Soil quality - Field soil description

ISO 25177:2008 is a guide for describing the soil and its environmental context at a given site. Sites can be natural, near-natural, urban or industrial. It is important to realize that a number of soil samples can be taken at a site to support the soil description. The information provided by the descriptions in ISO 25177:2008 provides the context for the presentation of results from analyses undertaken on soil samples.

Qualité du sol — Description du sol sur le terrain

L'ISO 25177:2008 constitue un guide pour la description du sol et du contexte environnemental d'un site donné. Les sites peuvent être naturels, quasi-naturels, urbains ou industriels. Il est important de souligner qu'un certain nombre d'échantillons de sol peut être prélevé sur un site pour compléter la description du sol. Les informations fournies par les descriptions de l'ISO 25177:2008 définissent le contexte de présentation des résultats des analyses réalisées sur les échantillons de sol.

Kakovost tal - Terenski opis tal

Ta mednarodni standard podaja vodilo za opis tal in njihovega okoljskega okvira na dani lokaciji. Lokacije so lahko naravne, skoraj naravne, urbane in industrijske. Pomembno se je zavedati, da se lahko vzame več vzorcev tal na lokaciji, potrebnih za opis tal. Informacije, podane z opisi v tem mednarodnem standardu, podajajo okvir za predstavitev rezultatov analiz, izvedenih na vzorcih tal.

General Information

Status
Withdrawn
Publication Date
11-Nov-2008
Withdrawal Date
11-Nov-2008
Technical Committee
Drafting Committee
Current Stage
9599 - Withdrawal of International Standard
Start Date
19-Sep-2019
Completion Date
13-Dec-2025

Relations

Standard
ISO 25177:2008 - Soil quality -- Field soil description
English language
35 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 25177:2011
English language
41 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 25177:2008 - Qualité du sol -- Description du sol sur le terrain
French language
36 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

ISO 25177:2008 is a standard published by the International Organization for Standardization (ISO). Its full title is "Soil quality - Field soil description". This standard covers: ISO 25177:2008 is a guide for describing the soil and its environmental context at a given site. Sites can be natural, near-natural, urban or industrial. It is important to realize that a number of soil samples can be taken at a site to support the soil description. The information provided by the descriptions in ISO 25177:2008 provides the context for the presentation of results from analyses undertaken on soil samples.

ISO 25177:2008 is a guide for describing the soil and its environmental context at a given site. Sites can be natural, near-natural, urban or industrial. It is important to realize that a number of soil samples can be taken at a site to support the soil description. The information provided by the descriptions in ISO 25177:2008 provides the context for the presentation of results from analyses undertaken on soil samples.

ISO 25177:2008 is classified under the following ICS (International Classification for Standards) categories: 13.080.01 - Soil quality and pedology in general. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO 25177:2008 has the following relationships with other standards: It is inter standard links to ISO 25177:2019, ISO 11259:1998. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase ISO 25177:2008 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.

Standards Content (Sample)


INTERNATIONAL ISO
STANDARD 25177
First edition
2008-11-15
Soil quality — Field soil description
Qualité du sol — Description du sol sur le terrain

Reference number
©
ISO 2008
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2008
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2008 – All rights reserved

Contents Page
Foreword. v
Introduction . vi
1 Scope . 1
2 Normative references . 1
3 General references . 1
3.1 Site/profile numbers . 1
3.2 Location . 1
3.3 Geographical coordinates . 2
3.4 Date of observation . 2
3.5 Author and organization . 2
4 Profile environment . 2
4.1 Previous precipitation . 2
4.2 Land use at plot level (checked by detailed field survey) . 3
4.3 Type of cultivation or vegetation or human utilization (at the plot level) . 3
4.4 Geomorphology of the site . 4
4.5 Slope length (in metres). 4
4.6 Slope value . 4
4.7 Orientation (aspect) of the slope. 4
4.8 Nature of the parent material. 4
4.8.1 Modified or artificial material. 4
4.8.2 Natural material. 4
4.9 Presence and depth of water table . 5
4.9.1 General. 5
4.9.2 Depth. 5
4.9.3 Minimum depth of water table . 5
4.9.4 Maximum depth of water table . 5
4.9.5 Nature of the water . 6
5 Surface appearance. 6
5.1 Percentage of land surface occupied by rock outcrops or surface exposures of
“non-natural” material (e.g. on an industrial site) . 6
5.2 Evidence of erosion. 6
6 General designation – Soil type . 7
6.1 General. 7
6.2 Type of soil classification used. 7
6.3 Soil type with reference to the soil classification used. 7
6.4 Type of horizon designation used . 7
6.5 Sequence of horizons. 7
7 Horizon or layer description . 8
7.1 General. 8
7.2 Horizon or layer number . 8
7.3 Depth. 8
7.4 Estimation of moisture status . 8
7.5 Colour of the horizon or layer matrix. 9
7.6 Mottles . 9
7.6.1 General. 9
7.6.2 Abundance . 9
7.6.3 Colour . 10
7.7 Estimated organic matter content. 10
7.8 Texture . 10
7.8.1 Description of texture diagram. 10
7.8.2 Estimation. 10
7.9 Coarse elements . 10
7.9.1 General . 10
7.9.2 Abundance (in percent volume fraction) .10
7.9.3 Maximum size of the most frequently observed coarse elements . 11
7.9.4 Nature . 11
7.10 Carbonates and effervescence. 11
7.10.1 Intensity of effervescence. 11
7.10.2 Location of effervescence. 12
7.11 Main categories of structure. 12
7.12 Compactness. 13
7.13 Total estimated porosity. 13
7.14 Roots . 14
7.14.1 Size (diameter) of most frequently observed roots. 14
7.14.2 Abundance. 14
7.15 Density of worm channels (usually an average over a number of square decimetres) . 14
7.16 Nature of lower horizon boundary . 14
Annex A (informative) Charts for estimating proportions of mottles, coarse elements, etc. 16
Annex B (informative) Reference soil groups of the World Reference Base for soil resources (FAO,
ISRIC and ISSS, 2006). 17
Annex C (informative) Soil horizon designation — Example of the FAO System (2006) . 23
Annex D (informative) Examples of texture diagrams . 28
Annex E (informative) Determination of soil texture in the field. 31
Annex F (informative) Some types of soil structure . 34
Bibliography . 35

iv © ISO 2008 – All rights reserved

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 25177 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 1, Evaluation
of criteria, terminology and codification.
This first edition of ISO 25177 cancels and replaces ISO 11259:1998, which has been technically revised.
Introduction
Traditionally, descriptions of soils and their environment were carried out as parts of soil survey and soil
inventories, the purpose of which was to describe the pedogenetic context of the soil and assess applied
aspects, principally agronomic potentials.
Today, many soil observations are made as part of much wider environmental studies, and include analysis
for objectives such as the following:
⎯ the identification of human influences on the soils, particular attention being paid to the negative effects of
these influences (for example, pollution and physical deterioration);
⎯ land protection within the context of “sustainable” agriculture;
⎯ the prediction of the fate of contaminants introduced into the soil;
⎯ the assessment of the consequences resulting from changes in the use of the soil;
⎯ setting up monitoring programmes for specific purposes (observation of changes of soil properties in
time);
⎯ the development of spatial data bases (used in the context of GIS) aimed at facilitating the geographical
representation of these;
⎯ many other uses.
Therefore, this International Standard is based on aspects of the traditional approach to soil description
[for example, the Guidelines for soil description FAO ROME (2006)]. The descriptions of soils and sites alone
are not sufficient. Field and laboratory measurements, whether physical, chemical or biological, must
accompany this description. Care must be taken in the specification of sites and in the methods of sampling
and the number of samples. It is therefore imperative that this International Standard be considered in the
context of other International Standards developed within the framework of ISO/TC 190, Soil quality.

vi © ISO 2008 – All rights reserved

INTERNATIONAL STANDARD ISO 25177:2008(E)

Soil quality — Field soil description
1 Scope
This International Standard is a guide for describing the soil and its environmental context at a given site.
Sites can be natural, near-natural, urban or industrial. It is important to realize that a number of soil samples
can be taken at a site to support the soil description. The information provided by the descriptions in this
International Standard provides the context for the presentation of results from analyses undertaken on soil
samples.
NOTE 1 It might not be possible or necessary to record data under all the headings listed in these descriptions.
NOTE 2 Overall guidance for presentation of information from soil surveys is given in ISO 15903.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 3166-1:2006, Codes for the representation of names of countries and their subdivisions —
Part 1: Country codes
ISO 3166-2:2007, Codes for the representation of names of countries and their subdivisions —
Part 2: Country subdivision code
ISO 14688-2:2004, Geotechnical investigation and testing —Identification and classification of soil —
Part 2: Principles for a classification
3 General references
3.1 Site/profile numbers
⎯ Profile number
⎯ Survey number or code
3.2 Location
⎯ Country
Country codes according to ISO 3166-1 and ISO 3166-2 shall be used. For historical research, designations
according to ISO 3166-3 should be considered, when necessary.
⎯ Administrative division
To be adapted according to the country: (provinces, states, regions, departments, towns, etc.), both uncoded
and coded.
3.3 Geographical coordinates
⎯ Type of geographical reference system (degrees, Lambert, national reference grid)
⎯ Position within the geographical reference system (longitude in deg/min/s, latitude in deg/min/s)
⎯ Altitude (in metres)
3.4 Date of observation
⎯ Year
⎯ Month
⎯ Day
⎯ Time
3.5 Author and organization
⎯ Author's name
⎯ Accreditation
⎯ Name of organization
⎯ Department
⎯ Address
⎯ Telephone
⎯ Fax number
⎯ E-mail address
4 Profile environment
4.1 Previous precipitation
0 No precipitation within the last month
1 No precipitation within the last week
2 No precipitation within the last three days
3 Rainy but no intense precipitation within the last three days
4 Moderate rain for several days or intense rainfall the day before the observation
5 Extreme precipitation or snow melt or inundation just before the observation
6 Not recorded
2 © ISO 2008 – All rights reserved

4.2 Land use at plot level (checked by detailed field survey)
01 Buildings and industrial infrastructures
02 Mining site (current or past)
03 Metal processing sites
04 Chemical processing sites
05 Oil and gas production sites
06 Metal manufacturing sites
07 Food processing sites
08 Waste disposal sites
09 Cultivated lands
10 Horticulture
11 Grazing
12 Orchards, fruit plantations or grapevines
13 Forest, woodlands
14 Mixed land use (agroforestry or agropastoral)
15 Gathering/hunting-fishing (exploitation of natural vegetation, hunting or fishing)
16 Nature protection (for example, nature reserve, protected area, erosion control by terracing)
17 Wetland (for example, marsh, swamp, mangrove, etc.)
18 Snow or ice cover
19 Bare rock or rocky surface
20 Natural lands
21 Natural grasslands
22 Recreation land
23 Other type of unutilized and unmanaged site
4.3 Type of cultivation or vegetation or human utilization (at the plot level)
Be as clear and precise as possible. For cultivated plants, it may be interesting to note the variety, when
known.
EXAMPLE Grazing (natural meadow, planted grassland); metal processing (ferrous, non-ferrous); mining site (iron,
deep coal, open-cast coal); cultivated lands (maize, oats, rice); horticulture (flowers, vegetables).
4.4 Geomorphology of the site
⎯ The position of the site in the landscape
⎯ The geomorphology of the immediate surroundings of the site (scale: 0,1 km)
4.5 Slope length (in metres)
When flat, note 0 (zero).
4.6 Slope value
The average slope value is measured in the vicinity of the soil pit (flat = 0).
Slope may be expressed in percent or degrees:
⎯ slope value, in percent;
⎯ slope value, in degrees.
4.7 Orientation (aspect) of the slope
The orientation of the slope can be expressed in the following ways:
a) N-S-E-W
NE-SE-NW-SW
with VV = variable and AA = flat; or
b) use degrees with the following convention:
0° = north
90° = east
180° = south
270° = west
with VV = variable and AA = flat.
4.8 Nature of the parent material
4.8.1 Modified or artificial material
The nature of the parent material may be modified by the use of the site, or artificial materials may be
imported to a site. The knowledge of the history of the site may provide information about the modifications of
the natural material.
4.8.2 Natural material
The natural parent material and/or bedrock should be described as completely as possible, according to
local knowledge. For example, glacial tills, marine alluvium, metamorphic bedrock, hard limestone, loessic
deposit, etc.
4 © ISO 2008 – All rights reserved

