product identification;
c) the rated pressure;
d) additional information required on various components as shown in table 1;
e) symbols according to ISO 1219-1, with all ports correctly identified.
Where lack of available space would result in lettering too small to be legible, information may
be provided on supplementary literature such as instruction/maintenance sheets, catalogue
sheets or accessory tags.
Optional information that can be given either on the component or in supplementary literature is
described in table 1.
©
ISO
Table 1 — Additional information to be given on components
and/or in supplementary literature
Component Required Optional Remarks
information information
Air motors Direction of rotation Free air consumption
Rotary actuators Angle of rotation
Displacement
Cylinders Cylinder bore
Length of stroke
Solenoids Voltage Protection In accordance with
a.c. frequency or classification IEC 529
d.c. power or V·A (IP rating)
Directional control Working pressure Can substitute for
valves range rated pressure
Port size
Pressure switches Working pressure Can substitute for
range rated pressure
Pressure differential
range
Voltage and current- Protection In accordance with
carrying capacity of classification IEC 529
switch (IP rating)
Filters Direction of flow See ISO 5782-1
mm rating
Port size
Pressure regulators Direction of flow Range of pressure See ISO 6953-1
Port size adjustment
Lubricators Direction of flow Minimum flow See ISO 6301-1
Port size required to operate,
oil valve adjustment
direction
Flexible hose Date of manufacture Nominal diameter
(year/quarter) (inside diameter)
NOTE — Temperature ratings for all components is optional.
©
ISO
5.2.2 Components within a system
Each component associated with the pneumatic system shall be given a unique item number
and/or letter. This item number shall be used to identify the component on all diagrams, lists
and layouts. It should be plainly and permanently marked on the installation adjacent to, but not
on, the component.
For stacked assemblies (see figure 1), the order should be clearly indicated adjacent to, but not
on, the stack.
5.2.3 Ports
All ports shall be clearly and distinctly identified. The identification shall correspond to the data
on the circuit diagram.
When components have standard port identifications applied by the component supplier, these
shall be supplemented by identifications corresponding to the circuit diagram (see 5.2.1 and
5.2.2).
5.2.4 Valve control mechanisms
5.2.4.1 Non-electrical
Non-electrical valve control mechanisms and their functions shall be clearly and permanently
identified with the same identification used on the circuit diagram.
5.2.4.2 Electrical
Electrical control mechanisms (solenoids and their attaching plugs or cables) shall be identified
on the electrical and pneumatic circuit diagrams with the same identification.
5.2.5 Internal devices
Valves and other functional devices (orifice plugs and passages, shuttle valves, check valves,
etc.) located within a manifold, mounting plate, pad, or fitting shall be identified adjacent to their
access openings. Where access openings are located under a component or components,
identification shall be provided adjacent to the component and marked "CONCEALED".
5.2.6 Function plates
A function plate should be provided for each control station and located where it can be easily
read. The function plate information shall be relevant and easily understood, providing positive
identification of each system function controlled.
©
ISO
Key
1 Individual valves
2 Stacked assembly
3 Station
4 Manifold assembly
5 Individual manifold bases
NOTE — The figure shows a complete manifold assembly of three stations. Two of the stations have a stacked
assembly on the manifold base; one station only has a valve on the manifold base.
Figure 1 — Stacked assemblies
©
ISO
5.3 Installation, use and maintenance
Components and piping shall be selected, applied and installed in accordance with the
supplier’s instructions and recommendations.
Components made in accordance with recognised international or national standards should be
selected
The supplier shall provide a detailed procedure for the purchaser to follow for installation and
use, including any special training required for personnel to perform these functions.
5.3.1 Component replacement
Components should be installed so that they can be easily replaced without dismantling other
machine components.
5.3.2 Maintenance requirements
System components including piping shall be accessible and located so as not to interfere with
adjustment or maintenance. Consideration should be given to routine maintenance and that this
activity should not require extensive disassembly of adjacent parts. The supplier shall provide a
detailed procedure for the purchaser to follow for routine maintenance and prescribed
overhaul/replacement, including any special training required for personnel to perform these
functions.
5.3.3 Lifting provisions
All components or assemblies having a mass greater than 15 kg should have provision(s) for
lifting.
5.4 Use of standard parts
In the interests of ease of maintenance and replacement, the system supplier should provide
components that use commercially available parts (keys, bearings, packings, seals, washers,
plugs, fasteners, etc.) and part configurations (shaft and spline sizes, port sizes, mountings,
mounting surfaces or cavities, etc.) which conform to accepted International Standards and
provide for uniform coding.
5.5 Seals and sealing devices
Seals and sealing devices
a) shall not be adversely affected by air, moisture, temperature, fluids or lubricants used;
b) shall be compatible with adjacent contact materials;
c) shall be a type where sealing against leakage is maintained as wear occurs;
©
ISO
d) should be tested as close to actual application conditions as possible prior to specifying
for production use;
e) shall be stored in accordance with the supplier's recommendations;
f) shall be used within their shelf life limitations.
5.6 Maintenance and operating data
The system supplier shall provide the purchaser with maintenance and operating data for all
pneumatic equipment that clearly
a) describe start-up and shut-down procedures;
b) give any required depressurising instructions and identify those parts of a system that are
not depressurised by the normal venting device(s);
c) describe adjustment procedures;
d) indicate external lubrication points, the type of lubricant required and intervals to be
observed;
e) locate drains, filters, test points, etc., that require regularly scheduled maintenance;
f) state maintenance procedures for unique assemblies;
g) give further identification of parts in the components that are commercially available or
manufactured to an International Standard that provides for uniform coding; the
identification shall be the component manufacturer's part number or as provided by the
International Standard's code;
h) list recommended spare parts.
5.7 Operation and maintenance manuals
The system supplier shall provide a manual describing system operation and maintenance,
including the requirements described in 5.6 and instruction and/or maintenance information
about the components and piping.
6 Energy conversion components
6.1 Air motors and semi-rotary actuators
6.1.1 Protection
Air motors and semi-rotary actuators shall be mounted where they are protected from
predictable damage, or be suitably guarded.
Rotating shafts and couplings shall be guarded to prevent hazard to personnel.
©
ISO
6.1.2 Mounting
The mounting of air motors and semi-rotary actuators on, or related to, their drive assemblies
shall be sufficiently rigid to ensure adequate alignment at all times and to accommodate the
applied torque. Protection against inadvertent damage from end and side forces should be
considered.
6.1.2.1 Side loads
Side loading shall be within the limits recommended by the supplier(s) of the air motor, the
semi-rotary actuator, and the driven unit.
6.1.2.2 Drive couplings
Couplings shall be of a type approved by the supplier for the specified type of mounting and
alignment tolerances.
Couplings shall be selected and installed to be within the mounting and alignment tolerances as
specified by the air motor or semi-rotary actuator supplier.
6.1.3 Load and speed considerations
The starting and stall torques, the effect of load variations, and the kinetic energy of the moving
load, shall be considered in the application of air-motors and semi-rotary actuators.
6.2 Cylinders
NOTE — Many cylinder designs are intended for a specific type of industry or application. These include rotary,
rotating, rodless, cable, welded, foundry, air bag, etc.
6.2.1 Suitability for application
Cylinders shall be designed and/or selected with the following characteristics.
6.2.1.1 Resistance to buckling
Attention shall be given to stroke length, loading and cylinder mountings in order to avoid
bending or buckling of the cylinder piston rod in any position.
6.2.1.2 Loading and overrunning
Adequate structural and/or pressure sustaining strength shall be provided for applications
where overrunning or sustaining loads are encountered.
6.2.1.3 Mounting ratings
Mounting attachments shall be selected for the required load.
©
ISO
Size, mounting and member strengths shall be designed for maximum expected column loads
at full extension or any other limiting position within the stroke.
NOTE — Cylinder pressure ratings may reflect only the capability of the pressure-containing envelope and not the
force transmitting capability of mounting considerations. The supplier or manufacturer should be consulted for
mounting configuration ratings.
6.2.1.4 Structural loading
When the cylinder is used as a positive position stop, the cylinder shall be sized and the
mounting selected on the basis of the maximum incurred loading induced by the machine
member restrained, if this loading is greater than the loading incurred during its normal work
cycle.
6.2.1.5 Resistance to shock and vibration
Any components mounted on or connected to a cylinder shall be attached in a way that resists
loosening caused by shock and vibration.
6.2.2 Mounting and alignment
Cylinders shall be aligned with the load so that no detrimental side or radial loads can be
imposed upon the cylinder unless suitable provisions are made to compensate for these loads.
Cylinders with non-rigid mountings shall be applied in accordance with the suppliers’
specifications.
6.2.2.1 Mounting location
Mounting surfaces shall not distort cylinders, and allowance shall be made for thermal
expansion. The cylinder shall be mounted to enable ease of access for maintenance,
adjustment to cushioning devices and complete unit replacement.
6.2.2.2 Mounting fasteners
Mounting fasteners for cylinders and attachments shall be designed and installed to
accommodate all predictable forces. As far as possible the fasteners should be free from shear
forces. Foot-mounted cylinders should have means to absorb shear loads, rather than
depending on mounting fasteners. The mounting fasteners shall be adequate to absorb
overturning moments.
6.2.2.3 Alignment
Mounting surfaces shall be designed to prevent distortion of the cylinder when installed. The
cylinder shall be mounted in a way that avoids unintended side loads during operation.
6.2.3 Cushions and deceleration devices
Where a cylinder end cover is used as a positive stop, the cylinder should incorporate a
cushion; or an external energy absorption device should be provided to minimize detrimental
mechanical impact.
©
ISO
6.2.4 Stroke end stops
If stroke length is determined by external stroke end stops, means shall be provided for locking
adjustable end stops. Where end stops are used, any means of cushioning provided shall
continue to be effective.
6.2.5 Piston stroke
The actual stroke shall always be greater than or equal to its nominal stroke.
