ISO 15118-1:2013
(Main)Road vehicles -- Vehicle to grid communication interface -- Part 1: General information and use-case definition
Road vehicles -- Vehicle to grid communication interface -- Part 1: General information and use-case definition
ISO 15118 specifies the communication between Electric Vehicles (EV), including Battery Electric Vehicles and Plug-In Hybrid Electric Vehicles, and the Electric Vehicle Supply Equipment (EVSE). As the communication parts of this generic equipment are the Electric Vehicle Communication Controller (EVCC) and the Supply Equipment Communication Controller (SECC), ISO 15118 describes the communication between these components. Although ISO 15118 is oriented to the charging of electric road vehicles, it is open for other vehicles as well. ISO 15118-1:2013 specifies terms and definitions, general requirements and use cases as the basis for the other parts of ISO 15118. It provides a general overview and a common understanding of aspects influencing the charge process, payment and load levelling. ISO 15118 does not specify the vehicle internal communication between battery and charging equipment and the communication of the SECC to other actors and equipment (beside some dedicated message elements related to the charging). All connections beyond the SECC, and the method of message exchanging are considered to be out of the scope as specific use cases.
General Information
Relations
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 15118-1
First edition
2013-04-15
Corrected version
2013-10-01
Road vehicles — Vehicle to grid
communication interface —
Part 1:
General information and use-case
definition
Véhicules routiers — Interface de communication entre véhicule et
réseau électrique —
Partie 1: Informations générales et définition de cas d’utilisation
Reference number
ISO 15118-1:2013(E)
©
ISO 2013
---------------------- Page: 1 ----------------------
ISO 15118-1:2013(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2013
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2013 – All rights reserved
---------------------- Page: 2 ----------------------
ISO 15118-1:2013(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Symbols and abbreviated terms . 9
5 Requirements .10
5.1 Communication concept .10
5.2 General considerations .11
5.3 User-specific requirements .11
5.4 OEM-specific requirements.12
5.5 Utility-specific requirements .13
6 Actors.14
6.1 General .14
7 Use Case Elements .15
7.1 General .15
7.2 Start of charging process [A] .17
7.3 Communication set-up [B] .20
7.4 Certificate handling [C] .20
7.5 Identification and Authorization [D].23
7.6 Target setting and charging scheduling [E] .29
7.7 Charging controlling and re-scheduling [F] .36
7.8 Value Added Services [G] .42
7.9 End of charging process [H].43
Annex A (informative) Charging infrastructure architecture .45
Annex B (informative) Security .55
Annex C (informative) Examples of charging scenarios derived from the use case elements .60
Bibliography .65
© ISO 2013 – All rights reserved iii
---------------------- Page: 3 ----------------------
ISO 15118-1:2013(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
orga nizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received. www.iso.org/patents
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
The committee responsible for this document is ISO/TC 22, Road vehicles, Subcommittee SC 3, Electrical
and electronic equipment.
ISO 15118-1 was developed in cooperation with IEC TC 69, Electric road vehicles and electric industrial trucks.
ISO 15118 consists of the following parts, under the general title Road vehicles — Vehicle to grid
communication interface:
— Part 1: General information and use-case definition
— Part 2: Network and application protocol requirements
— Part 3: Physical and data link layer requirements
The following parts are under preparation:
— Part 4: Network and application protocol conformance test
— Part 5: Physical layer and data link layer conformance test
This corrected version of ISO 15118-1:2013 incorporates the following correction:
— The ISO/IEC double logo was added to the cover page.
iv © ISO 2013 – All rights reserved
---------------------- Page: 4 ----------------------
ISO 15118-1:2013(E)
Introduction
The pending energy crisis and the necessity to reduce greenhouse gas emissions have led vehicle
manufacturers to make a very significant effort to reduce the energy consumption of their vehicles.
They are presently developing vehicles partly or completely propelled by electric energy. Those vehicles
will reduce the dependency on oil, improve global energy efficiency and reduce the total CO emissions
2
for road transportation if the electricity is produced from renewable sources. To charge the batteries of
such vehicles, specific charging infrastructure is required.
