IEC 60096-0-1:2012
(Main)Radio frequency cables - Part 0-1: Guide to the design of detail specifications - Coaxial cables
Radio frequency cables - Part 0-1: Guide to the design of detail specifications - Coaxial cables
IEC 60096-0-1:2012 provides guidance for the design of radio frequency coaxial cables with braid, metallic tapes or tubular outer conductors. This third edition cancels and replaces the second edition published in 1990. It constitutes a technical revision. The significant changes with respect to the previous edition are as follows:
- tables of material constants and factors and have been updated, different equations have been updated and corrected;
- a subclause dealing with the calculation of "Current carrying capacity of coaxial cables has been added as Subclause 7.7.
Câbles pour fréquences radioélectriques - Partie 0-1: Lignes directrices pour la conception des spécifications particulières - Câbles coaxiaux
La CEI 60096-0-1:2012 donne des lignes directrices pour la conception des câbles coaxiaux pour fréquences radioélectriques à tresse, ruban métallique ou conducteurs extérieurs tubulaires. Cette troisième édition annule et remplace la deuxième édition parue en 1990. Elle constitue une révision technique. Les principales modifications par rapport à l'édition précédente sont les suivantes:
- les tableaux contenant les constantes et les facteurs relatifs aux matériaux ont été mis à jour, un certain nombre d équations ont été mises à jour et corrigées;
- un paragraphe traitant du calcul du «courant admissible dans les câbles coaxiaux» a été ajouté en tant que Paragraphe 7.7.
General Information
Relations
Standards Content (Sample)
IEC 60096-0-1 ®
Edition 3.0 2012-10
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Radio frequency cables –
Part 0-1: Guidelines to the design of detail specifications – Coaxial cables
Câbles pour fréquences radioélectriques –
Partie 0-1: Lignes directrices pour la conception des spécifications particulières
‒ Câbles coaxiaux
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les
microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.
Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette
publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.
IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé Fax: +41 22 919 03 00
CH-1211 Geneva 20 info@iec.ch
Switzerland www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
Useful links:
IEC publications search - www.iec.ch/searchpub Electropedia - www.electropedia.org
The advanced search enables you to find IEC publications The world's leading online dictionary of electronic and
by a variety of criteria (reference number, text, technical electrical terms containing more than 30 000 terms and
committee,…). definitions in English and French, with equivalent terms in
It also gives information on projects, replaced and additional languages. Also known as the International
withdrawn publications. Electrotechnical Vocabulary (IEV) on-line.
IEC Just Published - webstore.iec.ch/justpublished Customer Service Centre - webstore.iec.ch/csc
Stay up to date on all new IEC publications. Just Published If you wish to give us your feedback on this publication
details all new publications released. Available on-line and or need further assistance, please contact the
also once a month by email. Customer Service Centre: csc@iec.ch.
A propos de la CEI
La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications CEI
Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez
l’édition la plus récente, un corrigendum ou amendement peut avoir été publié.
Liens utiles:
Recherche de publications CEI - www.iec.ch/searchpub Electropedia - www.electropedia.org
La recherche avancée vous permet de trouver des Le premier dictionnaire en ligne au monde de termes
publications CEI en utilisant différents critères (numéro de électroniques et électriques. Il contient plus de 30 000
référence, texte, comité d’études,…). termes et définitions en anglais et en français, ainsi que
Elle donne aussi des informations sur les projets et les les termes équivalents dans les langues additionnelles.
publications remplacées ou retirées. Egalement appelé Vocabulaire Electrotechnique
International (VEI) en ligne.
Just Published CEI - webstore.iec.ch/justpublished
Service Clients - webstore.iec.ch/csc
Restez informé sur les nouvelles publications de la CEI.
Just Published détaille les nouvelles publications parues. Si vous désirez nous donner des commentaires sur
Disponible en ligne et aussi une fois par mois par email. cette publication ou si vous avez des questions
contactez-nous: csc@iec.ch.