4.9 Presence and depth of water table
4.9.1 General
The depth of the water table generally fluctuates during the year, sometimes in relation with the seasons or
the tide.
In 4.9.2, note the depth of the water table during the description of the site.
Subclauses 4.9.3 and 4.9.4 are included to describe the variations in water-table depth, when there are some
variations in depth and when these variations are known (piezometers, investigations, or as marks on the
walls of the profile).
In 4.9.3, the minimum depth of the water table shall be noted (water table at its highest point).
In 4.9.4, the maximum depth of the water table shall be noted (water table at its lowest point).
When the person writing the description does not know these variations in depth, record “unknown” in 4.9.3
and 4.9.4.
When there is no variation in the water-table depth, or when the describer does not know if there are depth
variations, do not answer the points in 4.9.3 and 4.9.4.
4.9.2 Depth
The depth can be
a) observed or measured,
b) estimated, or
c) not observed.
If it is estimated, observed or measured, the depth is expressed in centimetres.
4.9.3 Minimum depth of water table
The minimum depth of the water table can be
a) observed or measured,
b) estimated, or
c) not observed.
If it is estimated, observed or measured, the depth is expressed in centimetres.
4.9.4 Maximum depth of water table
The maximum depth of the water table can be
a) observed or measured,
b) estimated,
c) not observed.
If it is estimated, observed or measured, the depth is expressed in centimetres.
4.9.5 Nature of the water
Make a general estimation, without reference to threshold value of soluble salts or of conductivity, or analytical
values for pollution or contamination, as follows:
⎯ S = saline;
⎯ B = brackish;
⎯ F = fresh;
⎯ P = polluted or contaminated.
Combinations SP, BP or FP are possible.
5 Surface appearance
5.1 Percentage of land surface occupied by rock outcrops or surface exposures of
“non-natural” material (e.g. on an industrial site)
The following categories are widely used in soil description. (Compare the charts shown in Annex A.):
0 None: 0 %
1 Very few: > 0 % and u 2 %
2 Few: > 2 % and u 5 %
3 Common: > 5 % and u 15 %
4 Many: > 15 % and u 40 %
5 Abundant: > 40 % and u 80 %
6 Dominant: > 80 %
7 Not observed
5.2 Evidence of erosion
The classes given below are based upon aspects of soil conditions reflecting present erosion (or
accumulation) and not past or possible future erosion (or accumulation).
0 No visible evidence of erosion
1 Visible evidence of soil loss
1 Sheet erosion
2 Rill erosion
3 Gully erosion
4 Wind erosion
6 © ISO 2008 – All rights reserved

5 Landslides
2 Visible evidence of accumulation
1 Deposition by water
2 Wind deposition
6 General designation – Soil type
6.1 General
In describing soils in their environment, it is normal to allocate the soil to a reference base in an established
soil classification. These allocations are normally based on the expression of pedogenetic processes in the
soil profile. There are many classifications with national origins, but the use of the international soil
classification system, the World Reference Base (WRB), is suggested.
Pedogenetic processes result in the formation of different layers in the soil, generally more or less parallel to
the topographic surface, which are called “horizons”. In the framework of soils deeply modified by human
activity, artificial layers may be due to different kinds of deposits (concrete, bricks, etc.). These kinds of layers
are simply called “layers”. Artificial soils and soils in industrial and urban landscapes are not readily classified
in most established soil classification systems, including WRB. In these conditions, the layers are described
from the surface of the soil as described in Clause 7.
6.2 Type of soil classification used
Record which soil classification or which system is used.
Basically, the WRB classification system is recommended.
6.3 Soil type with reference to the soil classification used
EXAMPLE Albic luvisol.
Annex B gives a list of reference soils according to the World Reference Base for Soil Resources, 2006.
NOTE The World Reference Base for soil resources is available on the Internet.
6.4 Type of horizon designation used
Note which type of horizon designation is used, for example FAO (2006) or other national system.
As an example, the FAO system of horizon designation (2006) is given in Annex C, and can be used as a
reference if there is no local or regional system of horizon designation.
6.5 Sequence of horizons
Note the succession of horizons described in the profile.
EXAMPLE A/E/B/C (see Annex C).
7 Horizon or layer description
7.1 General
For each horizon or layer, the following points shall be described.
7.2 Horizon or layer number
The horizons or layers are numbered from 1 to n within each site, and should be described from the surface in
sequence.
7.3 Depth
Note the average depth and range of depths of the appearance and disappearance of each horizon or layer,
in centimetres.
Organic horizons or layers of undecomposed litter shall be noted as greater than zero, preceded with the
sign +.
7.4 Estimation of moisture status
The purpose of this heading is to indicate the conditions under which the other observations are made, and to
give some guidelines for field determination of the soil moisture status.
The water content of a soil is difficult to estimate directly in the field, since the same volume of water in
different soils results in different behaviour, depending on the nature of the soil material, nature and
dimensions of pores, etc.
It is therefore worthwhile to observe the moisture status in the field, which is directly linked with the quantity of
soil water. To determine the moisture status, it may be necessary to make inspections to calibrate the
moisture analysis.
The soil moisture status is indicated as follows.
a) Dry: water content less than the moisture retained at the wilting point.
In the case of cohesive samples (generally more than 17 % clay), this may result in the following soil
properties: hard, nonplastic consistency; soil colour darkens when water is added.
In the case of noncohesive samples, generally when the percentage of clay is less than 17 %, this may result
in the following soil properties: light soil colour, which becomes much darker when water is added; dusty.
b) Slightly moist: water content between field capacity and wilting point.
In the case of cohesive samples (generally more than 17 % clay), this may result in the following soil
properties: partially cohesive, but crumbles when forming a roll of 3 mm thickness; soil colour darkens slightly
when water is added.
In the case of noncohesive samples, generally when the percentage of clay is less than 17 %, this may result
in the following soil properties: soil colour darkens slightly when water is added.
c) Moist: moisture content of soil is near the field capacity; absence of free water.
In the case of cohesive samples (generally more than 17 % clay), this may result in the following soil
properties: stiff; can be formed into a roll of 3 mm thickness without crumbling, does not darken when adding
water; no water freed when squeezed.
8 © ISO 2008 – All rights reserved

In the case of noncohesive samples, generally when the percentage of clay is less than 17 %, this may result
in the following soil properties: fingers moisten slightly when the sample is touched; no water escapes from
soil pores even when the sample is knocked on the drill; does not darken when water is added.
d) Very wet: presence of free water, saturating all or a part of the soil pores.
In the case of cohesive samples (generally more than 17 % clay), this may result in the following soil
properties: soft; can easily be formed into a roll of thickness more than 3 mm; water freed when the sample is
squeezed.
In the case of noncohesive samples, generally when the percentage of clay is less than 17 %, this may result
in the following soil properties: fingers get distinctly wet when the sample is touched; visible free water when
the sample is compressed.
e) Saturated: free water saturates all the soil pores.
In the case of cohesive samples (generally more than 17 % clay), this may result in the following soil
properties: muddy, waterlogged; mud passes through the fingers when the sample is squeezed.
In the case of noncohesive samples, generally when the percentage of clay is less than 17 %, this may result
in the following soil properties: distinct water escape; sample is often fluid.
f) Inundated: soil surface is covered by water.
This concerns only the upper horizon, near the surface of the soil.
7.5 Colour of the horizon or layer matrix
Determined by comparison with the Munsell soil-colour chart, the soil being in the moisture status “moist”.
7.6 Mottles
7.6.1 General
Mottles are spots or patches of different colours which are distinct from the matrix colour and any variation
associated with ped surfaces, worm holes, concretions or nodules.
7.6.2 Abundance
The abundance of mottles is described in terms of classes indicating the percentage of exposed surface
occupied by the mottles. The following categories are widely used in soil description. (Compare the charts
shown in Annex A.):
0 None: 0 %
1 Very few: > 0 % and u 2 %
2 Few: > 2 % and u 5 %
3 Common: > 5 % and u 15 %
4 Many: > 15 % and u 40 %
5 Abundant: > 40 %
7.6.3 Colour
If possible, full Munsell colour coding should be given.
7.7 Estimated organic matter content
Although it is difficult to carry out in the field and requires local experience, estimation of the organic content is
important, in particular in relation to the interpretation of other soil variables.
0 absent or not detectable
1 sufficient to darken the soil
2 considerable organic matter giving the soil a very dark colour and a low density
3 only organic matter detectable
4 undetermined
7.8 Texture
7.8.1 Description of texture diagram
The name of the texture triangle used and the granulometric division scale are given uncoded, including the
grain size division between silt and sand (see Annex D and ISO 14688-2).
7.8.2 Estimation
Note that the texture is a manual estimation carried out in the field; it is different from “particle size distribution”,
which is done in a laboratory. A brief guide for the texture test is presented in Annex E.
This is an estimation of the texture class of the fine earth of the horizon (particle size < 2 mm).
The soil texture class determined manually may differ from the soil texture class determined from the results
of particle size analysis (e.g. according to ISO 11277).
7.9 Coarse elements
7.9.1 General
Coarse elements correspond to the soil fraction of size > 2 mm (as opposed to fine earth). In natural soils this
includes rock fragments. In urban, industrial and artificial soils, this may include other foreign materials, such
as metals, concrete, glass, etc.
7.9.2 Abundance (in percent volume fraction)
The following categories are widely used in soil description. (Compare the charts shown in Annex A.):
0 None: 0 %
1 Very few: > 0 % and u 2 %
2 Few: > 2 % and u 5 %
3 Common: > 5 % and u 15 %
4 Many: > 15 % and u 40 %
10 © ISO 2008 – All rights reserved

5 Abundant: > 40 % and u 80 %
6 Dominant: > 80 %
7.9.3 Maximum size of the most frequently observed coarse elements
The following categories are widely used in soil description:
1 0 cm to u 2 cm
2 > 2 cm and u 7,5 cm
3 > 7,5 cm and u 12 cm
4 > 12 cm and u 25 cm
5 > 25 cm
Each country may name the classes using local or national terms.
7.9.4 Nature
Write, as clearly as possible, the nature(s) of the coarse elements. In natural soils, the lithological nature of
the coarse elements should be described.
7.10 Carbonates and effervescence
NOTE This is often an important property in natural soil materials.
7.10.1 Intensity of effervescence
The carbonate content is estimated in the field according to the visible and audible reactions of the CO
development (effervescence), using a hydrochloric acid solution, diluted to 1/10 (volume fraction). In this
context, carbonate means calcium and magnesium carbonates.
0 No effervescence
No visible or audible effervescence.
This corresponds generally to no presence of carbonates.
1 Weak effervescence
Audible effervescence and a few bubbles after several seconds.
Generally, this corresponds to a percentage of carbonates less than 2 %.
2 Moderate effervescence
Visible bubbles often confined to individual grains.
Generally, this corresponds to a percentage of carbonates between 2 % and 7 %.
3 Strong effervescence
Bubbles form a thin, but more or less continuous, froth.
Generally, this corresponds to a percentage of carbonates between 7 % and 25 %.
4 Extreme effervescence
Strong reaction; the bubbles rapidly form a thick froth.
Generally, this corresponds to a context of carbonates over 25 %.
7.10.2 Location of effervescence
The following categories are widely used in soil description:
1 Generalized
Both the matrix (particle size < 2 mm) and the coarse elements react to acid.
2 Localized in the matrix
Effervescence limited to the fine material (< 2 µm).
3 Localized on coarse elements
Effervescence limited to coarse elements.
7.11 Main categories of structure
Some structures are shown in Annex F.
It is important to record the size of structural elements (in centimetres).
0 Continuous or massive
Coherent without structural aggregates.
1 Single grain
Noncoherent mass of individual particles.
2 Fibrous or layered
Particular structure of organic horizons or layers in which the vegetable residues with fibrous structure (for
example, needles) or layered structure (for example, leaves) are still easily identifiable.
3 Spheroidal (crumb or granular)
When a product of soil faunal activity has a low bulk density, the structure may be described as fluffy.
4 Blocklike
Units are blocklike or polyhedral, surfaces are flat or slightly rounded, and the three dimensions are
approximately the same.
5 Prismatic or columnar
Units have angular or slightly rounded surfaces, the vertical dimension is greater than the horizontal
dimensions.
Where the top of the unit is curved, the structure is described as columnar.
12 © ISO 2008 – All rights reserved