Much of the standardization work on dimensional and electrical specifications of the charging
infrastructure and the vehicle interface is already treated in the relevant ISO or IEC groups. However,
the question of information transfer between the vehicle, the local installation and the grid has not been
treated sufficiently.
Such communication is beneficial for the optimization of energy resources and energy production systems
as vehicles can recharge at the most economic or most energy-efficient instants. It is also required to
develop efficient and convenient payment systems in order to cover the resulting micro-payments. The
necessary communication channel may serve in the future to contribute to the stabilization of the electrical
grid as well as to support additional information services required to operate electric vehicles efficiently.
© ISO 2013 – All rights reserved v
---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO 15118-1:2013(E)
Road vehicles — Vehicle to grid communication interface —
Part 1:
General information and use-case definition
1 Scope
ISO 15118 specifies the communication between Electric Vehicles (EV), including Battery Electric
Vehicles and Plug-In Hybrid Electric Vehicles, and the Electric Vehicle Supply Equipment (EVSE). As the
communication parts of this generic equipment are the Electric Vehicle Communication Controller (EVCC)
and the Supply Equipment Communication Controller (SECC), ISO 15118 describes the communication
between these components. Although ISO 15118 is oriented to the charging of electric road vehicles, it is
open for other vehicles as well.
This part of ISO 15118 specifies terms and definitions, general requirements and use cases as the basis
for the other parts of ISO 15118. It provides a general overview and a common understanding of aspects
influencing the charge process, payment and load levelling.
ISO 15118 does not specify the vehicle internal communication between battery and charging
equipment and the communication of the SECC to other actors and equipment (beside some dedicated
message elements related to the charging). All connections beyond the SECC, and the method of message
exchanging are considered to be out of the scope as specific use cases.
NOTE 1 Electric road vehicles specifically are vehicles in categories M (used for carriage of passengers) and
N (used for carriage of goods) (compare ECE/TR ANS/WP.29/78 ev.2). This does not prevent vehicles in other
categories from adopting ISO 15118 as well.
NOTE 2 This part of ISO 15118 is destined to orientate the message set of ISO 15118-2. The absence of any particular
use case in this part of ISO 15118 does not imply that it shall not put into practice, with the required messages.
NOTE 3 This part of ISO 15118 and ISO 15118-2 are designed to work independent of data transfer medium
used. However, this series of documents are made for fitting the specified data link layers in the corresponding
documents in this series.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
IEC 60050, International electrotechnical vocabulary
IEC 61851-1, Electric vehicle conductive charging system — Part 1: General requirements
ISO/TR 8713, Electrically propelled road vehicles — Vocabulary
ISO 15118-2, Road vehicles — Vehicle to grid communication interface — Part 2: Network and application
protocol requirements
ISO 15118-3, Road Vehicles — Vehicle to grid communication interface — Part 3: Physical and data link
layer requirements
© ISO 2013 – All rights reserved 1
---------------------- Page: 6 ----------------------
ISO 15118-1:2013(E)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/TR 8713 and the following apply.
3.1
actor
entit y which characterizes a role played by a user or any other system that interacts with the subject
3.2
amount of energy for charging
energy required by the EV until the departure time has been reached or the battery’s SOC is at 100 %
Note 1 to entry: This might include the amount of energy the EV consumes for other vehicle features than solely
charging the battery.
3.3
authentication
procedure between EVCC and SECC or between USER and EVSE or SA, to prove that the provided
information (see identification) is either correct, valid, or it belongs to the EVCC, the USER or the SECC
3.4
authorization
procedure for EVSE to verify if EV is allowed to be charged
3.5
basic signalling
physical signalling according to the pilot function provided by IEC 61851-1, Annex A
3.6
Battery Management System
BMS
electronic device that controls or manages the electric and thermal functions of the battery system and
that provides communication between the battery system and other vehicle controllers
3.7
certificate
electronic document which uses a digital signature to bind a public key with an identity
Note 1 to entry: ISO 15118 describes several certificates covering different purposes (e.g. Contract Certificate
including the contract ID and OEM Provisioning Certificates)
3.8
charger
power converter that performs the necessary functions for charging a battery
3.9
charging control
function that confirms the maximum charge current which is allowed to be drawn from EVSE based on
charging schedule
Note 1 to entry: Actual charge current to the battery should be controlled by BMS. It is not in scope of ISO 15118.
