IEC 62230:2006
(Main)Electric cables - Spark-test method
Electric cables - Spark-test method
The spark-test method specified in this standard is intended for the detection of defects in the insulation or sheathing layers of electric cables. For single core cables with no outer metallic layer, the general process is accepted as being equivalent to subjecting samples of those cables to a voltage test in water. This standard specifies the operational requirements for the spark-test equipment, as well as the principal characteristics, functional parameters and calibration procedures for each type of test equipment.
Câbles électriques - Méthode d'essai au défilement à sec (sparker)
La méthode d'essai au défilement à sec (sparker) spécifiée dans la présente norme est prévue pour la détection des défauts dans l'enveloppe isolante ou les couches de gainage des câbles électriques. Pour les câbles monoconducteurs sans couche métallique extérieure, le processus général est accepté comme étant équivalent à un essai de tension dans l'eau sur des échantillons de ces câbles. La présente norme spécifie les exigences opératoires pour l'équipement d'essai au sparker ainsi que les principales caractéristiques, les paramètres de fonctionnement et les procédures de calibrage pour chaque type d'équipement d'essai.
General Information
Relations
Standards Content (Sample)
NORME CEI
INTERNATIONALE
IEC
INTERNATIONAL
Première édition
STANDARD
First edition
2006-05
Câbles électriques –
Méthode d'essai au défilement
à sec (sparker)
Electric cables –
Spark-test method
Numéro de référence
Reference number
CEI/IEC 62230:2006
Numérotation des publications Publication numbering
Depuis le 1er janvier 1997, les publications de la CEI As from 1 January 1997 all IEC publications are
sont numérotées à partir de 60000. Ainsi, la CEI 34-1 issued with a designation in the 60000 series. For
devient la CEI 60034-1. example, IEC 34-1 is now referred to as IEC 60034-1.
Editions consolidées Consolidated editions
Les versions consolidées de certaines publications de la The IEC is now publishing consolidated versions of its
CEI incorporant les amendements sont disponibles. Par publications. For example, edition numbers 1.0, 1.1
exemple, les numéros d’édition 1.0, 1.1 et 1.2 indiquent and 1.2 refer, respectively, to the base publication,
respectivement la publication de base, la publication de the base publication incorporating amendment 1 and
base incorporant l’amendement 1, et la publication de the base publication incorporating amendments 1
base incorporant les amendements 1 et 2. and 2.
Informations supplémentaires Further information on IEC publications
sur les publications de la CEI
Le contenu technique des publications de la CEI est The technical content of IEC publications is kept
constamment revu par la CEI afin qu'il reflète l'état under constant review by the IEC, thus ensuring that
actuel de la technique. Des renseignements relatifs à the content reflects current technology. Information
cette publication, y compris sa validité, sont dispo- relating to this publication, including its validity, is
nibles dans le Catalogue des publications de la CEI available in the IEC Catalogue of publications
(voir ci-dessous) en plus des nouvelles éditions, (see below) in addition to new editions, amendments
amendements et corrigenda. Des informations sur les and corrigenda. Information on the subjects under
sujets à l’étude et l’avancement des travaux entrepris consideration and work in progress undertaken by the
par le comité d’études qui a élaboré cette publication, technical committee which has prepared this
ainsi que la liste des publications parues, sont publication, as well as the list of publications issued,
également disponibles par l’intermédiaire de: is also available from the following:
• Site web de la CEI (www.iec.ch) • IEC Web Site (www.iec.ch)
• Catalogue des publications de la CEI • Catalogue of IEC publications
Le catalogue en ligne sur le site web de la CEI The on-line catalogue on the IEC web site
(www.iec.ch/searchpub) vous permet de faire des (www.iec.ch/searchpub) enables you to search by a
recherches en utilisant de nombreux critères, variety of criteria including text searches,
comprenant des recherches textuelles, par comité technical committees and date of publication. On-
d’études ou date de publication. Des informations en line information is also available on recently
ligne sont également disponibles sur les nouvelles issued publications, withdrawn and replaced
publications, les publications remplacées ou retirées, publications, as well as corrigenda.
ainsi que sur les corrigenda.
• IEC Just Published • IEC Just Published
Ce résumé des dernières publications parues This summary of recently issued publications
(www.iec.ch/online_news/justpub) est aussi dispo- (www.iec.ch/online_news/justpub) is also available
nible par courrier électronique. Veuillez prendre by email. Please contact the Customer Service
contact avec le Service client (voir ci-dessous) Centre (see below) for further information.
pour plus d’informations.
• Service clients • Customer Service Centre
Si vous avez des questions au sujet de cette If you have any questions regarding this
publication ou avez besoin de renseignements publication or need further assistance, please
supplémentaires, prenez contact avec le Service contact the Customer Service Centre:
clients:
Email: custserv@iec.ch Email: custserv@iec.ch
Tél: +41 22 919 02 11 Tel: +41 22 919 02 11
Fax: +41 22 919 03 00 Fax: +41 22 919 03 00
.
NORME CEI
INTERNATIONALE
IEC
INTERNATIONAL
Première édition
STANDARD
First edition
2006-05
Câbles électriques –
Méthode d'essai au défilement
à sec (sparker)
Electric cables –
Spark-test method
IEC 2006 Droits de reproduction réservés Copyright - all rights reserved
Aucune partie de cette publication ne peut être reproduite ni No part of this publication may be reproduced or utilized in any
utilisée sous quelque forme que ce soit et par aucun procédé, form or by any means, electronic or mechanical, including
électronique ou mécanique, y compris la photocopie et les photocopying and microfilm, without permission in writing from
microfilms, sans l'accord écrit de l'éditeur. the publisher.
International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
CODE PRIX
R
PRICE CODE
Commission Electrotechnique Internationale
International Electrotechnical Commission
МеждународнаяЭлектротехническаяКомиссия
Pour prix, voir catalogue en vigueur
For price, see current catalogue
– 2 – 62230 CEI:2006
SOMMAIRE
AVANT-PROPOS.4
INTRODUCTION.8
1 Domaine d’application .10
2 Types des formes d’ondes de tension.10
3 Méthode .10
4 Equipement .12
4.1 Sécurité.12
4.2 Source de haute tension.12
4.3 Equipement de contrôle de la tension.16
4.4 Indicateur de défaut .18
4.5 Electrodes .18
4.6 Construction des électrodes .18
5 Tensions d’essai.20
6 Sensibilité .20
6.1 Tensions en courant alternatif, en courant continu et à haute fréquence.20
6.2 Tensions avec impulsion .22
6.3 Méthode d’évaluation .22
7 Calibrage.24
7.1 Généralités.24
7.2 Fréquence de la vérification .24
Annexe A (informative) Niveaux de tension minimaux recommandés .26
Annexe B (informative) Exemple de dispositif de défaut artificiel.30
Annexe C (informative) Notes sur l’utilisation des sparkers.32
Bibliographie.36
Figure 1 – Exigences pour les formes d’onde avec impulsion – Temps de montée de
l’impulsion .14
Figure 2 – Exigences pour les formes d’onde avec impulsion – Fluctuation de la valeur
de crête et vitesse de répétition de l’impulsion.14
Figure 3 – Exigences pour les formes d’onde avec impulsion – Durée d’impulsion.16
Figure B.1 – Aiguille à utiliser dans le dispositif de défaut artificiel .30
Tableau A.1 – Tensions minimales d’essai au sparker recommandées pour les câbles
de tension nominale (U ) comprise entre 300 V et 3 000 V.26
62230 IEC:2006 − 3 −
CONTENTS
FOREWORD.5
INTRODUCTION.9
1 Scope.11
2 Types of voltage waveform .11
3 Procedure .11
4 Equipment .13
4.1 Safety .13
4.2 High voltage source.13
4.3 Voltage monitoring equipment .17
4.4 Fault indicator .19
4.5 Electrodes .19
4.6 Design of electrodes.19
5 Test voltages.21
6 Sensitivity.21
6.1 AC, d.c. and h.f. voltages .21
6.2 Pulsed voltages.23
6.3 Method of assessment.23
7 Calibration.25
7.1 General .25
7.2 Verification frequency.25
Annex A (informative) Recommended minimum voltage levels .27
Annex B (informative) Example of an artificial fault device .31
Annex C (informative) Notes on the use of spark testing machines .33
Bibliography.37
Figure 1 – Requirements for pulsed waveforms – Rise time of wavefront .15
Figure 2 – Requirements for pulsed waveforms – Fluctuation of peak value and pulse
repetition rate .15
Figure 3 – Requirements for pulsed waveforms – Pulse duration .17
Figure B.1 – Needle for use in the artificial fault device.31
Table A.1 – Recommended minimum spark-test voltages for cables having rated
voltage (U ) between 300 V and 3 000 V.27
– 4 – 62230 CEI:2006
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
CÂBLES ÉLECTRIQUES –
MÉTHODE D’ESSAI AU DEFILEMENT À SEC (SPARKER)
AVANT-PROPOS
1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation
composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a
pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les
domaines de l'électricité et de l'électronique. A cet effet, la CEI – entre autres activités – publie des Normes
internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au
public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des
comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les
organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent
également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO),
selon des conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure
du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI
intéressés sont représentés dans chaque comité d’études.
