Hydraulic fluid power - General rules relating to systems

Transmissions hydrauliques — Règles générales relatives aux systèmes

La présente Norme internationale fournit des règles générales relatives aux systèmes hydrauliques des machines utilisées dans les procédés de fabrication industrielle. Elle est destinée à servir de guide à la fois aux fournisseurs et aux acheteurs, afin d'assurer : a) la sécurité ; b) un fonctionnement continu du système ; c) une maintenance facile et économique ; d) la pérennité du système.

Fluidna tehnika - Hidravlika - Splošna pravila za uporabo hidravličnih sistemov

General Information

Status
Withdrawn
Publication Date
26-Aug-1998
Withdrawal Date
26-Aug-1998
Current Stage
9599 - Withdrawal of International Standard
Start Date
05-Nov-2010
Completion Date
13-Dec-2025

Relations

Standard
ISO 4413:1998 - Hydraulic fluid power -- General rules relating to systems
English language
68 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 4413:2000
English language
59 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 4413:1998 - Transmissions hydrauliques -- Regles générales relatives aux systemes
French language
59 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

ISO 4413:1998 is a standard published by the International Organization for Standardization (ISO). Its full title is "Hydraulic fluid power - General rules relating to systems". This standard covers: La présente Norme internationale fournit des règles générales relatives aux systèmes hydrauliques des machines utilisées dans les procédés de fabrication industrielle. Elle est destinée à servir de guide à la fois aux fournisseurs et aux acheteurs, afin d'assurer : a) la sécurité ; b) un fonctionnement continu du système ; c) une maintenance facile et économique ; d) la pérennité du système.

La présente Norme internationale fournit des règles générales relatives aux systèmes hydrauliques des machines utilisées dans les procédés de fabrication industrielle. Elle est destinée à servir de guide à la fois aux fournisseurs et aux acheteurs, afin d'assurer : a) la sécurité ; b) un fonctionnement continu du système ; c) une maintenance facile et économique ; d) la pérennité du système.

ISO 4413:1998 is classified under the following ICS (International Classification for Standards) categories: 23.100.01 - Fluid power systems in general. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO 4413:1998 has the following relationships with other standards: It is inter standard links to ISO 3382-1:2009, SIST ISO 4413:1995, ISO 4413:2010, ISO 4413:1979. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase ISO 4413:1998 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.

Standards Content (Sample)