3.10
charging scenario
combination of use case elements to fulfil a specific charging use case
3.11
charging schedule
scheme which contains the power limits for charging the EV for a specific time
Note 1 to entry: The EV should apply the negotiated limits as close as possible, to allow power balancing for the DSO
2 © ISO 2013 – All rights reserved
---------------------- Page: 7 ----------------------
ISO 15118-1:2013(E)
EXAMPLE The schedule is calculated based on target setting, sales tariff table and grid schedule information,
respecting the corresponding current limitations, i.e. using the lowest current value.
3.12
charging session
time between the beginning (connection of the cable) and the end (disconnection of the cable) of a
charging process
Note 1 to entry: During a charging session the EV may have none, one, or many periods of charging the battery,
doing pre-conditioning or post-conditioning.
3.13
contactor
electrically controlled switch used for switching a power circuit
Note 1 to entry: Unlike a circuit breaker, a contactor is not intended to interrupt a short circuit current.
Note 2 to entry: As far as communication is concerned the contactor occurs as a trigger for the power supply.
3.14
contract ID
contract IDentification of the contract that is used by the SECC or secondary actor to enable charging
and related services (including billing)
Note 1 to entry: The contract ID is associated with the electricity consumer and may be vehicle-specific or
customer-specific. The customer can e.g. be the driver, the owner of the vehicle.
3.15
credential
document attesting the permission of the EV to be charged
3.16
demand and prognosis
function that covers the collection of grid and local installation limits which applies to the actual
charging process
EXAMPLE Sales tariff table containing a price, CO content and percentage of renewable energy information
2
vs. time based on grid, energy production, energy demand and customer contract information, along with an
optional contract-based current limitation. Grid schedule containing a current vs. time limitation at the specific
EVSE due to local installation and local electricity demand situation.
3.17
Demand Clearing House
DCH
entity for grid negotiation that provides information on the load of the grid
Note 1 to entry: The demand clearing house mediates between two clearing partners: a SECC and the part of the
power grid connected to this SECC. Most likely this function will be served by a system operator.
Note 2 to entry: Demand clearing house and meter operator may exchange information with each other as well as
with other actors.
EXAMPLE A DCH typically fulfils following tasks:
— Collect all necessary information from all parts of the power grid, e.g. current or forecasted load of
local transformers, distribution grid, power substation, transmission grid, transmission substation,
power plants (including renewable energies), and predicted charging schedules submitted by EVCCs.
— Consolidate the collected grid information to a “grid profile” and offer it to SECCs/EVCCs.
— Provide charging schedule proposal for the connected EV to the requesting SECC based on the
collected grid profile.
© ISO 2013 – All rights reserved 3
---------------------- Page: 8 ----------------------
ISO 15118-1:2013(E)
— Inform the SECC as to the necessity for an updated charging schedule if the grid profile has changed.
— On the contrary, the SECC will inform the demand clearing house if the EV’s charging schedule has
changed.
3.18
departure time
point in time when the user intends to unplug the car and/or leave the charging location
3.19
Distribution System Operator
DSO
entity responsible for the voltage stability in the distribution grid (medium- and low-voltage power grid)
Note 1 to entry: Electricity distribution is the final stage in the physical delivery of electricity to the delivery point
(e.g. end user, EVSE or parking operator).
Note 2 to entry: A distribution system network carries electricity from the transmission grid and delivers it to
consumers. Typically, the network would include medium-voltage power lines, electrical substations and low-
voltage distribution wiring networks with associated equipment. Depending on national distribution regulations,
the DSO may also be responsible for metering the energy (MO).
3.20
E-Mobility Operator
entity with which the customer has a contract for all services related to the EV operation
Note 1 to entry: Typically the E-Mobility Operator will include some of the other actors, like spot operator or
Electricity Provider, and has a close relationship with the distribution system operator and meter operator. An
OEM or utility could also fulfil such a role.