6 Planar or platy
Structures in which parallel planes are predominant.
Where the planes are horizontal, the structure is described as platy.
Where these parallel planes are inherited from initial rock organization, the structure is considered as “rock
structure”.
7 Rock
The rock organization is preserved in C or R horizons or layers (e.g. weathered schist or weathered
puddingstone).
7.12 Compactness
The compactness evaluation by the knife test depends on the moisture status (see 7.4). It is therefore
essential that the moisture status be recorded.
1 Loose
Uncompacted material; a knife penetrates easily up to the hilt.
2 Slightly compacted
A slight effort is required to insert a knife into the soil.
3 Compacted
A knife does not penetrate completely, even with considerable effort.
4 Very compacted
It is impossible to insert a knife more than a few millimetres.
7.13 Total estimated porosity
The total estimated porosity is an indication of the total volume of voids of all sizes estimated for a surface
using the charts given in Annex A.
The total estimated porosity integrates the whole porosity of the soil, including passages made by dead roots
or completely decayed roots.
All indicated percentages are by volume.
0 Nonporous: 0 % to u 2 %
1 Low: > 2 % and u 5 %
2 Medium: > 5 % and u 15 %
3 High: > 15 % and u 40 %
4 Very high: > 40 %
5 Visible porosity, but not quantified
6 Porosity not recorded
7.14 Roots
7.14.1 Size (diameter) of most frequently observed roots
1 Very fine u 0,5 mm
2 Fine > 0,5 mm and u 2 mm
3 Medium > 2 mm and u 5 mm
4 Coarse > 5 mm
7.14.2 Abundance
Abundance is defined on the basis of the mean number of roots per square decimetre (normally this is an
average over a number of square decimetres). The observed face shall be smooth and shall represent a
vertical plane.
In the case of very thin horizons or layers, where a square-decimetre chart cannot be used, the abundance of
roots may be based on the mean number of roots encountered over a 50 cm long horizontal line, over the
observed horizon face, and at the median depth between the appearance of the horizon and its
disappearance (or the bottom of the pit).
0 No roots
1 Very few: 1 to 20 roots/dm , or less than 4 on a line 50 cm long
2 Few: 20 to 50 roots/dm , or 4 to 8 on a line 50 cm long
3 Common: 50 to 200 roots/dm , or 8 to 16 on a line 50 cm long
4 Many: > 200 roots/dm , or more than 16 on a line 50 cm long
7.15 Density of worm channels (usually an average over a number of square decimetres)
The following categories are widely used in soil description:
0 No worm channels
1 Few: < 1/dm on the vertical face of the horizon
2 Common: 1 to 2/dm
3 Abundant: > 2/dm
7.16 Nature of lower horizon boundary
The following categories are widely used in soil description:
1 Smooth
The boundary is a plane with few or no irregularities.
2 Wavy
The boundary has undulations in which depressions are wider than they are deep.
14 © ISO 2008 – All rights reserved

3 Irregular
The boundary has undulations in which depressions are deeper than they are wide.
4 Broken
One or both of the horizons or layers separated by the boundary are discontinuous and the boundary is
interrupted.
Annex A
(informative)
Charts for estimating proportions of mottles, coarse elements, etc.
The charts in Figure A.1, expressed in percentage, are used for site estimation of the abundance, in area or in
volume, of some elements (in black on the charts) compared to the whole.

Figure A.1 — Charts for estimating proportions of mottles, coarse elements, etc.
16 © ISO 2008 – All rights reserved

Annex B
(informative)
Reference soil groups of the World Reference Base for soil resources
(FAO, ISRIC and ISSS, 2006)
Table B.1 gives the exhaustive list of the Reference Soil Groups included in the WRB (written in bold
characters) with their possible prefix qualifiers used to determine the second-level units.
NOTE 1 The complete document can be found on the Internet.
NOTE 2 Other soil reference systems may be used in accordance with local, regional or national customs.
Table B.1 — List of the Reference Soil Groups (WRB)
Histosols Cryosols Anthrosols Leptosols Vertisols
Cryic Histic Hydragric Lithic Thionic
Glacic Lithic Irragric Gleyic Salic
Salic Leptic Terric Rendzic Natric
Gelic Turbic Plaggic Umbric Gypsic
Thionic Salic Hortic Yermic Duric
Folic Natric Gleyic Aricic Calcic
Fibric Gleyic Stagnic Vertic Alic
Sapric Andic Spodic Gelic Gypsiric
Ombric Mollic Ferralic Hyperskeletic Pellic
Rheic Gypsic Luvic Mollic Grumic
Alcalic Calcic Arenic Humic Mazic
Toxic Umbric Regic Gypsiric Chromic
Dystric Yermic Calcaric Mesotrophic
Eutric Aridic Dystric Hyposodic
Glacid Eutric Eutric
Thionic Haplic Haplic
Oxyaquic
Stagnic
Haplic
Table B.1 (continued)
Fluvisols Solonchaks Gleysols Andosols Podzols
Histic Histic Histic Vitric Gelic
Thionic Vertic Thionic Eutrisilic Gleyic
Salic Gleyic Anthraquic Silic Stagnic
Gleyic Sodic Endosalic Gleyic Densic
Mollic Mollic Andic Melanic Carbic
Umbric Gypsic Vitric Fulvic Rustic
Arenic Duric Plinthic Hydric Histic
Takyric Calcic Sodic Pachic Umbric
Yermic Petrosalic Mollic Histic Entic
Aridic Takyric Gypsic Mollic Placic
Gelic Yermic Calcic Duric Skeletic
Stagnic Aridic Umbric Umbric Fragic
Humic Gelic Arenic Luvic Lamellic
Gypsiric Stagnic Takyric Placic Anthric
Calcaric Hypersalic Gelic Leptic Haplic
Sodic Ochric Humic Acroxic
Tephric Aceric Alcalic Vetic
Skeletic Chloridic Alumic Calcaric
Dystric Sulfatic Toxic Arenic
Eutric Carbonatic Abruptic Sodic
Haplic Haplic Calcaric Skeletic
Tephric Thaptic
Dystric Dystric
Eutric Eutric
Haplic Haplic
18 © ISO 2008 – All rights reserved

Table B.1 (continued)
Plinthosols Ferralsols Solonetz Planosols Chernozems
Petric Plinthic Vertic Histic Chernic
Alic Gleyic Gleyic Vertic Vertic
Acric Andic Salic Thionic Gleyic
Umbric Acric Mollic Endosalic Luvic
Albic Lixic Gypsic Plinthic Glossic
Stagnic Arenic Duric Gleyic Calcic
Endoeutric Gibbsic Calcic Sodic Siltic
Geric Geric Magnesic Mollic Vermic
Humic Humic Takyric Gypsic Hamplic
Endoduric Histic Yermic Calcic
Vetic Mollic Aridic Alic
Alumic Umbric Stagnic Luvic
Abruptic Endostagnic Albic Umbric
Pachic Vetic Humic Arenic
Glossic Posic Haplic Gelic
Ferric Alumic Albic
Haplic Ferric Geric
Hyperdistric Petroferric
Hypereutric Alcalic
Rhodic Alumic
Xanthic Ferric
Haplic Calcaric
Rhodic
Chromic
Dystric
Eutric
Haplic
IS
...


SLOVENSKI STANDARD
01-marec-2011
1DGRPHãþD
SIST ISO 11259:1999
Kakovost tal - Terenski opis tal
Soil quality - Field soil description
Qualité du sol - Description du sol sur le terrain
Ta slovenski standard je istoveten z: ISO 25177:2008
ICS:
13.080.01 Kakovost tal in pedologija na Soil quality and pedology in
splošno general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 25177
First edition
2008-11-15
Soil quality — Field soil description
Qualité du sol — Description du sol sur le terrain

Reference number
©
ISO 2008
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2008
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2008 – All rights reserved

Contents Page
Foreword. v
Introduction . vi
1 Scope . 1
2 Normative references . 1
3 General references . 1
3.1 Site/profile numbers . 1
3.2 Location . 1
3.3 Geographical coordinates . 2
3.4 Date of observation . 2
3.5 Author and organization . 2
4 Profile environment . 2
4.1 Previous precipitation . 2
4.2 Land use at plot level (checked by detailed field survey) . 3
4.3 Type of cultivation or vegetation or human utilization (at the plot level) . 3
4.4 Geomorphology of the site . 4
4.5 Slope length (in metres). 4
4.6 Slope value . 4
4.7 Orientation (aspect) of the slope. 4
4.8 Nature of the parent material. 4
4.8.1 Modified or artificial material. 4
4.8.2 Natural material. 4
4.9 Presence and depth of water table . 5
4.9.1 General. 5
4.9.2 Depth. 5
4.9.3 Minimum depth of water table . 5
4.9.4 Maximum depth of water table . 5
4.9.5 Nature of the water . 6
5 Surface appearance. 6
5.1 Percentage of land surface occupied by rock outcrops or surface exposures of
“non-natural” material (e.g. on an industrial site) . 6
5.2 Evidence of erosion. 6
6 General designation – Soil type . 7
6.1 General. 7
6.2 Type of soil classification used. 7
6.3 Soil type with reference to the soil classification used. 7
6.4 Type of horizon designation used . 7
6.5 Sequence of horizons. 7
7 Horizon or layer description . 8
7.1 General. 8
7.2 Horizon or layer number . 8
7.3 Depth. 8
7.4 Estimation of moisture status . 8
7.5 Colour of the horizon or layer matrix. 9
7.6 Mottles . 9
7.6.1 General. 9
7.6.2 Abundance . 9
7.6.3 Colour . 10
7.7 Estimated organic matter content. 10
7.8 Texture . 10
7.8.1 Description of texture diagram. 10
7.8.2 Estimation. 10
7.9 Coarse elements . 10
7.9.1 General . 10
7.9.2 Abundance (in percent volume fraction) .10
7.9.3 Maximum size of the most frequently observed coarse elements . 11
7.9.4 Nature . 11
7.10 Carbonates and effervescence. 11
7.10.1 Intensity of effervescence. 11
7.10.2 Location of effervescence. 12
7.11 Main categories of structure. 12
7.12 Compactness. 13
7.13 Total estimated porosity. 13
7.14 Roots . 14
7.14.1 Size (diameter) of most frequently observed roots. 14
7.14.2 Abundance. 14
7.15 Density of worm channels (usually an average over a number of square decimetres) . 14
7.16 Nature of lower horizon boundary . 14
Annex A (informative) Charts for estimating proportions of mottles, coarse elements, etc. 16
Annex B (informative) Reference soil groups of the World Reference Base for soil resources (FAO,
ISRIC and ISSS, 2006). 17
Annex C (informative) Soil horizon designation — Example of the FAO System (2006) . 23
Annex D (informative) Examples of texture diagrams . 28
Annex E (informative) Determination of soil texture in the field. 31
Annex F (informative) Some types of soil structure . 34
Bibliography . 35