6.2.6 Piston rods
Piston rods should be protected against foreseeable damage from dents, scratches, corrosion,
etc.
For assembly purposes, piston rods with male or female screwed ends shall be provided with
flats to suit standard wrenches. Flats at the piston rods may be omitted in cases where the rods
are too small to allow provision of the flats.
6.2.7 Maintenance
Piston rod seals, seal assemblies and other wear members should be easily replaceable.
6.2.8 Single-acting cylinders
Single-acting cylinders should have their air-vented side protected from the ingress of any
liquids or foreign bodies. Single-acting piston type cylinders shall have their air vent port
designed and/or positioned to avoid risks to persons when displaced fluid is ejected.
6.3 Surge tanks and other auxiliary reservoirs
When surge tanks or other auxiliary reservoirs are incorporated in a system (apart from the
plant supply system), the following shall be considered:
a) sufficient capacity to provide the pressure stability required;
b) design, construction and labelling in accordance with applicable regulations;
c) provision for correct pressure measurement, if necessary;
d) provision for a drain and protection from freezing when the location allows collection of
condensate;
e) venting or pneumatic isolation when air supply is shut off. If isolated, a manual vent valve
shall be provided, and an appropriate service warning label shall be permanently installed
on the tank.
©
ISO
7 Valves
7.1 Selection
Valve types shall be selected to take into account correct function, adequate leak tightness and
resistance against foreseeable mechanical and environmental influence.
7.2 Mounting
Valves should not rely on piping for support and should be capable of being removed with the
minimum of disturbance to piping. When mounting valves the following should be considered:
a) access for removal, repair or adjustment;
b) effects of gravity, impact and vibration on the valving elements to minimise the probability
of an inadvertent shift;
c) sufficient clearance for wrench and/or bolt access, and electrical connections;
d) provisions to ensure that valves cannot be incorrectly mounted on the valve base, e.g.
mounting bolt pattern, port identification, other identification;
e) location of flow control valves on or near the cylinder ports;
f) installation of valves with a mechanically operated control mechanism (valve operator), so
that they cannot be damaged by the operating device.
7.3 Manifolds
Where three or more valves using the same inlet supply are in close proximity to each other, a
manifold should be used.
7.3.1 Surface flatness and finish
Surface flatness and finish shall be in accordance with valve supplier's recommendations.
7.3.2 Distortion
Manifolds shall not distort under operating pressures and temperatures so as to cause
component malfunction.
7.3.3 Mounting
Manifolds shall be rigidly and securely mounted.
©
ISO
7.3.4 Internal passages
Internal passages, including cored and drilled holes, shall be free of detrimental foreign matter
such as scale, burrs, swarf, etc., that may restrict flow or be dislodged and cause malfunction of
and/or damage to any component, including seals and packings.
7.4 Electrically operated valves
7.4.1 Electrical connections
Electrical connections to a supply shall be in accordance with appropriate standards, e.g.
IEC 204-1. For hazardous operating conditions, the appropriate degree of protection
(e.g. explosion proofing, water proofing) shall be employed.
7.4.2 Terminal block housing
Where terminal blocks and housings are specified on the valves, the terminal block housings
shall be constructed as follows:
a) the appropriate degree of protection in accordance with IEC 529;
b) adequate space for permanently located terminals and the terminal cable including an
additional length of cable;
c) captive fasteners for the electrical access cover to prevent loss, e.g. screws with retaining
washers;
d) suitable securing device for the electrical access cover, e.g. a chain;
e) cable connections with strain relief.
7.4.3 Solenoids
Solenoids shall be selected (e.g. cyclic rate, temperature rating) so that they are capable of
–
operating the valves reliably at the nominal voltage 10 %, including the appropriate degree of
protection in accordance with IEC 529.
7.4.4 Manual override
If an electrically operated valve needs to be operated for safety or other reasons when electrical
control is not available, then it should be fitted with manual override facilities. These shall be
designed or selected so that they cannot be operated inadvertently and they should reset when
manual control is removed unless otherwise specified.
©
ISO
7.5 Valve function identity
Where a graphic symbol is indicated on a valve, the symbol should be orientated so that it
corresponds with the physical assembly of the valve.
7.6 Relief valves
Relief valves shall be located near a component or piping whenever a possibility exists that
pressures in excess of the rating of the component or piping could be developed.
7.7 Quick exhaust valves
Quick exhaust valves shall be installed such that exhausting air does not cause a hazard to
personnel.
8 Conditioning components
NOTE — The selection and use of conditioning units is dependent on flow and pressure requirements at the point
of use, plus the flow and pressure available to the system. They are also dependent on the environment to which
conditioning units are subjected (see 4.4).
8.1 Filtration
8.1.1 Filters and separators
Filtration shall be provided to remove detrimental material from the system.
8.1.2 Degree of filtration
The degree of filtration shall be consistent with the requirements for the components and
environmental conditions.
8.1.3 Filter pressures
8.1.3.1 Pressure drop
If deterioration of filter performance could lead to a hazardous situation, clear indication of such
deterioration shall be given. The maximum pressure drop across the filter element shall be
limited to the supplier's specification.
8.1.3.2 Pulsations
Filters should not be located in flow lines subject to pressure pulsations likely to affect the
filtration efficiency.
©
ISO
8.1.4 Provisions for maintenance
Filters and separators shall be capable of being cleaned and drained without disturbing the
piping. Air filters with removable or replacement elements shall be provided. The filter element
rating shall be identifiable if more than one rating is available.
8.1.5 Location
Filters and separators should be located as close as practicable to the device being protected
and shall be readily accessible and provided with adequate clearance for el
...
SLOVENSKI STANDARD
01-september-2000
)OXLGQDWHKQLND3QHYPDWLND6SORãQDSUDYLOD]DXSRUDERSQHYPDWLþQLKVLVWHPRY
Pneumatic fluid power -- General rules relating to systems
Transmissions pneumatiques -- Règles générales relatives aux systèmes
Ta slovenski standard je istoveten z: ISO 4414:1998
ICS:
23.100.01 +LGUDYOLþQLVLVWHPLQDVSORãQR Fluid power systems in
general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 4414
Second edition
1998-08-15
Pneumatic fluid power — General rules
relating to systems
Transmissions pneumatiques — Règles générales relatives aux systèmes
A
Reference number
Contents Page
.......................................................................................................................... 1
1 Scope
2 Normative references . 1
3 Definitions . 2
4 Requirements . 3
4.1 General . 3
4.2 Hazards . 3
4.3 Safety requirements . 3
4.4 System requirements . 5
4.5 Site conditions . 5
5 System design . 6
5.1 Circuit diagrams .6
5.2 Identification . 7
5.3 Installation, use and maintenance . 11
5.4 Use of standard parts . 11
5.5 Seals and sealing devices . 11
5.6 Maintenance and operating data . 12
5.7 Operation and maintenance manuals . 12
6 Energy conversion components . 12
6.1 Air motors and semi-rotary actuators . 12
6.2 Cylinders . 13
6.3 Surge tanks and other auxiliary reservoirs . 15
.......................................................................................................................... 16
7 Valves
7.1 Selection . 16
7.2 Mounting . 16
7.3 Manifolds . 16
7.4 Electrically operated valves . 17
7.5 Valve function identity . 18
7.6 Relief valves . 18
7.7 Quick exhaust valves . 18
© ISO 1998
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the publisher.
International Organization for Standardization
Case postale 56 • CH-1211 Genève 20 • Switzerland
Internet iso@iso.ch
Printed in Switzerland
ii
©
ISO ISO 4414:1998(E)
8 Conditioning components . 18
8.1 Filtration . 18
8.2 Pressure regulation . 19
8.3 Lubrication . 19
8.4 Shielding . 20
8.5 Air dryers . 21
9 Piping . 21
9.1 General requirements . 21
9.2 Pipe and tube requirements . 23
9.3 Support of piping .23
9.4 Foreign matter . 24
9.5 Flexible hose assemblies . 24
9.6 Quick-action couplings . 25
9.7 Removal of piping . 25
10 Control systems . 26
10.1 Unintended movement . 26
10.2 System protection . 26
10.3 Components . 26
10.4 Control systems with servo or proportional valves . 27
10.5 Other design considerations . 28
10.6 Location of controls .29
10.7 Emergency controls . 30
11 Diagnostics and monitoring . 30
11.1 Pressure measurement . 30
11.2 Electrical supply indicators . 31
12 Cleaning and painting . 31
13 Preparation for transportation . 31
13.1 Identification of piping .31
13.2 Packaging . 31
13.3 Protection of openings . 31
14 Commissioning . 31
14.1 Verification tests . 31
14.2 Noise . 32
14.3 Fluid leakage . 32
14.4 Final data to be provided . 32
14.5 Modifications . 32
15 Identification statement . 33
iii
©
Annex A (informative) Items requiring supplier/purchaser agreement . 34
(informative) . 35
Annex B List of hazards
Annex C (informative) Cross reference list ISO 4414/EN 983 . 37
Annex D (informative) Example of a parts list . 41
Annex E (informative) Example of pneumatic system data form . 42
Annex F (informative) Bibliography . 49
Index . 51
iv
©
ISO ISO 4414:1998(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is
normally carried out through ISO technical committees. Each member body interested in a
subject for which a technical committee has been established has the right to be represented
on that committee. International organizations, governmental and non-governmental, in liaison
with ISO, also take part in the work. ISO collaborates closely with the International
Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
Draft International Standards adopted by the technical committees are circulated to the member
bodies for voting. Publication as an International Standard requires approval by at least 75 % of
the member bodies casting a vote.
International Standard ISO 4414 was prepared by Technical Committee ISO/TC 131, Fluid
power systems, Subcommittee SC 9, Installations and systems.
This second edition cancels and replaces the first edition (ISO 4414:1982), which has been
technically revised.