Note 2 to entry: The E-Mobility Operator validates contract IDs from his customers, which were received either
from the E-Mobility Operator Clearing House, other E-Mobility Operators or spot operators he is in relation with.
Note 3 to entry: The E-Mobility Operator issues contract IDs to his customers.
3.21
E-Mobility Operator Clearing House
EMOCH
entity mediating between two clearing partners to provide validation services for roaming regarding
contracts of different E-Mobility Operators for the purpose of
— collecting all necessary contract information like contract ID, E-Mobility Operator, communication
path to E-Mobility Operator, roaming fees, begin and end date of contract, etc.,
— providing SECC with confirmation that an E-Mobility Operator will pay for a given contract ID
(authorization of valid contract),
— transferring a Service Detail Record (SDR) after each charging session to correct E-Mobility Operator
and Electricity Provider of the identified contract.
Note 1 to entry: E-Mobility Operator Clearing House, E-Mobility Operator and meter operator may exchange
information with each other as well as other actors.
3.22
Electric Energy Meter
EEM
equipment for measuring electrical energy by integrating power with respect to time, which complies
with IEC 62052-11 and IEC 62053-21, IEC 62053-52
Note 1 to entry: Some use cases need the amount of electric energy measured by the electric energy meter and
communicated through the SECC to the EVCC, while other scenarios do not need a separate electric energy meter.
The EV may get this information and use it according to the OEM’s intentions
4 © ISO 2013 – All rights reserved
---------------------- Page: 9 ----------------------
ISO 15118-1:2013(E)
3.23
Electricity Provider
EP
body of secondary actor to provide electricity
3.24
Electric Vehicle
EV
any vehicle propelled by an electric motor drawing current from a rechargeable storage battery or
from other portable energy storage devices (rechargeable, using energy from a source off the vehicle
such as a residential or public electric service), which is manufactured primarily for use on public
streets, roads or highways
3.25
Electric Vehicle Communication Controller
EVCC
embedded system, within the vehicle, that implements the communication between the vehicle and the
SECC in order to support specific functions
Note 1 to entry: Such specific functions could be e.g. controlling input and output channels, encryption, or data
transfer between vehicle and SECC.
3.26
Electric Vehicle Supply Equipment
EVSE
conductors, including the phase(s), neutral and protective earth conductors, the EV couplers, attached
plugs, and all other accessories, devices, power outlets or apparatuses installed specifically for the
purpose of delivering energy from the premises wiring to the EV and allowing communication between
them as necessary
3.27
Electronic Control Unit
ECU
unit providing information regarding the vehicle
3.28
energy transfer type
element which allows the EV to select its desired energy transfer type in case both the EVSE and EV
support multiple charging types and different plugs and sockets according to IEC 62196
3.29
EVSE ID
unique identification of the charging spot
Note 1 to entry: The SECC provides the EVSE ID. This ID includes the EVSE operator ID and the power outlet ID,
issued by the EVSE operator.
3.30
EVSE operator
actor for managing and maintaining the charging spot
3.31
External Identification Means
EIM
any external means that enable the user to identify his contract or the car
EXAMPLE NFC, RFID, SMS.
© ISO 2013 – All rights reserved 5
---------------------- Page: 10 ----------------------
ISO 15118-1:2013(E)
3.32
Fleet Operator
FO
person or legal entity operating several EVs and who may have the contracts with the E-Mobility Operator
3.33
grid schedule
func tion which sets the power level at a specific time based on the local grid situation
Note 1 to entry: Parameters to calculate grid schedule are e.g. local grid demand and supply situation, actual
and forecast.
3.34
High Level Communication
HLC
bi-directional digital communication using protocol and messages and physical and data link layers
specified in ISO 15118 series
Note 1 to entry: High Level Communication in ISO 15118 is compliant with the term digital communication in
SAE J1772/2836/2847/2931.