iv © ISO 2008 – All rights reserved

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 25177 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 1, Evaluation
of criteria, terminology and codification.
This first edition of ISO 25177 cancels and replaces ISO 11259:1998, which has been technically revised.
Introduction
Traditionally, descriptions of soils and their environment were carried out as parts of soil survey and soil
inventories, the purpose of which was to describe the pedogenetic context of the soil and assess applied
aspects, principally agronomic potentials.
Today, many soil observations are made as part of much wider environmental studies, and include analysis
for objectives such as the following:
⎯ the identification of human influences on the soils, particular attention being paid to the negative effects of
these influences (for example, pollution and physical deterioration);
⎯ land protection within the context of “sustainable” agriculture;
⎯ the prediction of the fate of contaminants introduced into the soil;
⎯ the assessment of the consequences resulting from changes in the use of the soil;
⎯ setting up monitoring programmes for specific purposes (observation of changes of soil properties in
time);
⎯ the development of spatial data bases (used in the context of GIS) aimed at facilitating the geographical
representation of these;
⎯ many other uses.
Therefore, this International Standard is based on aspects of the traditional approach to soil description
[for example, the Guidelines for soil description FAO ROME (2006)]. The descriptions of soils and sites alone
are not sufficient. Field and laboratory measurements, whether physical, chemical or biological, must
accompany this description. Care must be taken in the specification of sites and in the methods of sampling
and the number of samples. It is therefore imperative that this International Standard be considered in the
context of other International Standards developed within the framework of ISO/TC 190, Soil quality.

vi © ISO 2008 – All rights reserved

INTERNATIONAL STANDARD ISO 25177:2008(E)

Soil quality — Field soil description
1 Scope
This International Standard is a guide for describing the soil and its environmental context at a given site.
Sites can be natural, near-natural, urban or industrial. It is important to realize that a number of soil samples
can be taken at a site to support the soil description. The information provided by the descriptions in this
International Standard provides the context for the presentation of results from analyses undertaken on soil
samples.
NOTE 1 It might not be possible or necessary to record data under all the headings listed in these descriptions.
NOTE 2 Overall guidance for presentation of information from soil surveys is given in ISO 15903.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 3166-1:2006, Codes for the representation of names of countries and their subdivisions —
Part 1: Country codes
ISO 3166-2:2007, Codes for the representation of names of countries and their subdivisions —
Part 2: Country subdivision code
ISO 14688-2:2004, Geotechnical investigation and testing —Identification and classification of soil —
Part 2: Principles for a classification
3 General references
3.1 Site/profile numbers
⎯ Profile number
⎯ Survey number or code
3.2 Location
⎯ Country
Country codes according to ISO 3166-1 and ISO 3166-2 shall be used. For historical research, designations
according to ISO 3166-3 should be considered, when necessary.
⎯ Administrative division
To be adapted according to the country: (provinces, states, regions, departments, towns, etc.), both uncoded
and coded.
3.3 Geographical coordinates
⎯ Type of geographical reference system (degrees, Lambert, national reference grid)
⎯ Position within the geographical reference system (longitude in deg/min/s, latitude in deg/min/s)
⎯ Altitude (in metres)
3.4 Date of observation
⎯ Year
⎯ Month
⎯ Day
⎯ Time
3.5 Author and organization
⎯ Author's name
⎯ Accreditation
⎯ Name of organization
⎯ Department
⎯ Address
⎯ Telephone
⎯ Fax number
⎯ E-mail address
4 Profile environment
4.1 Previous precipitation
0 No precipitation within the last month
1 No precipitation within the last week
2 No precipitation within the last three days
3 Rainy but no intense precipitation within the last three days
4 Moderate rain for several days or intense rainfall the day before the observation
5 Extreme precipitation or snow melt or inundation just before the observation
6 Not recorded
2 © ISO 2008 – All rights reserved

4.2 Land use at plot level (checked by detailed field survey)
01 Buildings and industrial infrastructures
02 Mining site (current or past)
03 Metal processing sites
04 Chemical processing sites
05 Oil and gas production sites
06 Metal manufacturing sites
07 Food processing sites
08 Waste disposal sites
09 Cultivated lands
10 Horticulture
11 Grazing
12 Orchards, fruit plantations or grapevines
13 Forest, woodlands
14 Mixed land use (agroforestry or agropastoral)
15 Gathering/hunting-fishing (exploitation of natural vegetation, hunting or fishing)
16 Nature protection (for example, nature reserve, protected area, erosion control by terracing)
17 Wetland (for example, marsh, swamp, mangrove, etc.)
18 Snow or ice cover
19 Bare rock or rocky surface
20 Natural lands
21 Natural grasslands
22 Recreation land
23 Other type of unutilized and unmanaged site
4.3 Type of cultivation or vegetation or human utilization (at the plot level)
Be as clear and precise as possible. For cultivated plants, it may be interesting to note the variety, when
known.
EXAMPLE Grazing (natural meadow, planted grassland); metal processing (ferrous, non-ferrous); mining site (iron,
deep coal, open-cast coal); cultivated lands (maize, oats, rice); horticulture (flowers, vegetables).
4.4 Geomorphology of the site
⎯ The position of the site in the landscape
⎯ The geomorphology of the immediate surroundings of the site (scale: 0,1 km)
4.5 Slope length (in metres)
When flat, note 0 (zero).
4.6 Slope value
The average slope value is measured in the vicinity of the soil pit (flat = 0).
Slope may be expressed in percent or degrees:
⎯ slope value, in percent;
⎯ slope value, in degrees.
4.7 Orientation (aspect) of the slope
The orientation of the slope can be expressed in the following ways:
a) N-S-E-W
NE-SE-NW-SW
with VV = variable and AA = flat; or
b) use degrees with the following convention:
0° = north
90° = east
180° = south
270° = west
with VV = variable and AA = flat.
4.8 Nature of the parent material
4.8.1 Modified or artificial material
The nature of the parent material may be modified by the use of the site, or artificial materials may be
imported to a site. The knowledge of the history of the site may provide information about the modifications of
the natural material.
4.8.2 Natural material
The natural parent material and/or bedrock should be described as completely as possible, according to
local knowledge. For example, glacial tills, marine alluvium, metamorphic bedrock, hard limestone, loessic
deposit, etc.
4 © ISO 2008 – All rights reserved

4.9 Presence and depth of water table
4.9.1 General
The depth of the water table generally fluctuates during the year, sometimes in relation with the seasons or
the tide.
In 4.9.2, note the depth of the water table during the description of the site.
Subclauses 4.9.3 and 4.9.4 are included to describe the variations in water-table depth, when there are some
variations in depth and when these variations are known (piezometers, investigations, or as marks on the
walls of the profile).
In 4.9.3, the minimum depth of the water table shall be noted (water table at its highest point).
In 4.9.4, the maximum depth of the water table shall be noted (water table at its lowest point).
When the person writing the description does not know these variations in depth, record “unknown” in 4.9.3
and 4.9.4.
When there is no variation in the water-table depth, or when the describer does not know if there are depth
variations, do not answer the points in 4.9.3 and 4.9.4.
4.9.2 Depth
The depth can be
a) observed or measured,
b) estimated, or
c) not observed.
If it is estimated, observed or measured, the depth is expressed in centimetres.
4.9.3 Minimum depth of water table
The minimum depth of the water table can be
a) observed or measured,
b) estimated, or
c) not observed.
If it is estimated, observed or measured, the depth is expressed in centimetres.
4.9.4 Maximum depth of water table
The maximum depth of the water table can be
a) observed or measured,
b) estimated,
c) not observed.
If it is estimated, observed or measured, the depth is expressed in centimetres.
4.9.5 Nature of the water
Make a general estimation, without reference to threshold value of soluble salts or of conductivity, or analytical
values for pollution or contamination, as follows:
⎯ S = saline;
⎯ B = brackish;
⎯ F = fresh;
⎯ P = polluted or contaminated.
Combinations SP, BP or FP are possible.
5 Surface appearance
5.1 Percentage of land surface occupied by rock outcrops or surface exposures of
“non-natural” material (e.g. on an industrial site)
The following categories are widely used in soil description. (Compare the charts shown in Annex A.):
0 None: 0 %
1 Very few: > 0 % and u 2 %
2 Few: > 2 % and u 5 %
3 Common: > 5 % and u 15 %
4 Many: > 15 % and u 40 %
5 Abundant: > 40 % and u 80 %
6 Dominant: > 80 %
7 Not observed
5.2 Evidence of erosion
The classes given below are based upon aspects of soil conditions reflecting present erosion (or
accumulation) and not past or possible future erosion (or accumulation).
0 No visible evidence of erosion
1 Visible evidence of soil loss
1 Sheet erosion
2 Rill erosion
3 Gully erosion
4 Wind erosion
6 © ISO 2008 – All rights reserved

5 Landslides
2 Visible evidence of accumulation
1 Deposition by water
2 Wind deposition
6 General designation – Soil type
6.1 General
In describing soils in their environment, it is normal to allocate the soil to a reference base in an established
soil classification. These allocations are normally based on the expression of pedogenetic processes in the
soil profile. There are many classifications with national origins, but the use of the international soil
classification system, the World Reference Base (WRB), is suggested.
Pedogenetic processes result in the formation of different layers in the soil, generally more or less parallel to
the topographic surface, which are called “horizons”. In the framework of soils deeply modified by human
activity, artificial layers may be due to different kinds of deposits (concrete, bricks, etc.). These kinds of layers
are simply called “layers”. Artificial soils and soils in industrial and urban landscapes are not readily classified
in most established soil classification systems, including WRB. In these conditions, the layers are described
from the surface of the soil as described in Clause 7.
6.2 Type of soil classification used
Record which soil classification or which system is used.
Basically, the WRB classification system is recommended.
6.3 Soil type with reference to the soil classification used
EXAMPLE Albic luvisol.
Annex B gives a list of reference soils according to the World Reference Base for Soil Resources, 2006.
NOTE The World Reference Base for soil resources is available on the Internet.
6.4 Type of horizon designation used
Note which type of horizon designation is used, for example FAO (2006) or other national system.
As an example, the FAO system of horizon designation (2006) is given in Annex C, and can be used as a
reference if there is no local or regional system of horizon designation.
6.5 Sequence of horizons
Note the succession of horizons described in the profile.
EXAMPLE A/E/B/C (see Annex C).
7 Horizon or layer description
7.1 General
For each horizon or layer, the following points shall be described.
7.2 Horizon or layer number
The horizons or layers are numbered from 1 to n within each site, and should be described from the surface in
sequence.
7.3 Depth
Note the average depth and range of depths of the appearance and disappearance of each horizon or layer,
in centimetres.
Organic horizons or layers of undecomposed litter shall be noted as greater than zero, preceded with the
sign +.
7.4 Estimation of moisture status
The purpose of this heading is to indicate the conditions under which the other observations are made, and to
give some guidelines for field determination of the soil moisture status.
The water content of a soil is difficult to estimate directly in the field, since the same volume of water in
different soils results in different behaviour, depending on the nature of the soil material, nature and
dimensions of pores, etc.
It is therefore worthwhile to observe the moisture status in the field, which is directly linked with the quantity of
soil water. To determine the moisture status, it may be necessary to make inspections to calibrate the
moisture analysis.
The soil moisture status is indicated as follows.
a) Dry: water content less than the moisture retained at the wilting point.
In the case of cohesive samples (generally more than 17 % clay), this may result in the following soil
properties: hard, nonplastic consistency; soil colour darkens when water is added.
In the case of noncohesive samples, generally when the percentage of clay is less than 17 %, this may result
in the following soil properties: light soil colour, which becomes much darker when water is added; dusty.
b) Slightly moist: water content between field capacity and wilting point.
In the case of cohesive samples (generally more than 17 % clay), this may result in the following soil
properties: partially cohesive, but crumbles when forming a roll of 3 mm thickness; soil colour darkens slightly
when water is added.
In the case of noncohesive samples, generally when the percentage of clay is less than 17 %, this may result
in the following soil properties: soil colour darkens slightly when water is added.
c) Moist: moisture content of soil is near the field capacity; absence of free water.
In the case of cohesive samples (generally more than 17 % clay), this may result in the following soil
properties: stiff; can be formed into a roll of 3 mm thickness without crumbling, does not darken when adding
water; no water freed when squeezed.
8 © ISO 2008 – All rights reserved