Annexes A to F of this International Standard are for information only.
v
©
Introduction
In pneumatic fluid power systems, power is transmitted and controlled through air or a neutral
gas under pressure within a circuit.
The application of pneumatic fluid power systems requires a thorough understanding and
precise communication between the supplier and purchaser. This International Standard was
prepared to assist that understanding and communication and to document many of the good
practices learned from experience with pneumatic systems.
Use of this International Standard assists:
a) the identification and specification of the requirements for pneumatic systems and
components;
b) the identification of the respective areas of responsibility;
c) the design of systems and their components to comply with specific requirements;
d) understanding of the safety requirements of a pneumatic system.
General rules given in this International Standard have no legal status except those paragraphs
that are included in contractual agreements between purchasers and suppliers. Deviation from
those parts of this International Standard included in contractual agreements shall also be
agreed to in writing by the purchaser and supplier. Attention shall be drawn by the purchaser
and/or the supplier to applicable national and local codes or laws.
General rules which contain the verb "shall" are counsels of good engineering practice,
universally applicable with rare exceptions. Use of the word "should" in the document is not an
indication of choice but an indication that the desirable engineering practices described may
have to be modified due to the peculiarities of certain processes, environmental conditions, or
equipment size.
Titles or parts of the text which are marked with an asterisk (*) indicate subclauses that
discussion is needed between the supplier and purchaser to define the requirements and/or
responsibilities. These are also listed in annex A.
vi
©
INTERNATIONAL STANDARD ISO ISO 4414:1998(E)
Pneumatic fluid power — General rules relating to systems
1 Scope
This International Standard provides general rules relating to pneumatic systems used in
industrial manufacturing processes. It is intended as a guide for both suppliers and purchasers,
with a view to ensuring:
a) safety;
b) uninterrupted system operation;
c) ease and economy of maintenance;
d) long life of the system.
This International Standard does not apply to air compressors and the systems associated with
air distribution as typically installed in a factory.
2 Normative references
The following standards contain provisions which, through reference in this text, constitute
provisions of this International Standard. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this
International Standard are encouraged to investigate the possibility of applying the most recent
editions of the standards indicated below. Members of IEC and ISO maintain registers of
currently valid International Standards.
ISO 65:1981, Carbon steel tubes suitable for screwing in accordance with ISO 7-1.
ISO 1219-1:1991, Fluid power systems and components — Graphic symbols and circuit
diagrams — Part 1: Graphic symbols.
ISO 1219-2:1995, Fluid power systems and components — Graphic symbols and circuit
diagrams — Part 2: Circuit diagrams.
ISO 5598:1985, Fluid power systems and components — Vocabulary.
©
ISO
ISO 5782-1:1997, Pneumatic fluid power — Compressed air filters — Part 1: Main
characteristics to be included in suppliers' literature and product marking requirements.
Pneumatic fluid power — Compressed air lubricators — Part 1: Main
ISO 6301-1:1997,
characteristics to be included in suppliers' literature and product marking requirements.
ISO 6953-1:1990, Pneumatic fluid power — Air line pressure regulators — Part 1: Main
characteristics to be included in commercial literature and specific requirements.
Pneumatic fluid power — Standard reference atmosphere.
ISO 8778:1990,
Electrical equipment of industrial machines — Part 1: General requirements.
IEC 204-1:1997,
Degrees of protection provided by enclosures (IP code).
IEC 529:1989,
3 Definitions
For the purposes of this International Standard, the definitions given in ISO 5598 and the
following definitions apply.
3.1 actuator: Component (e.g. motor or cylinder) that transforms fluid energy into mechanical
energy.
3.2 commissioning: Procedure by which a system is formally accepted by the purchaser.
3.3 component: Individual unit (e.g. cylinder, motor, valve or filter, but excluding piping)
comprising one or more parts designed to be a functional part of a fluid power system.
3.4 control mechanism: Device that provides an input signal to a component (e.g. lever,
solenoid).
3.5 emergency control: Control function that brings a system to a safe condition.
Surface that contains information describing either the performance of a
3.6 function plate:
manually operated device (e.g. on/off, up/down) or the status of a function performed by the
system (e.g. clamp, lift, advance).
Gas that has properties similar to air and does not react to the effects of
3.7 neutral gas:
pressure and/or temperature in a manner different to air.
3.8 operating device: Device that provides an input signal to a control mechanism (e.g. cam,
electrical switch).
3.9 piping: Any combination of fittings, couplings or connectors with pipes, hoses or tubes
which allow fluid flow between components.
©
ISO
3.10 pneumatics: Science and technology which deals with the use of air or neutral gases as
the fluid power medium.
3.11 purchaser: Party that stipulates the requirements of a machine, equipment, system or
component and judges whether the product satisfies those requirements.
3.12 supplier: Party that contracts to provide the product(s) to satisfy the purchasers
requirements.
3.13 system: Arrangement of interconnected components which transmits and controls fluid
power energy.
4 Requirements
4.1 General
The requirements stated in 4.1.1 to 4.5 apply to all systems within the scope of this
International Standard.
4.1.1 Instructions
Pneumatic systems shall be installed and used in accordance with the instructions and
recommendations of the system supplier.
4.1.2 Language*
The supplier and purchaser shall agree on the language to be used for machine marking and
applicable documentation. The supplier shall be responsible for ensuring that any translation
has the same meaning as the original text.
4.2 Hazards*
When agreed between purchaser and supplier, an assessment of the hazards listed in annex B
shall be performed. This assessment may include the influence of the pneumatic fluid power
system with other parts of the machine, system or environment. Standards listed in annex B
may be used in this assessment.
So far as is practicable, the hazards identified shall be eliminated by design and, where this is
not practicable, the design shall incorporate safeguards against such hazards.
4.3 Safety requirements
4.3.1 Design considerations
When designing pneumatic systems, all intended operations and use of the systems shall be
considered.
©
ISO
Pneumatic systems shall be designed and components selected, applied, mounted and
adjusted to provide uninterrupted operation, extended life and safe operation.
In the event of a failure, safety of personnel shall be the prime consideration, and damage to
equipment and the environment minimized. Possible modes of failure and intended operations
and use shall be considered.
4.3.2 Component selection
All components in the system shall be selected or specified to provide for safety in use, and
they shall operate within their rated limits when the system is put to its intended use.
Components shall be selected or specified to operate reliably under all intended uses of the
system. Particular attention shall be paid to the failure mode of components that could cause a
hazard in the event of their failure or malfunction.
4.3.3 Unintended pressures
All parts of the system shall be designed or otherwise protected against pressures exceeding
the maximum working pressure of a system or any part of the system or the rated pressure of
any specific component.
Systems shall be designed, constructed and adjusted to minimise surge pressures and
intensified pressures. Surge pressures and intensified pressure shall not cause hazards.
Attention should also be paid to the consequences of blockages, pressure drops or leaks which
could affect safe operation of components.
4.3.4 Mechanical movements
Mechanical movements, whether intended or unintended (including effects from, for example
acceleration, deceleration or lifting/holding of masses), shall not result in a situation which is
hazardous to persons.
4.3.5 Noise
Silencers shall be used where the sound pressure level caused by exhausting air is above that
permitted by applicable codes and standards. The use of exhaust port silencers, in themselves,
shall not create a hazard. Silencers should not create detrimental back pressure.
4.3.6 Leakage
Leakage (internal or external) shall not cause a hazard.
4.3.7 Airborne hazardous substances
Systems shall be so designed, constructed and/or equipped that hazards due to airborne
hazardous substances included in the exhausting air can be minimized.
©
ISO
4.4 System requirements*
The supplier and purchaser shall establish specifications for the operation and function of the
system, including
a) working pressure range;
b) operating temperature range;
c) type of fluid to be used;
d) cycle rates;
e) duty cycle;
f) service life of components;
g) sequence of events;
h) lubrication;
i) lifting requirements;
j) emergency and safety requirements;
k) details of painting or protective coating.
4.5 Site conditions*
4.5.1 Specifications*
The supplier and purchaser shall define site conditions and the design of the system shall take
account of these conditions.
Examples of information required are
a) ambient temperature range of the installation;
b) humidity range of the installation;
c) available utilities, e.g. electricity, water, waste;
d) electric network details, e.g. voltage and its tolerance, frequency, available power
(if limited), etc.;
e) protection for electrical circuits;
f) altitudes of installations over 1 000 m above sea level;
g) pressure, flow capability, moisture content and cleanliness of compressed air, if supplied
from a source not included in the pneumatic system (see ISO 8573-1);
©
ISO
h) sources of vibration;
i) emergency resources, e.g. possibility of fire, explosion or other hazards and availability of
related emergency resources;
j) unusual environmental conditions;
k) requirements for guarding;
l) legal factors, including environmental regulations;
m) other safety and special requirements.
4.5.2 Drawings*
Where specified and agreed between the purchaser and supplier, the supplier shall provide
system drawings that indicate
a) floor plan, including location and installation dimensions;
b) foundation requirements, including floor loading;
c) water supply reqirements;
d) electrical supply requirements;
e) piping layout (photographs may be used by agreement).
5 System design
5.1 Circuit diagrams
The supplier shall provide a circuit diagram in accordance with ISO 1219-2 which reflects the
system design, identifies the components and satisfies the requirements of clause 4.
The following information shall be included on the circuit diagram or with supplementary
literature:
a) identification of all equipment by name, catalogue number, serial or design number, and
the name of the manufacturer or supplier;
b) the size, wall thickness and specification of pipe and tube and the size and specification of
hose assemblies;
c) the bore diameter of each cylinder, the diameter of each cylinder piston rod, the length of
stroke, the estimated maximum force and the speed required for the intended service;
d) the displacement per revolution, the maximum torque output, speeds and direction of
rotation required for the intended service of each air motor;
©
ISO
e) the pressure settings of pressure control valves;
f) the types of strainers, filters and replacement elements;
g) when specified, the time sequence charts, e.g. the time range of the cycle and data or
text, or both, showing the operations performed, including the function(s) of the related
electrical and mechanical controls and actuators;
h) clear indication of any circuitry contained within circuit manifolds. Where boundary lines or
boundary envelopes are used for this purpose, the boundary indicated shall include only
symbols of components mounted on or within the manifold;
i) clear indication of the function of each actuator in each direction;
j) identification of all component or manifold ports (as marked on the component or
manifold);
k) identification of all electrical signal converters, as marked on the electrical circuit diagram.