3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI
s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable
de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications
nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications
nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) La CEI n’a prévu aucune procédure de marquage valant indication d’approbation et n'engage pas sa
responsabilité pour les équipements déclarés conformes à une de ses Publications.
6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou
mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités
nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre
dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais
de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de
toute autre Publication de la CEI, ou au crédit qui lui est accordé.
8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire
l’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour
responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.
La Norme internationale CEI 62230 a été établie par le comité d'études 20 de la CEI: Câbles
électriques.
La présente norme, basée sur la norme européenne EN 50356 (2002), a été préparée par le
Comité technique 20 du CENELEC: Câbles électriques. Elle a été soumise aux comités
nationaux pour vote suivant la procédure par voie express.
Le texte de cette norme est issu des documents suivants:
FDIS Rapport de vote
20/810/FDIS 20/816/RVD
Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant
abouti à l'approbation de cette norme.
Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.
62230 IEC:2006 − 5 −
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
ELECTRIC CABLES –
SPARK-TEST METHOD
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 62230 has been prepared by IEC technical committee 20: Electric
cables.
This standard, based on the European Norm EN 50356 (2002), was prepared by CENELEC
technical committee 20: Electric cables. It was submitted to the national committees for voting
under fast track procedure.
The text of this standard is based on the following documents:
FDIS Report on voting
20/810/FDIS 20/816/RVD
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
– 6 – 62230 CEI:2006
Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de
maintenance indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les
données relatives à la publication recherchée. A cette date, la publication sera
• reconduite,
• supprimée,
• remplacée par une édition révisée, ou
• amendée.
62230 IEC:2006 − 7 −
The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
– 8 – 62230 CEI:2006
INTRODUCTION
L’habitude d’utiliser des sparkers pour détecter les défauts dans l’enveloppe isolante ou les
couches de gainage des câbles électriques s’est développée au cours de nombreuses années
d’expérience pratique.
Le fonctionnement de l’équipement utilisant la méthode de vérification décrite dans la
présente norme s’est révélé satisfaisant. Cette méthode emploie un simulateur de défaut
artificiel et il a été démontré que sa performance est comparable à celle utilisant des essais
d’efficacité opératoire impliquant la détection de défauts préparés artificiellement (c’est-à-dire
défauts dans le matériau d’isolation et/ou de gainage) sur des longueurs de câble.
62230 IEC:2006 − 9 −
INTRODUCTION
The practice of using spark-testers to detect defects in the insulation or sheathing layers of
electric cables has been developed over many years of practical experience.
The operation of the equipment using the verification method described in this standard has
proved to be satisfactory. This method employs an artificial fault simulator and its
performance has been shown to be comparable to that using operational efficacy tests
involving the detection of artificially prepared defects (i.e. faults in the insulation/sheathing
material) in lengths of cable.
– 10 – 62230 CEI:2006
CÂBLES ÉLECTRIQUES –
MÉTHODE D’ESSAI AU DEFILEMENT À SEC (SPARKER)
1 Domaine d’application
La méthode d’essai au défilement à sec (sparker) spécifiée dans la présente norme est
prévue pour la détection des défauts dans l’enveloppe isolante ou les couches de gainage
des câbles électriques. Pour les câbles monoconducteurs sans couche métallique extérieure,
le processus général est accepté comme étant équivalent à un essai de tension dans l’eau
sur des échantillons de ces câbles.
La présente norme spécifie les exigences opératoires pour l’équipement d’essai au sparker
ainsi que les principales caractéristiques, les paramètres de fonctionnement et les procédures
de calibrage pour chaque type d’équipement d’essai.
2 Types des formes d’ondes de tension
Pour les besoins de la présente norme, les types des formes d’ondes de tension utilisés pour
les essais au sparker sont divisés selon les groupes suivants:
courant alternatif une tension en courant alternatif (c.a.) de forme d’onde approxi-
mativement sinusoïdale, à la fréquence industrielle de 40 Hz à 62 Hz;
courant continu une tension en courant continu (c.c.);
haute fréquence une tension en courant alternatif (c.a.) de forme d’onde approxi-
mativement sinusoïdale, à des fréquences comprises entre 500 Hz et
1 MHz;
avec impulsion une forme d’onde de tension comprenant un temps d’élévation rapide et
une fin très amortie, comme défini en 4.2.
NOTE Des tensions haute fréquence à des fréquences inférieures à 500 Hz peuvent être utilisées, pourvu que le
fabricant puisse démontrer une efficacité équivalente.
3 Méthode
Le conducteur isolé ou le câble sous gaine doivent passer à travers une électrode amorcée à
la tension d’essai. La méthode détaillée dans la présente norme est prévue pour l’application
des tensions c.a., c.c., haute fréquence et avec impulsion.
Les exigences pour les formes d’ondes de tension, la fréquence et la tension d’essai sont
indiquées en 4.2 et à l’Article 5. La vitesse maximale à laquelle le câble doit passer à travers
l’électrode est déterminée par la durée de traitement minimale spécifiée en 4.6.
Lorsqu’il est utilisé comme alternative à un essai de tension dans l’eau, il est recommandé de
limiter l’essai aux épaisseurs de gaine inférieures ou égales à 2,0 mm et aux tensions d’essai
en courant alternatif et en courant continu.
Les exigences ne sont pas applicables aux enveloppes isolantes de câble de tension
nominale (U ) supérieure à 3 kV.
o
62230 IEC:2006 − 11 −
ELECTRIC CABLES –
SPARK-TEST METHOD
1 Scope
The spark-test method specified in this standard is intended for the detection of defects in the
insulation or sheathing layers of electric cables. For single core cables with no outer metallic
layer, the general process is accepted as being equivalent to subjecting samples of those
cables to a voltage test in water.
This standard specifies the operational requirements for the spark-test equipment, as well as
the principal characteristics, functional parameters and calibration procedures for each type of
test equipment.