In the case of noncohesive samples, generally when the percentage of clay is less than 17 %, this may result
in the following soil properties: fingers moisten slightly when the sample is touched; no water escapes from
soil pores even when the sample is knocked on the drill; does not darken when water is added.
d) Very wet: presence of free water, saturating all or a part of the soil pores.
In the case of cohesive samples (generally more than 17 % clay), this may result in the following soil
properties: soft; can easily be formed into a roll of thickness more than 3 mm; water freed when the sample is
squeezed.
In the case of noncohesive samples, generally when the percentage of clay is less than 17 %, this may result
in the following soil properties: fingers get distinctly wet when the sample is touched; visible free water when
the sample is compressed.
e) Saturated: free water saturates all the soil pores.
In the case of cohesive samples (generally more than 17 % clay), this may result in the following soil
properties: muddy, waterlogged; mud passes through the fingers when the sample is squeezed.
In the case of noncohesive samples, generally when the percentage of clay is less than 17 %, this may result
in the following soil properties: distinct water escape; sample is often fluid.
f) Inundated: soil surface is covered by water.
This concerns only the upper horizon, near the surface of the soil.
7.5 Colour of the horizon or layer matrix
Determined by comparison with the Munsell soil-colour chart, the soil being in the moisture status “moist”.
7.6 Mottles
7.6.1 General
Mottles are spots or patches of different colours which are distinct from the matrix colour and any variation
associated with ped surfaces, worm holes, concretions or nodules.
7.6.2 Abundance
The abundance of mottles is described in terms of classes indicating the percentage of exposed surface
occupied by the mottles. The following categories are widely used in soil description. (Compare the charts
shown in Annex A.):
0 None: 0 %
1 Very few: > 0 % and u 2 %
2 Few: > 2 % and u 5 %
3 Common: > 5 % and u 15 %
4 Many: > 15 % and u 40 %
5 Abundant: > 40 %
7.6.3 Colour
If possible, full Munsell colour coding should be given.
7.7 Estimated organic matter content
Although it is difficult to carry out in the field and requires local experience, estimation of the organic content is
important, in particular in relation to the interpretation of other soil variables.
0 absent or not detectable
1 sufficient to darken the soil
2 considerable organic matter giving the soil a very dark colour and a low density
3 only organic matter detectable
4 undetermined
7.8 Texture
7.8.1 Description of texture diagram
The name of the texture triangle used and the granulometric division scale are given uncoded, including the
grain size division between silt and sand (see Annex D and ISO 14688-2).
7.8.2 Estimation
Note that the texture is a manual estimation carried out in the field; it is different from “particle size distribution”,
which is done in a laboratory. A brief guide for the texture test is presented in Annex E.
This is an estimation of the texture class of the fine earth of the horizon (particle size < 2 mm).
The soil texture class determined manually may differ from the soil texture class determined from the results
of particle size analysis (e.g. according to ISO 11277).
7.9 Coarse elements
7.9.1 General
Coarse elements correspond to the soil fraction of size > 2 mm (as opposed to fine earth). In natural soils this
includes rock fragments. In urban, industrial and artificial soils, this may include other foreign materials, such
as metals, concrete, glass, etc.
7.9.2 Abundance (in percent volume fraction)
The following categories are widely used in soil description. (Compare the charts shown in Annex A.):
0 None: 0 %
1 Very few: > 0 % and u 2 %
2 Few: > 2 % and u 5 %
3 Common: > 5 % and u 15 %
4 Many: > 15 % and u 40 %
10 © ISO 2008 – All rights reserved

5 Abundant: > 40 % and u 80 %
6 Dominant: > 80 %
7.9.3 Maximum size of the most frequently observed coarse elements
The following categories are widely used in soil description:
1 0 cm to u 2 cm
2 > 2 cm and u 7,5 cm
3 > 7,5 cm and u 12 cm
4 > 12 cm and u 25 cm
5 > 25 cm
Each country may name the classes using local or national terms.
7.9.4 Nature
Write, as clearly as possible, the nature(s) of the coarse elements. In natural soils, the lithological nature of
the coarse elements should be described.
7.10 Carbonates and effervescence
NOTE This is often an important property in natural soil materials.
7.10.1 Intensity of effervescence
The carbonate content is estimated in the field according to the visible and audible reactions of the CO
development (effervescence), using a hydrochloric acid solution, diluted to 1/10 (volume fraction). In this
context, carbonate means calcium and magnesium carbonates.
0 No effervescence
No visible or audible effervescence.
This corresponds generally to no presence of carbonates.
1 Weak effervescence
Audible effervescence and a few bubbles after several seconds.
Generally, this corresponds to a percentage of carbonates less than 2 %.
2 Moderate effervescence
Visible bubbles often confined to individual grains.
Generally, this corresponds to a percentage of carbonates between 2 % and 7 %.
3 Strong effervescence
Bubbles form a thin, but more or less continuous, froth.
Generally, this corresponds to a percentage of carbonates between 7 % and 25 %.
4 Extreme effervescence
Strong reaction; the bubbles rapidly form a thick froth.
Generally, this corresponds to a context of carbonates over 25 %.
7.10.2 Location of effervescence
The following categories are widely used in soil description:
1 Generalized
Both the matrix (particle size < 2 mm) and the coarse elements react to acid.
2 Localized in the matrix
Effervescence limited to the fine material (< 2 µm).
3 Localized on coarse elements
Effervescence limited to coarse elements.
7.11 Main categories of structure
Some structures are shown in Annex F.
It is important to record the size of structural elements (in centimetres).
0 Continuous or massive
Coherent without structural aggregates.
1 Single grain
Noncoherent mass of individual particles.
2 Fibrous or layered
Particular structure of organic horizons or layers in which the vegetable residues with fibrous structure (for
example, needles) or layered structure (for example, leaves) are still easily identifiable.
3 Spheroidal (crumb or granular)
When a product of soil faunal activity has a low bulk density, the structure may be described as fluffy.
4 Blocklike
Units are blocklike or polyhedral, surfaces are flat or slightly rounded, and the three dimensions are
approximately the same.
5 Prismatic or columnar
Units have angular or slightly rounded surfaces, the vertical dimension is greater than the horizontal
dimensions.
Where the top of the unit is curved, the structure is described as columnar.
12 © ISO 2008 – All rights reserved

6 Planar or platy
Structures in which parallel planes are predominant.
Where the planes are horizontal, the structure is described as platy.
Where these parallel planes are inherited from initial rock organization, the structure is considered as “rock
structure”.
7 Rock
The rock organization is preserved in C or R horizons or layers (e.g. weathered schist or weathered
puddingstone).
7.12 Compactness
The compactness evaluation by the knife test depends on the moisture status (see 7.4). It is therefore
essential that the moisture status be recorded.
1 Loose
Uncompacted material; a knife penetrates easily up to the hilt.
2 Slightly compacted
A slight effort is required to insert a knife into the soil.
3 Compacted
A knife does not penetrate completely, even with considerable effort.
4 Very compacted
It is impossible to insert a knife more than a few millimetres.
7.13 Total estimated porosity
The total estimated porosity is an indication of the total volume of voids of all sizes estimated for a surface
using the charts given in Annex A.
The total estimated porosity integrates the whole porosity of the soil, including passages made by dead roots
or completely decayed roots.
All indicated percentages are by volume.
0 Nonporous: 0 % to u 2 %
1 Low: > 2 % and u 5 %
2 Medium: > 5 % and u 15 %
3 High: > 15 % and u 40 %
4 Very high: > 40 %
5 Visible porosity, but not quantified
6 Porosity not recorded
7.14 Roots
7.14.1 Size (diameter) of most frequently observed roots
1 Very fine u 0,5 mm
2 Fine > 0,5 mm and u 2 mm
3 Medium > 2 mm and u 5 mm
4 Coarse > 5 mm
7.14.2 Abundance
Abundance is defined on the basis of the mean number of roots per square decimetre (normally this is an
average over a number of square decimetres). The observed face shall be smooth and shall represent a
vertical plane.
In the case of very thin horizons or layers, where a square-decimetre chart cannot be used, the abundance of
roots may be based on the mean number of roots encountered over a 50 cm long horizontal line, over the
observed horizon face, and at the median depth between the appearance of the horizon and its
disappearance (or the bottom of the pit).
0 No roots
1 Very few: 1 to 20 roots/dm , or less than 4 on a line 50 cm long
2 Few: 20 to 50 roots/dm , or 4 to 8 on a line 50 cm long
3 Common: 50 to 200 roots/dm , or 8 to 16 on a line 50 cm long
4 Many: > 200 roots/dm , or more than 16 on a line 50 cm long
7.15 Density of worm channels (usually an average over a number of square decimetres)
The following categories are widely used in soil description:
0 No worm channels
1 Few: < 1/dm on the vertical face of the horizon
2 Common: 1 to 2/dm
3 Abundant: > 2/dm
7.16 Nature of lower horizon boundary
The following categories are widely used in soil description:
1 Smooth
The boundary is a plane with few or no irregularities.
2 Wavy
The boundary has undulations in which depressions are wider than they are deep.
14 © ISO 2008 – All rights reserved

3 Irregular
The boundary has undulations in which depressions are deeper than they are wide.
4 Broken
One or both of the horizons or layers separated by the boundary are discontinuous and the boundary is
interrupted.
Annex A
(informative)
Charts for estimating proportions of mottles, coarse elements, etc.
The charts in Figure A.1, expressed in percentage, are used for site estimation of the abundance, in area or in
volume, of some elements (in black on the charts) compared to the whole.