5.2 Identification
5.2.1 Components
The following particulars shall be provided by the supplier and shown, if practicable, in a
permanent and readily visible form on all components:
a) the manufacturer's or supplier’s name and brief address;
b) the manufacturer's or supplier’s product identification;
c) the rated pressure;
d) additional information required on various components as shown in table 1;
e) symbols according to ISO 1219-1, with all ports correctly identified.
Where lack of available space would result in lettering too small to be legible, information may
be provided on supplementary literature such as instruction/maintenance sheets, catalogue
sheets or accessory tags.
Optional information that can be given either on the component or in supplementary literature is
described in table 1.
©
ISO
Table 1 — Additional information to be given on components
and/or in supplementary literature
Component Required Optional Remarks
information information
Air motors Direction of rotation Free air consumption
Rotary actuators Angle of rotation
Displacement
Cylinders Cylinder bore
Length of stroke
Solenoids Voltage Protection In accordance with
a.c. frequency or classification IEC 529
d.c. power or V·A (IP rating)
Directional control Working pressure Can substitute for
valves range rated pressure
Port size
Pressure switches Working pressure Can substitute for
range rated pressure
Pressure differential
range
Voltage and current- Protection In accordance with
carrying capacity of classification IEC 529
switch (IP rating)
Filters Direction of flow See ISO 5782-1
mm rating
Port size
Pressure regulators Direction of flow Range of pressure See ISO 6953-1
Port size adjustment
Lubricators Direction of flow Minimum flow See ISO 6301-1
Port size required to operate,
oil valve adjustment
direction
Flexible hose Date of manufacture Nominal diameter
(year/quarter) (inside diameter)
NOTE — Temperature ratings for all components is optional.
©
ISO
5.2.2 Components within a system
Each component associated with the pneumatic system shall be given a unique item number
and/or letter. This item number shall be used to identify the component on all diagrams, lists
and layouts. It should be plainly and permanently marked on the installation adjacent to, but not
on, the component.
For stacked assemblies (see figure 1), the order should be clearly indicated adjacent to, but not
on, the stack.
5.2.3 Ports
All ports shall be clearly and distinctly identified. The identification shall correspond to the data
on the circuit diagram.
When components have standard port identifications applied by the component supplier, these
shall be supplemented by identifications corresponding to the circuit diagram (see 5.2.1 and
5.2.2).
5.2.4 Valve control mechanisms
5.2.4.1 Non-electrical
Non-electrical valve control mechanisms and their functions shall be clearly and permanently
identified with the same identification used on the circuit diagram.
5.2.4.2 Electrical
Electrical control mechanisms (solenoids and their attaching plugs or cables) shall be identified
on the electrical and pneumatic circuit diagrams with the same identification.
5.2.5 Internal devices
Valves and other functional devices (orifice plugs and passages, shuttle valves, check valves,
etc.) located within a manifold, mounting plate, pad, or fitting shall be identified adjacent to their
access openings. Where access openings are located under a component or components,
identification shall be provided adjacent to the component and marked "CONCEALED".
5.2.6 Function plates
A function plate should be provided for each control station and located where it can be easily
read. The function plate information shall be relevant and easily understood, providing positive
identification of each system function controlled.
©
ISO
Key
1 Individual valves
2 Stacked assembly
3 Station
4 Manifold assembly
5 Individual manifold bases
NOTE — The figure shows a complete manifold assembly of three stations. Two of the stations have a stacked
assembly on the manifold base; one station only has a valve on the manifold base.
Figure 1 — Stacked assemblies
©
ISO
5.3 Installation, use and maintenance
Components and piping shall be selected, applied and installed in accordance with the
supplier’s instructions and recommendations.
Components made in accordance with recognised international or national standards should be
selected
The supplier shall provide a detailed procedure for the purchaser to follow for installation and
use, including any special training required for personnel to perform these functions.
5.3.1 Component replacement
Components should be installed so that they can be easily replaced without dismantling other
machine components.
5.3.2 Maintenance requirements
System components including piping shall be accessible and located so as not to interfere with
adjustment or maintenance. Consideration should be given to routine maintenance and that this
activity should not require extensive disassembly of adjacent parts. The supplier shall provide a
detailed procedure for the purchaser to follow for routine maintenance and prescribed
overhaul/replacement, including any special training required for personnel to perform these
functions.
5.3.3 Lifting provisions
All components or assemblies having a mass greater than 15 kg should have provision(s) for
lifting.
5.4 Use of standard parts
In the interests of ease of maintenance and replacement, the system supplier should provide
components that use commercially available parts (keys, bearings, packings, seals, washers,
plugs, fasteners, etc.) and part configurations (shaft and spline sizes, port sizes, mountings,
mounting surfaces or cavities, etc.) which conform to accepted International Standards and
provide for uniform coding.
5.5 Seals and sealing devices
Seals and sealing devices
a) shall not be adversely affected by air, moisture, temperature, fluids or lubricants used;
b) shall be compatible with adjacent contact materials;
c) shall be a type where sealing against leakage is maintained as wear occurs;
©
ISO
d) should be tested as close to actual application conditions as possible prior to specifying
for production use;
e) shall be stored in accordance with the supplier's recommendations;
f) shall be used within their shelf life limitations.
5.6 Maintenance and operating data
The system supplier shall provide the purchaser with maintenance and operating data for all
pneumatic equipment that clearly
a) describe start-up and shut-down procedures;
b) give any required depressurising instructions and identify those parts of a system that are
not depressurised by the normal venting device(s);
c) describe adjustment procedures;
d) indicate external lubrication points, the type of lubricant required and intervals to be
observed;
e) locate drains, filters, test points, etc., that require regularly scheduled maintenance;
f) state maintenance procedures for unique assemblies;
g) give further identification of parts in the components that are commercially available or
manufactured to an International Standard that provides for uniform coding; the
identification shall be the component manufacturer's part number or as provided by the
International Standard's code;
h) list recommended spare parts.
5.7 Operation and maintenance manuals
The system supplier shall provide a manual describing system operation and maintenance,
including the requirements described in 5.6 and instruction and/or maintenance information
about the components and piping.
6 Energy conversion components
6.1 Air motors and semi-rotary actuators
6.1.1 Protection
Air motors and semi-rotary actuators shall be mounted where they are protected from
predictable damage, or be suitably guarded.
Rotating shafts and couplings shall be guarded to prevent hazard to personnel.
©
ISO
6.1.2 Mounting
The mounting of air motors and semi-rotary actuators on, or related to, their drive assemblies
shall be sufficiently rigid to ensure adequate alignment at all times and to accommodate the
applied torque. Protection against inadvertent damage from end and side forces should be
considered.
6.1.2.1 Side loads
Side loading shall be within the limits recommended by the supplier(s) of the air motor, the
semi-rotary actuator, and the driven unit.
6.1.2.2 Drive couplings
Couplings shall be of a type approved by the supplier for the specified type of mounting and
alignment tolerances.
Couplings shall be selected and installed to be within the mounting and alignment tolerances as
specified by the air motor or semi-rotary actuator supplier.
6.1.3 Load and speed considerations
The starting and stall torques, the effect of load variations, and the kinetic energy of the moving
load, shall be considered in the application of air-motors and semi-rotary actuators.
6.2 Cylinders
NOTE — Many cylinder designs are intended for a specific type of industry or application. These include rotary,
rotating, rodless, cable, welded, foundry, air bag, etc.
6.2.1 Suitability for application
Cylinders shall be designed and/or selected with the following characteristics.
6.2.1.1 Resistance to buckling
Attention shall be given to stroke length, loading and cylinder mountings in order to avoid
bending or buckling of the cylinder piston rod in any position.
6.2.1.2 Loading and overrunning
Adequate structural and/or pressure sustaining strength shall be provided for applications
where overrunning or sustaining loads are encountered.
6.2.1.3 Mounting ratings
Mounting attachments shall be selected for the required load.
©
ISO
Size, mounting and member strengths shall be designed for maximum expected column loads
at full extension or any other limiting position within the stroke.
NOTE — Cylinder pressure ratings may reflect only the capability of the pressure-containing envelope and not the
force transmitting capability of mounting considerations. The supplier or manufacturer should be consulted for
mounting configuration ratings.
6.2.1.4 Structural loading
When the cylinder is used as a positive position stop, the cylinder shall be sized and the
mounting selected on the basis of the maximum incurred loading induced by the machine
member restrained, if this loading is greater than the loading incurred during its normal work
cycle.
6.2.1.5 Resistance to shock and vibration
Any components mounted on or connected to a cylinder shall be attached in a way that resists
loosening caused by shock and vibration.
6.2.2 Mounting and alignment
Cylinders shall be aligned with the load so that no detrimental side or radial loads can be
imposed upon the cylinder unless suitable provisions are made to compensate for these loads.
Cylinders with non-rigid mountings shall be applied in accordance with the suppliers’
specifications.
6.2.2.1 Mounting location
Mounting surfaces shall not distort cylinders, and allowance shall be made for thermal
expansion. The cylinder shall be mounted to enable ease of access for maintenance,
adjustment to cushioning devices and complete unit replacement.
6.2.2.2 Mounting fasteners
Mounting fasteners for cylinders and attachments shall be designed and installed to
accommodate all predictable forces. As far as possible the fasteners should be free from shear
forces. Foot-mounted cylinders should have means to absorb shear loads, rather than
depending on mounting fasteners. The mounting fasteners shall be adequate to absorb
overturning moments.