2 Types of voltage waveform
For the purposes of this standard, the types of voltage waveform used for spark-testing are
divided into the following groups:
a.c. an alternating current (a.c.) voltage of approximately sine-wave form, at the
industrial frequency of 40 Hz to 62 Hz;
d.c. a direct current (d.c.) voltage;
h.f. an alternating current (a.c.) voltage of approximately sine-wave form, at
frequencies between 500 Hz and 1 MHz;
pulsed a voltage waveform comprising a fast rise time and highly damped wave-tail, as
defined in 4.2.
NOTE Provided the manufacturer can demonstrate equivalent effectiveness, h.f. voltages at frequencies below
500 Hz may be used.
3 Procedure
The insulated conductor or sheathed cable shall be passed through an electrode energized at
the test voltage. The method detailed in this standard provides for the application of a.c., d.c.,
h.f. and pulsed voltages.
The requirements for voltage waveform, frequency and test voltage are given in 4.2 and
Clause 5. The maximum speed at which the cable shall pass through the electrode is
determined by the minimum residence time specified in 4.6.
When used as an alternative to a voltage test in water, it is recommended that the test be
restricted to layer thicknesses not greater than 2,0 mm and to a.c. and d.c. test voltages.
The requirements are not applicable to cable insulation having a rated voltage (U ) greater
than 3 kV.
– 12 – 62230 CEI:2006
L’Annexe A indique des tensions recommandées pour chaque forme d’onde de tension,
tensions à utiliser en l’absence de toute indication de tension alternative dans la norme de
câble concernée.
4 Equipement
4.1 Sécurité
Afin de limiter l’effet de choc électrique sur le personnel, pour tous les types de source de
tension, l’équipement doit être construit de façon que le courant de court-circuit soit limité à
moins de 10 mA valeur efficace ou équivalent.
Cette exigence s’ajoute à, ou peut être remplacée par, toute réglementation nationale
actuelle.
NOTE Des indications sur la limitation des courants de choc peuvent être trouvées dans la CEI 60479-1 et la
CEI 60479-2.
D’autres aspects de sécurité opératoire sont donnés à l’Annexe C.
4.2 Source de haute tension
L’électrode haute tension doit être fournie sous l’une des formes suivantes, comme défini à
l’Article 2: courant alternatif, courant continu, haute fréquence ou avec impulsion.
Pour un essai en courant continu, la connexion à l’électrode d’essai est effectuée au moyen
d’un conducteur d’alimentation sans écran et à faible capacitance. Pour les essais en courant
continu et tension avec impulsion, l’électrode d’essai peut avoir une polarité positive ou
négative, l’autre pôle étant mis à la terre.
Les exigences concernant les formes d’onde avec impulsion sont représentées aux Figures 1,
2 et 3.
Pour les formes d’onde avec impulsion, le temps d’élévation de l’onde enveloppe doit
atteindre 90 % de la valeur de crête spécifiée en moins de 75 µs – voir Figure 1. Les
fluctuations de la valeur de crête réelle dues à des variations de puissance d’entrée dans le
générateur ne doivent pas dépasser ± 2 % de la valeur de crête spécifiée – voir Figure 2. La
valeur de crête ne doit pas présenter de réduction supérieure à 5 % en cas d’augmentation de
la charge capacitive de 50 pF, au cours de l’opération, à partir d’une charge initiale de 25 pF
entre l’électrode et le bruit de fond. Le temps pendant lequel chaque impulsion reste à une
tension supérieure à 80 % de la valeur de crête spécifiée doit être compris entre 20 µs et
100 µs – voir Figure 3. La fréquence de répétition de l’impulsion doit être supérieure à 170
par seconde et inférieure à 500 par seconde. Cela correspond à des séparations d’impulsion
comprises entre 2 000 µs et 5 880 µs. Un effet corona visible ou audible doit être évident
dans la structure de l’électrode en fonctionnement à la tension spécifiée.
62230 IEC:2006 − 13 −
Annex A provides recommended voltages for each voltage waveform, to be used in the
absence of any alternative voltages in the relevant cable standard.
4 Equipment
4.1 Safety
To limit the effect of electric shock to personnel, for all types of voltage source, the equipment
shall be constructed in such a way that the short-circuit current is limited to less than 10 mA
r.m.s. or equivalent.
This requirement is additional to, or may be superseded by, any national regulation that
prevails at the time.
NOTE Guidance on the limiting of shock currents can be found in IEC 60479-1 and IEC 60479-2.
Further aspects of operational safety are given in Annex C.
4.2 High voltage source
The high-voltage electrode shall be supplied in one of the following forms, as defined in
Clause 2: a.c., d.c., h.f. or pulsed.
For a d.c. test, connection to the test electrode shall be by means of a low capacitance
unscreened lead. For d.c. and pulsed voltage testing, the test electrode may be either positive
or negative polarity, the other pole being earthed.
The requirements for pulsed waveforms are presented in Figures 1, 2 and 3.
For pulsed waveforms, the rise time of the wave front shall reach 90 % of the specified peak
value in less than 75 µs – see Figure 1. Fluctuations of the actual peak value, due to
variations of input power into the generator, shall not exceed ±2 % of the specified peak value
– see Figure 2. The peak value shall not show more than 5 % reduction in the event of an
increase of capacitive load of 50 pF, during the operation, from an initial load of 25 pF
between electrode and instrument ground. The time that each pulse remains at a voltage
greater than 80 % of the specified peak voltage shall be between 20 µs and 100 µs – see
Figure 3. The pulse repetition frequency shall be greater than 170 per second and less than
500 per second. This corresponds to pulse separations between 2 000 µs and 5 880 µs.
Visible or audible corona shall be evident in the electrode structure when operating at the
specified voltage.
– 14 – 62230 CEI:2006
100 %
90 %
µs
IEC 948/06
Légende
1 tension réelle
2 gamme de temps de montée de l’impulsion
3 75 µs maximum
Figure 1 – Exigences pour les formes d’onde avec impulsion –
Temps de montée de l’impulsion
102 %
100 %
98 %
µs
IEC 949/06
Légende
1 tension réelle
2 gamme de fluctuation
3 répétition de l’impulsion de 2 000 µs à 5 880 µs
Figure 2 – Exigences pour les formes d’onde avec impulsion –
Fluctuation de la valeur de crête et vitesse de répétition de l’impulsion
62230 IEC:2006 − 15 −
100 %
90 %
µs
IEC 948/06
Key
1 actual voltage
2 range of rise time of wavefront
3 maximum 75 µs
Figure 1 – Requirements for pulsed waveforms – Rise time of wavefront
102 %
100 %
98 %
µs
IEC 949/06
Key
1 actual voltage
2 fluctuation range
pulse repetition from 2 000 µs to 5 880 µs
Figure 2 – Requirements for pulsed waveforms –
Fluctuation of peak value and pulse repetition rate
– 16 – 62230 CEI:2006
100 %
80 %
µs
20 µs
100 µs
IEC 950/06
Légende
1 tension réelle
2 durée d’impulsion – minimale
3 durée d’impulsion – maximale
Figure 3 – Exigences pour les formes d’onde avec impulsion –
Durée d’impulsion
4.3 Equipement de contrôle de la tension
Pour les sources à courant alternatif, courant continu et haute fréquence, la tension entre
l’électrode et la terre doit être indiquée sur un voltmètre, soit par connexion directement au
terminal de sortie de la source haute tension, soit par tout dispositif équivalent approprié. Le
système de mesure doit avoir une précision de ±5 % de la valeur indiquée.