Figure A.1 — Charts for estimating proportions of mottles, coarse elements, etc.
16 © ISO 2008 – All rights reserved

Annex B
(informative)
Reference soil groups of the World Reference Base for soil resources
(FAO, ISRIC and ISSS, 2006)
Table B.1 gives the exhaustive list of the Reference Soil Groups included in the WRB (written in bold
characters) with their possible prefix qualifiers used to determine the second-level units.
NOTE 1 The complete document can be found on the Internet.
NOTE 2 Other soil reference systems may be used in accordance with local, regional or national customs.
Table B.1 — List of the Reference Soil Groups (WRB)
Histosols Cryosols Anthrosols Leptosols Vertisols
Cryic Histic Hydragric Lithic Thionic
Glacic Lithic Irragric Gleyic Salic
Salic Leptic Terric Rendzic Natric
Gelic Turbic Plaggic Umbric Gypsic
Thionic Salic Hortic Yermic Duric
Folic Natric Gleyic Aricic Calcic
Fibric Gleyic Stagnic Vertic Alic
Sapric Andic Spodic Gelic Gypsiric
Ombric Mollic Ferralic Hyperskeletic Pellic
Rheic Gypsic Luvic Mollic Grumic
Alcalic Calcic Arenic Humic Mazic
Toxic Umbric Regic Gypsiric Chromic
Dystric Yermic Calcaric Mesotrophic
Eutric Aridic Dystric Hyposodic
Glacid Eutric Eutric
Thionic Haplic Haplic
Oxyaquic
Stagnic
Haplic
Table B.1 (continued)
Fluvisols Solonchaks Gleysols Andosols Podzols
Histic Histic Histic Vitric Gelic
Thionic Vertic Thionic Eutrisilic Gleyic
Salic Gleyic Anthraquic Silic Stagnic
Gleyic Sodic Endosalic Gleyic Densic
Mollic Mollic Andic Melanic Carbic
Umbric Gypsic Vitric Fulvic Rustic
Arenic Duric Plinthic Hydric Histic
Takyric Calcic Sodic Pachic Umbric
Yermic Petrosalic Mollic Histic Entic
Aridic Takyric Gypsic Mollic Placic
Gelic Yermic Calcic Duric Skeletic
Stagnic Aridic Umbric Umbric Fragic
Humic Gelic Arenic Luvic Lamellic
Gypsiric Stagnic Takyric Placic Anthric
Calcaric Hypersalic Gelic Leptic Haplic
Sodic Ochric Humic Acroxic
Tephric Aceric Alcalic Vetic
Skeletic Chloridic Alumic Calcaric
Dystric Sulfatic Toxic Arenic
Eutric Carbon
...


NORME ISO
INTERNATIONALE 25177
Première édition
2008-11-15
Qualité du sol — Description du sol sur le
terrain
Soil quality — Field soil description

Numéro de référence
©
ISO 2008
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier
peut être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence
autorisant l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées
acceptent de fait la responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute
responsabilité en la matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info
du fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir
l'exploitation de ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation,
veuillez en informer le Secrétariat central à l'adresse donnée ci-dessous.

DOCUMENT PROTÉGÉ PAR COPYRIGHT

©  ISO 2008
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse
ii © ISO 2008 – Tous droits réservés

Sommaire Page
Avant-propos. v
Introduction . vi
1 Domaine d'application. 1
2 Références normatives . 1
3 Références générales. 1
3.1 Numéros de site/profil. 1
3.2 Lieu. 2
3.3 Coordonnées géographiques. 2
3.4 Date de l'observation. 2
3.5 Auteur et organisation. 2
4 Environnement du profil . 3
4.1 Précipitations antérieures. 3
4.2 Utilisation du sol au niveau parcellaire (vérifiée par une enquête détaillée de terrain). 3
4.3 Type de culture ou de végétation ou utilisation humaine (au niveau parcellaire). 4
4.4 Géomorphologie du site . 4
4.5 Longueur de pente (en mètres) . 4
4.6 Valeur de la pente . 4
4.7 Orientation (exposition) de la pente . 4
4.8 Nature du matériau parental . 5
4.8.1 Matériau modifié ou artificiel . 5
4.8.2 Matériau naturel . 5
4.9 Présence et profondeur de la nappe phréatique . 5
4.9.1 Généralités . 5
4.9.2 Profondeur. 5
4.9.3 Profondeur minimale de la nappe phréatique . 6
4.9.4 Profondeur maximale de la nappe phréatique. 6
4.9.5 Nature de l'eau . 6
5 Aspect de la surface. 6
5.1 Pourcentage de la surface de terrain occupée par des affleurements rocheux ou surface
couverte de matériau «non naturel» (par exemple sur un site industriel) . 6
5.2 Traces d'érosion . 7
6 Désignation générale — Type de sol. 7
6.1 Généralités . 7
6.2 Système de classification du sol utilisé. 7
6.3 Type de sol selon le système de classification utilisé. 8
6.4 Système de désignation des horizons utilisés. 8
6.5 Succession des horizons. 8
7 Description des horizons ou des couches . 8
7.1 Généralités . 8
7.2 Numéro d'horizon ou de couche. 8
7.3 Profondeur. 8
7.4 Évaluation de l'état hydrique. 8
7.5 Couleur de la matrice de l'horizon ou de la couche. 10
7.6 Taches. 10
7.6.1 Généralités . 10
7.6.2 Abondance . 10
7.6.3 Couleur . 10
7.7 Estimation de la teneur en matières organiques. 10
7.8 Texture . 10
7.8.1 Description du diagramme de texture . 10
7.8.2 Appréciation . 11
7.9 Éléments grossiers . 11
7.9.1 Généralités. 11
7.9.2 Abondance (fraction volumique en %) .11
7.9.3 Taille maximale des éléments grossiers les plus fréquemment observés . 11
7.9.4 Nature . 12
7.10 Carbonates et effervescence . 12
7.10.1 Intensité de l'effervescence . 12
7.10.2 Localisation de l'effervescence . 12
7.11 Principales catégories de structure . 13
7.12 Compacité. 13
7.13 Porosité totale estimée. 14
7.14 Racines. 14
7.14.1 Taille (diamètre) des racines les plus fréquemment observées . 14
7.14.2 Abondance des racines. 14
7.15 Densité des trous de vers (généralement une moyenne pour un certain nombre de
décimètres carrés) . 15
7.16 Nature de la limite inférieure de l'horizon. 15
Annexe A (informative) Grilles d'évaluation des proportions de taches, d'éléments grossiers, etc. 16
Annexe B (informative) Groupes de sols de référence du World Reference Base for soil resources
(FAO, ISRIC et ISSS, 2006) . 17
Annexe C (informative) Désignation des horizons — Exemple du Système FAO (2006). 23
Annexe D (informative) Exemples de diagrammes de texture. 29
Annexe E (informative) Détermination de la texture du sol sur le terrain. 32
Annexe F (informative) Quelques types de structure de sol. 35
Bibliographie . 36

iv © ISO 2008 – Tous droits réservés

Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 25177 a été élaborée par le comité technique ISO/TC 190, Qualité du sol, sous-comité SC 1, Évaluation
des critères, terminologie et codification.
Cette première édition de l'ISO 25177 annule et remplace l'ISO 11259:1998, qui a fait l'objet d'une révision
technique.
Introduction
Les sols et leur environnement étaient traditionnellement décrits dans le cadre d'expertises et d'inventaires
des sols dont l'objet était la description du contexte pédogénétique du sol et l'évaluation d'aspects appliqués,
principalement les potentiels agronomiques.
De nos jours, bon nombre d'observations sont faites dans le cadre d'études environnementales plus larges
avec des analyses portant sur des sujets tels que:
⎯ l'identification des influences humaines sur les sols, avec une attention particulière portée à leurs effets
préjudiciables (par exemple la pollution et la dégradation physique);
⎯ la protection des sols dans le contexte d'une agriculture «durable»;
⎯ la prévision du devenir des contaminants introduits dans le sol;
⎯ l'évaluation des conséquences liées aux changements d'utilisation du sol;
⎯ la mise en place de programmes de contrôle à des fins spécifiques (observation des changements des
propriétés du sol dans le temps);
⎯ l'élaboration de bases de données spatiales (utilisées dans le cadre de SIG – Système d'Information
Géographique) visant à faciliter leur représentation géographique;
⎯ et beaucoup d'autres usages.
Ainsi, la présente Norme internationale est basée sur les aspects de l'approche traditionnelle de la description
du sol [par exemple les Guidelines for soil description FAO ROME (2006)]. Cependant, la description des sols
et des sites à elle seule ne suffit pas. Il convient que des mesures réalisées sur le terrain et en laboratoire,
qu'elles soient physiques, chimiques ou biologiques, accompagnent cette description. Une attention
particulière doit être portée à la description des sites, aux méthodes d'échantillonnage et au nombre
d'échantillons. Il est par conséquent impératif de considérer la présente Norme internationale dans le contexte
d'autres Normes internationales élaborées dans le cadre de l'ISO/TC 190, Qualité du sol.

vi © ISO 2008 – Tous droits réservés

NORME INTERNATIONALE ISO 25177:2008(F)

Qualité du sol — Description du sol sur le terrain
1 Domaine d'application
La présente Norme internationale constitue un guide pour la description du sol et du contexte
environnemental d'un site donné. Les sites peuvent être naturels, quasi-naturels, urbains ou industriels. Il est
important de souligner qu'un certain nombre d'échantillons de sol peut être prélevé sur un site pour compléter
la description du sol. Les informations fournies par les descriptions de la présente Norme internationale
définissent le contexte de présentation des résultats des analyses réalisées sur les échantillons de sol.
NOTE 1 Il peut ne pas être possible ou nécessaire d'enregistrer les données correspondant à tous les titres énumérés
dans ces descriptions.
NOTE 2 L'ISO 15903 donne des lignes directrices générales pour la présentation des informations issues des études
de sol.
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les
références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du
document de référence s'applique (y compris les éventuels amendements).
ISO 3166-1:2006, Codes pour la représentation des noms de pays et de leurs subdivisions — Partie 1: Codes
de pays
ISO 3166-2:2007, Codes pour la représentation des noms de pays et de leurs subdivisions — Partie 2: Code
pour les subdivisions de pays
ISO 14688-2:2004, Reconnaissance et essais géotechnique — Dénomination, description et classification des
sols — Partie 2: Principes pour une classification
3 Références générales
3.1 Numéros de site/profil
⎯ Numéro du profil
⎯ Numéro ou code de l'étude
3.2 Lieu
⎯ Pays
Les codes conformes à l'ISO 3166-1 et à l'ISO 3166-2 doivent être utilisés. Il convient de considérer, le cas
échéant, les désignations conformes à l'ISO 3166-3 pour les recherches historiques.
⎯ Division administrative
À adapter suivant le pays: (provinces, états, régions, départements, villes, etc.), avec et sans code.
3.3 Coordonnées géographiques
⎯ Type de système géographique de référence (degrés, Lambert, coordonnées nationales)
⎯ Positionnement dans le système géographique de référence (longitude en degrés/minutes/secondes,
latitude en degrés/minutes/secondes)
⎯ Altitude (en mètres)
3.4 Date de l'observation
⎯ Année
⎯ Mois
⎯ Jour
⎯ Heure
3.5 Auteur et organisation
⎯ Nom de l'auteur
⎯ Accréditation
⎯ Nom de l'organisation
⎯ Département
⎯ Adresse
⎯ Téléphone
⎯ Numéro de télécopie
⎯ Adresse électronique
2 © ISO 2008 – Tous droits réservés