6.2.2.3 Alignment
Mounting surfaces shall be designed to prevent distortion of the cylinder when installed. The
cylinder shall be mounted in a way that avoids unintended side loads during operation.
6.2.3 Cushions and deceleration devices
Where a cylinder end cover is used as a positive stop, the cylinder should incorporate a
cushion; or an external energy absorption device should be provided to minimize detrimental
mechanical impact.
©
ISO
6.2.4 Stroke end stops
If stroke length is determined by external stroke end stops, means shall be provided for locking
adjustable end stops. Where end stops are used, any means of cushioning provided shall
continue to be effective.
6.2.5 Piston stroke
The actual stroke shall always be greater than or equal to its nominal stroke.
6.2.6 Piston rods
Piston rods should be protected against foreseeable damage from dents, scratches, corrosion,
etc.
For assembly purposes, piston rods with male or female screwed ends shall be provided with
flats to suit standard wrenches. Flats at the piston rods may be omitted in cases where the rods
are too small to allow provision of the flats.
6.2.7 Maintenance
Piston rod seals, seal assemblies and other wear members should be easily replaceable.
6.2.8 Single-acting cylinders
Single-acting cylinders should have their air-vented side protected from the ingress of any
liquids or foreign bodies. Single-acting piston type cylinders shall have their air vent port
designed and/or positioned to avoid risks to persons when displaced fluid is ejected.
6.3 Surge tanks and other auxiliary reservoirs
When surge tanks or other auxiliary reservoirs are incorporated in a system (apart from the
plant supply system), the following shall be considered:
a) sufficient capacity to provide the pressure stability required;
b) design, construction and labelling in accordance with applicable regulations;
c) provision for correct pressure measurement, if necessary;
d) provision for a drain and protection from freezing when the location allows collection of
condensate;
e) venting or pneumatic isolation when air supply is shut off. If isolated, a manual vent valve
shall be provided, and an appropriate service warning label shall be permanently installed
on the tank.
©
ISO
7 Valves
7.1 Selection
Valve types shall be selected to take into account correct function, adequate leak tightness and
resistance against foreseeable mechanical and environmental influence.
7.2 Mounting
Valves should not rely on piping for support and should be capable of being removed with the
minimum of disturbance to piping. When mounting valves the following should be considered:
a) access for removal, repair or adjustment;
b) effects of gravity, impact and vibration on the valving elements to minimise the probability
of an inadvertent shift;
c) sufficient clearance for wrench and/or bolt access, and electrical connections;
d) provisions to ensure that valves cannot be incorrectly mounted on the valve base, e.g.
mounting bolt pattern, port identification, other identification;
e) location of flow control valves on or near the cylinder ports;
f) installation of valves with a mechanically operated control mechanism (valve operator), so
that they cannot be damaged by the operating device.
7.3 Manifolds
Where three or more valves using the same inlet supply are in close proximity to each other, a
manifold should be used.
7.3.1 Surface flatness and finish
Surface flatness and finish shall be in accordance with valve supplier's recommendations.
7.3.2 Distortion
Manifolds shall not distort under operating pressures and temperatures so as to cause
component malfunction.
7.3.3 Mounting
Manifolds shall be rigidly and securely mounted.
©
ISO
7.3.4 Internal passages
Internal passages, including cored and drilled holes, shall be free of detrimental foreign matter
such as scale, burrs, swarf, etc., that may restrict flow or be dislodged and cause malfunction of
and/or damage to any component, including seals and packings.
7.4 Electrically operated valves
7.4.1 Electrical connections
Electrical connections to a supply shall be in accordance with appropriate standards, e.g.
IEC 204-1. For hazardous operating conditions, the appropriate degree of protection
(e.g. explosion proofing, water proofing) shall be employed.
7.4.2 Terminal block housing
Where terminal blocks and housings are specified on the valves, the terminal block housings
shall be constructed as follows:
a) the appropriate degree of protection in accordance with IEC 529;
b) adequate space for permanently located terminals and the terminal cable including an
additional length of cable;
c) captive fasteners for the electrical access cover to prevent loss, e.g. screws with retaining
washers;
d) suitable securing device for the electrical access cover, e.g. a chain;
e) cable connections with strain relief.
7.4.3 Solenoids
Solenoids shall be selected (e.g. cyclic rate, temperature rating) so that they are capable of
–
operating the valves reliably at the nominal voltage 10 %, including the appropriate degree of
protection in accordance with IEC 529.
7.4.4 Manual override
If an electrically operated valve needs to be operated for safety or other reasons when electrical
control is not available, then it should be fitted with manual override facilities. These shall be
designed or selected so that they cannot be operated inadvertently and they should reset when
manual control is removed unless otherwise specified.
©
ISO
7.5 Valve function identity
Where a graphic symbol is indicated on a valve, the symbol should be orientated so that it
corresponds with the physical assembly of the valve.
7.6 Relief valves
Relief valves shall be located near a component or piping whenever a possibility exists that
pressures in excess of the rating of the component or piping could be developed.
7.7 Quick exhaust valves
Quick exhaust valves shall be installed such that exhausting air does not cause a hazard to
personnel.
8 Conditioning components
NOTE — The selection and use of conditioning units is dependent on flow and pressure requirements at the point
of use, plus the flow and pressure available to the system. They are also dependent on the environment to which
conditioning units are subjected (see 4.4).
8.1 Filtration
8.1.1 Filters and separators
Filtration shall be provided to remove de
...
NORME ISO
INTERNATIONALE 4414
Deuxième édition
1998-08-15
Transmissions pneumatiques — Règles
générales relatives aux systèmes
Pneumatic fluid power — General rules relating to systems
A
Numéro de référence
Sommaire Page
............................................................................................................................ 1
1 Domaine d’application
2 Références normatives . 1
3 Définitions . 2
4 Exigences . 2
4.1 Généralités . 2
4.2 Phénomènes dangereux . 3
4.3 Exigences de sécurité . 3
4.4 Exigences relatives à un système . 4
4.5 Conditions d'implantation . 4
5 Conception du système . 5
5.1 Schémas de circuit . 5
5.2 Identification . 6
5.3 Installation, utilisation et maintenance . 9
5.4 Utilisation de pièces normalisées . 9
5.5 Joints et dispositifs d'étanchéité . 9
5.6 Consignes de maintenance et d'utilisation . 9
5.7 Manuels d'utilisation et de maintenance . 10
6 Composants de transformation de l'énergie . 10
6.1 Moteurs pneumatiques et actionneurs semi-rotatifs . 10
6.2 Vérins . 11
6.3 Réservoirs de compensation de surpression et autres réservoirs auxiliaires . 12
7 Soupapes et distributeurs . 13
7.1 Choix . 13
7.2 Montage . 13
7.3 Blocs distributeurs . 13
7.4 Distributeurs à commande électrique . 13
7.5 Identification de la fonction d'un distributeur . 14
7.6 Limiteurs de pression . 14
7.7 Soupapes d'échappement rapide . 14
8 Composants de conditionnement . 14
8.1 Filtration . 14
8.2 Régulation de la pression . 15
8.3 Lubrification . 15
8.4 Protecteurs . 16
8.5 Sécheurs d'air . 16
© ISO 1998
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publi-
cation ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun pro-
cédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord
écrit de l'éditeur.
Organisation internationale de normalisation
Case postale 56 • CH-1211 Genève 20 • Suisse
Internet iso@iso.ch
Imprimé en Suisse
ii
©
ISO ISO 4414:1998(F)
9 Tuyauteries . 17
9.1 Exigences générales . 17
9.2 Exigences relatives aux tuyaux et tubes . 18
9.3 Supports de tuyauteries . 18
9.4 Corps étrangers . 19
9.5 Assemblages flexibles . 19
9.6 Raccords rapides . 20
9.7 Démontage des tuyauteries . 20
10 Systèmes de commande . 20
10.1 Mouvements involontaires . 20
10.2 Protection des systèmes . 20
10.3 Composants . 21
10.4 Systèmes de commande à servodistributeurs ou à distributeurs proportionnels . 22
10.5 Autres considérations de conception . 22
10.6 Emplacement des commandes . 23
10.7 Commandes d'urgence . 23
11 Diagnostics et surveillance . 24
11.1 Mesurage de la pression . 24
11.2 Indicateurs d'alimentation électrique . 24
12 Nettoyage et peinture . 24
13 Préparation pour le transport . 24
13.1 Identification des tuyauteries . 24
13.2 Emballage . 25
13.3 Protection des ouvertures . 25
14 Réception du matériel . 25
14.1 Essais de vérification . 25
14.2 Bruit . 25
14.3 Fuite de fluide . 25
14.4 Documents finaux à fournir . 25
14.5 Modifications . 26
15 Phrase d'identification (Référence à la présente Norme internationale) . 26
Annexe A (informative) Points nécessitant un accord entre le fournisseur et l'acheteur . 27
Annexe B (informative) Liste des phénomènes dangereux . 28
Annexe C (informative) Liste des références croisées ISO 4414/EN 983 . 31
Annexe D (informative) Exemple de liste de pièces de rechange . 36
Annexe E (informative) Exemple de formulaire de données d'un système pneumatique . 37
Annexe F (informative) Bibliographie . 44
Index . 46
iii
©
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux
comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité
technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en
liaison avec l'ISO, participent également aux travaux. L'ISO collabore étroitement avec la Commission
électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour
vote. Leur publication comme Normes internationales requiert l'approbation de 75 % au moins des comités
membres votants.
La Norme internationale ISO 4414 a été élaborée par le comité technique ISO/TC 131, Transmissions hydrauliques
et pneumatiques, sous-comité SC 9, Installations et ensembles.
Cette deuxième édition annule et remplace la première édition (ISO 4414:1982), dont elle constitue une révision
technique.