Pour une source avec impulsion, il doit y avoir un voltmètre lecteur de crête connecté
directement à l’électrode, indiquant continuellement la tension à l’électrode, avec ou sans fil
d’essai mis à la terre dans la chambre d’essai. Le voltmètre lecteur de crête doit indiquer une
pleine échelle à une valeur de crête ne dépassant pas 25 kV et avec un niveau de précision
de ±5 % de la valeur indiquée.
NOTE Si le sparker est à contrôler de loin, il convient de noter que le courant absorbé par le câble en essai peut
provoquer une variation de la tension d’essai. Dans ce cas, pour maintenir la tension dans la limite de précision de
5 %, il est nécessaire de réguler la source de tension.
62230 IEC:2006 − 17 −
100 %
80 %
µs
20 µs
100 µs
IEC 950/06
Key
1 actual voltage
2 pulse duration – minimum
3 pulse duration – maximum
Figure 3 – Requirements for pulsed waveforms – Pulse duration
4.3 Voltage monitoring equipment
For a.c., d.c. and h.f. sources, the voltage between electrode and earth shall be displayed on
a meter either by connection directly to the output terminal of the high-voltage source or by
any suitable equivalent arrangement. The measurement system shall have an accuracy of
±5 % of the indicated value.
For a pulse source there shall be a peak reading instrument voltmeter connected directly to
the electrode, continually indicating the voltage at the electrode, with or without a grounded
test wire in the test chamber. The peak reading voltmeter shall indicate full deflection at a
peak value not exceeding 25 kV and with a precision level of ±5 % of the indicated value.
NOTE If the spark-tester is to be controlled remotely, it should be noted that the current drawn by the cable under
test can cause variation of the test voltage. In this situation, the regulation of the voltage source needs to be
sufficient to maintain the voltage within the 5 % accuracy limit.
– 18 – 62230 CEI:2006
4.4 Indicateur de défaut
Il doit y avoir un circuit de détection pour fournir une indication visible et/ou audible du défaut
de l’enveloppe isolante ou de la gaine pour maintenir la tension spécifiée. Le détecteur de
défauts doit être disposé de façon à faire fonctionner un indicateur digital afin qu’un compte
par défaut discret soit enregistré. Il doit également être de type totaliseur et cumulatif jusqu’à
l’extrémité du défilement de câble. Le compteur doit maintenir l’indication, soit jusqu’à
l’enregistrement du défaut suivant, soit jusqu’à la suppression manuelle de l’indication.
4.5 Electrodes
Un choix approprié d’électrode doit être effectué de façon à obtenir le taux de détection
efficace maximal.
Les types de câbles à essayer (construction, matériaux, etc.) ainsi que les conditions d’essai
(vitesse linéaire, mode de source de tension, etc.) forment certains des paramètres à étudier.
Des exemples de types d’électrode sont les suivants:
– types à contact:
chaînettes à billes, hyperboloïde à ressorts, brosses (tournantes ou fixes);
– types sans contact:
tube métallique, anneaux.
4.6 Construction des électrodes
4.6.1 Types à contact
L’électrode doit être de construction métallique et sa longueur doit être telle que tout point du
conducteur isolé ou de la gaine non métallique en essai soit en contact électrique avec
l’électrode pendant des durées non inférieures à
a) pour l’électrode alimentée en courant alternatif: 0,05 s
NOTE 1 Ce temps représente une vitesse linéaire maximale de passage de 1,2 m/min par millimètre d’électrode.
La longueur minimale de l’électrode (mm) est donc donnée par 0,833 v, où v est la vitesse linéaire de passage
en m/min.
b) pour l’électrode alimentée en courant continu: 0,001 s
NOTE 2 Ce temps représente une vitesse linéaire maximale de passage de 60 m/min par millimètre d’électrode.
La longueur minimale de l’électrode (mm) est donc donnée par 0,017 v, où v est la vitesse linéaire de passage
en m/min.
0,002 5
c) pour l’électrode alimentée en haute fréquence: s
f
où f est la fréquence d’alimentation en kHz.
NOTE 3 Ce temps représente une vitesse linéaire maximale de passage de 24 f m/min par millimètre d’électrode.
La longueur minimale de l’électrode (mm) est donc donnée par 0,042 vlf, où v est la vitesse linéaire de passage
en m/min.
2,5
d) pour l’électrode alimentée avec impulsion: s
p
où p est le taux de répétition d’impulsion en impulsions par seconde.
NOTE 4 Ce temps représente une vitesse linéaire de passage maximale de 0,024 p m/min par millimètre
d’électrode. La longueur minimale de l’électrode (mm) est donc donnée par 42 vlp, où v est la vitesse linéaire de
passage en m/min.
62230 IEC:2006 − 19 −
4.4 Fault indicator
There shall be a detection circuit to provide a visible and/or audible indication of failure of the
insulation or sheath to maintain the specified voltage. The fault detector shall be arranged to
operate a digital display counter such that one count per discrete fault is registered. It shall
also be of a totalizer type and cumulative to the end of the cable run. The counter shall
maintain the indication until either the next succeeding fault is registered or until the
indication is manually cancelled.
4.5 Electrodes
An appropriate choice of electrode shall be made in order to obtain the maximum effective
rate of detection.
Types of cable to be tested (construction, materials, etc.) and the test conditions (linear
speed, voltage source mode, etc.) form some of the parameters to be considered.
Examples of electrode types are
- contact types:
bead chain, spring loaded hyperbola, brushes (rotating or fixed),
- non-contact types:
metallic tube, rings.
4.6 Design of electrodes
4.6.1 Contact type
The electrode shall be of metallic construction and its length shall be such that every point of
the insulated conductor or non-metallic sheath under test is in electrical contact with the
electrode for times not less than the following:
a) for a.c. supply to the electrode: 0,05 s
NOTE 1 This time represents a maximum linear throughput speed of 1,2 m/min per millimetre of electrode. The
minimum length of the electrode (mm) is therefore given by 0,833 v, where v is the linear throughput speed
in m/min.
b) for d.c. supply to the electrode : 0,001 s
NOTE 2 This time represents a maximum linear throughput speed of 60 m/min per millimetre of electrode. The
minimum length of the electrode (mm) is therefore given by 0,017 v, where v is the linear throughput speed
in m/min.
0,002 5
c) for h.f. supply to the electrode: s
f
where f is the supply frequency in kHz.
NOTE 3 This time represents a maximum linear throughput speed of 24 f m/min per millimetre of electrode. The
minimum length of the electrode (mm) is therefore given by 0,042 v/f, where v is the linear throughput speed
in m/min.
2,5
d) for pulse supply to the electrode: s
p
where p is the pulse repetition rate in pulses per second.
NOTE 4 This time represents a maximum linear throughput speed of 0,024 p m/min per millimetre of electrode.
The minimum length of the electrode (mm) is therefore given by 42 v/p, where v is the linear throughput speed
in m/min.
– 20 – 62230 CEI:2006
4.6.2 Types sans contact (courant continu uniquement)
L’électrode doit consister en un tube métallique cylindrique ou en une série d’anneaux
métalliques. Dans les deux cas, le diamètre interne ne doit pas dépasser 15 mm. Dans le cas
du type à anneaux, le nombre d’anneaux doit être tel qu’un champ électrique uniforme soit
formé. Ces électrodes ne doivent être utilisées qu’avec une source en courant continu et leur
longueur doit être telle que tout point du conducteur isolé ou de la gaine non métallique soit
dans l’électrode pendant au moins 0,001 s.