IEC 60096-0-1 ®
Edition 3.0 2012-10
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Radio frequency cables –
Part 0-1: Guidelines to the design of detail specifications – Coaxial cables
Câbles pour fréquences radioélectriques –
Partie 0-1: Lignes directrices pour la conception des spécifications particulières
‒ Câbles coaxiaux
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
PRICE CODE
INTERNATIONALE
CODE PRIX T
ICS 33.120.10 ISBN 978-2-83220-473-3
– 2 – 60096-0-1 © IEC:2012
CONTENTS
FOREWORD . 4
1 Scope . 6
2 Normative references . 6
3 Symbols and numbering . 6
3.1 Register of symbols used . 6
3.2 Numbering of construction elements . 8
4 Material constants . 9
4.1 Table of material constants relating to dielectric and sheath and their values
for different materials . 9
4.2 Tables of material constants relating to conductors . 11
4.3 Construction constants . 12
4.3.1 Table of construction constants relating to inner conductor . 12
4.3.2 Table of construction constants relating to braided outer conductors
and screens . 12
4.4 Table of braid wire dimensions of outer conductor and screen . 13
4.5 Attenuation factors . 13
4.6 Maximum permissible input power . 14
5 Standard values of characteristic impedance and outer diameter of dielectric . 14
5.1 Nominal characteristic impedance of coaxial cables . 14
5.2 Nominal diameters over dielectric of coaxial cables . 15
6 Cable construction details . 16
6.1 General . 16
6.2 Inner conductor . 17
6.3 Stranded inner conductor . 17
6.4 Braided outer conductors . 17
6.5 Medium between outer conductor and screen . 18
6.6 Braided screen . 18
6.7 Sheath diameters . 18
6.8 Weight calculation . 18
7 Calculation of electrical properties . 19
7.1 DC resistance of conductors and screen, per unit length . 19
7.2 Attenuation . 20
7.3 Nominal characteristic impedance Z and capacitance C per unit length . 20
o 2
7.4 Calculation of power rating . 20
7.5 Permissible voltages . 21
7.5.1 Test voltage, dielectric, U . 21
t
7.5.2 Discharge test voltage, dielectric, U . 22
d
7.5.3 Maximum permissible operating voltage, U . 22
o
7.5.4 Test voltage, sheath . 22
7.6 Insulation resistance . 22
7.7 Current carrying capacity of coaxial cables . 23
7.7.1 Principle . 23
7.7.2 Definitions . 23
7.7.3 Requirements . 24
Figure 1 – Graph for calculation of maximum permissible input power . 14
60096-0-1 © IEC:2012 – 3 –
Table 1 – Example of use of k factor . 8
x
Table 2 – Example of use of k factor . 8
xy
Table 3 – Material constants relating to dielectric and sheath and their values for
different materials . 9
Table 4 – Conductivity (at 20 °C) and density . 11
a
Table 5 – Coating factor . 11
Table 6 – Tinned copper wire . 11
Table 7 – Copper clad steel wire . 12
Table 8 – Construction constants relating to inner conductor . 12
Table 9 – Construction constants relating to braided outer conductors and screens . 13
Table 10 – Braid wire dimensions of outer conductor and screen . 13
Table 11 – Factor relating to calculation of attenuation – examples . 13
Table 12 – Nominal diameters D over dielectric and the tolerances . 15
Table 13 – Special design features . 16
Table 14 – Special design features . 17
Table 15 – Braided outer conductors . 17
Table 16 – Medium between outer conductor and screen . 18
Table 17 – Braided screen . 18
Table 18 – Sheath diameters . 18
Table 19 – Weight calculation . 19
Table 20 – Electrical properties. 19
Table 21 – Factors for calculation of attenuation . 20
Table 22 – Test voltages for PVC sheaths . 22
– 4 – 60096-0-1 © IEC:2012
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
RADIO FREQUENCY CABLES –
Part 0-1: Guidelines to the design of detail specifications –
Coaxial cables
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International standard IEC 60096-0-1 has been prepared by subcommittee 46A: Coaxial
cables, of IEC technical committee 46: Cables, wires, waveguides, R.F. connectors, R.F. and
microwave passive components and accessories.
This third edition cancels and replaces the second edition published in 1990 and its
Amendment 1 (2000). It constitutes a technical revision.
The significant changes with respect to the previous edition are as follows:
– tables of material constants and factors and have been updated, different equations have
been updated and corrected;
– a subclause dealing with the calculation of “Current carrying capacity of coaxial cables”
has been added as Subclause 7.7.
60096-0-1 © IEC:2012 – 5 –
The text of this standard is based on the following documents:
FDIS Report on voting
46A/1043/FDIS 46A/1064/RVD
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
A list of all the parts in the IEC 60096 series, published under the general title Radio
frequency cables, can be found on the IEC website.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data
related to the specific publication. At this date, the publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
– 6 – 60096-0-1 © IEC:2012
RADIO FREQUENCY CABLES –
Part 0-1: Guidelines to the design of detail specifications –
Coaxial cables
1 Scope
This part of IEC 60096 provides guidance for the design of radio frequency coaxial cables
with braid, metallic tapes or tubular outer conductors.