Les annexes A à F de la présente Norme internationale sont données uniquement à titre d'information.
iv
©
ISO ISO 4414:1998(F)
Introduction
Dans les systèmes de transmissions pneumatiques, l'énergie est transmise et commandée par l'intermédiaire de
l'air ou d'un gaz neutre sous pression circulant dans un circuit.
L'application de systèmes de transmissions pneumatiques nécessite une compréhension approfondie et une
communication précise entre le fournisseur et l'acheteur. La présente Norme internationale a été élaborée dans le
but d'améliorer cette compréhension et cette communication, et de documenter la plupart des bonnes pratiques
issues de l'expérience acquise en matière de systèmes pneumatiques.
L'utilisation de la présente Norme internationale facilite:
a) l'identification et la spécification de prescriptions applicables aux systèmes et composants pneumatiques;
b) l'identification des domaines respectifs de responsabilité;
c) la conception de systèmes et leurs composants conformes à des exigences spécifiques;
d) la compréhension des prescriptions de sécurité applicables à un système pneumatique.
Les règles générales fournies dans la présente Norme internationale n'ont pas de statut légal, à l'exception des
paragraphes qui sont inclus dans les accords contractuels conclus entre un acheteur et un fournisseur. Toute
dérogation aux parties de la présente Norme internationale qui sont incluses dans des accords contractuels doit
également être agréée par écrit entre l'acheteur et le fournisseur. L'acheteur et/ou le fournisseur doivent tenir
compte des lois ou codes, nationaux ou locaux, applicables.
Les règles générales contenant le verbe conjugué «doit» sont des recommandations issues d'une bonne pratique
de l'ingénieur applicables dans tous les domaines, à quelques rares exceptions près. L'usage du terme
«il convient» dans le document ne constitue pas une indication de choix, mais signifie que les recommandations
décrites peuvent être modifiées en fonction des particularités de certains procédés, des conditions ambiantes ou
des dimensions de l'équipement.
Les titres ou parties du texte repérés à l'aide d'un astérisque (*) indiquent les paragraphes qui doivent faire l'objet
d'une discussion entre le fournisseur et l'acheteur pour définir les prescriptions et/ou les responsabilités. Ils sont
listés dans l'annexe A.
v
©
NORME INTERNATIONALE ISO ISO 4414:1998(F)
Transmissions pneumatiques — Règles générales relatives
aux systèmes
1 Domaine d’application
La présente Norme internationale fournit des règles générales relatives aux systèmes pneumatiques des machines
utilisées dans les procédés de fabrication industrielle. Elle est destinée à servir de guide à la fois aux fournisseurs
et aux acheteurs, afin d'assurer:
a) la sécurité;
b) un fonctionnement continu du système;
c) une maintenance facile et économique;
d) la pérennité du système.
La présente Norme internationale ne s'applique pas aux compresseurs d'air et aux systèmes associés à la
distribution d'air généralement installés dans une usine.
2 Références normatives
Les normes suivantes contiennent des dispositions qui, par suite de la référence qui en est faite, constituent des
dispositions valables pour la présente Norme internationale. Au moment de la publication, les éditions indiquées
étaient en vigueur. Toute norme est sujette à révision et les parties prenantes des accords fondés sur la présente
Norme internationale sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes des normes
indiquées ci-après. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur
à un moment donné.
ISO 65:1981, Tubes en acier au carbone filetables selon ISO 7-1.
ISO 1219-1:1991, Transmissions hydrauliques et pneumatiques — Symboles graphiques et schémas de circuit —
Partie 1: Symboles graphiques.
ISO 1219-2:1995, Transmissions hydrauliques et pneumatiques — Symboles graphiques et schémas de circuit —
Partie 2: Schémas de circuit.
ISO 5598:1985, Transmissions hydrauliques et pneumatiques — Vocabulaire.
ISO 5782-1:1997, Transmissions pneumatiques — Filtres pour air comprimé — Partie 1: Principales
caractéristiques à inclure dans la documentation des fournisseurs et exigences de marquage du produit.
ISO 6301-1:1997, Transmissions pneumatiques — Lubrificateurs pour air comprimé — Partie 1: Principales
caractéristiques à inclure dans la documentation des fournisseurs et exigences de marquage du produit.
©
ISO
ISO 6953-1:1990, Transmissions pneumatiques — Réducteurs de pression pour air comprimé — Partie 1:
Principales caractéristiques à inclure dans la documentation commerciale et exigences particulières.
ISO 8778:1990, Transmissions pneumatiques — Atmosphère normale de référence.
CEI 204-1:1997, Équipement électrique des machines industrielles — Partie 1: Règles générales.
CEI 529:1989, Degrés de protection procurés par les enveloppes (Code IP).
3 Définitions
Pour les besoins de la présente Norme internationale, les définitions données dans l'ISO 5598 et les définitions
suivantes s'appliquent.
3.1 actionneur: Composant (par exemple moteur, vérin) qui transforme l'énergie d'un fluide en énergie
mécanique.
3.2 réception du matériel: Procédure par laquelle un système est formellement accepté par l'acheteur.
3.3 composant: Unité individuelle (par exemple vérin, moteur, distributeur, filtre, mais excluant la tuyauterie),
comprenant une ou plusieurs pièces conçues comme organe fonctionnel d'un système de transmissions
hydrauliques et pneumatiques.
Dispositif qui fournit un signal d'entrée à un composant (par exemple levier,
3.4 mécanisme de commande:
solénoïde).
3.5 commande d'urgence: Fonction de commande amenant un système en condition de sécurité.
3.6 plaque indicatrice de fonction: Surface contenant des informations indiquant soit le fonctionnement d'un
dispositif à commande manuelle (par exemple marche/arrêt, montée/descente) ou l'état d'une fonction assurée par
le système (par exemple serrage, levage, avance).
3.7 gaz neutre: Gaz ayant des propriétés similaires à celles de l'air et qui ne réagit pas aux effets de la pression
et/ou de la température de manière différente de l'air.
3.8 dispositif de service: Dispositif qui fournit un signal d'entrée à un mécanisme de commande (par exemple
came, interrupteur électrique).
3.9 tuyauterie; tuyautage: Toute combinaison de connecteurs, raccordements, tubes et/ou flexibles permettant
l'écoulement du fluide entre des composants.
3.10 pneumatique: Science et technique traitant de l'utilisation de l'air ou de gaz neutres comme moyen de
transmission de puissance.
3.11 acheteur: Partie qui spécifie les prescriptions applicables à une machine, un équipement, un système ou un
composant et qui juge si le produit satisfait à ces exigences.
3.12 fournisseur: Partie qui s'engage par contrat à fournir un ou des produits afin de satisfaire aux prescriptions
de l'acheteur.
3.13 système: Ensemble de composants reliés les uns aux autres qui permet de transmettre et de commander
l'énergie de(s) fluide(s).
4 Exigences
4.1 Généralités
Les exigences données de 4.1.1 à 4.5 s'appliquent à tous les systèmes relevant du domaine d'application de la
présente Norme internationale.
©
ISO
4.1.1 Instructions
Les systèmes pneumatiques doivent être installés et utilisés conformément aux instructions et recommandations du
fournisseur du système.
4.1.2 Langue*
Le fournisseur et l'acheteur doivent convenir de la langue à utiliser pour le marquage de la machine et dans la
documentation applicable. Le fournisseur a la responsabilité de s'assurer que toute traduction a la même
signification que le texte original.
4.2 Phénomènes dangereux*
Lors d'accord entre fournisseur et acheteur, une estimation des phénomènes dangereux listés dans l'annexe B doit
être effectuée. Cette estimation peut inclure l'influence du système pneumatique sur les autres parties de la
machine, le système ou l'environnement. Les normes listées dans l'annexe B peuvent être utilisées pour cette
estimation.
Autant que possible, les phénomènes dangereux identifiés doivent être éliminés par conception et, si cela est
impossible, la conception doit intégrer les dispositifs de protection contre de tels phénomènes dangereux.
4.3 Exigences de sécurité
4.3.1 Considération de conception
Lors de la conception de systèmes pneumatiques, il faut envisager toutes les opérations et l'utilisation prévues des
systèmes.
Les circuits pneumatiques doivent être conçus et les composants choisis, utilisés, montés et réglés de manière à
assurer un fonctionnement ininterrompu, une longue durée de vie et un fonctionnement sûr.
En cas de défaillance, la sécurité du personnel doit être prioritaire, et les dommages à l'équipement et
l'environnement doivent être réduits. Les modes de défaillances possibles ainsi que le fonctionnement et l'utilisation
volontaires doivent être pris en considération.
4.3.2 Choix des composants
Tous les composants du système doivent être choisis ou spécifiés pour assurer la sécurité d'utilisation et doivent
être utilisés dans leurs limites spécifiées lorsque le système est mis en œuvre pour l'usage prévu. Les composants
doivent être choisis ou spécifiés pour fonctionner de manière fiable dans tous les cas prévus d'utilisation du
système. Il faut tout particulièrement faire attention aux modes de défaillance des composants qui pourraient créer
un phénomène dangereux dans le cas de leur défaillance ou dysfonctionnement.
4.3.3 Excursions de pression
Toutes les parties du système doivent être conçues ou protégées contre les pressions supérieures à la pression
maximale constante d'utilisation d'un système ou de toute partie du système, ou supérieures à la pression de
fonctionnement de tout composant spécifique.
Les systèmes doivent être conçus, construits et réglés de manière à réduire au minimum les crêtes de pression et
les surpressions. Les crêtes de pression et la surpression ne doivent pas être source de phénomènes dangereux.
Il convient de veiller aux conséquences des blocages, chutes de pression ou fuites qui pourraient affecter le
fonctionnement sûr des composants.
4.3.4 Mouvements mécaniques
Les mouvements mécaniques, qu'ils soient volontaires ou non (y compris les effets dus, par exemple, à
l'accélération, à la décélération ou au levage/serrage de masses), ne doivent pas engendrer de situations
dangereuses pour les personnes.