INTERNATIONAL ISO
STANDARD 4413
Second edition
1998-08-15
Hydraulic fluid power — General rules
relating to systems
Transmissions hydrauliques — Règles générales relatives aux systèmes
A
Reference number
Contents Page
.......................................................................................................................... 1
1 Scope
2 Normative references . 1
3 Definitions . 3
4 Requirements . 4
4.1 General . 4
4.2 Hazards . 4
4.3 Safety requirements . 5
4.4 System requirements . 6
4.5 Site conditions . 7
5 System design . 8
5.1 Circuit diagrams . 8
5.2 Identification . 9
5.3 Installation, use and maintenance . 10
5.4 Use of standard parts . 11
5.5 Seals and sealing devices . 11
5.6 Maintenance and operating data . 11
5.7 Operation and maintenance manuals . 12
5.8 Ports . 12
5.9 System temperature . 12
6 Energy conversion components . 13
6.1 Hydraulic pumps and motors . 13
6.2 Cylinders . 14
6.3 Gas-loaded accumulators . 17
7 Valves . 19
7.1 Selection . 19
7.2 Mounting . 19
7.3 Manifolds . 20
7.4 Electrically operated valves . 20
7.5 Symbol plates .21
7.6 Adjustments .21
7.7 Removal . 21
©  ISO 1998
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the publisher.
International Organization for Standardization
Case postale 56 • CH-1211 Genève 20 • Switzerland
Internet iso@iso.ch
Printed in Switzerland
ii
©
ISO ISO 4413:1998(E)
8 Fluids and conditioning components . 22
8.1 Hydraulic fluids .22
8.2 Fluid reservoirs .23
8.3 Filtration and fluid conditioning . 26
8.4 Heat exchangers . 28
9 Piping . 29
9.1 General requirements . 29
9.2 Pipe and tube requirements . 30
9.3 Support of piping . 30
9.4 Foreign matter . 31
9.5 Hose assemblies . 31
9.6 Quick-action couplings . 32
10 Control systems . 32
10.1 Unintended movement . 32
10.2 System protection . 32
10.3 Components . 33
10.4 Control systems with servo and proportional valves . 34
10.5 Other design considerations . 34
10.6 Location of controls . 36
10.7 Emergency controls . 36
11 Diagnostics and monitoring . 37
11.1 Pressure measurement . 37
11.2 Fluid sampling . 37
11.3 Temperature sensing . 37
12 Cleaning and painting . 37
13 Preparation for transportation . 38
13.1 Identification of piping . 38
13.2 Packaging . 38
13.3 Sealing of openings . 38
13.4 Handling facilities . 38
14 Commissioning . 38
14.1 Verification tests . 38
14.2 Noise . 38
14.3 Fluid leakage . 39
14.4 Final data to be provided . 39
14.5 Modifications . 39
14.6 Inspection . 40
15 Identification statement . 40
iii
©
Annex A (informative) Items requiring supplier/purchaser agreement . 41
(informative)  . 42
Annex B List of hazards
Annex C (informative) Cross reference list ISO 4413/EN 982 . 45
Annex D (informative) Bibliography . 51
Index . 54
iv
©
ISO ISO 4413:1998(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is
normally carried out through ISO technical committees. Each member body interested in a
subject for which a technical committee has been established has the right to be represented
on that committee. International organizations, governmental and non-governmental, in liaison
with ISO, also take part in the work. ISO collaborates closely with the International
Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
Draft International Standards adopted by the technical committees are circulated to the member
bodies for voting. Publication as an International Standard requires approval by at least 75 % of
the member bodies casting a vote.
International Standard ISO 4413 was prepared by Technical Committee lSO/TC 131, Fluid
power systems, Subcommittee SC 9, Installations and systems.
This second edition cancels and replaces the first edition (ISO 4413:1979), which has been
technically revised.
Annexes A to D of this International Standard are for information only.
v
©
Introduction
In hydraulic fluid power systems, power is transmitted and controlled through a liquid under
pressure within an enclosed circuit.
The application of hydraulic fluid power systems requires a thorough understanding and precise
communication between supplier and purchaser. This International Standard was prepared to
assist that understanding and communication and to document many of the good practices
learned from experience with hydraulic systems.
Use of this International Standard assists:
a) the identification and specification of the requirements for hydraulic systems and
components;
b) the identification of respective areas of responsibility;
c) the design of systems and their components to comply with specific requirements;
d) understanding of the safety requirements of a hydraulic system.
General rules given in this International Standard have no legal status except those paragraphs
that are included in contractual agreements between purchasers and suppliers. Deviation from
those parts of this International Standard included in contractual agreements shall also be
agreed to in writing by the purchaser and supplier. Attention shall be drawn by the purchaser
and/or supplier to applicable national or local codes or laws.
General rules that contain the verb “shall” are counsels of good engineering practice,
universally applicable with rare exception. Use of the word “should” in the document is not an
indication of choice but an indication that the desirable engineering practices described may
have to be modified due to the peculiarities of certain processes, environmental conditions or
equipment size.
Titles or parts of the text which are marked with an asterisk (*) indicate subclauses for which
discussion is needed between the supplier and purchaser to define the requirements and/or
responsibilities. These are also listed in annex A.
vi
©
INTERNATIONAL STANDARD  ISO ISO 4413:1998(E)
Hydraulic fluid power — General rules relating to systems
1  Scope
This International Standard provides general rules relating to hydraulic systems on machinery
used in industrial manufacturing processes. It is intended as a guide for both suppliers and
purchasers, with a view to ensuring:
a) safety;
b) uninterrupted system operation;
c) ease and economy of maintenance;
d) long life of the system.
2  Normative references
The following standards contain provisions which, through reference in this text, constitute
provisions of this International Standard. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this
International Standard are encouraged to investigate the possibility of applying the most recent
editions of the standards indicated below. Members of IEC and ISO maintain registers of
currently valid International Standards.
ISO 1219-1:1991, Fluid power systems and components — Graphic symbols and circuit
diagrams — Part 1: Graphic symbols.
Fluid power systems and components — Graphic symbols and circuit
ISO 1219-2:1995,
diagrams — Part 2: Circuit diagrams.
ISO 4400:1994, Fluid power systems and components — Three-pin electrical plug connectors
with earth contact — Characteristics and requirements.
Hydraulic fluid power — Four-port directional control valves — Mounting
ISO 4401:1994,
surfaces.
©
ISO
1)
ISO 4406:— , Hydraulic fluid power — Fluids — Method for coding level of contamination by
solid particles.
Hydraulic fluid power — Particulate contamination analysis — Extraction of
ISO 4021:1992,
fluid samples from lines of an operating system.
ISO 5598:1985, Fluid power systems and components — Vocabulary.
2)
ISO 5781:— , Hydraulic fluid power — Pressure-control valves (excluding pressure-relief
valves), sequence valves, unloading valves, throttle valves and check valves — Mounting
surfaces.
ISO 6149-1:1993, Connections for fluid power and general use — Ports and stud ends with
ISO 261 threads and O-ring sealing — Part 1: Ports with O-ring seal in truncated housing.
Hydraulic fluid power — Four-screw split-flange connections for use at
ISO 6162:1994,
pressures of 2,5 MPa to 40 MPa (25 bar to 400 bar) — Type I metric series and type II inch
series.
Hydraulic fluid power — Four-screw, one-piece square-flange connections for
ISO 6164:1994,
use at pressures of 25 MPa and 40 MPa (250 and 400 bar).
ISO 6263:1997, Hydraulic fluid power — Compensated flow-control valves — Mounting
surfaces.
Hydraulic fluid power — Pressure-relief valves — Mounting surfaces.
ISO 6264:1998,
Fluid power systems and components — Two-pin electrical plug connector with
ISO 6952:1994,
earth contact — Characteristics and requirements.
ISO 7368:1989, Hydraulic fluid power — Two-port slip-in cartridge valves — Cavities.
ISO 7789:1998, Hydraulic fluid power — Two-, three- and four-port screw-in cartridge valves —
Cavities.
ISO 7790:1997, Hydraulic fluid power — Four-port modular stack valves and four-port
directional control valves, sizes 02, 03 and 05 — Clamping dimensions.
ISO 8434-1:1994, Metallic tube connections for fluid power and general use — Part 1: 24°
compression fittings.
Metallic tube connections for fluid power and general use — Part 2: 37°
ISO 8434-2:1994,
flared fittings.
_______________
1)  To be published. (Revision of ISO 4406:1987)
2)  To be published. (Revision of ISO 5781:1987)
©
ISO
ISO 8434-3:1995, Metallic tube connections for fluid power and general use — Part 3: O-ring
face seal fittings.
ISO 8434-4:1995, Metallic tube connections for fluid power and general use — Part 4: 24°
cone connectors with O-ring weld-on nipples.
ISO 10372:1992, Hydraulic fluid power — Four- and five-port servovalves — Mounting
surfaces.
ISO 10763:1994, Hydraulic fluid power — Plain-end, seamless and welded precision steel
tubes — Dimensions and nominal working pressures.
Acoustics — Recommended practice for the design of low-noise
ISO/TR 11688-1:1995,
machinery and equipment — Part 1: Planning.
3)
ISO 12151-1:— , Connections for hydraulic fluid power and general use — Hose fittings —
Part 1: Hose fittings with ISO 8434-3 O-ring face seal end.
3)
— Connections for hydraulic fluid power and general use — Hose fittings —
ISO 12151-2: ,
Part 2: Hose fittings with ISO 8434-1 and ISO 8434-4 24° cone connector ends with O-rings.
3)
ISO 12151-3:— , Connections for hydraulic fluid power and general use — Hose fittings —
Part 3: Hose fittings with ISO 6162 flange ends.
3)
ISO 12151-4:— , Connections for hydraulic fluid power and general use — Hose fittings —
Part 4: Hose fittings with ISO 6149-2 and ISO 6149-3 stud ends.
3)
ISO 12151-5:— , Connections for hydraulic fluid power and general use — Hose fittings —
Part 5: Hose fittings with ISO 8434-2 37° flared ends.
IEC 204-1:1997, Electrical equipment of industrial machines — Part 1: General requirements.
IEC 529:1989, Degrees of protection provided by enclosures (IP code).
3  Definitions
For the purposes of this International Standard, the definitions given in ISO 5598 and the
following definitions apply.
3.1  actuator: Component that transforms fluid energy into mechanical energy (e.g. motor,
cylinder).
Procedure by which a system is formally accepted by the purchaser.
3.2  commissioning:
3.3  component: Individual unit (e.g. cylinder, motor, valve, filter; but excluding piping)
comprising one or more parts, designed to be a functional part of a fluid power system.
_______________
3)  To be published.
©
ISO
3.4  control mechanism: Device that provides an input signal to a component (e.g. lever,
solenoid).
3.5  emergency control: Control function that brings a system to a safe condition.
3.6  function plate: Surface that contains information describing either the performance of a
manually operated device (e.g. on/off, forward/reverse, left/right, up/down) or the status of a
function performed by the system (e.g. clamp, lift, advance).
3.7  operating device: Device that provides an input signal to a control mechanism (e.g. cam,
electrical switch).
Any combination of fittings, couplings or connectors with pipes, hoses or tubes
3.8  piping:
which allows fluid flow between components.
3.9  purchaser: Party that stipulates the requirements of a machine, equipment, system or
component and judges whether the product satisfies those requirements.
3.10  supplier: Party that contracts to provide the product(s) to satisfy the purchaser’s
requirements.
Arrangement of interconnected components which transmits and controls fluid
3.11  system:
power energy.
4  Requirements
4.1  General
The requirements given in 4.1.1 to 4.5 apply to all systems within the scope of this International
Standard.
4.1.1  Instructions
Hydraulic systems shall be installed and used in accordance with the instructions and
recommendations of the system supplier.
4.1.2  Language*
The purchaser and supplier shall agree on the language to be used for machine marking and
applicable documentation. The supplier shall be responsible for ensuring that the translation
has the same meaning as the original text.
4.2  Hazards*
When agreed between the purchaser and supplier, an assessment of the hazards listed in
annex B shall be performed. This assessment may include the influence of the fluid power
©
ISO
system on the other parts of the machine, system or environment. Standards listed in annex B
may be used in this assessment.
So far as is practicable, the hazards identified shall be eliminated by design and, where this is
not practicable, the design shall incorporate safeguards against such hazards.
4.3  Safety requirements
4.3.1  Design considerations
When designing hydraulic systems, all aspects of possible methods of failure (including control
supply failure) shall be considered.
In each case, components shall be selected, applied, fitted and adjusted so that in the event of
a failure, safety of personnel shall be the prime consideration.
The prevention of damage to the system and the environment shall be considered.
4.3.2  Component selection
All components in the system shall be selected or specified to provide for safety in use, and
they shall operate within their rated limits when the system is put to its intended use.
Components shall be selected or specified to operate reliably under all intended uses of the
system. Particular attention shall be paid to the reliability of components that could cause a
hazard in the event of their failure or malfunction.
4.3.3  Unintended pressures
All parts of the system shall be designed or otherwise protected against pressures exceeding
the maximum working pressure of a system or any part of the system or the rated pressure of
any specific component.
The preferred means of protection against excessive pressure are one or more pressure relief
valves located to limit the pressure in all parts of the system. Alternative means, such as
pressure compensator pump controls, may be used, provided those means satisfy the
application requirements.
Systems shall be designed, constructed and adjusted to minimise surge pressures and
intensified pressures. Surge pressures and intensified pressures shall not cause hazards.
Loss of pressure or critical drop in pressure shall not expose persons to a hazard.
4.3.4  Mechanical movements
Mechanical movements, whether intended or unintended (including effects from, for example,
acceleration, deceleration or lifting/holding of masses), shall not result in a situation which is
hazardous to persons.
©
ISO
4.3.5  Noise
For the design of low noise machinery and systems, see ISO 11688-1.
4.3.6  Leakage
Leakage (internal or external) shall not cause a hazard.
4.3.7  Temperature
4.3.7.1  Operating temperature
The full range of operating temperatures for the system or any component shall not exceed
those specified limits at which they can safely be used.
4.3.7.2  Surface temperature
Hydraulic systems shall be designed to protect persons from surface temperatures that exceed
touchable limits by either location or guarding.
4.4  System requirements*
The purchaser and supplier shall establish specifications for the operation and function of the
system, including
a) working pressure range;
b) operating temperature range;
c) type of fluid to be used;
d) cycle rates;
e) duty cycle;
f) service life of components;
g) sequence of events;
h) lubrication;
i) lifting requirements;
j) emergency and safety requirements;
k) details of painting or protective coating.
©
ISO
4.5  Site conditions*
4.5.1  Specifications*
The purchaser shall specify on the inquiry all the information required for proper selection and
application of systems.
Examples of information required are
a) ambient temperature range of the installation;
b) humidity range of the installation;
c) available utilities, e.g. electricity, water, waste;
d) electric network details, e.g. voltage and its tolerance; frequency, available power
(if limited);
e) protection for electrical devices;
f) atmospheric pressure;
g) contamination;
h) sources of vibration;
i) possible severity of a fire or explosion hazard;
j) standard of maintenance available;
k) reserves, e.g. flow, pressure and volume;
l) space for access, maintenance and use, as well as the location and mounting of
components and systems to ensure their stability and security in use;
m) available cooling and heating media and capacities;
n) requirements for guarding;
o) legal and environmental limiting factors;
p) other safety requirements.
4.5.2  Drawings*
Where specified and agreed between the purchaser and supplier, the supplier shall provide
drawings that indicate
a) floor plan, including location and installation dimensions;
b) foundation requirements, including floor loading;
©
ISO
c) water supply requirements;
d) electrical supply requirements;
e) piping layout (photographs may be used by agreement).
5  System design
5.1  Circuit diagrams
The supplier shall provide a circuit diagram in accordance with ISO 1219-2 which reflects the
system design, identifies the components and satisfies the requirements of clause 4.