4 Environnement du profil
4.1 Précipitations antérieures
0 Absence de précipitations au cours du mois passé
1 Absence de précipitations au cours de la semaine passée
2 Absence de précipitations au cours des trois derniers jours
3 Pluvieux, mais sans fortes précipitations au cours des trois derniers jours
4 Pluie modérée depuis plusieurs jours ou forte pluie la veille de l'observation
5 Très fortes précipitations ou chute de neige ou inondation juste avant l'observation
6 Non enregistré
4.2 Utilisation du sol au niveau parcellaire (validée par une enquête détaillée de terrain)
01 Bâtiments et infrastructures industrielles
02 Site minier (actuel ou ancien)
03 Sites de traitement métallurgique
04 Sites de traitement chimique
05 Sites de production de pétrole et de gaz
06 Sites de production métallurgique
07 Sites d'industrie alimentaire
08 Sites de décharge
09 Terres cultivées
10 Horticulture
11 Pâturage
12 Vergers, plantations fruitières ou vignes
13 Forêts, bois
14 Terre à usage mixte (agroforesterie ou production agropastorale)
15 Cueillette/chasse-pêche (exploitation de végétation naturelle, chasse ou pêche)
16 Protection de la nature (par exemple réserve naturelle, zone protégée, lutte contre l'érosion par
terrassement)
17 Zone humide (par exemple marais, marécage, mangrove, etc.)
18 Enneigement ou glacier
19 Roche brute ou surface rocheuse
20 Terres naturelles
21 Prairies naturelles
22 Terrain de loisirs
23 Autre type de site inexploité ou non géré
4.3 Type de culture ou de végétation ou utilisation humaine (au niveau parcellaire)
Être aussi clair et précis que possible. Pour les plantes agricoles, il peut être intéressant de noter la variété,
quand elle est connue.
EXEMPLE Pâturage (prairie naturelle ou temporaire); traitement métallurgique (ferreux, non ferreux); site minier (fer,
charbon d'extraction ou à ciel ouvert); terres cultivées (maïs, avoine, riz); horticulture (fleurs, légumes).
4.4 Géomorphologie du site
⎯ La position du site dans le paysage
⎯ La géomorphologie du milieu environnant du site (échelle: 0,1 km)
4.5 Longueur de pente (en mètres)
Lorsque le sol est plat, noter 0 (zéro).
4.6 Valeur de la pente
La valeur moyenne de la pente est mesurée au voisinage de la fosse d'observation (plat = 0).
La pente peut être exprimée en pourcentage ou en degrés:
⎯ valeur de la pente, en %;
⎯ valeur de la pente, en degrés.
4.7 Orientation (exposition) de la pente
L'orientation de la pente peut être exprimée de la façon suivante:
a) N-S-E-O
NE-SE-NO-SO
avec VV = variable et AA = plat; ou
b) utiliser des degrés avec la convention suivante:
0° = nord
90° = est
4 © ISO 2008 – Tous droits réservés

180° = sud
270° = ouest
avec VV = variable et AA = plat.
4.8 Nature du matériau parental
4.8.1 Matériau modifié ou artificiel
La nature du matériau parental peut être modifiée par l'utilisation du site ou des matériaux artificiels peuvent
être importés sur le site. La connaissance de l'historique du site peut fournir des informations sur les
modifications du matériau naturel.
4.8.2 Matériau naturel
Il convient de décrire aussi complètement que possible le matériau parental naturel et/ou le substrat rocheux,
selon les connaissances locales. Par exemple, moraines glaciaires, alluvions marines, substrat
métamorphique, calcaire dur, dépôts lœssiques, etc.
4.9 Présence et profondeur de la nappe phréatique
4.9.1 Généralités
La profondeur de la nappe phréatique fluctue généralement au cours de l'année, parfois en fonction des
saisons ou de la marée.
En 4.9.2, noter la profondeur de la nappe phréatique lors de la description du site.
Les paragraphes 4.9.3 et 4.9.4 ont été inclus pour décrire les variations de la profondeur de la nappe
phréatique, lorsqu'elles existent et qu'elles sont connues (piézomètres, recherche ou indices sur les parois du
profil).
En 4.9.3, la profondeur minimale de la nappe phréatique doit être notée (la nappe phréatique à son niveau le
plus élevé).
En 4.9.4, la profondeur maximale de la nappe phréatique doit être notée (la nappe phréatique à son niveau le
plus bas).
Lorsque ces variations ne sont pas connues de l'observateur, consigner «inconnu» en 4.9.3 et en 4.9.4.
En l'absence de variation de la profondeur de la nappe phréatique ou lorsque l'observateur ignore s'il existe
des variations de profondeur, ne consigner aucune réponse en 4.9.3 et 4.9.4.
4.9.2 Profondeur
La profondeur peut être
a) observée ou mesurée,
b) estimée, ou
c) non observée.
Si elle est estimée, observée ou mesurée, la profondeur est exprimée en centimètres.
4.9.3 Profondeur minimale de la nappe phréatique
La profondeur minimale de la nappe phréatique peut être
a) observée ou mesurée,
b) estimée, ou
c) non observée.
Si elle est estimée, observée ou mesurée, la profondeur est exprimée en centimètres.
4.9.4 Profondeur maximale de la nappe phréatique
La profondeur maximale de la nappe phréatique peut être
a) observée ou mesurée,
b) estimée, ou
c) non observée.
Si elle est estimée, observée ou mesurée, la profondeur est exprimée en centimètres.
4.9.5 Nature de l'eau
Effectuer une évaluation générale, sans référence à une valeur seuil des sels solubles ou de la conductivité,
ou à des valeurs analytiques dans le cas d'une pollution ou d'une contamination, de la façon suivante:
⎯ S = saline;
⎯ B = saumâtre;
⎯ F = douce;
⎯ P = polluée ou contaminée.
Les combinaisons SP, BP ou FP sont possibles.
5 Aspect de la surface
5.1 Pourcentage de la surface de terrain occupée par des affleurements rocheux ou surface
couverte de matériau «non naturel» (par exemple sur un site industriel)
Les catégories suivantes sont couramment utilisées pour la description du sol (comparer les graphiques
donnés en Annexe A):
0 Aucun: 0 %
1 Très faible: > 0 % et u 2 %
2 Faible: > 2 % et u 5 %
3 Moyen: > 5 % et u 15 %
6 © ISO 2008 – Tous droits réservés

4 Élevé: > 15 % et u 40 %
5 Important : > 40 % et u 80 %
6 Très important: > 80 %
7 Non observé
5.2 Traces d'érosion
Les classes données sont basées sur les aspects du sol, témoignant de l'érosion actuelle (ou de dépôts) et
non de l'érosion antérieure ou éventuellement future (ou de dépôts).
0 Pas de preuve visible d'érosion
1 Trace visible d'une perte de terre
1 Érosion en nappes
2 Érosion en rigoles
3 Ravinement
4 Érosion éolienne
5 Glissements de terrain
2 Trace visible de dépôts
1 Dépôt par l'eau
2 Dépôt par le vent
6 Désignation générale — Type de sol
6.1 Généralités
Pour décrire les sols dans leur environnement, il est d'usage de rattacher les sols étudiés à un référentiel
relevant d'une classification de sol établie. Ces rattachements sont généralement basés sur l'expression des
processus pédogénétiques se déroulant dans le profil du sol. Dans de nombreux pays, il existe un système
national de classification, mais il est recommandé d'utiliser le système de classification international des sols
(World Reference Base [WRB]).
Les processus pédogénétiques donnent lieu à la formation de différentes couches dans le sol, qui sont
généralement plus ou moins parallèles à la surface topographique et sont appelées «horizons». Dans le cas
de sols profondément modifiés par l'activité humaine, des couches artificielles peuvent être produites par
différents types de dépôts (béton, briques, etc.). Ces différents types de couches sont simplement appelés
«couches». Les sols artificiels et les sols des paysages industriels et urbains ne sont pas aisément classés
dans la plupart des systèmes de classification des sols établis, y compris le WRB. Dans ces conditions, les
couches sont décrites à partir de la surface du sol, tel que spécifié à l'Article 7.
6.2 Système de classification du sol utilisé
Consigner le système de classification des sols utilisé.
Généralement, le système de classification WRB est recommandé.
6.3 Type de sol selon le système de classification utilisé
EXEMPLE Luvisol albique.
L'Annexe B donne une liste des sols de référence conformément au World Reference Base for Soil
Resources, 2006.
NOTE Le World Reference Base for Soil Resources est disponible sur l'internet.
6.4 Système de désignation des horizons utilisés
Préciser le système de désignation des horizons utilisé, par exemple FAO (2006) ou tout autre système
national.
L'Annexe C donne en exemple le système de désignation des horizons (2006) de la FAO qui peut être utilisé
comme référence en l'absence de système local ou régional de désignation des horizons.
6.5 Succession des horizons
Préciser la succession des horizons décrits dans le profil.
EXEMPLE A/E/B/C (voir Annexe C).
7 Description des horizons ou des couches
7.1 Généralités
Pour chaque horizon ou couche, les points suivants doivent être décrits.
7.2 Numéro d'horizon ou de couche
Les horizons ou les couches sont numérotés de 1 à n sur chaque site et il convient de les décrire dans l'ordre,
à partir de la surface.
7.3 Profondeur
Noter, en centimètres, la profondeur moyenne ainsi que la variation de profondeur correspondant à
l'apparition et la disparition de chaque horizon ou couche.
Des horizons organiques ou des couches de litières non décomposées doivent porter un numéro supérieur à
zéro, précédé du signe +.
7.4 Évaluation de l'état hydrique
Cette évaluation a pour objet d'indiquer les conditions dans lesquelles les autres observations sont réalisées
et de donner quelques lignes directrices pour la détermination sur le terrain de l'état hydrique du sol.
Il est difficile d'évaluer directement sur le terrain la teneur en eau du sol, dans la mesure où un même volume
d'eau induit, dans différents sols, des comportements différents suivant la nature du matériau du sol, la nature
et les dimensions des pores, etc.
Il est par conséquent utile d'observer l'état hydrique sur le terrain, qui est directement lié à la quantité d'eau
présente dans le sol. Pour déterminer l'état hydrique, il peut s'avérer nécessaire de procéder à des
vérifications afin d'étalonner l'analyse d'humidité.
8 © ISO 2008 – Tous droits réservés