©
ISO
4.3.5 Bruit
Des silencieux doivent être utilisés lorsque le niveau de pression acoustique provoqué par l'échappement d'air est
supérieur au niveau admis par les codes et normes correspondants. L'utilisation de silencieux d'orifices
d'échappement ne doit pas créer de phénomène dangereux par eux-mêmes.
Il convient que les silencieux ne créent pas de contre-pression nuisible.
4.3.6 Fuites
Les fuites (internes ou externes) ne doivent engendrer aucun phénomène dangereux.
4.3.7 Substances dangereuses en suspension dans l'air
Les systèmes doivent être conçus, construits et/ou équipés de manière à pouvoir réduire au minimum les
phénomènes dangereux dus aux substances dangereuses en suspension dans l'air d'échappement.
4.4 Exigences relatives à un système*
Le fournisseur et l'acheteur doivent établir des spécifications relatives à l'utilisation et à la fonction du système,
incluant:
a) plage des pressions d'utilisation;
b) plage des températures de service;
c) type de fluide à utiliser;
d) caractéristiques du cycle;
e) cycle opératoire;
f) durée de vie des composants;
g) séquence des événements;
h) lubrification;
i) prescriptions de levage;
j) prescriptions d'urgence et de sécurité;
k) détails relatifs à la peinture et aux revêtements protecteurs.
4.5 Conditions d'implantation*
4.5.1 Spécifications*
Le fournisseur et l'acheteur doivent définir les conditions d'implantation et la conception du système et tenir compte
de ces conditions.
Les informations requises comprennent, par exemple:
a) plage de températures ambiantes de l'installation;
b) plage d'humidité de l'installation;
c) services disponibles, par exemple eau, électricité, déchets;
d) détails du réseau électrique, à savoir tension et tolérance, fréquence, puissance disponible (si elle est limitée),
etc.;
e) protection des circuits électriques;
f) altitude des installations supérieures à 1 000 m au-dessus du niveau de la mer;
©
ISO
g) pression, capacité en débit, humidité et propreté de l'air comprimé, s'il est fourni par une source extérieure au
système pneumatique (voir l'ISO 8573-1);
h) sources de vibration;
i) ressources en cas d'urgence, par exemple risque d'incendie, d'explosion ou d'autres phénomènes dangereux
et disponibilité des ressources d'urgence correspondantes;
j) conditions environnementales inhabituelles;
k) exigences relatives à la surveillance;
l) facteurs légaux, y compris les règlements en matière d'environnement;
m) autres exigences de sécurité et spéciales.
4.5.2 Plans*
Lorsque cela a été spécifié et convenu entre l'acheteur et le fournisseur, ce dernier doit fournir les plans du système
qui indiquent
a) le plan au sol, y compris l'emplacement et les dimensions de l'installation;
b) les exigences relatives aux fondations, y compris la charge au sol;
c) les exigences relatives à l'alimentation en eau;
d) les exigences relatives à l'alimentation électrique;
e) la disposition du tuyautage (des photographies peuvent être utilisées après accord).
5 Conception du système
5.1 Schémas de circuit
Le fournisseur doit remettre un schéma de circuit conforme à l'ISO 1219-2, qui reflète la conception du système,
identifie les composants et satisfait aux exigences de l'article 4.
Les informations suivantes doivent figurer sur le schéma de circuit ou dans la documentation complémentaire:
a) identification de tout équipement par son nom, son numéro de catalogue, de série ou de conception,
accompagné du nom du fabricant ou du fournisseur;
b) dimensions, épaisseur de paroi et spécification des tuyaux rigides et tubes, et dimensions et spécification des
assemblages flexibles;
c) diamètre d'alésage de chaque vérin, diamètre de chaque tige de piston de vérin, longueur de course, force
maximale estimée et vitesse requise pour le service envisagé;
d) cylindrée, couple maximal, vitesses et sens de rotation nécessaires pour le service envisagé de chaque moteur
pneumatique;
e) réglage en pression des distributeurs de commande de pression;
f) types de crépines, filtres et éléments de rechange;
g) lorsque cela est spécifié, graphiques des séquences dans le temps, par exemple durée d'un cycle, avec
données chiffrées ou texte, ou les deux, indiquant les opérations effectuées, y compris la ou les fonctions des
commandes électriques et mécaniques correspondantes et des actionneurs;
h) indication en clair de tous les circuits contenus dans un circuit de collecteurs. En cas d'utilisation à cet effet de
lignes ou enveloppes, les frontières indiquées ne doivent renfermer que des symboles de composants montés
sur le bloc distributeur ou dans celui-ci;
i) indication en clair de la fonction de chaque actionneur dans chaque direction;
©
ISO
j) identification de tous les orifices des composants ou blocs distributeurs (comme marqué sur le composant ou le
bloc distributeur);
k) identification de tous les convertisseurs de signaux électriques comme indiqué sur le schéma du circuit
électrique.
5.2 Identification
5.2.1 Composants
Les caractéristiques suivantes doivent être indiquées par le fournisseur et portées, si possible, de manière durable
et facilement visibles sur tous les composants:
a) le nom et l'adresse abrégée du fabricant ou du fournisseur;
b) l'identification du produit du fabricant ou du fournisseur;
c) la pression de fonctionnement;
d) les indications complémentaires devant figurer sur divers composants, telles que données dans le tableau 1;
e) les symboles conformément à l'ISO 1219-1, tous les orifices étant correctement identifiés.
Lorsque le manque de place compromettrait la lisibilité des indications, les informations peuvent être fournies dans
une documentation complémentaire, telle que fiches d'instruction ou de maintenance, fiches-catalogues ou
étiquettes accessoires.
Le tableau 1 décrit les informations facultatives qui peuvent figurer sur le composant ou être données dans une
documentation complémentaire.
Tableau 1 — Indications complémentaires devant figurer sur les composants et/ou dans
une documentation supplémentaire
Composant Indications requises Indications facultatives Remarques
Moteurs pneumatiques Sens de rotation Consommation en air
libre
Actionneurs rotatifs Angle de rotation
Cylindrée
Vérins Alésage
Longueur de course
Électroaimants Tension Classe de protection Conformément à la
Fréquence en courant (classe IP) CEI 529
alternatif ou puissance
en courant continu
ou V·A
Distributeurs de Plage des pressions Peut se substituer à
commande directionnels d'utilisation la pression de
Dimension des orifices fonctionnement
Manocontacts Plage des pressions Peut se substituer à
d'utilisation la pression de
fonctionnement
Plage des pressions
différentielles
Tension et intensité que Classe de protection Conformément à la
peut supporter le contact (classe IP) CEI 529
©
ISO
Tableau 1 (fin)
Composant Indications requises Indications facultatives Remarques
Filtres Sens de l'écoulement Voir l'ISO 5782-1
Classe en μm
Dimension des orifices
Régulateurs de pression Sens de l'écoulement Plage de réglage de Voir l'ISO 6953-1
Dimension des orifices la pression
Lubrificateurs Sens de l'écoulement Écoulement minimal Voir l'ISO 6301-1
Dimension des orifices en service
Sens du réglage de
la distribution d'huile
Flexible Date de fabrication Diamètre nominal
(année/trimestre) (diamètre intérieur)
NOTE — Les classes de température de tous les composants sont facultatives.
5.2.2 Composants faisant partie d'un système
Chaque composant associé à un système pneumatique doit être repéré par un nombre et/ou une lettre unique.
Ce nombre repère doit servir à identifier le composant sur tous les schémas, nomenclatures et plans d'installation.
Il convient qu'il soit marqué de manière nette et indélébile sur l'installation, à proximité et non sur le composant
lui-même.
Pour les ensembles empilés (voir figure 1): indication en clair de l'ordre à côté de l'empilement mais non sur celui-ci.
5.2.3 Orifices
Tous les orifices doivent être clairement et distinctement identifiés. L'identification doit correspondre aux données
figurant sur le schéma de circuit.
Lorsque les composants ont des identifications d'orifice normalisées appliquées par le fournisseur du composant,
celles-ci doivent être complétées par les identifications correspondant au schéma de circuit (voir 5.2.1 et 5.2.2).
5.2.4 Mécanismes de commande des soupapes et des distributeurs
5.2.4.1 Non électriques
Les mécanismes de commande non électriques et leurs fonctions doivent être identifiés de façon claire et durable
avec la même identification que celle qui figure sur le schéma de circuit.
5.2.4.2 Électriques
Les mécanismes de commande électriques (électroaimants et leurs bouchons ou câbles reliés) doivent être repérés
par la même identification sur les schémas de circuit électriques et pneumatiques.
5.2.5 Dispositifs intégrés
L'identification des distributeurs et autres dispositifs fonctionnels (bouchons et passages d'orifices, sélecteurs de
circuit, soupapes de non-retour, etc.) situés dans un bloc distributeur, une embase, un support ou un raccord doit
être placée à côté des ouvertures qui y donnent accès. Dans le cas où ces ouvertures d'accès sont situées sous un
ou plusieurs composants, l'identification doit figurer à côté du composant et porter la mention «CACHÉ».
©
ISO
5.2.6 Plaques indicatrices de fonction
Il convient d'installer une plaque indicatrice de fonction pour chaque poste de commande, dans un endroit où elle
puisse être lue facilement. Les informations portées sur cette plaque doivent être pertinentes et faciles à
comprendre, fournissant une identification effective de chaque fonction du système qui est commandé.
Légende
1 Distributeurs individuels
2 Ensemble à éléments superposés
3 Poste
4 Bloc distributeur
5 Bases individuelles du bloc distributeur
NOTE — Cette figure représente un bloc distributeur complet comprenant trois postes. Deux des postes représentent un
ensemble à éléments empilés sur la base du bloc distributeur, un seul poste comporte un distributeur sur la base du bloc.
Figure 1 — Ensembles à éléments superposés
©
ISO
5.3 Installation, utilisation et maintenance
Les composants et les tuyauteries doivent être choisis, disposés et installés conformément aux instructions et aux
recommandations du fournisseur.