The following information shall be included on or with the circuit diagram:
a) identification of all equipment by name, catalogue number, serial or design number, and
the manufacturer’s or supplier’s name;
b) the size, wall thickness and specification of pipe and tube and the size and specification of
hose assemblies;
c) the bore diameter of each cylinder, the diameter of each cylinder piston rod, the length of
stroke, the estimated maximum force and the speed required for the intended service;
d) the displacement per revolution, the maximum torque output, speeds and direction of
rotation required for the intended service of each hydraulic motor;
e) the flow rate and the direction of rotation of each pump, as viewed from the driven shaft
end;
f) the power, rotational speed, and the type of each pump prime mover;
g) the pressure settings;
h) the types of strainers, filters and replacement elements;
i) the volume of fluid required to fill the system to maximum level;
j) the recommended fluid type and viscosity grade;
k) when specified, the time sequence chart, e.g. the time range of the cycle and data or text,
or both, showing the operations performed, including the function(s) of the related
electrical and mechanical controls and actuators;
l) clear indication of any circuitry contained within circuit manifolds; where boundary lines or
boundary envelopes are used for this purpose, the boundary indicated shall include only
symbols of components mounted on or within the manifold;
m) clear indication of the function of each actuator in each direction;
©
ISO
n) the pre-charge pressures and nominal volumes of accumulators;
o) the size, type and location of pressure test, sampling and bleed points in the circuit;
p) identification of all component or manifold ports (as marked on the component or
manifold);
q) the expected flow rate and maximum and minimum pressure of the cooling medium, and
the maximum temperature of the cooling medium supply;
r) identification of all electrical signal converters, as marked on the electrical circuit diagram.
5.2  Identification
5.2.1  Components
The following particulars shall be provided by the supplier and shown, if practicable, in a
permanent and readily visible form on all components:
a) the manufacturer’s or supplier’s name and brief address;
b) the manufacturer’s or supplier’s product identification;
c) the rated pressure;
d) symbols according to ISO 1219-1, with all ports correctly identified.
Where lack of available space would result in lettering too small to be legible, information may
be provided on supplementary materials such as instruction/maintenance sheets, catalogue
sheets or accessory tags.
5.2.2  Components within a system
Each component shall be given a unique item number and/or letter. This unique item number
shall be used to identify the component on all diagrams, lists and layouts. It should be clearly
and permanently marked on the installation adjacent to, but not on, the component.
The order of stacking modules shall be clearly indicated adjacent to, but not on, the stack.
5.2.3  Ports
All ports, power take-off, test and bleed points and drain outlets (e.g. reservoir drains) shall be
clearly and distinctly identified. The identification shall correspond to the data on the circuit diagram.
When components have standard port identifications applied by the component supplier, these
shall be supplemented by identifications corresponding to the circuit diagram (see 5.2.1 and
5.2.2).
©
ISO
5.2.4  Valve control mechanisms
5.2.4.1  Non-electrical
Non-electrical control mechanisms and their functions shall be clearly and permanently
identified with the same identification used on the circuit diagram.
5.2.4.2  Electrical
Electrical control mechanisms (solenoids and their attaching plugs or cables) shall be identified
on the electrical and hydraulic circuit diagrams with the same identification.
5.2.5  Internal devices
Cartridge valves and other functional devices (orifice plugs, passages, shuttle valves, check
valves, etc.) located within a manifold, mounting plate, pad or fitting shall be identified adjacent
to their access openings. Where access openings are located under a component or
components, identification shall, if practicable, be provided adjacent to the component and
marked “CONCEALED”.
5.2.6  Function plate
A function plate should be provided for each control station and located where it can be easily
read. The function plate information shall be relevant and easily understood, providing positive
identification of system function controlled.
5.3  Installation, use and maintenance
Components and piping shall be selected, applied, installed and used in accordance with the
supplier’s instructions and recommendations.
Components made in accordance with recognised international or national standards should be
selected.
5.3.1  Component replacement
To facilitate maintenance, means shall be provided or components so fitted that their removal
from the system for maintenance
a) shall not lead to excessive loss of fluid;
b) should not require draining of the reservoir;
c) should not necessitate extensive disassembly of adjacent parts.
©
ISO
5.3.2  Maintenance requirements
The system shall be designed and constructed so that components are located where they are
accessible and can be safely adjusted and serviced.
Hydraulic components including piping shall be accessible and fitted so as not to interfere with
adjustment or maintenance. Particular attention shall be given to the location of systems and
components that need regular maintenance.
5.3.3  Lifting provisions
All components or assemblies having a mass greater than 15 kg should have provision(s) for
lifting.
5.3.4  Component installation
Components should be so installed that they are accessible without risk from a safe working
position (for example, ground level or working platform).
The installation height of the bottom edge of a component should normally be at least 0,6 m
above the working platform, and the top edge not more than 1,8 m above the working platform.
5.4  Use of standard parts
The system supplier should use commercially available parts (keys, bearings, packings, seals,
washers, plugs, fasteners, etc.) and part configurations (shaft and spline sizes, port sizes,
mountings, mounting surfaces or cavities, etc.) that conform to accepted International Standards
and provide for uniform coding.
5.5  Seals and sealing devices
5.5.1  Materials
Seal and sealing device materials shall be compatible with the fluid used, adjacent materials
and their working conditions and environment.
5.5.2  Replacement
Component design shall facilitate servicing and replacement of seals and sealing devices.
5.6  Maintenance and operating data
The system supplier shall provide the necessary maintenance and operating data that clearly
a) describe start-up and shut-down procedures;
©
ISO
b) give any required depressurising instructions and identify those parts of a system which
are not depressurised by the normal venting device;
c) describe adjustment procedures;
d) indicate external lubrication points, the type of lubricant required and the intervals to be
observed;
e) locate fluid level indicators, fill points, drains, filters, test points strainers, magnets, etc.,
that require scheduled maintenance;
f) specify maximum allowable fluid contamination level;
g) give instructions for fluid maintenance;
h) provide advice for the safe handling and disposal of fluids and lubricants;
i) specify the cooling medium flow rate, maximum temperature, and permissible pressure
range required for adequate cooling;
j) state maintenance procedures for unique assemblies;
k) give further identification of parts in the hydraulic components that are commercially
available or manufactured to an International Standard that provides for uniform coding;
the identification shall be the component manufacturer’s part number or as provided by
the International Standard’s code;
l) list recommended spare parts.
5.7  Operation and maintenance manuals
The system supplier shall provide a manual describing system operation and maintenance,
including the requirements described in 5.6 and instruction and/or maintenance information
about the components and piping.
5.8  Ports
All port connections should be in accordance with
— ISO 6149 for threaded ports and stud ends, or
— ISO 6162 or ISO 6164 for four-screw flange port connections.
5.9  System temperature
5.9.1  Heat generation
Hydraulic systems shall be designed to minimise unnecessary heat generation.
©
ISO
5.9.2  Operating temperatures
The full range of operating temperatures for each component and the system shall be specified.
The fluid temperature shall not exceed that at which it can reliably be used and be within the
specified working temperature range of any component in the system.
6  Energy conversion components
6.1  Hydraulic pumps and motors
6.1.1  Protection
Hydraulic pumps and motors shall either be mounted where they are protected from predictable
damage, or be suitably guarded.
All drive shafts and couplings shall be suitably guarded.
6.1.2  Mounting
Hydraulic pumps and motors shall be mounted so that
a) they are accessible for maintenance;
b) no shaft misalignment is introduced as a result of the duty cycle, temperature variations or
applied pressure loadings;
c) induced axial and radial loads are within limits specified by the pump/motor supplier;
d) drive couplings and mountings are capable of repeatedly withstanding the maximum
torque generated under all operating conditions;
e) the transmission or amplification of torsional vibration is limited using couplings that are
adequately damped.
6.1.3  Speed considerations
Speed shall not exceed the maximum specified in the supplier’s documentation.
6.1.4  Drains, air bleeds and auxiliary ports
The size and termination of hydraulic pump and motor drains shall meet the component
supplier’s specification.
Drains, air bleeds and auxiliary ports shall be so installed that they do not allow ingress of air
into the system and shall be so dimensioned and installed that no excessive back pressure will
be generated. High pressure air bleeds shall be installed so as to minimise the hazard to
persons.
©
ISO
6.1.5  Pre-filling of housings
Where the housings of hydraulic pumps and motors require pre-filling with fluid prior to start up,
a readily accessible means for pre-filling shall be provided and be located to ensure that air is
not trapped in the housings.
6.1.6  Working pressure range
If there are any restrictions on the working pressure range at which the pump or motor may be
used, these shall be defined in the technical data to be provided by the supplier.
6.1.7  Installation
Hydraulic pumps and motors shall be installed so that
a) piping connections are configured to prevent external leakage; tapered pipe threads or
connection mechanisms that require sealing compounds shall not be used;
b) loss of primary or case lubrication is prevented during periods of inactivity;
c) the pressure at the pump inlet port is not less than the minimum specified by the pump
supplier for the operating conditions and the system fluid used.
6.2  Cylinders
6.2.1  Suitability for application
Cylinders shall be designed and/or selected with the following characteristics.
6.2.1.1  Resistance to buckling
Attention shall be given to stroke length, loading and cylinder mountings in order to avoid
bending or buckling of the cylinder piston rod at any position.
6.2.1.2  Loading and overrunning
For applications in which overrunning or other external loads are encountered, the design of the
cylinder and its mountings shall take into account the maximum expected load or pressure
peak.
6.2.1.3  Mounting ratings
All load ratings shall take account of the mounting types.
NOTE —  Cylinder pressure ratings may reflect only the capability of the pressure-containing envelope and not the
force transmitting capability of mounting configurations. The supplier or manufacturer should be consulted for
mounting configuration ratings.
©
ISO
6.2.1.4  Structural loading
When a cylinder is used as a positive position stop, the cylinder shall be sized and the
mounting selected on the basis of the maximum incurred loading induced by the machine
member restrained, if this loading is greater than the loading incurred during its normal work
cycle.
6.2.1.5  Resistance to shock and vibration
Any component mounted on or connected to a cylinder shall be attached in a way that resists
loosening caused by shock and vibration.
6.2.1.6  Pressure intensification
Means shall be provided in the system for preventing intensified pressures in excess of rated
pressure limits caused by piston area differences.
6.2.2  Mounting and alignment
Cylinders should preferably be mounted so that load reaction occurs along the cylinder
centreline. The mounting shall minimise the following conditions:
a) excessive deformation of the cylinder structure from either push or pull loading;
b) introduction of side or bending loads;
c) rotational velocities of pivot mountings which may necessitate continuous external
lubrication.
6.2.2.1  Mounting location
Mounting surfaces shall not distort cylinders, and allowance shall be made for thermal
expansion. The cylinder shall be mounted to enable ease of access for maintenance, adjustment
to cushioning devices and complete unit replacement.
6.2.2.2  Mounting fasteners
Mounting fasteners for cylinders and attachments shall be designed and installed to
accommodate all predictable forces. As far as possible the fasteners should be free from shear
forces. Foot mounted cylinders should have means to absorb shear loads, rather than
depending on mounting fasteners. The mounting fasteners shall be adequate to absorb
overturning moments.
6.2.2.3  Alignment
Mounting surfaces shall be designed to prevent distortion of the cylinder when installed. The
cylinder shall be mounted in a way that avoids unintended side loads during operation.
©
ISO
6.2.3  Cushions and deceleration devices
When internal cushions are used, the cylinder end stops shall be designed to take into account
the effects of load deceleration.
6.2.4  Stroke end stops
If stroke length is determined by external stroke end stops, means shall be provided for locking
the adjustable end stops.
6.2.5  Piston stroke
The stroke of the piston shall always be greater than or equal to its nominal stroke.
6.2.6  Piston rods
Piston rod material and finish shall be selected to minimise wear, corrosion and foreseeable
impact damage.
Piston rods should be protected against foreseeable damage from dents, scratches, corrosion,
etc.
Protective covers may also be provided. For assembly purposes, piston rods with male or
female screwed ends shall be provided with flats to suit standard wrenches. Flats on the piston
rods may be omitted in cases where the rods are too small to allow provision of the flats.
6.2.7  Maintenance
Piston rod seals, seal assemblies and other wear members should be easily replaceable.
6.2.8  Single-acting cylinders
Single-acting piston type cylinders shall have their air vent port designed and/or positioned to
avoid hazards to persons when displaced fluid is ejected.
6.2.9  Replacement
Integral cylinders are undesirable, but where they are used, components that are likely to wear
should be replaceable.
6.2.10  Air entrapment
6.2.10.1  Port location
Where practical, cylinders shall be installed with ports uppermost.
©
ISO
6.2.10.2  Air bleeds
Cylinders shall be mounted so that they are self-bleeding, or accessible external air bleeds shall
be provided.
6.3  Gas-loaded accumulators
6.3.1  Identification
In addition to the requirements of 5.2.1, the following identification shall be permanently marked
on the accumulator:
a) year of manufacture;
b) total shell volume, in litres;
c) manufacturer’s serial or lot number;
d) allowable temperature range, in degrees Celsius.
The following identification shall be given on the accumulator or on a label on the accumulator:
— “Caution — Pressurised vessel. Discharge prior to disassembly”;
— the rated gas pre-charge pressure;
— “Use only . . . pre-charge medium” (e.g. nitrogen).
6.3.2  Requirements for hydraulic systems with gas-loaded accumulators
Hydraulic systems that incorporate gas-loaded accumulators shall automatically vent the
accumulator liquid pressure or positively isolate the accumulator when the system is shut off.
In special situations where pressure is required after the machine is shut down, the above
requirements need not be fulfilled.
The gas-loaded accumulator and any associated pressurised components shall be applied
within the rated limits of pressure, temperature and environmental conditions. Protection
against excessive pressure on the gas side may be required in special circumstances.
A hydraulic system with a gas-loaded accumulator shall have a warning label reading
“CAUTION – System contains accumulator(s). Depressurise system before maintenance.”
Duplicate information shall be provided on the circuit diagram.
If gas-loaded accumulator liquid pressure isolation is required by design when the system is
shut off, complete information for safe servicing shall be referenced on or near the accumulator
in a visible location.
©
ISO
6.3.3  Installation
6.3.3.1  Mounting position
If damage to components and fittings in a gas-loaded accumulator system could cause a
hazard, they shall be suitably protected.
A gas-loaded accumulator shall be installed according to the instructions of the accumulator
supplier and be accessible for ease of maintenance.
6.3.3.2  Support
A gas-loaded accumulator and any associated pressurised components shall be supported
according to the instruct
...