2 Normative references
Void.
3 Symbols and numbering
3.1 Register of symbols used
Symbol Designation Unit
α Total attenuation per unit length, 20 °C . dB/100 m
α Total attenuation per unit length, T ≠ 20 °C . dB/100 m
T
α Attenuation due to element x, 20 °C . dB/100 m
x
β Braid angle of element x . ° (degree)
x
γ Density of the material of element x . g/cm
x
δ Loss angle of the material of element x . rad
x
ε Relative dielectric permittivity of the material of element x . –
x
χ Conductivity of the material of element x, 20 °C . m/Ωmm
x
σ Thermal resistivity of the material of element x . K⋅m/W
x
B Braid coverage concerning element x. –
x
c Velocity of propagation in free space . m/s
o
C Dielectric diameter mm
C Capacitance of element x, per unit length . pF/m
x
d Diameter of individual wires of element x . mm
x
D Outer diameter of element x . mm
x
D Electrical effective diameter of element x . mm
xe
D Mean diameter of element x . mm
xm
D Sheath diameter mm
D Outer conductor diameter mm
s
d Center conductor diameter mm
E Maximum permissible voltage gradient of dielectric (peak value). kV/mm
ε Surface emissivity (sheathed=0,95, bare=0,35)
f Frequency . MHz
h Coating thickness concerning element x . mm
x
I Current carrying capacity (Amperes)
k , k Calculation factors according to Tables 1 and 2 . –
x xy
L Braid lay length concerning element x . mm
x
60096-0-1 © IEC:2012 – 7 –
Symbol Designation Unit
ln Natural logarithm
m Total weight of cable per unit length . g/m
m Weight of element x . g/m
x
N Number of stranded wires of inner conductors . –
N Number of wires to each spindle concerning braid x . –
x
n Number of cables
n Number of spindles in the braid concerning element x . –
x
P Maximum permissible input power, ambient temperature 40 °C . W
P Thermal resistivity of the dielectric material, Typically =
i
13,0 K·m/W for both foam,
disc and air dielectrics
P Thermal resistivity of the sheath material,
j
Typically = 3,5 K·m/W for polyethylene
Typically = 7,0 K·m/W for polyvinylchloride (PVC) sheaths
P Maximum permissible input power, ambient temperature T ≠ 40 °C . W
T
P Maximum permissible dissipation power per unit length . W/m
d
q Filling factor of braid concerning element x . –
x
R DC resistance of conductive element x, per unit length . Ω/m
x
and insulation resistance of insulating element x respectively . MΩ·km
R Inner conductor resistance Ω/m at t
ic a
R Inner conductor resistance at conductor operating temperature (t )
ictc c
R Outer conductor resistance Ω/m at t
oc a
R Outer conductor resistance at conductor operating temperature (t )
octc c
R Increase in R due to effect of outer conductor
eoc ic
R Total thermal resistance of circuit K.m/W
th
R Thermal resistance of dielectric K.m/W
i
R Thermal resistance of sheath K.m/W
j
s Nominal thickness of element x . mm
x
s Minimal thickness of element x . mm
xmin.
T Temperature of element x . °C
x
T Ambient temperature. °C
a
t Conductor operating temperature °C
c
t Ambient temperature °C
a
t Cable surface temperature °C
s
U Test voltage (40 Hz - 60 Hz), rounded r.m.s. value . kV
t
U Test voltage (40 Hz - 60 Hz), rounded r.m.s. value . kV
tc
U Discharge test voltage, r.m.s. value . kV
d
U Maximum permissible operating voltage, rounded r.m.s. value . kV
o
U Maximum permissible operating voltage, calculated r.m.s. value . kV
oc
ν Velocity ratio . –
r
z Characteristic impedance, nominal value . Ω
o
– 8 – 60096-0-1 © IEC:2012
3.2 Numbering of construction elements
Numbering of construction elements in the following tables are as follows:
1 Inner conductor
2 Dielectric
3 Outer conductor
4 Sheath
5 Medium between outer conductor and screen
6 Screen
7 Medium between first and second screen
8 Second screen
etc.