NOTE Ce temps représente une vitesse de passage linéaire maximale de 60 m/min par millimètre d’électrode. La
longueur minimale de l’électrode (mm) est donc donnée par 0,017 v, où v est la vitesse de débit linéaire en m/min.
La construction de l’électrode sans contact doit être telle que le câble en essai puisse être
guidé par tous moyens appropriés le long de l’axe central et maintenu dans cette position
sans déviation excessive pendant la durée de l’essai.
Le diamètre extérieur maximal recommandé de l’âme ou du câble à essayer en utilisant le
système de l’électrode sans contact est de 3,0 mm.
L’utilisation de ce type d’électrode doit être limitée à une tension d’essai de 18 kV.
5 Tensions d’essai
La tension d’essai dépend du type d’électrode utilisé et de la forme d’onde de tension
appliquée.
La tension est en rapport avec l’épaisseur de la couche totale soumise à l’essai. Celle-ci peut
être une couche isolante, une gaine sur une couche métallique, ou une combinaison
d’enveloppe isolante et de gaine sans couche métallique intermédiaire.
L’âme du câble en essai, ou la couche métallique en dessous de la gaine en essai, doivent
être continuellement reliées à la terre tout au long de l’essai, de façon que toute la tension
d’essai soit appliquée entre l’électrode et ce composant du câble mis à la terre.
La plage des tensions d’essai doit être trouvée dans la norme du câble. On peut utiliser les
tensions d’essai recommandées données à l’Annexe A, en cas d’absence de tensions
spécifiées.
6 Sensibilité
6.1 Tensions en courant alternatif, en courant continu et à haute fréquence
La sensibilité de l
...
IEC 62230 ®
Edition 1.1 2013-11
CONSOLIDATED VERSION
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Electric cables –Spark-test method
Câbles électriques – Méthode d'essai au défilement à sec (sparker)
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - webstore.iec.ch/advsearchform IEC online collection - oc.iec.ch
The advanced search enables to find IEC publications by a Discover our powerful search engine and read freely all the
variety of criteria (reference number, text, technical publications previews. With a subscription you will always
committee, …). It also gives information on projects, replaced have access to up to date content tailored to your needs.
and withdrawn publications.
Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished
The world's leading online dictionary on electrotechnology,
Stay up to date on all new IEC publications. Just Published
containing more than 22 000 terminological entries in English
details all new publications released. Available online and
and French, with equivalent terms in 18 additional languages.
once a month by email.
Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer Service
Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Recherche de publications IEC - IEC online collection - oc.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications IEC gratuitement tous les aperçus des publications. Avec un
en utilisant différents critères (numéro de référence, texte, abonnement, vous aurez toujours accès à un contenu à jour
comité d’études, …). Elle donne aussi des informations sur adapté à vos besoins.
les projets et les publications remplacées ou retirées.
Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished
Le premier dictionnaire d'électrotechnologie en ligne au
Restez informé sur les nouvelles publications IEC. Just
monde, avec plus de 22 000 articles terminologiques en
Published détaille les nouvelles publications parues.
anglais et en français, ainsi que les termes équivalents dans
Disponible en ligne et une fois par mois par email.
16 langues additionnelles. Egalement appelé Vocabulaire
Electrotechnique International (IEV) en ligne.
Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-nous:
sales@iec.ch.
IEC 62230 ®
Edition 1.1 2013-11
CONSOLIDATED VERSION
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Electric cables –Spark-test method
Câbles électriques – Méthode d'essai au défilement à sec (sparker)
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 29.060.20 ISBN 978-2-8322-1280-6
IEC 62230 ®
Edition 1.1 2013-11
CONSOLIDATED VERSION
REDLINE VERSION
VERSION REDLINE
colour
inside
Electric cables –Spark-test method
Câbles électriques – Méthode d'essai au défilement à sec (sparker)
− 2 − 62230 IEC:2006+A1:2013
CONTENTS
FOREWORD . 3
INTRODUCTION . 5
1 Scope . 6
2 Types of voltage waveform . 6
3 Procedure . 6
4 Equipment . 7
4.1 Safety . 7
4.2 High voltage source . 7
4.3 Voltage monitoring equipment . 9
4.4 Fault indicator . 9
4.5 Electrodes . 10
4.6 Design of electrodes . 10
5 Test voltages . 11
6 Sensitivity . 11
6.1 AC, d.c. and h.f. voltages . 11
6.2 Pulsed voltages . 11
6.3 Method of assessment. 12
7 Calibration . 12
7.1 General . 12
7.2 Verification frequency . 13
Annex A (informative normative) Recommended Minimum voltage levels . 14
Annex B (informative) Example of an artificial fault device . 16
Annex C (informative) Notes on the use of spark testing machines . 17
Bibliography . 18
Figure 1 – Requirements for pulsed waveforms – Rise time of wavefront . 8
Figure 2 – Requirements for pulsed waveforms – Fluctuation of peak value and pulse
repetition rate . 8
Figure 3 – Requirements for pulsed waveforms – Pulse duration . 9
Figure B.1 – Needle for use in the artificial fault device . 16
Table A.1 – Recommended Minimum spark-test voltages for cables having rated
voltage (U ) between 300 V and 3 000 V . 15
62230 IEC:2006+A1:2013 − 3 −
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
ELECTRIC CABLES –
SPARK-TEST METHOD
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
This consolidated version of the official IEC Standard and its amendment has been
prepared for user convenience.
IEC 62230 edition 1.1 contains the first edition (2006) [documents 20/810/FDIS and
20/816/RVD] and its amendment 1 (2013) [documents 20/1462/FDIS and 20/1470/RVD].
In this Redline version, a vertical line in the margin shows where the technical content is
modified by amendment 1. Additions and deletions are displayed in red, with deletions
being struck through. A separate Final version with all changes accepted is available in
this publication.
− 4 − 62230 IEC:2006+A1:2013
International Standard IEC 62230 has been prepared by IEC technical committee 20: Electric
cables.
This standard, based on the European Norm EN 50356 (2002), was prepared by CENELEC
technical committee 20: Electric cables. It was submitted to the national committees for voting
under fast track procedure.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
The committee has decided that the contents of the base publication and its amendment will
remain unchanged until the stability date indicated on the IEC web site under
"http://webstore.iec.ch" in the data related to the specific publication. At this date, the
publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
IMPORTANT – The “colour inside” logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this publication using a colour printer.
62230 IEC:2006+A1:2013 − 5 −
INTRODUCTION
The practice of using spark-testers to detect defects in the insulation or sheathing layers of
electric cables has been developed over many years of practical experience.
The operation of the equipment using the verification method described in this standard has
proved to be satisfactory. This method employs an artificial fault simulator and its
performance has been shown to be comparable to that using operational efficacy tests
involving the detection of artificially prepared defects (i.e. faults in the insulation/sheathing
material) in lengths of cable.
− 6 − 62230 IEC:2006+A1:2013
ELECTRIC CABLES –
SPARK-TEST METHOD
1 Scope
The spark-test method specified in this standard is intended for the detection of defects in the
insulation or sheathing layers of electric cables. For single-core cables with no outer metallic
layer, the general process is accepted as being equivalent to subjecting samples of those
cables to a voltage test in water.
This standard specifies the operational requirements for the spark-test equipment, as well as
the principal characteristics, functional parameters and calibration procedures for each type of
test equipment.