SLOVENSKI STANDARD
01-september-2000
)OXLGQDWHKQLND+LGUDYOLND6SORãQDSUDYLOD]DXSRUDERKLGUDYOLþQLKVLVWHPRY
Hydraulic fluid power -- General rules relating to systems
Transmissions hydrauliques -- Règles générales relatives aux systèmes
Ta slovenski standard je istoveten z: ISO 4413:1998
ICS:
23.100.01 +LGUDYOLþQLVLVWHPLQDVSORãQR Fluid power systems in
general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 4413
Second edition
1998-08-15
Hydraulic fluid power — General rules
relating to systems
Transmissions hydrauliques — Règles générales relatives aux systèmes
A
Reference number
Contents Page
.......................................................................................................................... 1
1 Scope
2 Normative references . 1
3 Definitions . 3
4 Requirements . 4
4.1 General . 4
4.2 Hazards . 4
4.3 Safety requirements . 5
4.4 System requirements . 6
4.5 Site conditions . 7
5 System design . 8
5.1 Circuit diagrams . 8
5.2 Identification . 9
5.3 Installation, use and maintenance . 10
5.4 Use of standard parts . 11
5.5 Seals and sealing devices . 11
5.6 Maintenance and operating data . 11
5.7 Operation and maintenance manuals . 12
5.8 Ports . 12
5.9 System temperature . 12
6 Energy conversion components . 13
6.1 Hydraulic pumps and motors . 13
6.2 Cylinders . 14
6.3 Gas-loaded accumulators . 17
7 Valves . 19
7.1 Selection . 19
7.2 Mounting . 19
7.3 Manifolds . 20
7.4 Electrically operated valves . 20
7.5 Symbol plates .21
7.6 Adjustments .21
7.7 Removal . 21
©  ISO 1998
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the publisher.
International Organization for Standardization
Case postale 56 • CH-1211 Genève 20 • Switzerland
Internet iso@iso.ch
Printed in Switzerland
ii
©
ISO ISO 4413:1998(E)
8 Fluids and conditioning components . 22
8.1 Hydraulic fluids .22
8.2 Fluid reservoirs .23
8.3 Filtration and fluid conditioning . 26
8.4 Heat exchangers . 28
9 Piping . 29
9.1 General requirements . 29
9.2 Pipe and tube requirements . 30
9.3 Support of piping . 30
9.4 Foreign matter . 31
9.5 Hose assemblies . 31
9.6 Quick-action couplings . 32
10 Control systems . 32
10.1 Unintended movement . 32
10.2 System protection . 32
10.3 Components . 33
10.4 Control systems with servo and proportional valves . 34
10.5 Other design considerations . 34
10.6 Location of controls . 36
10.7 Emergency controls . 36
11 Diagnostics and monitoring . 37
11.1 Pressure measurement . 37
11.2 Fluid sampling . 37
11.3 Temperature sensing . 37
12 Cleaning and painting . 37
13 Preparation for transportation . 38
13.1 Identification of piping . 38
13.2 Packaging . 38
13.3 Sealing of openings . 38
13.4 Handling facilities . 38
14 Commissioning . 38
14.1 Verification tests . 38
14.2 Noise . 38
14.3 Fluid leakage . 39
14.4 Final data to be provided . 39
14.5 Modifications . 39
14.6 Inspection . 40
15 Identification statement . 40
iii
©
Annex A (informative) Items requiring supplier/purchaser agreement . 41
(informative)  . 42
Annex B List of hazards
Annex C (informative) Cross reference list ISO 4413/EN 982 . 45
Annex D (informative) Bibliography . 51
Index . 54
iv
©
ISO ISO 4413:1998(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is
normally carried out through ISO technical committees. Each member body interested in a
subject for which a technical committee has been established has the right to be represented
on that committee. International organizations, governmental and non-governmental, in liaison
with ISO, also take part in the work. ISO collaborates closely with the International
Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
Draft International Standards adopted by the technical committees are circulated to the member
bodies for voting. Publication as an International Standard requires approval by at least 75 % of
the member bodies casting a vote.
International Standard ISO 4413 was prepared by Technical Committee lSO/TC 131, Fluid
power systems, Subcommittee SC 9, Installations and systems.
This second edition cancels and replaces the first edition (ISO 4413:1979), which has been
technically revised.
Annexes A to D of this International Standard are for information only.
v
©
Introduction
In hydraulic fluid power systems, power is transmitted and controlled through a liquid under
pressure within an enclosed circuit.
The application of hydraulic fluid power systems requires a thorough understanding and precise
communication between supplier and purchaser. This International Standard was prepared to
assist that understanding and communication and to document many of the good practices
learned from experience with hydraulic systems.
Use of this International Standard assists:
a) the identification and specification of the requirements for hydraulic systems and
components;
b) the identification of respective areas of responsibility;
c) the design of systems and their components to comply with specific requirements;
d) understanding of the safety requirements of a hydraulic system.
General rules given in this International Standard have no legal status except those paragraphs
that are included in contractual agreements between purchasers and suppliers. Deviation from
those parts of this International Standard included in contractual agreements shall also be
agreed to in writing by the purchaser and supplier. Attention shall be drawn by the purchaser
and/or supplier to applicable national or local codes or laws.
General rules that contain the verb “shall” are counsels of good engineering practice,
universally applicable with rare exception. Use of the word “should” in the document is not an
indication of choice but an indication that the desirable engineering practices described may
have to be modified due to the peculiarities of certain processes, environmental conditions or
equipment size.
Titles or parts of the text which are marked with an asterisk (*) indicate subclauses for which
discussion is needed between the supplier and purchaser to define the requirements and/or
responsibilities. These are also listed in annex A.
vi
©
INTERNATIONAL STANDARD  ISO ISO 4413:1998(E)
Hydraulic fluid power — General rules relating to systems
1  Scope
This International Standard provides general rules relating to hydraulic systems on machinery
used in industrial manufacturing processes. It is intended as a guide for both suppliers and
purchasers, with a view to ensuring:
a) safety;
b) uninterrupted system operation;
c) ease and economy of maintenance;
d) long life of the system.
2  Normative references
The following standards contain provisions which, through reference in this text, constitute
provisions of this International Standard. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this
International Standard are encouraged to investigate the possibility of applying the most recent
editions of the standards indicated below. Members of IEC and ISO maintain registers of
currently valid International Standards.
ISO 1219-1:1991, Fluid power systems and components — Graphic symbols and circuit
diagrams — Part 1: Graphic symbols.
Fluid power systems and components — Graphic symbols and circuit
ISO 1219-2:1995,
diagrams — Part 2: Circuit diagrams.
ISO 4400:1994, Fluid power systems and components — Three-pin electrical plug connectors
with earth contact — Characteristics and requirements.
Hydraulic fluid power — Four-port directional control valves — Mounting
ISO 4401:1994,
surfaces.
©
ISO
1)
ISO 4406:— , Hydraulic fluid power — Fluids — Method for coding level of contamination by
solid particles.
Hydraulic fluid power — Particulate contamination analysis — Extraction of
ISO 4021:1992,
fluid samples from lines of an operating system.
ISO 5598:1985, Fluid power systems and components — Vocabulary.
2)
ISO 5781:— , Hydraulic fluid power — Pressure-control valves (excluding pressure-relief
valves), sequence valves, unloading valves, throttle valves and check valves — Mounting
surfaces.
ISO 6149-1:1993, Connections for fluid power and general use — Ports and stud ends with
ISO 261 threads and O-ring sealing — Part 1: Ports with O-ring seal in truncated housing.
Hydraulic fluid power — Four-screw split-flange connections for use at
ISO 6162:1994,
pressures of 2,5 MPa to 40 MPa (25 bar to 400 bar) — Type I metric series and type II inch
series.
Hydraulic fluid power — Four-screw, one-piece square-flange connections for
ISO 6164:1994,
use at pressures of 25 MPa and 40 MPa (250 and 400 bar).
ISO 6263:1997, Hydraulic fluid power — Compensated flow-control valves — Mounting
surfaces.
Hydraulic fluid power — Pressure-relief valves — Mounting surfaces.
ISO 6264:1998,
Fluid power systems and components — Two-pin electrical plug connector with
ISO 6952:1994,
earth contact — Characteristics and requirements.
ISO 7368:1989, Hydraulic fluid power — Two-port slip-in cartridge valves — Cavities.
ISO 7789:1998, Hydraulic fluid power — Two-, three- and four-port screw-in cartridge valves —
Cavities.
ISO 7790:1997, Hydraulic fluid power — Four-port modular stack valves and four-port
directional control valves, sizes 02, 03 and 05 — Clamping dimensions.
ISO 8434-1:1994, Metallic tube connections for fluid power and general use — Part 1: 24°
compression fittings.
Metallic tube connections for fluid power and general use — Part 2: 37°
ISO 8434-2:1994,
flared fittings.
_______________
1)  To be published. (Revision of ISO 4406:1987)
2)  To be published. (Revision of ISO 5781:1987)
©
ISO
ISO 8434-3:1995, Metallic tube connections for fluid power and general use — Part 3: O-ring
face seal fittings.
ISO 8434-4:1995, Metallic tube connections for fluid power and general use — Part 4: 24°
cone connectors with O-ring weld-on nipples.
ISO 10372:1992, Hydraulic fluid power — Four- and five-port servovalves — Mounting
surfaces.
ISO 10763:1994, Hydraulic fluid power — Plain-end, seamless and welded precision steel
tubes — Dimensions and nominal working pressures.
Acoustics — Recommended practice for the design of low-noise
ISO/TR 11688-1:1995,
machinery and equipment — Part 1: Planning.
3)
ISO 12151-1:— , Connections for hydraulic fluid power and general use — Hose fittings —
Part 1: Hose fittings with ISO 8434-3 O-ring face seal end.
3)
— Connections for hydraulic fluid power and general use — Hose fittings —
ISO 12151-2: ,
Part 2: Hose fittings with ISO 8434-1 and ISO 8434-4 24° cone connector ends with O-rings.
3)
ISO 12151-3:— , Connections for hydraulic fluid power and general use — Hose fittings —
Part 3: Hose fittings with ISO 6162 flange ends.
3)
ISO 12151-4:— , Connections for hydraulic fluid power and general use — Hose fittings —
Part 4: Hose fittings with ISO 6149-2 and ISO 6149-3 stud ends.
3)
ISO 12151-5:— , Connections for hydraulic fluid power and general use — Hose fittings —
Part 5: Hose fittings with ISO 8434-2 37° flared ends.
IEC 204-1:1997, Electrical equipment of industrial machines — Part 1: General requirements.
IEC 529:1989, Degrees of protection provided by enclosures (IP code).
3  Definitions
For the purposes of this International Standard, the definitions given in ISO 5598 and the
following definitions apply.
3.1  actuator: Component that transforms fluid energy into mechanical energy (e.g. motor,
cylinder).
Procedure by which a system is formally accepted by the purchaser.
3.2  commissioning:
3.3  component: Individual unit (e.g. cylinder, motor, valve, filter; but excluding piping)
comprising one or more parts, designed to be a functional part of a fluid power system.
_______________
3)  To be published.
©
ISO
3.4  control mechanism: Device that provides an input signal to a component (e.g. lever,
solenoid).
3.5  emergency control: Control function that brings a system to a safe condition.
3.6  function plate: Surface that contains information describing either the performance of a
manually operated device (e.g. on/off, forward/reverse, left/right, up/down) or the status of a
function performed by the system (e.g. clamp, lift, advance).
3.7  operating device: Device that provides an input signal to a control mechanism (e.g. cam,
electrical switch).
Any combination of fittings, couplings or connectors with pipes, hoses or tubes
3.8  piping:
which allows fluid flow between components.
3.9  purchaser: Party that stipulates the requirements of a machine, equipment, system or
component and judges whether the product satisfies those requirements.
3.10  supplier: Party that contracts to provide the product(s) to satisfy the purchaser’s
requirements.
Arrangement of interconnected components which transmits and controls fluid
3.11  system:
power energy.
4  Requirements
4.1  General
The requirements given in 4.1.1 to 4.5 apply to all systems within the scope of this International
Standard.
4.1.1  Instructions
Hydraulic systems shall be installed and used in accordance with the instructions and
recommendations of the system supplier.
4.1.2  Language*
The purchaser and supplier shall agree on the language to be used for machine marking and
applicable documentation. The supplier shall be responsible for ensuring that the translation
has the same meaning as the original text.
4.2  Hazards*
When agreed between the purchaser and supplier, an assessment of the hazards listed in
annex B shall be performed. This assessment may include the influence of the fluid power
©
ISO
system on the other parts of the machine, system or environment. Standards listed in annex B
may be used in this assessment.
So far as is practicable, the hazards identified shall be eliminated by design and, where this is
not practicable, the design shall incorporate safeguards against such hazards.
4.3  Safety requirements
4.3.1  Design considerations
When designing hydraulic systems, all aspects of possible methods of failure (including control
supply failure) shall be considered.
In each case, components shall be selected, applied, fitted and adjusted so that in the event of
a failure, safety of personnel shall be the prime consideration.
The prevention of damage to the system and the environment shall be considered.
4.3.2  Component selection
All components in the system shall be selected or specified to provide for safety in use, and
they shall operate within their rated limits when the system is put to its intended use.
Components shall be selected or specified to operate reliably under all intended uses of the
system. Particular attention shall be paid to the reliability of components that could cause a
hazard in the event of their failure or malfunction.
4.3.3  Unintended pressures
All parts of the system shall be designed or otherwise protected against pressures exceeding
the maximum working pressure of a system or any part of the system or the rated pressure of
any specific component.
The preferred means of protection against excessive pressure are one or more pressure relief
valves located to limit the pressure in all parts of the system. Alternative means, such as
pressure compensator pump controls, may be used, provided those means satisfy the
application requirements.
Systems shall be designed, constructed and adjusted to minimise surge pressures and
intensified pressures. Surge pressures and intensified pressures shall not cause hazards.
Loss of pressure or critical drop in pressure shall not expose persons to a hazard.
4.3.4  Mechanical movements
Mechanical movements, whether intended or unintended (including effects from, for example,
acceleration, deceleration or lifting/holding of masses), shall not result in a situation which is
hazardous to persons.
©
ISO
4.3.5  Noise
For the design of low noise machinery and systems, see ISO 11688-1.
4.3.6  Leakage
Leakage (internal or external) shall not cause a hazard.
4.3.7  Temperature
4.3.7.1  Operating temperature
The full range of operating temperatures for the system or any component shall not exceed
those specified limits at which they can safely be used.
4.3.7.2  Surface temperature
Hydraulic systems shall be designed to protect persons from surface temperatures that exceed
touchable limits by either location or guarding.
4.4  System requirements*
The purchaser and supplier shall establish specifications for the operation and function of the
system, including
a) working pressure range;
b) operating temperature range;
c) type of fluid to be used;
d) cycle rates;
e) duty cycle;
f) service life of components;
g) sequence of events;
h) lubrication;
i) lifting requirements;
j) emergency and safety requirements;
k) details of painting or protective coating.
©
ISO
4.5  Site conditions*
4.5.1  Specifications*
The purchaser shall specify on the inquiry all the information required for proper selection and
application of systems.
Examples of information required are
a) ambient temperature range of the installation;
b) humidity range of the installation;
c) available utilities, e.g. electricity, water, waste;
d) electric network details, e.g. voltage and its tolerance; frequency, available power
(if limited);
e) protection for electrical devices;
f) atmospheric pressure;
g) contamination;
h) sources of vibration;
i) possible severity of a fire or explosion hazard;
j) standard of maintenance available;
k) reserves, e.g. flow, pressure and volume;
l) space for access, maintenance and use, as well as the location and mounting of
components and systems to ensure their stability and security in use;
m) available cooling and heating media and capacities;