3.35
Human Machine Interface
HMI
interface allowing the vehicle user to receive information relative to the charging process and provide
input to the charging system
Note 1 to entry: All information from a user (input) or displayed to a user (output) will be performed through an HMI.
Note 2 to entry: The HMI could be implemented as a function of the EV, EVSE, mobile phone, etc.
3.36
identification
procedure for EVCC or USER to provide its identifying information for the purpose of authorization,
mostly to provide its capability for payments, such as Contract Certificate, credit card number, etc.
and/or procedure for SECC to provide EVSE ID to EVCC
Note 1 to entry: For simplicity reasons, within the ISO 15118 series the term identification includes also the
authentication of the provided identifying information, i.e. this information is correct, or it belongs to the EVCC,
the USER or the SECC.
3.37
level selector
function to select the lowest value among the sales tariff table, grid schedule and local physical limit, and
feeds to scheduling function
Note 1 to entry: This function may be implemented in EV or EVSE.
3.38
Meter Operator
MO
body having the legal responsibility for the installation and maintenance of the Electric Energy Meter (EEM)
3.39
Original Equipment Manufacturer
OEM
producer who manufactures products or components that are purchased by a company and retailed
under that purchasing company’s brand name
Note 1 to entry: OEM refers to the company that originally manufactured the product.
6 © ISO 2013 – All rights reserved
---------------------- Page: 11 ----------------------
ISO 15118-1:2013(E)
Note 2 to entry: When referring to automotive parts, OEM designates a replacement part made by the manufacturer
of the original part.
3.40
paying unit
PU
device on EVSE side that offers payment methods
EXAMPLE Payment methods: EIM, cash, credit cards, etc.
Note 1 to entry: If the EVCC normally chooses a payment method, then the paying unit indicates to the SECC
whether the customer is authorized or not.
3.41
pilot function
any means, electronic or mechanical, that ensures the conditions related to the safety or the transmission
of data required for the mode of operation, compliant with IEC 61851-1
3.42
Plug and Charge
PnC
identification mode where the customer just has to plug their vehicle into the EVSE and all aspects of
charging are automatically taken care of with no further intervention from the driver
Note 1 to entry: The aspects of charging may include load control, authorization and billing.
3.43
power outlet
socket outlet or, in the case of a fixed cable, connector, that provides power to the EV, typically to be
installed with the fixed wiring
3.44
power outlet ID
unique identification of the power outlet to the vehicle
3.45
primary actor
entity involved directly in the charging process
3.46
Pulse Width Modulation
PWM
pulse control in which the pulse width or frequency, or both, are modulated within each fundamental
period to produce a certain output waveform
3.47
sales tariff table
function of price related information over time
— Sales tariff table provides input for calculating a charging schedule.
— Sales tariff table shall be issued by a secondary actor, e.g. Electricity Provider or mobility operator.
— Sales tariff table should reflect “supply and demand balance of the Electricity Provider” and “usage of green
energy” (e.g. wind mill, photovoltaic).
— Information of the chosen tariff should be included in Service Detail Record.
— Sales tariff table can be updated periodically. It may differ by country or Electricity Provider.
— There may be multiple Sales tariff tables existing for one customer.
— Sales tariff table information should be constructed in such a way that normal fluctuations on the grid side
will not lead to an insufficiently charged EV or cost increase.
© ISO 2013 – All rights reserved 7
---------------------- Page: 12 ----------------------
ISO 15118-1:2013(E)
— The contract-based current limitation might vary over time, e.g. lower value during daytime and higher value
during the night.
3.48
seco ndary actor
entit y involved indirectly in the charging process
Note 1 to entry: Secondary actors may exchange information between each other.
Note 2 to entry: Secondary actors could also be a single entity.
3.49
semi online
status where the SECC or any other device in general has the ability to go online, but being online is not
required synchronously to the referring use case(s)
3.50
Service Detail Record
SDR
data package of a charge or service related session with all necessary information that an E-Mobility
Operator needs for billing or for informing the customer about the session
Note 1 to entry: Some data may be sent from EVSE. Some data originally owned by E-Mobility Operator Clearing
House. Some data may be created at E-Mobility Operator Clearing Hou
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.