Examples of use of k factor are given in Table 1.
x
Table 1 – Example of use of k factor
x
Symbol Designation Unit
Factor dependent on inner conductor concerning the
k –
voltage gradient in the dielectric
2 1,25
k Thermal dissipation constant of sheath surface in air W/m K
Examples of use of k factor are given in Table 2.
xy
Table 2 – Example of use of k factor
xy
Construction element
concerned
Factor
1 3 6 8
Coating factor k k
1c 3c
Stranding or braiding factor:
– concerning attenuation k k
1a 3a
– concerning d.c. resistance and weight k k k k
1r 3r 6r 8r
Ratio between overall diameter and diameter of
k
1d
individual wires
Effective diameter factor concerning characteristic
k
1z
impedance
60096-0-1 © IEC:2012 – 9 –
4 Material constants
4.1 Table of material constants relating to dielectric and sheath and their values for different materials
Material constants relating to dielectric and sheath and their values for different materials are given in Table 3.
Table 3 – Material constants relating to dielectric and sheath and their values for different materials
a
Symbol Designation Unit Value for
b b
Solid PE Semi-air- Cellular PE PTFE FEP Cellular ETFE PFA PVC
spaced PE FEP
Permittivity of dielectric – 2,28 1,4 1,3 1,5 1,7 2,1 2,1 1,5 2,6 2,1
ε
c f e e
–4 –4 –4 –4 –4 –3
tan δ Dissipation factor – 2,5 × 10 2,5 × 10 4 × 10 6 × 10 6 × 10 1,2 × 10
of dielectric
e e
E Maximum permissible kV/mm 11 2 2 2 2 11 2
voltage gradient
of dielectric
3 b
Density of dielectric g/cm 0,93 0,36 0,28 0,44 0,58 2,2 2,2 0,90 1,7 2,2 1,4
γ , γ
2 4
and sheath
e e
σ , σ Thermal resistivity K • m/W 3,5 15 9 6 4,4 5,0 4,4 4,5 7,0
2 4
of dielectric and sheath
d d g g g g
T Maximum permissible °C 85/80 85/80 70 70 70 250 200 200 150 200 70
operating temperature
– 10 – 60096-0-1 © IEC:2012
Table 3 (continued)
a PE = polyethylene
PTFE = polytetrafluoroethylene
FEP = fluorinated ethylene propylene
ETFE = ethylenetetrafluoroethylene
PFA = perfluoroalcoxylalkane
PVC = polyvinylchloride
b Typical value(s).
c
Frequency tan δ2
MHz
–4
1 1×10
–4
1,5×10
–4
2,5×10
103 –4
4,3×10
104 –4
2×10
d 85 °C: high density material.
80 °C: other density material.
e Under consideration
f
Frequency
tan δ2
MHz
–4
4×10
–4
4×10
–4
8×10
–4
10×10
–4
2×103
10×10
104 –4
7×10
g In the case of silvered inner and outer conductors only.
60096-0-1 © IEC:2012 – 11 –
4.2 Tables of material constants relating to conductors
Material constants relating to conductors are given in Tables 4 to 7.
Table 4 – Conductivity (at 20 °C) and density
Conductor Symbols Unit Value Symbols Unit Value
2 3
Copper χ , χ , χ m/Ωmm 58 γ , γ , γ g/cm 8,9
1 3 6 1 3 6
Aluminium 35 2,7
Tin 8,3 7,3
Silver 61 10,5
a
Copper clad steel 30 % 17,4 8,15
a
Copper clad steel 40 % 23,2 8,20
a
For calculation of d.c. resistance only.
a
Table 5 – Coating factor
Conductor Symbol Value
Bare copper wire 1
Silvered copper wire 1
k and k
1c 3c
Tinned copper wire Table 6
Copper clad steel wire Table 7
a
RF resistance of coated wire in relation to bare
copper wire, dependent on frequency and coating
thickness
Table 6 – Tinned copper wire
k or k
h f or h f 1c 3c
1 3
0,01 1,01
0,02 1,03
0,03 1,06
0,04 1,11
0,06 1,25
0,08 1,44
0,10 1,67
0,12 1,91
0,15 2,24
0,18 2,46
0,20 2,60
2,70
≥0,25
– 12 – 60096-0-1 © IEC:2012
Table 7 – Copper clad steel wire
a
k
h
f 1c
0,005 11,04
0,010 6,06
0,015 4,16
0,020 3,17
0,025 2,57
0,030 2,16
0,035 1,87
0,040 1,65
0,050 1,35
0,060 1,16
0,070 1,04
0,080 1,00
a
Assumptions relating to steel:
χ = 8 m/Ωmm .