n) requirements for guarding;
o) legal and environmental limiting factors;
p) other safety requirements.
4.5.2  Drawings*
Where specified and agreed between the purchaser and supplier, the supplier shall provide
drawings that indicate
a) floor plan, including location and installation dimensions;
b) foundation requirements, including floor loading;
©
ISO
c) water supply requirements;
d) electrical supply requirements;
e) piping layout (photographs may be used by agreement).
5  System design
5.1  Circuit diagrams
The supplier shall provide a circuit diagram in accordance with ISO 1219-2 which reflects the
system design, identifies the components and satisfies the requirements of clause 4.
The following information shall be included on or with the circuit diagram:
a) identification of all equipment by name, catalogue number, serial or design number, and
the manufacturer’s or supplier’s name;
b) the size, wall thickness and specification of pipe and tube and the size and specification of
hose assemblies;
c) the bore diameter of each cylinder, the diameter of each cylinder piston rod, the length of
stroke, the estimated maximum force and the speed required for the intended service;
d) the displacement per revolution, the maximum torque output, speeds and direction of
rotation required for the intended service of each hydraulic motor;
e) the flow rate and the direction of rotation of each pump, as viewed from the driven shaft
end;
f) the power, rotational speed, and the type of each pump prime mover;
g) the pressure settings;
h) the types of strainers, filters and replacement elements;
i) the volume of fluid required to fill the system to maximum level;
j) the recommended fluid type and viscosity grade;
k) when specified, the time sequence chart, e.g. the time range of the cycle and data or text,
or both, showing the operations performed, including the function(s) of the related
electrical and mechanical controls and actuators;
l) clear indication of any circuitry contained within circuit manifolds; where boundary lines or
boundary envelopes are used for this purpose, the boundary indicated shall include only
symbols of components mounted on or within the manifold;
m) clear indication of the function of each actuator in each direction;
©
ISO
n) the pre-charge pressures and nominal volumes of accumulators;
o) the size, type and location of pressure test, sampling and bleed points in the circuit;
p) identification of all component or manifold ports (as marked on the component or
manifold);
q) the expected flow rate and maximum and minimum pressure of the cooling medium, and
the maximum temperature of the cooling medium supply;
r) identification of all electrical signal converters, as marked on the electrical circuit diagram.
5.2  Identification
5.2.1  Components
The following particulars shall be provided by the supplier and shown, if practicable, in a
permanent and readily visible form on all components:
a) the manufacturer’s or supplier’s name and brief address;
b) the manufacturer’s or supplier’s product identification;
c) the rated pressure;
d) symbols according to ISO 1219-1, with all ports correctly identified.
Where lack of available space would result in lettering too small to be legible, information may
be provided on supplementary materials such as instruction/maintenance sheets, catalogue
sheets or accessory tags.
5.2.2  Components within a system
Each component shall be given a unique item number and/or letter. This unique item number
shall be used to identify the component on all diagrams, lists and layouts. It should be clearly
and permanently marked on the installation adjacent to, but not on, the component.
The order of stacking modules shall be clearly indicated adjacent to, but not on, the stack.
5.2.3  Ports
All ports, power take-off, test and bleed points and drain outlets (e.g. reservoir drains) shall be
clearly and distinctly identified. The identification shall correspond to the data on the circuit diagram.
When components have standard port identifications applied by the component supplier, these
shall be supplemented by identifications corresponding to the circuit diagram (see 5.2.1 and
5.2.2).
©
ISO
5.2.4  Valve control mechanisms
5.2.4.1  Non-electrical
Non-electrical control mechanisms and their functions shall be clearly and permanently
identified with the same identification used on the circuit diagram.
5.2.4.2  Electrical
Electrical control mechanisms (solenoids and their attaching plugs or cables) shall be identified
on the electrical and hydraulic circuit diagrams with the same identification.
5.2.5  Internal devices
Cartridge valves and other functional devices (orifice plugs, passages, shuttle valves, check
valves, etc.) located within a manifold, mounting plate, pad or fitting shall be identified adjacent
to their access openings. Where access openings are located under a component or
components, identification shall, if practicable, be provided adjacent to the component and
marked “CONCEALED”.
5.2.6  Function plate
A function plate should be provided for each control station and located where it can be easily
read. The function plate information shall be relevant and easily understood, providing positive
identification of system function controlled.
5.3  Installation, use and maintenance
Components and piping shall be selected, applied, installed and used in accordance with the
supplier’s instructions and recommendations.
Components made in accordance with recognised international or national standards should be
selected.
5.3.1  Component replacement
To facilitate maintenance, means shall be provided or components so fitted that their removal
from the system for maintenance
a) shall not lead to excessive loss of fluid;
b) should not require draining of the reservoir;
c) should not necessitate extensive disassembly of adjacent parts.
©
ISO
5.3.2  Maintenance requirements
The system shall be designed and constructed so that components are located where they are
accessible and can be safely adjusted and serviced.
Hydraulic components including piping shall be accessible and fitted so as not to interfere with
adjustment or maintenance. Particular attention shall be given to the location of systems and
components that need regular maintenance.
5.3.3  Lifting provisions
All components or assemblies having a mass greater than 15 kg should have provision(s) for
lifting.
5.3.4  Component installation
Components should be so installed that they are accessible without risk from a safe working
position (for example, ground level or working platform).
The installation height of the bottom edge of a component should normally be at least 0,6 m
above the working platform, and the top edge not more than 1,8 m above the working platform.
5.4  Use of standard parts
The system supplier should use commercially available parts (keys, bearings, packings, seals,
washers, plugs, fasteners, etc.) and part configurations (shaft and spline sizes, port sizes,
mountings, mounting surfaces or cavities, etc.) that conform to accepted International Standards
and provide for uniform coding.
5.5  Seals and sealing devices
5.5.1  Materials
Seal and sealing device materials shall be compatible with the fluid used, adjacent materials
and their working conditions and environment.
5.5.2  Replacement
Component design shall facilitate servicing and replacement of seals and sealing devices.
5.6  Maintenance and operating data
The system supplier shall provide the necessary maintenance and operating data that clearly
a) describe start-up and shut-down procedures;
©
ISO
b) give any required depressurising instructions and identify those parts of a system which
are not depressurised by the normal venting device;
c) describe adjustment procedures;
d) indicate external lubrication points, the type of lubricant required and the intervals to be
observed;
e) locate fluid level indicators, fill points, drains, filters, test points strainers, magnets, etc.,
that require scheduled maintenance;
f) specify maximum allowable fluid contamination level;
g) give instructions for fluid maintenance;
h) provide advice for the safe handling and disposal of fluids and lubricants;
i) specify the cooling medium flow rate, maximum temperature, and permissible pressure
range required for adequate cooling;
j) state maintenance procedures for unique assemblies;
k) give further identification of parts in the hydraulic components that are commercially
available or manufactured to an International Standard that provides for uniform coding;
the identification shall be the component manufacturer’s part number or as provided by
the International Standard’s code;
l) list recommended spare parts.
5.7  Operation and maintenance manuals
The system supplier shall provide a manual describing system operation and maintenance,
including the requirements described in 5.6 and instruction and/or maintenance information
about the components and piping.
5.8  Ports
All port connections should be in accordance with
— ISO 6149 for threaded ports and stud ends, or
— ISO 6162 or ISO 6164 for four-screw flange port connections.
5.9  System temperature
5.9.1  Heat generation
Hydraulic systems shall be designed to minimise unnecessary heat generation.
©
ISO
5.9.2  Operating temperatures
The full range of operating temperatures for each component and the system shall be specified.
The fluid temperature shall not exceed that at which it can reliably be used and be within the
specified working temperature range of any component in the system.
6  Energy conversion components
6.1  Hydraulic pumps and motors
6.1.1  Protection
Hydraulic pumps and motors shall either be mounted where they are protected from predictable
damage, or be suitably guarded.
All drive shafts and couplings shall be suitably guarded.
6.1.2  Mounting
Hydraulic pumps and motors shall be mounted so that
a) they are accessible for maintenance;
b) no shaft misalignment is introduced as a result of the duty cycle, temperature variations or
applied pressure loadings;
c) induced axial and radial loads are within limits specified by the pump/motor supplier;
d) drive couplings and mountings are capable of repeatedly withstanding the maximum
torque generated under all operating conditions;
e) the transmission or amplification of torsional vibration is limited using couplings that are
adequately damped.
6.1.3  Speed considerations
Speed shall not exceed the maximum specified in the supplier’s documentation.
6.1.4  Drains, air bleeds and auxiliary ports
The size and termination of hydraulic pump and motor drains shall meet the component
supplier’s specification.
Drains, air bleeds and auxiliary ports shall be so installed that they do not allow ingress of air
into the system and shall be so dimensioned and installed that no excessive back pressure will
be generated. High pressure air bleeds shall be installed so as to minimise the hazard to
persons.
©
ISO
6.1.5  Pre-filling of housings
Where the housings of hydraulic pumps and motors require pre-filling with fluid prior to start up,
a readily accessible means for pre-filling shall be provided and be located to ensure that air is
not trapped in the housings.
6.1.6  Working pressure range
If there are any restrictions on the working pressure range at which the pump or motor may be
used, these shall be defined in the technical data to be provided by the supplier.
6.1.7  Installation
Hydraulic pumps and motors shall be installed so that
a) piping connections are configured to prevent external leakage; tapered pipe threads or
connection mechanisms that require sealing compounds shall not be used;
b) loss of primary or case lubrication is prevented during periods of inactivity;
c) the pressure at the pump inlet port is not less than the minimum specified by the pump
supplier for the operating conditions and the system fluid used.
6.2  Cylinders
6.2.1  Suitability for application
Cylinders shall be designed and/or selected with the following characteristics.
6.2.1.1  Resistance to buckling
Attention shall be given to stroke length, loading and cylinder mountings in order to avoid
bending or buckling of the cylinder piston rod at any position.
6.2.1.2  Loading and overrunning
For applications in which overrunning or other external loads are encountered, the design of the
cylinder and its mountings shall take into account the maximum expected load or pressure
peak.
6.2.1.3  Mounting ratings
All load ratings shall take account of the mounting types.
NOTE —  Cylinder pressure ratings may reflect only the capability of the pressure-containing envelope and not the
force transmitting capability of mounting configurations. The supplier or manufacturer should be consulted for
mounting configuration ratings.
©
ISO
6.2.1.4  Structural loading
When a cylinder is used as a positive position stop, the cylinder shall be sized and the
mounting selected on the basis of the maximum incurred loading induced by the machine
member restrained, if this loading is greater than the loading incurred during its normal work
cycle.
6.2.1.5  Resistance to shock and vibration
Any component mounted on or connected to a cylinder shall be attached in a way that resists
loosening caused by shock and vibration.
6.2.1.6  Pressure intensification
Means shall be provided in the system for preventing intensified pressures in excess of rated
pressure limits caused by piston area differences.
6.2.2  Mounting and alignment
Cylinders should preferably be mounted so that load reaction occurs along the cylinder
centreline. The mounting shall minimise the following conditions:
a) excessive deformation of the cylinder structure from either push or pull loading;
b) introduction of side or bending loads;
c) rotational velocities of pivot mountings which may necessitate continuous external
lubrication.
6.2.2.1  Mounting location
Mounting surfaces shall not distort cylinders, and allowance shall be made for thermal
expansion. The cylinder shall be mounted to enable ease of access for maintenance, adjustment
to cushioning devices and complete unit replacement.
6.2.2.2  Mounting fasteners
Mounting fasteners for cylinders and attachments shall be designed and installed to
accommodate all predictable forces. As far as possible the fasteners should be free from shear
forces. Foot mounted cylinders should have means to absorb shear loads, rather than
depending on mounting fasteners. The mounting fasteners shall be adequate to absorb
overturning moments.
6.2.2.3  Alignment
Mounting surfaces shall be designed to prevent distortion of the cylinder when installed. The
cylinder shall be mounted in a way that avoids unintended side loads during operation.
©
ISO
6.2.3  Cushions and deceleration devices
When internal cushions are used, the cylinder end stops shall be designed to take into account
the effects of load deceleration.
6.2.4  Stroke end stops
If stroke length is determined by external stroke end stops, means shall be provided for locking
the adjustable end stops.
6.2.5  Piston stroke
The stroke of the piston shall always be greater than or equal to its nominal stroke.
6.2.6  Piston rods
Piston rod material and finish shall be selected to minimise wear, corrosion and foreseeable
impact damage.
Piston rods should be protected against foreseeable damage from dents, scratches, corrosion,
etc.
Protective covers may also be provided. For assembly purposes, piston rods with male or
female screwed ends shall be provided with flats to suit standard wrenches. Flats on the piston
rods may be omitted in cases where the rods are too small to allow provision of the flats.
6.2.7  Maintenance
Piston rod seals, seal assemblies and other wear members should be easily replaceable.
6.2.8  Single-acting cylinders
Single-acting piston type cylinders shall have their air vent port designed and/or positioned to
avoid hazards to persons when displaced fluid is ejected.
6.2.9  Replacement
Integral cylinders are undesirable, but where they are used, components that are likely to wear
should be replaceable.
6.2.10  Air entrapment
6.2.10.1  Port location
Where practical, cylinders shall be installed with ports uppermost.
©
ISO
6.2.10.2  Air bleeds
Cylinders shall be mounted so that they are self-bleeding, or accessible external air bleeds shall
be provided.
6.3  Gas-loaded accumulators
6.3.1  Identification
In addition to the requirements of 5.2.1, the following identification shall be permanently marked
on the accumulator:
a) year of manufacture;
b) total shell volume, in litres;
c) manufacturer’s serial or lot number;
d) allowable temperature range, in degrees Celsius.
The following identification shall be given on the accumulator or on a label on the accumulator:
— “Caution — Pressurised vessel. Discharge prior to disassembly”;
— the rated gas pre-charge pressure;
— “Use only . . . pre-charge medium” (e.g. nitrogen).
6.3.2  Requirements for hydraulic systems with gas-loaded accumulators
Hydraulic systems that incorporate gas-loaded accumulators shall automatically vent the
accumulator liquid pressure or positively isolate the accumulator when the system is shut off.
In special situations where pressure is required after the machine is shut down, the above
requirements need not be fulfilled.
The gas-loaded accumulator and any associated pressurised components shall be applied
within the
...