2 Types of voltage waveform
For the purposes of this standard, the types of voltage waveform used for spark-testing are
divided into the following groups:
a.c. an alternating current (a.c.) voltage of approximately sine-wave form, at the
industrial frequency of 40 Hz to 62 Hz;
d.c. a direct current (d.c.) voltage;
h.f. an alternating current (a.c.) voltage of approximately sine-wave form, at
frequencies between 500 Hz and 1 MHz;
pulsed a voltage waveform comprising a fast rise time and highly damped wave-tail, as
defined in 4.2.
NOTE Provided the manufacturer can demonstrate equivalent effectiveness, h.f. voltages at frequencies below
500 Hz may be used.
3 Procedure
The insulated conductor or sheathed cable shall be passed through an electrode energized at
the test voltage. The method detailed in this standard provides for the application of a.c., d.c.,
h.f. and pulsed voltages.
The requirements for voltage waveform, frequency and test voltage are given in 4.2 and
Clause 5. The maximum speed at which the cable shall pass through the electrode is
determined by the minimum residence time specified in 4.6.
When used as an alternative to a voltage test in water, it is recommended that the test shall
be restricted to layer thicknesses not greater than 2,0 mm and to a.c. and d.c. test voltages
unless otherwise specified in the cable standard. Only the a.c. or d.c. voltage waveforms shall
be used.
The requirements are not applicable to cable insulation having a rated voltage (U ) greater
than 3 kV.
Annex A provides recommended minimum voltages for each voltage waveform, to be used in
the absence of any alternative voltages in the relevant cable standard.
62230 IEC:2006+A1:2013 − 7 −
4 Equipment
4.1 Safety
To limit the effect of electric shock to personnel, for all types of voltage source, the equipment
shall be constructed in such a way that the short-circuit current is limited to less than 10 mA
r.m.s. or equivalent.
This requirement is additional to, or may be superseded by, any national regulation that
prevails at the time.
NOTE Guidance on the limiting of shock currents can be found in IEC 60479-1 and IEC 60479-2.
Further aspects of operational safety are given in Annex C.
4.2 High voltage source
The high-voltage electrode shall be supplied in one of the following forms, as defined in
Clause 2: a.c., d.c., h.f. or pulsed.
For a d.c. test, connection to the test electrode shall be by means of a low capacitance
unscreened lead. For d.c. and pulsed voltage testing, the test electrode may be either positive
or negative polarity, the other pole being earthed.
The requirements for pulsed waveforms are presented in Figures 1, 2 and 3.
For pulsed waveforms, the rise time of the wave front shall reach 90 % of the specified peak
value in less than 75 µs – see Figure 1. Fluctuations of the actual peak value, due to
variations of input power into the generator, shall not exceed ±2 % of the specified peak value
– see Figure 2. The peak value shall not show more than 5 % reduction in the event of an
increase of capacitive load of 50 pF, during the operation, from an initial load of 25 pF
between electrode and instrument ground. The time that each pulse remains at a voltage
greater than 80 % of the specified peak voltage shall be between 20 µs and 100 µs – see
Figure 3. The pulse repetition frequency shall be greater than 170 per second and less than
500 per second. This corresponds to pulse separations between 2 000 µs and 5 880 µs.
Visible or audible corona shall be evident in the electrode structure when operating at the
specified voltage.
− 8 − 62230 IEC:2006+A1:2013
100 %
90 %
µs
IEC 948/06
Key
1 actual voltage
2 range of rise time of wavefront
3 maximum 75 µs
Figure 1 – Requirements for pulsed waveforms – Rise time of wavefront
102 %
100 %
98 %
µs
IEC 949/06
Key
1 actual voltage
2 fluctuation range
3 pulse repetition from 2 000 µs to 5 880 µs
Figure 2 – Requirements for pulsed waveforms –
Fluctuation of peak value and pulse repetition rate
62230 IEC:2006+A1:2013 − 9 −
100 %
80 %
µs
20 µs
100 µs
IEC 950/06
Key
1 actual voltage
2 pulse duration – minimum
3 pulse duration – maximum
Figure 3 – Requirements for pulsed waveforms – Pulse duration
4.3 Voltage monitoring equipment
For a.c., d.c. and h.f. sources, the voltage between electrode and earth shall be displayed on
a meter either by connection directly to the output terminal of the high-voltage source or by
any suitable equivalent arrangement. The measurement system shall have an accuracy of
±5 % of the indicated value.
For a pulse source there shall be a peak reading instrument voltmeter connected directly to
the electrode, continually indicating the voltage at the electrode, with or without a grounded
test wire in the test chamber. The peak reading voltmeter shall indicate full deflection at a
peak value not exceeding 25 kV and with a precision level of ±5 % of the indicated value.
NOTE If the spark-tester is to be controlled remotely, it should be noted that the current drawn by the cable under
test can cause variation of the test voltage. In this situation, the regulation of the voltage source needs to be
sufficient to maintain the voltage within the 5 % accuracy limit.
4.4 Fault indicator
There shall be a detection circuit to provide a visible and/or audible indication of failure of the
insulation or sheath to maintain the specified voltage. The fault detector shall be arranged to
operate a digital display counter such that one count per discrete fault is registered. It shall
also be of a totalizer type and cumulative to the end of the cable run. The counter shall
maintain the indication until either the next succeeding fault is registered or until the
indication is manually cancelled.
− 10 − 62230 IEC:2006+A1:2013
4.5 Electrodes
An appropriate choice of electrode shall be made in order to obtain the maximum effective
rate of detection.
Types of cable to be tested (construction, materials, etc.) and the test conditions (linear
speed, voltage source mode, etc.) form some of the parameters to be considered.
Examples of electrode types are
- contact types:
bead chain, spring loaded hyperbola, brushes (rotating or fixed),
- non-contact types:
metallic tube, rings.
4.6 Design of electrodes
4.6.1 Contact type
The electrode shall be of metallic construction and its length shall be such that every point of
the insulated conductor or non-metallic sheath under test is in electrical contact with the
electrode for times not less than the following:
a) for a.c. supply to the electrode: 0,05 s
NOTE 1 This time represents a maximum linear throughput speed of 1,2 m/min per millimetre of electrode. The
minimum length of the electrode (mm) is therefore given by 0,833 v, where v is the linear throughput speed
in m/min.
b) for d.c. supply to the electrode : 0,001 s
NOTE 2 This time represents a maximum linear throughput speed of 60 m/min per millimetre of electrode. The
minimum length of the electrode (mm) is therefore given by 0,017 v, where v is the linear throughput speed
in m/min.
0,002 5
c) for h.f. supply to the electrode: s
f
where f is the supply frequency in kHz.
NOTE 3 This time represents a maximum linear throughput speed of 24 f m/min per millimetre of electrode. The
minimum length of the electrode (mm) is therefore given by 0,042 v/f, where v is the linear throughput speed
in m/min.
2,5
d) for pulse supply to the electrode: s
p
where p is the pulse repetition rate in pulses per second.
NOTE 4 This time represents a maximum linear throughput speed of 0,024 p m/min per millimetre of electrode.
The minimum length of the electrode (mm) is therefore given by 42 v/p, where v is the linear throughput speed
in m/min.
4.6.2 Non-contact type (d.c. test only)
The electrode shall consist of a cylindrical metal tube or series of metallic rings. In either case
the internal diameter(s) shall not be greater than 15 mm. In the case of the ring type, the
number of rings shall be such that a uniform electric field is formed. These electrodes shall
only be used with a d.c. source and their length shall be such that every point of the insulated
conductor or non-metallic sheath is in the electrode for not less than 0,001 s.
NOTE This time represents a maximum linear throughput speed of 60 m/min per millimetre of electrode. The
minimum length of the electrode (mm) is therefore given by 0,017 v, where v is the linear throughput speed
in m/min.