Il convient de choisir des composants fabriqués conformément à des Normes internationales ou nationales reconnues.
Le fournisseur doit fournir un mode opératoire détaillé que l'acheteur doit suivre pour l'installation et l'utilisation, y
compris l'identification de toute formation spécialisée nécessaire pour permettre au personnel de mettre en œuvre
ces fonctions.
5.3.1 Remplacement des composants
Il convient d'installer les composants de manière à pouvoir les remplacer facilement sans démonter d'autres
composants d'une machine.
5.3.2 Exigences de maintenance
Les composants du système, y compris les tuyauteries, doivent être accessibles et logés de façon à ne pas gêner
le réglage ou la maintenance. Il convient d'apporter une attention particulière à la maintenance de routine et à veiller
à ce que cette activité ne nécessite pas un démontage important des éléments adjacents. Le fournisseur doit fournir
un mode opératoire détaillé que l'acheteur doit suivre pour la maintenance de routine et la remise en état ou le
remplacement prescrit, y compris l'indication de toute formation spécialisée requise pour permettre au personnel de
mettre en œuvre ces fonctions.
5.3.3 Dispositions pour le levage
Il convient que tous les composants ou ensembles dont la masse est supérieure à 15 kg comportent une (des)
disposition(s) d'attente en vue du levage.
5.4 Utilisation de pièces normalisées
Afin de faciliter la maintenance et le remplacement, il convient que le fournisseur du système fournisse des
composants utilisant des pièces disponibles dans le commerce (clavettes, paliers, garnitures, joints d'étanchéité,
rondelles, bouchons, éléments de fixation, etc.) et des configurations de pièces (dimensions des arbres et
clavetages, dimensions des orifices, montages, surfaces de montage ou cavités, etc.) qui soient conformes aux
Normes internationales en vigueur et qui permettent une codification uniforme.
5.5 Joints et dispositifs d'étanchéité
Les joints et dispositifs d'étanchéité
a) ne doivent pas être endommagés par l'air, l'humidité, la température, les fluides ou les lubrifiants utilisés;
b) doivent être compatibles avec les matériaux voisins en contact;
c) doivent être d'un modèle maintenant l'étanchéité aux fuites en cas d'usure;
d) il convient de les essayer dans des conditions aussi proches que possible de l'application réelle avant de les
spécifier pour une utilisation en production;
e) doivent être conservés conformément aux recommandations du fabricant;
f) doivent être utilisés dans les limites de leur durée de conservation.
5.6 Consignes de maintenance et d'utilisation
Le fournisseur du système doit fournir à l'acheteur des consignes d'utilisation et de maintenance pour tout le
matériel pneumatique qui clairement
a) décrivent les modes opératoires pour la mise en marche et l'arrêt;
©
ISO
b) donnent toutes les instructions requises pour la dépressurisation et identifient celles des pièces du système qui
ne sont pas dépressurisées par un ou plusieurs dispositifs normaux de mise à l'air libre;
c) décrivent les modes opératoires de réglage;
d) indiquent les points de graissage extérieurs, le type de lubrifiant requis et les périodicités à observer;
e) positionnent les points de vidange, filtres, points de prises d'essai, etc., nécessitant une maintenance régulière
programmée;
f) font état des opérations de maintenance pour les assemblages formant un ensemble unique;
g) donnent une identification supplémentaire des pièces de composants, qui sont disponibles dans le commerce
ou fabriquées selon une Norme internationale comportant une codification uniforme; l'identification doit être le
numéro de pièce du fabricant du composant ou telle que prévue par le code de la Norme internationale;
h) listent les pièces de rechange recommandées.
5.7 Manuels d'utilisation et de maintenance
Le fournisseur du système doit fournir un manuel décrivant le fonctionnement et la maintenance du système, y
compris les exigences décrites en 5.6 et les instructions et/ou informations de maintenances des composants et
des tuyauteries.
6 Composants de transformation de l'énergie
6.1 Moteurs pneumatiques et actionneurs semi-rotatifs
6.1.1 Protection
Les moteurs pneumatiques et actionneurs semi-rotatifs doivent être installés dans un endroit où ils sont protégés
contre les détériorations prévisibles ou être munis d'une protection convenable.
Les arbres et les accouplements rotatifs doivent être munis d'une protection pour prévenir tout phénomène
dangereux vis-à-vis des personnes.
6.1.2 Montage
Le montage des moteurs pneumatiques et des actionneurs semi-rotatifs sur, ou associés à, leurs ensembles
d'entraînement doit être suffisamment rigide pour garantir constamment un alignement suffisant et recevoir le
couple appliqué. Il convient d'envisager une protection contre toute détérioration provoquée par mégarde par des
forces axiales et latérales.
6.1.2.1 Charges latérales
Les charges latérales ne doivent pas dépasser les limites recommandées par le(s) fournisseur(s) du moteur
pneumatique, de l'actionneur semi-rotatif et de l'unité entraînée.
6.1.2.2 Entraînement par accouplements
Les accouplements doivent être d'un type approuvé par le fabricant selon le type de montage et les tolérances
d'alignement spécifiés.
Les accouplements doivent être choisis et installés pour se situer dans la limite des tolérances de montage et
d'alignement spécifiées par le fournisseur du moteur pneumatique ou de l'actionneur semi-rotatif.
6.1.3 Considérations de charge et de vitesse
Il faut prendre en considération les couples de démarrage et de calage, l'effet des variations de charge et l'énergie
cinétique de la charge en mouvement dans les applications comportant des moteurs pneumatiques et des
actionneurs semi-rotatifs.
©
ISO
6.2 Vérins
NOTE — De nombreux modèles de vérins sont destinés à un type d'industrie ou d'application spécifique. Cela englobe les
rotatifs, tournants, sans tige, à câble, soudés, de fonderie, à coussin d'air, etc.
6.2.1 Aptitude à l'emploi
Les vérins doivent être conçus et/ou choisis selon les caractéristiques suivantes.
6.2.1.1 Résistance au flambage
Il faut veiller à la longueur de la course, à la charge et aux montages des vérins afin d'éviter la flexion ou le
flambage de la tige de piston de vérin en toute position.
6.2.1.2 Charge et dépassement de charge
Une résistance suffisante de la structure et/ou à une pression doit être assurée pour les applications où l'on
rencontre des dépassements de charges ou des charges prolongées.
6.2.1.3 Caractéristiques de montage
Les attaches de montage doivent être choisies en fonction de la charge nécessaire.
Les dimensions, l'assemblage et la résistance des éléments doivent être conçus pour les charges maximales
attendues de la colonne complètement déployée ou de toute autre position limite de la course.
NOTE — Les pressions caractéristiques de fonctionnement des vérins peuvent ne refléter que la capacité de résistance à la
pression de l'enveloppe et non sa capacité de transmettre des forces selon des considérations d'assemblages. Il convient de
consulter le fournisseur ou le fabricant pour ce qui concerne les caractéristiques des configurations de montage.
6.2.1.4 Charge structurelle
Lorsque le vérin est utilisé en position d'arrêt effective, il doit être dimensionné et le montage doit être choisi sur la
base de la charge maximale possible subie, induite sur la partie freinante de la machine, si cette charge est
supérieure à celle subie lors d'un cycle de travail normal.
6.2.1.5 Résistance aux chocs et vibrations
Tous les composants montés sur, ou raccordés à un vérin doivent être fixés de manière à ne pas se détacher du
fait des chocs et des vibrations.
6.2.2 Fixations et alignement
L'alignement du vérin à la charge doit être assuré de manière à ce qu'aucune charge latérale ou radiale
préjudiciable ne puisse être imposée au vérin à moins d'avoir pris des précautions suffisantes pour compenser ces
charges.
Les vérins dont les fixations ne sont pas rigides doivent être disposés conformément aux spécifications du
fournisseur.
6.2.2.1 Emplacement de montage
Les surfaces de montage ne doivent pas déformer les vérins, et un jeu doit être prévu pour permettre la dilatation
thermique. Le vérin doit être monté de manière à laisser un accès facile pour la maintenance, le réglage des
dispositifs d'amortissement ou le remplacement de l'unité complète.
6.2.2.2 Attaches de fixation
Les attaches de fixation pour vérins et accessoires doivent être conçues et installées pour résister à toutes les
forces prévisibles. Il convient, dans la mesure du possible, que les attaches de fixation ne soient pas soumises à
des forces de cisaillement. Il est préférable que les vérins fixés par pattes soient munis de dispositifs permettant
©
ISO
d'absorber les charges dues au cisaillement, plutôt que de ne reposer que sur les attaches de fixation. Les attaches
de fixation doivent être adéquates pour absorber des moments de renversement.
6.2.2.3 Alignement
Les surfaces de montage doivent être conçues pour empêcher toute déformation du vérin lorsqu'il est installé. Le
vérin doit être monté de manière à éviter les charges latérales non intentionnelles en service.
6.2.3 Dispositifs d'amortissement et de décélération
En cas d'utilisation du fond d'un vérin comme butée effective, il convient que le vérin comporte un amortisseur;
sinon, il y a lieu de prévoir un dispositif extérieur d'absorption de l'énergie afin de réduire au minimum l'effet
préjudiciable du choc mécanique.
6.2.4 Butées d'arrêt de course
Si des butées d'arrêt extérieures limitent la course, il faut prévoir des moyens permettant de verrouiller les butées
d'arrêt réglables. En cas d'utilisation de butées d'arrêt, tous les moyens d'amortissement prévus doivent continuer à
être efficaces.
6.2.5 Course de piston
La course réelle du piston doit toujours être supérieure ou égale à sa course nominale.
6.2.6 Tiges de piston
Il convient de protéger les tiges de piston contre toute détérioration prévisible provenant d'indentations, éraflures,
...












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...