NORME ISO
INTERNATIONALE 4413
Deuxième édition
1998-08-15
Transmissions hydrauliques — Règles
générales relatives aux systèmes
Hydraulic fluid power — General rules relating to systems
A
Numéro de référence
Sommaire Page
1 Domaine d'application . 1
2 Références normatives . 1
3 Définitions . 3
4 Exigences . 3
4.1 Généralités . 3
4.2 Phénomènes dangereux . 4
4.3 Exigences de sécurité . 4
4.4 Exigences relatives à un système . 5
4.5 Conditions d'implantation . 5
5 Conception du système . 6
5.1 Schémas de circuit . 6
5.2 Identification . 7
5.3 Installation, utilisation et maintenance . 8
5.4 Utilisation de pièces normalisées . 8
5.5 Joints et dispositifs d'étanchéité . 9
5.6 Consignes de maintenance et d'utilisation . 9
5.7 Manuels d'utilisation et de maintenance . 9
5.8 Orifices . 9
5.9 Température du système . 9
........................................................................................ 10
6 Composants de transformation de l'énergie
6.1 Pompes et moteurs hydrauliques . 10
6.2 Vérins . 11
6.3 Accumulateurs à gaz . 13
7 Soupapes et distributeurs . 14
7.1 Sélection . 14
7.2 Montage . 14
7.3 Blocs collecteurs . 15
7.4 Distributeurs à commande électrique . 15
7.5 Plaques indicatrices de symboles . 16
7.6 Réglages . 16
7.7 Dépose . 16
8 Fluides et composants de conditionnement . 16
8.1 Fluides hydrauliques . 16
8.2 Réservoirs de fluide . 18
8.3 Filtration et conditionnement du fluide . 20
8.4 Échangeurs de chaleur . 21
©  ISO 1998
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publi-
cation ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun pro-
cédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord
écrit de l'éditeur.
Organisation internationale de normalisation
Case postale 56 • CH-1211 Genève 20 • Suisse
Internet iso@iso.ch
Imprimé en Suisse
ii
©
ISO ISO 4413:1998(F)
9 Tuyauteries . 22
9.1 Exigences générales . 22
9.2 Exigences relatives aux tuyaux et tubes . 23
9.3 Supports de tuyauteries . 23
9.4 Corps étrangers . 24
9.5 Assemblages de tuyauteries flexibles . 24
9.6 Raccords rapides . 25
10 Systèmes de commande . 25
10.1 Mouvements incontrôlés . 25
10.2 Protection des systèmes . 25
10.3 Composants . 26
10.4 Systèmes de commande à servodistributeurs ou à distributeurs proportionnels . 26
10.5 Autres considérations de conception . 27
10.6 Emplacement des commandes . 28
10.7 Commandes d'urgence . 28
11 Diagnostics et surveillance . 28
11.1 Mesurage de la pression . 29
11.2 Prélèvement d'un échantillon de fluide . 29
11.3 Contrôle de la température . 29
12 Nettoyage et peinture . 29
13 Préparation pour le transport . 29
13.1 Identification des tuyauteries . 29
13.2 Emballage . 29
13.3 Obturation des ouvertures . 29
13.4 Aménagements pour le transport . 29
14 Réception du matériel . 30
14.1 Essais de conformité . 30
14.2 Bruit . 30
14.3 Fuite de fluide . 30
14.4 Documents finaux à fournir . 30
14.5 Modifications . 30
14.6 Vérification . 30
15 Phrase d'identification (Référence à la présente Norme internationale) . 31
Annexe A (informative) Points nécessitant un accord entre le fournisseur et l'acheteur . 32
Annexe B (informative) Liste des phénomènes dangereux . 33
Annexe C (informative) Liste des références croisées ISO 4413/EN 982 . 35
Annexe D (informative) Bibliographie . 41
Index . 44
iii
©
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux
comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité
technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en
liaison avec l'ISO, participent également aux travaux. L'ISO collabore étroitement avec la Commission
électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour
vote. Leur publication comme Normes internationales requiert l'approbation de 75 % au moins des comités
membres votants.
La Norme internationale ISO 4413 a été élaborée par le comité technique ISO/TC 131, Transmissions hydrauliques
et pneumatiques, sous-comité SC 9, Installations et ensembles.
Cette deuxième édition annule et remplace la première édition (ISO 4413:1979), dont elle constitue une révision
technique.
Les annexes A à D de la présente Norme internationale sont données uniquement à titre d'information.
iv
©
ISO ISO 4413:1998(F)
Introduction
Dans les systèmes de transmissions hydrauliques, l'énergie est transmise et commandée par l'intermédiaire d'un
liquide sous pression circulant en circuit fermé.
L'application de systèmes de transmissions hydrauliques nécessite une compréhension approfondie et une
communication précise entre le fournisseur et l'acheteur. La présente Norme internationale a été élaborée dans le
but d'améliorer cette compréhension et cette communication, et de documenter la plupart des bonnes pratiques
issues de l'expérience acquise en matière de systèmes hydrauliques.
L'utilisation de la présente Norme internationale facilite:
a) l'identification et la spécification de prescriptions applicables aux systèmes et composants hydrauliques;
b) l'identification des domaines respectifs de responsabilité;
c) la conception de systèmes et leurs composants pour se conformer à des exigences spécifiques;
d) la compréhension des prescriptions de sécurité applicables à un système hydraulique.
Les règles générales fournies dans la présente Norme internationale n'ont pas de statut légal, à l'exception des
paragraphes qui sont inclus dans les accords contractuels conclus entre un acheteur et un fournisseur. Toute
dérogation aux parties de la présente Norme internationale qui sont incluses dans des accords contractuels doit
également être agréée par écrit entre l'acheteur et le fournisseur. L'acheteur et/ou le fournisseur doivent tenir
compte des lois ou codes, nationaux ou locaux, applicables.
Les règles générales contenant le verbe conjugué «doit» sont des recommandations issues d'une bonne pratique
de l'ingénieur applicables dans tous les domaines, à quelques rares exceptions près. L'usage du terme
«il convient» dans le document ne constitue pas une indication de choix, mais signifie que les recommandations
décrites peuvent être modifiées en fonction des particularités de certains procédés, des conditions ambiantes ou
des dimensions de l'équipement.
Les titres ou parties du texte repérés à l'aide d'un astérisque (*) indiquent les paragraphes qui doivent faire l'objet
d'une discussion entre le fournisseur et l'acheteur pour définir les exigences et/ou les responsabilités. Ils sont
également listés dans l'annexe A.
v
©
NORME INTERNATIONALE  ISO ISO 4413:1998(F)
Transmissions hydrauliques — Règles générales relatives
aux systèmes
1 Domaine d'application
La présente Norme internationale fournit des règles générales relatives aux systèmes hydrauliques des machines
utilisées dans les procédés de fabrication industrielle. Elle est destinée à servir de guide à la fois aux fournisseurs
et aux acheteurs, afin d'assurer:
a) la sécurité;
b) un fonctionnement continu du système;
c) une maintenance facile et économique;
d) la pérennité du système.
2 Références normatives
Les normes suivantes contiennent des dispositions qui, par suite de la référence qui en est faite, constituent des
dispositions valables pour la présente Norme internationale. Au moment de la publication, les éditions indiquées
étaient en vigueur. Toute norme est sujette à révision et les parties prenantes des accords fondés sur la présente
Norme internationale sont invitées à rechercher la possibilité d’appliquer les éditions les plus récentes des normes
indiquées ci-après. Les membres de la CEI et de l’ISO possèdent le registre des Normes internationales en vigueur
à un moment donné.
ISO 1219-1:1991, Transmissions hydrauliques et pneumatiques — Symboles graphiques et schémas de circuit —
Partie 1: Symboles graphiques.
ISO 1219-2:1995, Transmissions hydrauliques et pneumatiques — Symboles graphiques et schémas de circuit —
Partie 2: Schémas de circuit.
ISO 4400:1994, Transmissions hydrauliques et pneumatiques — Connecteurs électriques à trois broches avec
contact de sécurité — Caractéristiques et exigences.
ISO 4401:1994, Transmissions hydrauliques — Distributeurs à quatre orifices — Plan de pose.
1)
ISO 4406:— , Transmissions hydrauliques — Fluides — Code servant à définir le niveau de pollution par particules
solides.
ISO 4021:1992, Transmissions hydrauliques — Analyse de la pollution par particules — Prélèvement des
échantillons de fluide dans les circuits en fonctionnement.
ISO 5598:1985, Transmissions hydrauliques et pneumatiques — Vocabulaire.
2)
ISO 5781:— , Transmissions hydrauliques — Réducteurs de pression (à l'exception des limiteurs de pression),
soupapes de séquence, soupapes de décharge, soupapes d'étranglement et clapets de non-retour — Plan de
pose.
____________
1)  À publier. (Révision de l'ISO 4406:1987)
2)  À publier. (Révision de l'ISO 5781:1987)
©
ISO 6149-1:1993, Raccordements pour transmissions hydrauliques et pneumatiques et applications générales —
Orifice et éléments mâles à filetage ISO 261 et joint torique — Partie 1: Orifices à joint torique dans un logement
tronconique.
ISO 6162:1994 Transmissions hydrauliques — Brides de raccordement fendues à quatre vis pour des pressions
d'utilisation de 2,5 MPa à 40 MPa (25 bar à 400 bar) — Type I série métrique et type II série en inches.
ISO 6164:1994, Transmissions hydrauliques — Brides de raccordement carrées monobloc à quatre vis pour des
pressions d'utilisation de 25 MPa et 40 MPa (250 bar et 400 bar).
ISO 6263:1997, Transmissions hydrauliques — Régulateurs de débit — Plan de pose.
ISO 6264:1998, Transmissions hydrauliques — Limiteurs de pression — Plan de pose.
ISO 6952:1994, Transmissions hydrauliques et pneumatiques — Connecteurs électriques à deux broches avec
contact de sécurité — Caractéristiques et exigences.
ISO 7368:1989, Transmissions hydrauliques — Distributeurs à cartouche, à bride, à deux orifices — Logements.
ISO 7789:1998, Transmissions hydrauliques — Distributeurs à cartouche à visser à deux, trois et quatre orifices —
Logements.
ISO 7790:1997, Transmissions hydrauliques — Appareils empilables et distributeurs à quatre orifices, de tailles 02,
03 et 05 — Dimensions de montage.
ISO 8434-1:1994, Raccords de tubes métalliques pour transmissions hydrauliques et pneumatiques et applications
générales — Partie 1: Raccords à compression à 24°.
ISO 8434-2:1994, Raccords de tubes métalliques pour transmissions hydrauliques et pneumatiques et applications
générales — Partie 2: Raccords évasés à 37°.
ISO 8434-3:1995, Raccords de tubes métalliques pour transmissions hydrauliques et pneumatiques et applications
générales — Partie 3: Raccords à joints faciaux toriques.
ISO 8434-4:1995, Raccords de tubes métalliques pour transmissions hydrauliques et pneumatiques et applications
générales — Partie 4: Raccords à cône à 24°, à embout à souder à joint torique.
ISO 10372:1992, Transmissions hydrauliques — Servodistributeurs à quatre ou cinq orifices — Plans de pose.
ISO 10763:1994, Transmissions hydrauliques — Tubes de précision en acier soudés ou non, à extrémités lisses —
Dimensions et pressions nominales de travail.