Relative permeability, µ = 200.
r
4.3 Construction constants
4.3.1 Table of construction constants relating to inner conductor
Construction constants relating to inner conductor are given in Table 8.
Table 8 – Construction constants relating to inner conductor
Value versus number of strands
N
Symbol Designation
1 7 12 19
Stranding factor for d.c. resistance and
k 1,00 1,03 1,03 1,03
1r
weight
k Standing factor for attenuation 1,00 1,25 1,25 1,25
1a
k Effective diameter factor 1,00 0,94 0,96 0,98
1z
Ratio between overall diameter
k 1,00 3,02 4,16 5,00
1d
and diameter of individual wires
k Voltage gradient factor 1,00 0,90 0,90 0,90
4.3.2 Table of construction constants relating to braided outer conductors
and screens
Construction constants relating to braided outer conductors and screens are given in Table 9.
60096-0-1 © IEC:2012 – 13 –
Table 9 – Construction constants relating to braided outer conductors
and screens
L L
3 6
k ; k
Braid angle β ; β ;
3r 6r
3 6
D D
3m 6m
20° 8,63 1,06
25° 6,74 1,10
30° 5,44 1,15
35° 4,49 1,22
40° 3,74 1,30
45° 3,14 1,41
Definitions: k = 1 + (π ⋅ D /L ) =
3r 3m 3
cosβ
k = 1 + (π ⋅ D /L ) =
6r 6m 6
cosβ
4.4 Table of braid wire dimensions of outer conductor and screen
Braid wire dimensions of outer conductor and screen are given in Table 10.
Table 10 – Braid wire dimensions of outer conductor and screen
Nominal diameter of braid wire (d , d )
3 6
Nominal outer diameter
mm
of dielectric (D )
mm
Single braid Double braid
0,87 and 1,5 0,09–0,11 –
2,95, 3,7, 4,8 and 6,4 0,13–0,15 0,13–0,15
7,25, 9,8 and 11,5 0,18–0,20 0,16–0,18
17,3 0,24–0,26 0,18–0,20
4.5 Attenuation factors
Examples of attenuation factors for the calculation of attenuation are given in Table 11.
Table 11 – Factor relating to calculation of attenuation – examples
Symbol Designation Feature Value
Solid wire 1,0
k
1a
Stranded wire 1,25
Attenuation due to
inner conductor
Tinned copper wires See Table 6
k
1c
Copper clad steel wire See Table 7
Tubular outer conductor 1,0
k
3a
a
Attenuation due to
Braided outer conductor 2,0
outer conductor
k Braid wires tinned copper See Table 6
3c
a
Rough approximation (in absence of a reliable theory).
– 14 – 60096-0-1 © IEC:2012
4.6 Maximum permissible input power
For the calculation of maximum permissible input power with respect to thermal dissipation
constant for surface in air, see Figure 1.
4 8 12 16 20 24
Outside diameter of cable D (mm)
IEC 2123/12
Figure 1 – Graph for calculation of maximum permissible input power
A more detailed description for the maximum permissible dissipation power related to ambient
temperature is given in 7.4.
5 Standard values of characteristic impedance and outer diameter of dielectric
5.1 Nominal characteristic impedance of coaxial cables
All impedances specified in this clause are defined at a frequency of 200 MHz and at the
reference temperature of 20 °C.
Standard values of nominal characteristic impedance are:
a) 50 Ω;
b) 93 Ω;
c) 75 Ω.
Thermal dissipation constant for surface in air K (W/m K)
60096-0-1 © IEC:2012 – 15 –
5.2 Nominal diameters over dielectric of coaxial cables
Nominal diameters D over dielectric and the tolerances are given in Table 12.