62230 IEC:2006+A1:2013 − 11 −
The design of the non-contact electrode shall be such that the cable under test is guided by
any suitable means along the central axis and be maintained in that position without undue
deviation for the duration of the test run.
The maximum recommended overall diameter of the core or cable to be tested using the non-
contact electrode system is 3,0 mm.
The use of this type of electrode shall be restricted to a test voltage of 18 kV.
5 Test voltages
The test voltage depends upon the type of electrode used and the voltage waveform applied.
The voltage is related to the total layer thickness being subjected to the test. This may be an
insulation layer, a sheath over a metallic layer, or a combination of insulation and sheath with
no intermediate metallic layer.
The conductor of the cable under test, or the metallic layer underlying the sheath under test,
shall be continuously earthed throughout the test, such that the full test voltage is applied
between the test electrode and this earthed component of the cable.
The magnitude of the test voltages are to be found in the cable standard Where a cable
standard states the test voltages, these shall be used. In the absence of such specified
voltages, use can be made of the recommended test voltages given in Annex A shall be used.
6 Sensitivity
6.1 AC, d.c. and h.f. voltages
The sensitivity of the spark test equipment shall be such that the fault detector will operate when
an artificial fault is connected between the electrode and earth. The method is given in 6.3.
The performance requirement for each type of voltage source is given below: Equipment shall
be capable of detecting the faults described in 6.1.1 and 6.1.2 and shall be verified according
to 6.3.
6.1.1 AC and h.f.
The typical A fault is defined as a fault current
a) between 0,5 mA and 10 mA in conformity with the technical characteristics of the test
equipment,
b) at a minimum repetition frequency of 1 pulse per second,
c) with a minimum current duration of 0,025 s,
d) with a minimum series of 20 pulses.
6.1.2 DC
The typical A fault is defined as a fault current as above for a.c. and h.f. conditions except
that the minimum current duration shall be 0,000 5 s and at a level between 0,1 mA and
10 mA.
6.2 Pulsed voltages
The sensitivity shall be such that the fault detector will operate when a typical fault is present
between electrode and earth.
− 12 − 62230 IEC:2006+A1:2013
The typical A fault is defined as that generated through a 0,5 MΩ resistor by one pulse over
its operating voltage range.
6.3 Method of assessment
NOTE 1 To check the absence of interference on fault detection through the corona effect, it is necessary to test a
number of lengths of fault free cable at the maximum voltage. No single fault should be detected.
The no-load electrode voltage shall be set initially at 3 kV r.m.s. (a.c. and h.f. systems) or
5 kV for d.c. systems or the minimum test level if greater. When the artificial fault device is
connected to the electrode, with the spark gap temporarily short circuited, the steady state
current shall not exceed 600 µA. In order to limit the current to a suitable value an impedance
may be added in series with the artificial fault device.
NOTE 2 Where the test is to be used as an in-process check in addition to the final voltage test on the cable, the
sensitivity test at 3 kV r.m.s. or 5 kV d.c. may be carried out at a steady state current of 1,5 mA. This would be
appropriate if the normal operating conditions are such that a sensitivity setting of less than 1,5 mA during
production would lead to spurious tripping of the detector.
The artificial fault device shall be set to produce a spark having a maximum duration of
0,025 s for a.c. and h.f., or 0,000 5 s for d.c., for each simulated fault.
A succession of not less than 20 sparks (as specified above) shall be effected, with
consecutive sparks being no more than 1 s apart and, if required, with the current-limiting
impedance in series with the gap. The fault indicator shall register neither more nor less than
one count per spark.
The current-limiting impedance, if any, shall then be short circuited. A fault-free length of
cable, presenting the largest capacitive load with which the spark-tester is to be used, shall
be inserted into the electrode. Alternatively, a high-voltage capacitor having the equivalent
capacitance shall be connected across the gap. The electrode voltage shall be increased to
the maximum required test voltage.
The test shall then be repeated in order to establish that 20 further sparks (no more than 1 s
apart) cause the fault indicator to register neither more nor less than one count per spark.
NOTE 3 Separate artificial fault devices may be used for the two tests, in order to limit damage caused by the high
energy sparks, for example by erosion of spark gaps.
NOTE 4 Details of one common type of artificial fault device are given in Annex B.
7 Calibration
7.1 General
Verification of the performance of the equipment for a.c., d.c. and h.f. voltage sources shall be
carried out using the sensitivity determination specified in 6.3 for a.c., d.c. and h.f. voltage
sources.
The pulse type equipment shall be calibrated by means of a peak detecting electronic
voltmeter connected directly between the electrode head and ground. The pulse generator
shall be energized and the voltage control of the pulse generator shall be adjusted until the
reading on the calibration voltmeter is the specified voltage, at which point the reading on the
instrument voltmeter shall be observed and recorded. This calibration shall be repeated at
each specified peak voltage. The pulse waveform shall be monitored by means of an
oscilloscope connected to the electrode head at suitable test points.
NOTE Calibration may be accomplished without a test cable in the electrode, in which case the voltage control on
the pulse generator may require a different setting for each cable size in order to give the desired reading on the
instrument voltmeter; or the calibration may be made with a load of 20 pF to 60 pF. The equipment may also be
calibrated against an oscilloscope with a calibrated and compensated attenuator. The chosen method should have
an accuracy of ± 2 %.
62230 IEC:2006+A1:2013 − 13 −
7.2 Verification frequency
The test system may be demonstrated to be effective by carrying out the sensitivity
assessment in Clause 6. It is recommended that the verification is carried out at least once a
year, upon initial installation and after any repairs or major adjustments to the equipment.
The accuracy of voltage measurement specified in 4.3 shall be verified at least once a year
and after any repairs or major adjustments to the equipment.
The user shall verify that the following functions operate efficiently on a regular basis:
a) fault registration system;
b) fault alarm system;
c) in-line controls operated by fault detection;
d) mechanical state and cleanliness of the electrode assembly;
e) safety interlocks;
f) maximum short circuit levels.
− 14 − 62230 IEC:2006+A1:2013
Annex A
(informative normative)
Recommended Minimum voltage levels
A.1 General
The levels of test voltages given below are those for use where no alternative voltages are
specified in the cable standard. The test voltages given in Table A.1 shall be used, unless the
cable standard specifies alternative test voltages.
The details of the test method are as given in the main section of this standard.
A.2 Test voltages
A.2.1 General
The voltages given in this Annex A are recommended as the minimum levels to be used to
locate defects in the layer under test. The applicability of these levels should be confirmed by
the manufacturer and will depend upon the type of material being tested. These levels shall
only be reduced if specified in the relevant cable standard.
NOTE Some countries have established higher test levels in their national standards.
A.2.2 Contact electrodes
The high-voltage supply to the test electrode may be a.c., d.c., h.f. or pulsed voltage, as
specified in Clause 2 and 4.2.
Table A.1 gives test voltages which are recommended for cables having a rated voltage (U )
between 300 V and 3 000 V.