ISO/TR 11688-1:1995, Acoustique — Pratique recommandée pour la conception de machines et d'équipement à
bruit réduit — Partie 1: Planification.
3)
ISO 12151-1:— , Raccordements pour transmissions hydrauliques et applications générales — Flexibles de
raccordement — Partie 1: Flexibles avec raccord à joints faciaux toriques conformes à l'ISO 8434-3.
3)
ISO 12151-2:— , Raccordements pour transmissions hydrauliques et applications générales — Flexibles de
raccordement — Partie 2: Flexibles avec raccords à cône à 24° et joint torique conformes à l'ISO 8434-1 et à
l'ISO 8434-4.
3)
ISO 12151-3:— , Raccordements pour transmissions hydrauliques et applications générales — Flexibles de
raccordement — Partie 3: Flexibles avec bride conforme à l'ISO 6162.
3)
ISO 12151-4:— , Raccordements pour transmissions hydrauliques et applications générales — Flexibles de
raccordement — Partie 4: Flexibles avec éléments mâles conformes à l'ISO 6149-2 et à l'ISO 6149-3.
____________
3)  À publier.
©
ISO ISO 4413:1998(F)
4)
ISO 12151-5:— , Raccordements pour transmissions hydrauliques et applications générales — Flexibles de
raccordement — Partie 5: Flexibles avec raccords évasés à 37° conformes à l'ISO 8434-2.
CEI 204-1:1997, Équipement électrique des machines industrielles — Partie 1: Règles générales.
CEI 529:1989, Degrés de protection procurés par les enveloppes (Code IP).
3 Définitions
Pour les besoins de la présente Norme internationale, les définitions données dans l'ISO 5598 et les définitions
suivantes s'appliquent:
3.1 actionneur: Composant (par exemple moteur, vérin) qui transforme l'énergie d'un fluide en énergie
mécanique.
3.2 réception du matériel: Procédure par laquelle un système est formellement accepté par l'acheteur.
3.3 composant: Unité individuelle (par exemple vérin, moteur, distributeur, filtre, mais excluant la tuyauterie),
comprenant une ou plusieurs pièces conçues comme organe fonctionnel d'un système de transmissions
hydrauliques et pneumatiques.
Dispositif qui fournit un signal d'entrée à un composant (par exemple levier,
3.4 mécanisme de commande:
solénoïde).
3.5 commande d'urgence: Fonction de commande amenant un système en condition de sécurité.
3.6 plaque indicatrice de fonction: Surface contenant des informations indiquant soit le fonctionnement d'un
dispositif à commande manuelle (par exemple marche/arrêt, en avant/en arrière, gauche/droite, montée/descente)
ou l'état d'une fonction assurée par le système (par exemple serrage, levage, avance).
3.7 dispositif de service: Dispositif qui fournit un signal d'entrée à un mécanisme de commande (par exemple
came, interrupteur électrique).
3.8 tuyauterie; tuyautage: Toute combinaison de connecteurs, raccordements, tubes et/ou flexibles permettant
l'écoulement du fluide entre des composants.
3.9 acheteur: Partie qui spécifie les prescriptions applicables à une machine, un équipement, un système ou un
composant et qui juge si le produit satisfait à ces exigences.
3.10 fournisseur: Partie qui s'engage par contrat à fournir un ou des produits afin de satisfaire aux prescriptions
de l'acheteur.
3.11 système: Ensemble de composants reliés les uns aux autres qui permet de transmettre et de commander
l'énergie de(s) fluide(s).
4 Exigences
4.1 Généralités
Les exigences données de 4.1.1 à 4.5 s'appliquent à tous les systèmes relevant du domaine d'application de la
présente Norme internationale.
4.1.1 Instructions
Les systèmes hydrauliques doivent être installés et utilisés conformément aux instructions et recommandations du
fournisseur du système.
____________
4)  À publier.
©
4.1.2 Langue*
L'acheteur et le fournisseur doivent convenir de la langue à utiliser pour le marquage de la machine et dans la
documentation applicable. Le fournisseur a la responsabilité de s'assurer que toute traduction a la même
signification que le texte original.
4.2 Phénomènes dangereux*
Lors d'accord entre fournisseur et acheteur, une estimation des phénomènes dangereux listés dans l'annexe B doit
être effectuée. Cette estimation peut inclure l'influence du système hydraulique sur les autres parties de la machine,
le système ou l'environnement. Les normes listées dans l'annexe B peuvent être utilisées pour cette estimation.
Autant que possible, les phénomènes dangereux identifiés doivent être éliminés par conception et, si cela est
impossible, la conception doit intégrer les dispositifs de protection contre de tels phénomènes dangereux.
4.3 Exigences de sécurité
4.3.1 Considérations de conception
Lors de la conception de systèmes hydrauliques, tous les aspects possibles des modes de défaillance (y compris la
défaillance de l'alimentation) doivent être pris en considération.
Dans chaque cas, les composants doivent être sélectionnés, installés, raccordés et réglés de telle sorte qu'en cas
de défaillance, la sécurité du personnel doit être prioritaire.
La prévention des dommages matériels au système et à l'environnement doit également être prise en compte.
4.3.2 Choix des composants
Tous les composants du système doivent être sélectionnés ou spécifiés de manière à garantir une utilisation en
toute sécurité, et doivent fonctionner dans les limites spécifiées de par la conception et les essais lorsque le système
est mis en œuvre selon l'usage prévu. Les composants doivent être sélectionnés ou spécifiés de façon à présenter
des caractéristiques adéquates leur permettant de fonctionner de manière fiable dans toutes les conditions
d'utilisation prévues pour le circuit. Une attention particulière doit être portée à la fiabilité des composants dont la
défaillance ou le dysfonctionnement est susceptible de créer un phénomène dangereux.
4.3.3 Excursions de pression
Toutes les parties du système doivent être conçues ou protégées contre les pressions supérieures à la pression
maximale constante d'utilisation du système ou de toute partie du système, ou supérieures à la pression de
fonctionnement d'un composant donné.
En ce qui concerne la protection contre les surpressions, il est recommandé d'installer un ou plusieurs limiteurs de
pression, placés de manière à limiter la pression dans toutes les parties du système. Il est possible d'utiliser
d'autres dispositifs, comme par exemple des commandes par pompe compensatrice de pression, sous réserve que
ces dispositifs satisfassent aux exigences de l'application.
Les systèmes doivent être conçus, construits et réglés de manière à réduire au minimum les crêtes de pression et
les surpressions. Les crêtes de pression et la surpression ne doivent pas être source de phénomènes dangereux.
Toute perte de charge ou chute critique de pression ne doit pas engendrer de phénomènes dangereux pour les
personnes.
4.3.4 Mouvements mécaniques
Les mouvements mécaniques, qu'ils soient volontaires ou non (y compris les effets dus, par exemple, à
l'accélération, à la décélération ou au levage/serrage de masses), ne doivent pas engendrer de situations
dangereuses pour les personnes.
4.3.5 Bruit
En ce qui concerne la conception de machines et circuits peu bruyants, se reporter à l'ISO 11688-1.
©
ISO ISO 4413:1998(F)
4.3.6 Fuites
Les fuites (internes ou externes) ne doivent engendrer aucun phénomène dangereux.
4.3.7 Températures
4.3.7.1 Températures en service
La plage complète des températures réelles du système ou des composants ne doit pas dépasser les limites
spécifiées auxquelles ils peuvent être utilisés en toute sécurité.
4.3.7.2 Températures de surface
Les systèmes hydrauliques doivent être conçus pour protéger les personnes contre des températures de surface
supérieures aux limites supportables, soit par le choix de l'implantation, soit par une protection.
*
4.4 Exigences relatives à un système
L'acheteur et le fournisseur doivent établir des spécifications relatives à l'utilisation et à la fonction du système,
comprenant:
a) plage des pressions d'utilisation;
b) plage des températures de service;
c) type de fluide à utiliser;
d) caractéristiques du cycle;
e) cycle opératoire;
f) durée de vie des composants;
g) séquence des événements;
h) lubrification;
i) prescriptions de levage;
j) prescriptions d'urgence et de sécurité;
k) détails relatifs à la peinture ou aux revêtements protecteurs.
4.5 Conditions d'implantation*
4.5.1 Spécifications*
L'acheteur doit spécifier dans sa demande toutes les informations requises pour une sélection et une application
convenables des systèmes.
Les informations requises comprennent, par exemple:
a) plage des températures ambiantes de l'installation;
b) plage d'humidité de l'installation;
c) services disponibles, par exemple électricité, eau, déchets;
d) détails du réseau électrique, par exemple tension et sa tolérance, fréquence, puissance disponible (si elle est
limitée);
e) protection des dispositifs électriques;
f) pression atmosphérique;
g) pollution;
h) sources de vibration;
i) gravité possible d'un risque d'incendie ou d'explosion;
©
j) niveau de maintenance utilisable;
k) restrictions, par exemple en débit, pression et volume;
l) espace pour l'accès, la maintenance et l'utilisation, ainsi que l'emplacement et le montage des composants et
des systèmes afin d'assurer leur stabilité et leur sécurité en utilisation;
m) capacités et produits de refroidissement et de chauffage disponibles;
n) exigences relatives à la surveillance;
o) facteurs de limitation liés à la réglementation et à l'environnement;
p) autres exigences de sécurité.
4.5.2 Plans*
Lorsque cela est spécifié et convenu entre l'acheteur et le fournisseur, ce dernier doit fournir des plans qui
indiquent:
a) le plan au sol, y compris l'emplacement et les dimensions de l'installation;
b) les exigences relatives aux fondations, y compris la charge au sol;
c) les exigences relatives à l'alimentation en eau;
d) les exigences relatives à l'alimentation électrique;
e) la disposition du tuyautage (des photographies peuvent être utilisées après accord).
5 Conception du système
5.1 Schémas de circuit
Le fournisseur doit fournir un schéma de circuit conforme à l'ISO 1219-2 qui reflète la conception du système,
identifie les composants et satisfait aux exigences de l'article 4.
Les informations suivantes doivent être incluses ou jointes au schéma de circuit:
a) l'identification de tous les équipements par leur nom, leur numéro de catalogue, leur numéro de série ou de
conception et le nom du fabricant ou du fournisseur;
b) les dimensions, épaisseur de paroi et spécification des tuyaux et des tubes, et dimensions et spécification des
assemblages flexibles;
c) le diamètre d'alésage de chaque vérin, le diamètre de chaque tige de piston de vérin, la longueur de course, la
force maximale estimée et la vitesse requise pour le service prévu;
d) la cylindrée, le couple maximal de sortie, les vitesses et le sens de rotation requis pour le service prévu de
chaque moteur hydraulique;
e) le débit et le sens de rotation de chaque pompe observé du bout de l'arbre d'entraînement;
f) la puissance, la vitesse de rotation et le type de la source d'énergie de chaque pompe d'entraînement;
g) les réglages de pression;
h) les types de crépines, filtres et éléments de rechange;
i) le volume de fluide requis pour remplir le système à son niveau maximal;
j) le type de fluide recommandé et l'indice de viscosité;
k) lorsque cela est spécifié, le graphique des séquences dans le temps, par exemple durée d'un cycle, avec
données chiffrées ou texte, ou les deux, montrant les opérations effectuées, y compris la ou les fonctions des
commandes électriques et mécaniques correspondantes et des actionneurs;
l) l'indication en clair de tous les circuits contenus dans un circuit de collecteurs. En cas d'utilisation à cet effet de
lignes ou enveloppes, les frontières indiquées ne doivent renfermer que des symboles de composants montés
sur le bloc distributeur ou dans celui-ci;
©
ISO ISO 4413:1998(F)
m) l'indication en clair de la fonction de chaque actionneur dans chaque sens;