L'état hydrique du sol est indiqué de la façon suivante:
a) Sec: teneur en eau inférieure à l'humidité au point de flétrissement.
Dans le cas d'échantillons cohérents (généralement plus de 17 % d'argile), cela se traduit souvent par les
caractéristiques suivantes: consistance dure non plastique; assombrissement de la couleur du sol avec l'ajout
d'eau.
Dans le cas d'échantillons non cohérents, généralement lorsque le pourcentage d'argile est inférieur à 17 %,
cela se traduit souvent par les caractéristiques suivantes: sol de couleur claire, qui s'assombrit avec l'ajout
d'eau; aspect poussiéreux.
b) Légèrement humide: teneur en eau intermédiaire, entre la capacité au champ et le point de
flétrissement.
Dans le cas d'échantillons cohérents (généralement plus de 17 % d'argile), cela se traduit souvent par les
caractéristiques suivantes: moyennement cohérent, mais s'effrite lors de la formation d'un boudin de 3 mm
d'épaisseur; la couleur du sol s'assombrit légèrement avec l'ajout d'eau.
Dans le cas d'échantillons non cohérents, généralement lorsque le pourcentage d'argile est inférieur à 17 %,
cela se traduit souvent par les caractéristiques suivantes: léger assombrissement de la couleur du sol avec
l'ajout d'eau.
c) Humide: humidité de l'horizon proche de la capacité au champ; absence d'eau libre.
Dans le cas d'échantillons cohérents (généralement plus de 17 % d'argile), cela se traduit souvent par les
caractéristiques suivantes: pâteux; peut se modeler en un boudin de 3 mm d'épaisseur sans s'effriter, ne
s'assombrit pas avec l'ajout d'eau; pas d'eau libérée lorsque l'échantillon est pressé.
Dans le cas d'échantillons non cohérents, généralement lorsque le pourcentage d'argile est inférieur à 17 %,
cela se traduit souvent par les caractéristiques suivantes: au toucher de l'échantillon, les doigts s'humidifient
légèrement; aucune eau ne s'écoule des pores, même lorsque l'échantillon est tapé contre la tarière; ne
s'assombrit pas avec l'ajout d'eau.
d) Très humide: présence d'eau libre, saturant tout ou partie des pores.
Dans le cas d'échantillons cohérents (généralement plus de 17 % d'argile), cela se traduit souvent par les
caractéristiques suivantes: mou; un boudin de plus de 3 mm d'épaisseur peut facilement se modeler;
libération d'eau lorsque l'échantillon est pressé.
Dans le cas d'échantillons non cohérents, généralement lorsque le pourcentage d'argile est inférieur à 17 %,
cela se traduit souvent par les caractéristiques suivantes: au toucher de l'échantillon, les doigts s'humidifient
nettement; eau libre visible lorsque l'échantillon est pressé.
e) Saturé: l'eau libre sature toute la porosité du sol.
Dans le cas d'échantillons cohérents (généralement plus de 17 % d'argile), cela se traduit souvent par les
caractéristiques suivantes: boueux, gorgé d'eau; la boue passe entre les doigts lorsque l'échantillon est
pressé.
Dans le cas d'échantillons non cohérents, généralement lorsque le pourcentage d'argile est inférieur à 17 %,
cela se traduit souvent par les caractéristiques suivantes: l'eau s'écoule nettement; échantillon souvent fluide.
f) Inondé: la surface du sol est couverte d'eau.
Cela ne concerne que l'horizon supérieur, proche de la surface du sol.
7.5 Couleur de la matrice de l'horizon ou de la couche
Elle est déterminée par comparaison avec la charte de couleurs des sols de Munsell, le sol étant en état
hydrique «humide».
7.6 Taches
7.6.1 Généralités
Les taches sont des points, ou des surfaces un peu plus étendues, de différentes couleurs, distinctes de la
couleur de la matrice et de toute variation liée aux surfaces d'agrégat, trous de ver, concrétions ou nodules.
7.6.2 Abondance
L'abondance de taches est décrite en classes qui indiquent le pourcentage de surface visible occupée par les
taches. Les catégories ci-dessous sont largement utilisées pour la description du sol (comparer les
graphiques donnés en Annexe A):
0 Aucun: 0 %
1 Très peu: > 0 % et u 2 %
2 Peu: > 2 % et u 5 %
3 Moyen: > 5 % et u 15 %
4 Nombreux: > 15 % et u 40 %
5 Abondant: > 40 %
7.6.3 Couleur
Si cela est possible, il convient d'indiquer l'intégralité du codage Munsell de la couleur.
7.7 Estimation de la teneur en matières organiques
Bien qu'elle soit difficile à réaliser sur le terrain et nécessite une expérience locale, l'estimation de la teneur en
matière organique est importante, notamment pour ce qui concerne l'interprétation d'autres variables du sol.
0 Absente ou non détectable
1 Suffisante pour assombrir le sol
2 Matière organique en grande quantité donnant au sol une couleur très sombre et une faible densité
3 Seule de la matière organique est détectable
4 Indéterminée
7.8 Texture
7.8.1 Description du diagramme de texture
Le nom du triangle de texture utilisé et l'échelle des fractions granulométriques sont donnés en clair, y
compris la limite de séparation des limons et des sables (voir Annexe D et ISO 14688-2).
10 © ISO 2008 – Tous droits réservés

7.8.2 Appréciation
Noter que la texture est une appréciation manuelle effectuée sur le terrain; elle est différente de la
«composition granulométrique» qui est déterminée en laboratoire. L'Annexe E présente un bref guide
d'appréciation de la texture.
Il s'agit d'une estimation de la classe de texture de la terre fine de l'horizon (taille de particules < 2 mm).
La classe de texture du sol déterminée manuellement peut différer de la classe de texture du sol déterminée à
partir des résultats de l'analyse granulométrique (par exemple conformément à l'ISO 11277).
7.9 Éléments grossiers
7.9.1 Généralités
Les éléments grossiers correspondent à la fraction de sol de taille > 2 mm (par opposition à la terre fine).
Dans les sols naturels, cela comprend les fragments de roche, pour les sols urbains, industriels et artificiels,
cela peut inclure d'autres matières étrangères telles que des métaux, du béton, du verre, etc.
7.9.2 Abondance (fraction volumique en %)
Les catégories suivantes sont couramment utilisées pour la description des sols (comparer les graphiques
présentés en Annexe A).
0 Aucun: 0 %
1 Très peu: > 0 % et u 2 %
2 Peu: > 2 % et u 5 %
3 Moyen: > 5 % et u 15 %
4 Nombreux: > 15 % et u 40 %
5 Abondant: > 40 % et u 80 %
6 Dominant: > 80 %
7.9.3 Taille maximale des éléments grossiers les plus fréquemment observés
Les catégories suivantes sont couramment utilisées pour la description du sol:
1 de 0 cm à u 2 cm
2 > 2 cm et u 7,5 cm
3 > 7,5 cm et u 12 cm
4 > 12 cm et u 25 cm
5 > 25 cm
Chaque pays peut nommer les classes au moyen des termes locaux ou nationaux.
7.9.4 Nature
Indiquer, aussi clairement que possible, la nature (ou les natures) des éléments grossiers. Pour les sols
naturels, il convient de décrire la nature lithologique des éléments grossiers.
7.10 Carbonates et effervescence
NOTE Il s'agit souvent d'une propriété importante des matériaux de sol naturel.
7.10.1 Intensité de l'effervescence
La teneur en carbonate est évaluée sur le terrain d'après les dégagements visibles et audibles de CO
(effervescence), produits par une solution d'acide chlorhydrique diluée (1/10 en fractions volumiques). Dans
ce contexte, carbonate signifie carbonates de calcium et de magnésium.
0 Pas d'effervescence
Pas d'effervescence visible ou audible.
Cela correspond généralement à une absence de carbonates.
1 Faible effervescence
Effervescence audible avec l'apparition de quelques bulles après plusieurs secondes.
Généralement, cela correspond à un pourcentage de carbonates inférieur à 2 %.
2 Effervescence modérée
Bulles visibles, souvent confinées à des grains isolés.
Généralement, cela correspond à un pourcentage de carbonates compris entre 2 % et 7 %.
3 Forte effervescence
Les bulles forment une mousse mince mais plus ou moins continue.
Généralement, cela correspond à un pourcentage de carbonates compris entre 7 % et 25 %.
4 Très forte effervescence
Forte réaction, les bulles forment rapidement une mousse épaisse.
Généralement, cela correspond à un pourcentage de carbonates supérieur à 25 %.
7.10.2 Localisation de l'effervescence
Les catégories suivantes sont couramment utilisées pour la description du sol:
1 Généralisée
La matrice (taille de particule < 2 mm) et les éléments grossiers réagissent à l'acide.
2 Localisée à la matrice
L'effervescence est limitée au matériau fin (< 2 µm).
3 Localisée aux éléments grossiers
L'effervescence est limitée aux éléments grossiers.
12 © ISO 2008 – Tous droits réservés

7.11 Principales catégories de structure
Quelques structures sont présentées en Annexe F.
Il est important d'enregistrer la taille des éléments structuraux (en centimètres).
0 Continue ou massive
Cohérente sans agrégats structuraux.
1 Particulaire
Ensemble non cohérent de particules individualisées.
2 Fibreuse ou feuilletée
Structure particulière aux horizons ou couches organiques dans lesquels les résidus végétaux à structure
fibreuse (par exemple aiguilles) ou à structure feuilletée (par exemple feuilles) sont encore facilement
identifiables.
3 Arrondie (grumeleuse ou grenue)
Dans le cas d'un produit résultant de l'activité de la faune du sol pouvant avoir une faible densité
apparente, la structure peut être décrite comme cotonneuse.
4 Anguleuse
Les éléments structuraux sont anguleux ou polyédriques, les surfaces sont planes ou légèrement
arrondies, et les trois dimensions sont approximativement identiques.
5 Prismatique ou columnaire
Les éléments structuraux ont des faces anguleuses ou légèrement arrondies; la dimension verticale est
supérieure aux dimensions horizontales.
Lorsque le sommet de l'élément structural est arrondi, la structure est dite columnaire.
6 Planaire ou lamellaire
Structures dans lesquelles les plans parallèles sont prédominants.
Lorsque les plans sont horizontaux, la structure est dite lamellaire.
Lorsque les plans parallèles résultent d'une organisation rocheuse initiale, la structure est dite «structure
lithique».
7 Lithique
L'organisation rocheuse se retrouve dans les horizons ou couches C ou R (par exemple schiste ou
poudingue altérés).
7.12 Compacité
L'appréciation de la compacité réalisée par l'essai au couteau dépend de l'état hydrique (voir 7.4). Il est par
conséquent essentiel d'enregistrer l'état hydrique.
1 Meuble
Matériau non compact; un couteau pénètre facilement jusqu'à la garde.
2 Légèrement compact
Un léger effort est nécessaire pour enfoncer un couteau dans le sol.
3 Compact
Un couteau ne pénètre pas entièrement, même avec un effort considérable.
4 Très compact
Il est impossible d'enfoncer un couteau plus que de quelques millimètres.
7.13 Porosité totale estimée
La porosité totale estimée est une indication du volume total de vides de toutes les tailles, estimé pour une
surface, en utilisant les graphiques donnés en Annexe A.
La porosité totale estimée intègre l'ensemble de la porosité du sol, y compris les trous créés par des racines
mortes ou complètement décomposées.
Tous les pourcentages sont indiqués en volume.
0 Non poreux: 0 % à u 2 %
1 Faible: > 2 % et u 5 %
2 Moyen: > 5 % et u 15 %
3 Élevé: > 15 % et u 40 %
4 Très élevé: > 40 %
5 Porosité visible, mais pas quantifiable
6 Porosité non enregistrée
7.14 Racines
7.14.1 Taille (diamètre) des racines les plus fréquemment observées
1 Très fine u 0,5 mm
2 Fine > 0,5 mm et u 2 mm
3 Moyenne > 2 mm et u 5 mm
4 Grosse > 5 mm
7.14.2 Abondance des racines
L'abondance est définie sur la base du nombre moyen de racines par décimètre carré (il s'agit normalement
d'une moyenne observée sur un certain nombre de décimètres carrés). La face observée doit être lisse et doit
correspondre à un plan vertical.
Dans le cas de couches ou d'horizons très fins, pour lesquels la grille constituée de carrés de 10 cm ne peut
pas être utilisée, l'abondance de racines peut être estimée à partir du nombre moyen de racines observées
sur une ligne horizontale de 50 cm de long, sur la face d'horizon observée, et à la profondeur médiane entre
l'apparition de l'horizon et sa disparition (ou le fond de la fosse d'observation).
0 Pas de racine
14 © ISO 2008 – Tous droits réservés

1 Très peu nombreuses: de 1 à 20 racines/dm , ou moins de 4 sur une ligne de 50 cm de long
2 Peu nombreuses: de 20 à 50 racines/dm , ou 4 à 8 sur une ligne de 50 cm de long
3 Assez nombreuses: de 50 à 200 racines/dm , ou 8 à 16 sur une ligne de 50 cm de long
4 Nombreuses: > 200 racines/dm , ou plus de 16 sur une ligne de 50 cm de long
7.15 Densité des trous de vers (généralement une moyenne pour un certain nombre de
décimètres carrés)
Les catégories suivantes sont couramment utilisées pour la description du sol:
0 Pas de trous de vers
1 Peu nombreux: < 1/dm sur la face verticale de l'horizon
2 Nombreux: de 1 à 2/dm
3 Abondants: > 2/dm
7.16 Nature de la limite inférieure de l'horizon
Les catégories suivantes sont couramment utilisées pour la description du sol:
1 Régulière
La limite est plane avec peu ou pas d'irrégularités.
2 Ondulée
La limite présente des ondulations dans lesquelles les dépressions sont plus larges que profondes.
3 Irrégulière
La limite présente des ondulations dans lesquelles les dépressions sont plus profondes que larges.
4 Discontinue
L'un ou les deux horizons ou couches séparés par la limite sont discontinus et la limite est interrompue.
Annexe A
(informative)
Grilles d'évaluation des proportions de taches, d'éléments grossiers, etc.
Les grilles à la Figure A.1, exprimées en pourcentage, sont utilisées pour estimer sur le terrain l'abondance,
en surface et volume, de ce
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...