62230 IEC:2006+A1:2013 − 15 −
Table A.1 – Recommended Minimum spark-test voltages for cables having rated voltage
(U ) between 300 V and 3 000 V
Tabulated radial thickness of
Test voltage
layer under test
kV
mm
a a a
From Above Up to and a.c. d.c. h.f. Pulse
including
0 0,25 3 5 4 5
0,26 0,25 0,50 5 7 6 7
0,51 0,50 0,75 6 9 7 9
0,76 0,75 1,00 7 11 8 11
ab
1,01 1,00 1,25 9 13 10 13
ab
1,26 1,25 1,50 10 15 11 15
ab
1,51 1,50 1,75 12 17 13 17
ab
1,76 1,75 2,00 13 20 14 20
ab
2,01 2,00 2,25 14 22 15
ab
2,26 2,25 2,50 16 24 17
ab
2,51 2,50 2,75 17 26 18
ab
2,76 2,75 3,00 19 28 20
3,00 3,25 21 32
3,25 3,50 23 35
3,50 - 25 38
a
The a.c.and h.f. test voltages are r.m.s. values, the pulse test voltage is the peak value.
ab
h.f. voltage testing for layer thicknesses greater than 1,0 mm should shall be limited to frequencies
between 500 Hz and 4 kHz.
NOTE 1 The tabulated radial thickness is either the nominal thickness calculated in accordance with the relevant
cable standard or the thickness specified in the constructional table of the relevant cable standard whichever is
applicable.
Pulsed voltage testing is not recommended shall not be used for layer thicknesses greater
than 2,0 mm.
As a test to replace the traditional voltage test in water for single-core cables without any
outer metallic layer, the recommendations in Table A.1 only applyies for thicknesses up to not
greater than 2,0 mm and for only the a.c. or d.c. voltage waveforms shall be used.
When testing laid-up core assemblies, i.e. cables without sheath, the test voltage level shall
be that for the lowest individual insulation thickness in the assembly.
NOTE 2 Particular cable standards may, in exceptional circumstances (e.g. for sheathing materials known to
exhibit low insulation resistance characteristics, i.e. K less than 100 MΩ.km), recommend or require a reduction in
i
the test voltage to ensure that excessive leakage current does not flow and give rise to spurious faults. In no
instance will the reduction be in excess of a factor of two and the fault detection system will be verified under the
alternative test conditions.
A.2.3 Non-contact electrodes
The high-voltage supply to the test electrode shall be d.c. only, as defined in 4.2. The
conductor of the core or the metallic layer under the sheath shall be continuously earthed and
the potential difference between the electrode and the conductor or the metallic layer shall be
18 kV.
− 16 − 62230 IEC:2006+A1:2013
Annex B
(informative)
Example of an artificial fault device
One common type of artificial fault device comprises a needle point and a metal plate or shoe.
One of these elements is mounted on a rotating spindle, while the other element is fixed, such
that a spark gap is created between the two at one point during each revolution of the spindle.
The spark gap between needle and plate is set to (0,25 ± 0,05) mm.
The dimensions of the plate and the rotational speed are such that the spark is maintained for
the required maximum duration of 0,025 s (for a.c. and h.f.) or 0,000 5 s (for d.c.) with a
maximum repetition rate of 1 s.
The point of the needle is formed from a 1,0 mm chrome finished steel element over a
distance of 3,75 mm along the axis as illustrated in Figure B.1. The radius of the point is less
than or equal to 0,03 mm. The angle of the point is not greater than 16°.
A suitable point may be obtained from the end portion of a needle widely available from
commercial sources.
The needle should be discarded after a maximum of 400 repetitive sparks.
3,75 ± 0,05
IEC 951/06
Dimensions in millimetres
Key
1 radius of point ≤ 0,03
Figure B.1 – Needle for use in the artificial fault device
———————
For information on the availability of suitable needles, contact national standards organisations.
1,00 ± 0,002
62230 IEC:2006+A1:2013 − 17 −
Annex C
(informative)
Notes on the use of spark testing machines
C.1 General
It is recommended that, when spark-testing is being carried out, any safety guidance provided
by the equipment manufacturer be strictly observed. In the absence of contrary advice from
the equipment manufacturer, the following precautions should be observed, as well as any
supplementary guidance from site safety officers.
C.2 Access to electrode systems
To avoid the risk of operator shock when access is desired to the electrode systems, it is
advisable to check regularly that the automatic switch-off mechanisms on the shielded
enclosure for the electrodes are functioning correctly.
C.3 Conductor earthing
Unless the conductor, metallic sheath, screen or armour underlying the non-metallic covering
under test is effectively and continuously earthed, faults may not be located. Continuous
earthing or other suitable means should be provided for the prevention of electrical shock. It is
particularly important with pulsed voltages, for both operational and safety reasons, that this
connection provides a very low impedance to earth.
C.4 Leakage currents
Precautions are necessary to ensure the satisfactory operation of spark testing equipment by
restricting leakage currents to a minimum level, e.g. by removing surface moisture from the
core or cable under test before it enters the spark testing electrode. The removal of surface
moisture is particularly important for d.c. spark-testers, to avoid false registering of faults.
C.5 Charge removal
A length of core or cable which has been subjected to d.c. spark testing may retain a high
potential static charge for a certain period after the test. To avoid the possibility of operator
shock, care should be taken to ensure that a means of removing the charge from the cable
surface is provided, e.g. by allowing the core or cable to run over or through an earthed
metallic electrode immediately on emerging from the test electrode.
C.6 Ozone production
Warning: Attention is drawn to the toxicity of ozone. Precautions should be taken to minimize
exposure of personnel to it at all times and the concentration in the close workshop
-6
environment should not be allowed to exceed 10 × 10 % (i.e. 10 parts of ozone per hundred
million parts of air by volume), or the value in the current industrial hygienic standard,
whichever is lower.
Corona discharges within the spark-tester will convert oxygen in the air into ozone. The
design of the equipment, its maximum operating voltage and operating procedures should be
such as to limit ozone concentrations to an acceptable level. Users are advised to check that
this is the case.
− 18 − 62230 IEC:2006+A1:2013
Bibliography
IEC/TS 60479-1, Effects of current on human beings and livestock – Part 1: General aspects
IEC/TR 60479-2, Effects of current passing through the human body – Part 2: Special aspects
– Chapter 4: Effects of alternating current with frequencies above 100 Hz – Chapter 5: Effects
of special waveforms of current – Chapter 6: Effects of unidirectional single impulse currents
of short duration
___________
– 20 – 62230 CEI:2006+A1:2013
SOMMAIRE
AVANT-PROPOS . 21
INTRODUCTION . 23
1 Domaine d’application . 24
2 Types des formes d’ondes de tension . 24
3 Méthode . 24
4 Equipement . 25
4.1 Sécurité . 25
4.2 Source de haute tension . 25
4.3 Equipement de contrôle de la tension . 27
4.4 Indicateur de défaut . 27
4.5 Electrodes . 28
4.6 Construction des électrodes . 28
5 Tensions d’essai. 29
6 Sensibilité . 29
6.1 Tensions en courant alternatif, en courant continu et à haute fréquence. 29
6.2 Tensions avec impulsion . 30
6.3 Méthode d’évaluation . 30
7 Calibrage . 30
7.1 Généralités. 30
7.2 Fréquence de la vérification . 31
Annexe A (informative normative) Niveaux de tension minimaux recommandés . 32
Annexe B (informative) Exemple de dispositif de défaut artificiel . 34
Annexe C (informative) Notes sur l’utilisation des sparkers . 35
Bibliographie . 37
Figure 1 – Exigences pour les formes d’onde avec impulsion – Temps de montée de
l’impulsion . 26
Figure 2 – Exigences pour les formes d’onde avec impulsion – Fluctuation de la valeur
de crête et vitesse de répétition de l’impulsion . 26
Figure 3 – Exigences pour les formes d’onde avec impulsion – Durée d’impulsion . 27
Figure B.1 – Aiguille à utiliser dans le dispositif de défaut artificiel . 34
Tableau A.1 – Tensions minima
...










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...