n) la pression de précharge et les volumes nominaux des accumulateurs;
o) les dimensions, le type et l'emplacement des prises d'essai, des points de prélèvement d'un échantillon et des
points de purge dans le circuit;
p) l'identification de tous les orifices des composants ou des blocs distributeurs (comme marqué sur le composant
ou le bloc distributeur);
q) le débit et les pressions maximale et minimale prévus de l'agent réfrigérant, et la température maximale
d'alimentation en agent réfrigérant;
r) l'identification de tous les convertisseurs de signaux électriques, comme indiqué sur le schéma du circuit
électrique.
5.2 Identification
5.2.1 Composants
Les caractéristiques suivantes doivent être indiquées par le fournisseur et portées, si possible, de manière durable
et facilement visibles, sur tous les composants:
a) le nom et l'adresse abrégée du fabricant ou du fournisseur;
b) l'identification du produit du fabricant ou du fournisseur;
c) la pression de fonctionnement;
d) les symboles conformément à l'ISO 1219-1, tous les orifices étant correctement identifiés.
Lorsque la lisibilité des informations est compromise par manque d'espace, ces informations peuvent être portées
sur une documentation supplémentaire, comme par exemple sur des fiches d'instructions/fiches de maintenance,
des fiches-catalogues ou des étiquettes accessoires.
5.2.2 Composants faisant partie d'un système
Un numéro et/ou une lettre unique doivent être attribués à chaque composant. Ce nombre repère unique doit être
utilisé pour identifier le composant sur tous les schémas, nomenclatures et plans d'implantation. Il convient qu'il soit
marqué de manière nette et durable sur l'installation, à proximité et non sur le composant lui-même.
L'ordre d'empilage des modules doit être clairement indiqué à proximité et non sur l'empilement lui-même.
5.2.3 Orifices
Tous les orifices, prises de dérivation de puissance, prises d'essai et points de purge et orifices de vidange (par
exemple drains du réservoir) doivent être clairement et distinctement identifiés. L'identification doit correspondre
aux données figurant sur le schéma de circuit.
Lorsque les composants ont des identifications d'orifice normalisées appliquées par le fournisseur du composant,
celles-ci doivent être complétées par les identifications correspondant au schéma de circuit (voir 5.2.1 et 5.2.2).
5.2.4 Mécanismes de commande des soupapes et des distributeurs
5.2.4.1 Non électriques
Les mécanismes de commande non électriques et leurs fonctions doivent être identifiés, de façon claire et durable,
avec la même identification que celle utilisée sur le schéma de circuit.
5.2.4.2 Électriques
Les mécanismes de commande électriques (électroaimants et leurs bouchons ou câbles reliés) doivent être repérés
par la même identification sur les schémas de circuits électriques et hydrauliques.
©
5.2.5 Dispositifs intégrés
L'identification des distributeurs à cartouche et autres dispositifs fonctionnels (bouchons d'orifices, passages,
sélecteurs de circuit, clapets de non-retour, etc.) situés dans un collecteur, une embase, un support ou un raccord,
doit être placée à côté des ouvertures qui y donnent accès. Lorsque les ouvertures d'accès sont situées sous un ou
plusieurs composants, l'identification doit, si possible, être placée à côté du composant et doit porter la mention
«CACHÉ».
5.2.6 Plaque indicatrice de fonction
Il convient d'installer une plaque indicatrice de fonction pour chaque poste de commande, dans un endroit où elle
peut être lue facilement. Les informations portées sur la plaque indicatrice de fonction doivent être pertinentes et
faciles à comprendre, fournissant une identification effective de la fonction du système qui est commandé.
5.3 Installation, utilisation et maintenance
Les composants et les tuyauteries doivent être choisis, disposés et installés conformément aux instructions et
recommandations du fournisseur.
Il convient de choisir des composants fabriqués conformément à des Normes internationales ou nationales
reconnues.
5.3.1 Remplacement des composants
Pour faciliter les travaux de maintenance, des moyens doivent être prévus, ou bien les composants doivent être
équipés pour leur dépose du système à des fins de maintenance, de telle sorte qu'elle
a) n'entraîne pas une perte excessive de fluide;
b) ne nécessite pas de vidanger le réservoir;
c) ne nécessite pas le démontage de nombreuses pièces adjacentes.
5.3.2 Exigences de maintenance
Le système doit être conçu et construit de telle sorte que les composants soient situés dans des endroits
accessibles et permettant un réglage et un entretien en toute sécurité.
Les composants hydrauliques, y compris les tuyauteries, doivent être accessibles et équipés pour ne pas gêner le
réglage ou la maintenance. Une attention particulière doit être portée au choix de l'emplacement des systèmes et
composants nécessitant une maintenance régulière.
5.3.3 Dispositions pour le levage
Il convient que tous les composants ou ensembles dont la masse est supérieure à 15 kg comportent une (des)
disposition(s) d'attente en vue du levage.
5.3.4 Installation des composants
Il convient d'installer les composants de telle sorte qu'ils soient accessibles, sans risque, d'une position de travail
sûre (par exemple niveau du sol ou plate-forme de travail).
Il est généralement souhaitable que la hauteur d'installation du bord inférieur d'un composant se situe à au moins
0,6 m au-dessus du niveau de la plate-forme de travail et que son bord supérieur se situe à 1,8 m maximum
au-dessus de la plate-forme de travail.
5.4 Utilisation de pièces normalisées
Il est souhaitable que le fournisseur du système utilise des pièces disponibles dans le commerce (clavettes, paliers,
garnitures, joints d'étanchéité, rondelles, bouchons, éléments de fixation, etc.) et des configurations de pièces
(dimensions des arbres et clavetages, dimensions des orifices, montages, surfaces de montage ou cavités, etc.) qui
soient conformes aux Normes internationales en vigueur et qui permettent une codification uniforme.
©
ISO ISO 4413:1998(F)
5.5 Joints et dispositifs d'étanchéité
5.5.1 Matériaux
Les matériaux constitutifs des joints et des dispositifs d'étanchéité doivent être compatibles avec le fluide utilisé, les
matériaux adjacents et leurs conditions et environnement d'utilisation.
5.5.2 Remplacement
La conception du composant doit faciliter la maintenance et le remplacement des joints et dispositifs d'étanchéité.
5.6 Consignes de maintenance et d'utilisation
Le fournisseur du système doit fournir les renseignements requis pour la maintenance et l'utilisation qui clairement:
a) décrivent les modes opératoires pour la mise en marche et l'arrêt;
b) donnent toutes les instructions requises pour la dépressurisation et identifient les parties du système qui ne
sont pas dépressurisées par le dispositif normal de mise à l'air libre;
c) décrivent les modes opératoires de réglage;
d) indiquent les points de graissage extérieurs, le type de lubrifiant requis et les périodicités à respecter;
e) indiquent l'emplacement des indicateurs de niveau du fluide, des points de remplissage et de vidange, des
filtres, des prises d'essai, des crépines, des aimants, etc., qui nécessitent une maintenance programmée;
f) spécifient le taux de pollution maximal admissible du fluide;
g) donnent des instructions pour la maintenance du fluide;
h) donnent des conseils pour la manipulation et la mise au rebut, en toute sécurité, des fluides et des lubrifiants;
i) spécifient le débit de l'agent réfrigérant, la température maximale et la plage des pressions admissibles
requises pour un refroidissement adéquat;
j) spécifient les modes opératoires de maintenance pour des ensembles uniques;
k) donnent une identification supplémentaire des pièces de composants hydrauliques, qui sont disponibles dans
le commerce ou fabriquées selon une Norme internationale comportant une codification uniforme;
l'identification doit être le numéro de pièce du fabricant du composant ou telle que prévue par le code de la
Norme internationale;
l) listent les pièces de rechange recommandées.
5.7 Manuels d'utilisation et de maintenance
Le fournisseur du système doit fournir un manuel décrivant l'utilisation et la maintenance du système, y compris les
exigences décrites en 5.6 et les instructions et/ou informations de maintenance des composants et des tuyauteries.
5.8 Orifices
Il convient que tous les orifices de raccordement soient conformes à
— l'ISO 6149 pour des orifices taraudés et des extrémités de goujons, ou
— l'ISO 6162 ou l'ISO 6164 pour des raccordements d'orifices par une bride à quatre vis.
5.9 Température du système
5.9.1 Génération de chaleur
Les systèmes hydrauliques doivent être conçus pour minimiser toute génération de chaleur superflue.
©
5.9.2 Températures en service
La plage complète des températures en service de chaque composant et du système doit être spécifiée. La
température du fluide ne doit pas être supérieure à la température à laquelle le fluide peut être utilisé en toute
fiabilité et doit être comprise dans la plage des températures d'utilisation spécifiée pour tout composant contenu
dans le système.
6 Composants de transformation de l'énergie
6.1 Pompes et moteurs hydrauliques
6.1.1 Protection
Les pompes et moteurs hydrauliques doivent être soit installés dans un endroit où ils sont protégés contre les
détériorations prévisibles, soit protégés de manière adéquate.
Tous les arbres d'entraînement et accouplements doivent être protégés de manière adéquate.
6.1.2 Montage
Les pompes et moteurs hydrauliques doivent être montés de telle sorte que
a) ils soient accessibles pour la maintenance;
b) aucun défaut d'alignement de l'arbre ne soit engendré par le cycle de travail, les variations de température ou
les charges appliquées dues à la pression;
c) les charges axiales et radiales induites soient comprises dans les limites spécifiées par le fournisseur de la
pompe/moteur;
d) les accouplements et supports soient capables de supporter de manière répétitive le couple maximal
développé dans toutes les conditions de service;
e) la transmission ou l'amplification des vibrations en torsion soit limitée en utilisant des accouplements amortis de
manière adéquate.
6.1.3 Considérations de vitesse
La vitesse ne doit pas être supérieure à la vitesse maximale spécifiée dans la documentation du fournisseur.
6.1.4 Drains, purges d'air et orifices auxiliaires
Les dimensions et l'aboutissement des drains des pompes et moteurs hydrauliques doivent correspondre aux
spécifications du fournisseur du composant.
Les drains, purges d'air et orifices auxiliaires doivent être installés de telle sorte qu'ils interdisent l'entrée d'air dans
le système et doivent être dimensionnés et installés de manière à n'engendrer aucune contre-pression excessive.
Les purges d'air haute pression doivent être installées de manière à minimiser les phénomènes dangereux pour les
personnes.
6.1.5 Préremplissage des carters
Lorsque les carters des pompes ou moteurs hydrauliques nécessitent un remplissage préalable avec du fluide
avant la mise en marche, un dispositif de préremplissage facilement accessible doit être prévu et situé de façon à
éviter que de l'air ne reste emprisonné dans les carters.
6.1.6 Plage des pressions d'utilisation
S'il existe des restrictions de la plage des pressions d'utilisation auxquelles la pompe ou le moteur peuvent être
utilisés, elles doivent être définies dans les documents techniques du fournisseur.
©
ISO ISO 4413:1998(F)
6.1.7 Installation
Les pompes et moteurs hydrauliques doivent être installés de telle sorte que
a) la configuration des raccordements de tuyauteries empêche les fuites externes; les filetages coniques ou les
mécanismes de raccordement nécessitant des constituants d'étanchéité ne doivent pas être utilisés;
b
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...