Table 12 – Nominal diameters D over dielectric and the tolerances
Dielectric Impedance Diameter over dielectric
a
Millimetres Inches
Ω
Rated Tolerance Rated Tolerance Rated Tolerance
value ± value ± value ±
1,50 0,10 0,060 0,004
2,95 0,13 0,116 0,005
2,0 3,70 0,15 0,146 0,006
4,80 0,20 0,189 0,008
50 6,40 0,20 0,252 0,008
7,25 0,25 0,285 0,010
b
1,0 7,25 0,15 0,285 0,006
11,50 0,30 0,453 0,012
Solid
2,0 17,30 0,40 0,680 0,016
polyethylene
23,70 0,30 0,933 0,012
1,50 0,10 0,060 0,004
3,0 2,95 0,13 0,116 0,005
3,70 0,13 0,146 0,005
b
1,5 3,70 0,10 0,146 0,004
75 3,0 4,80 0,20 0,189 0,008
7,25 0,25 0,285 0,010
b
1,5 7,25 0,15 0,285 0,006
3,0 17,30 0,40 0,680 0,016
23,70 0,30 0,933 0,012
1,50 0,10 0,060 0,004
5,0 2,30 0,10 0,090 0,004
2,95 0,13 0,116 0,005
50 4,80 0,20 0,189 0,008
5,85 0,20 0,230 0,008
Cellular
4,0 6,25 0,20 0,246 0,008
polyethylene
7,25 0,25 0,285 0,010
3,70 0,15 0,146 0,005
75 5,0 4,80 0,20 0,189 0,008
7,25 0,25 0,285 0,010
a
For information only.
b
Close tolerance cables.
– 16 – 60096-0-1 © IEC:2012
Table 12 (continued)
Dielectric Impedance Diameter over dielectric
a
Millimetres Inches
Ω
Rated Tolerance Rated Tolerance Rated Tolerance
value ± value ± value ±
50 2,5 7,25 0,25 0,285 0,010
Semi-air-spaced
2,50 0,15 0,098 0,006
polyethylene
93 5,5 3,70 0,13 0,146 0,005
3,5 0,87 0,07 0,034 0,003
1,50 0,10 0,060 0,004
50 2,5 2,95 0,13 0,116 0,005
2,0 7,25 0,15 0,285 0,006
Polytetrafluoro-ethylene
11,50 0,30 0,453 0,012
5,0 1,50 0,10 0,060 0,004
75 3,0 3,70 0,13 0,146 0,005
7,25 0,25 0,285 0,010
93 5,5 2,60 0,13 0,102 0,005
50 2,5 2,40 0,08 0,095 0,003
Cellular fluorinated 3,40 0,13 0,135 0,005
ethylene-
75 3,5 4,30 0,08 0,170 0,003
propylene
7,25 0,25 0,285 0,010
93 5,5 3,70 0,13 0,146 0,005
NOTE This table is a reference guide to some cable sizes but does not limit the manufacture of smaller or
larger designs.
a
For information only.
6 Cable construction details
6.1 General
The starting point is to determine:
(according to 5.1);
a) the nominal characteristic impedance, z
o
b) the outer diameter of dielectric, D (according to 5.2);
NOTE Other diameters outside the scope of this document can be calculated using the formula provided in 6.3.
c) the permittivity of dielectric, ε (Table 3).
Calculate the effective diameter of outer conductor, D .
3e
Special design features are given in Table 13.
Table 13 – Special design features
Outer conductor Diameter D
3e
Tubular D = D
3e 2
Braided D > D (see 6.4)
3e 2
60096-0-1 © IEC:2012 – 17 –
6.2 Inner conductor
The electrical effective diameter D of the inner conductor follows from:
1e
ε
1)
D = D ⋅ exp( −Z ⋅ )
1e 1e 0
Special design features are given in Table 14.
Table 14 – Special design features
Solid inner conductor Diameter D as calculated
Stranded inner conductor Diameter D > D (see 6.3)
1 1e
6.3 Stranded inner conductor
The diameter D is to be calculated from the effective diameter D :
1 1e
D = D / k
1 1e 1z
The wire diameter d is to be calculated from D :
1 1
d = D / k
1 1 1d
k and k according to Table 8.
1d 1z
6.4 Braided outer conductors
Equations for the calculation of braided outer conductors are given in Table 15.
Table 15 – Braided outer conductors
The effective diameter D
3e
outer diameter D
mean diameter D
3m
are to be calculated from the outer diameter D and the diameter of the braid wires d :
2 3
D = D + 1,5 · d
3e 2 3
D = D + 4,5 · d
3 2 3
D = D + 2,25 · d d according to Table 10
3m 2 3 3
The filling factor of the braid is:
N ⋅ n ⋅ d ⋅ k
3 3 3 3r
q =
2 ⋅ π ⋅ D
3m
d and D as above
3 3m
k according to Table 9
3r
The coverage and the braid angle of the outer conductor are given by:
B = 2q – q β = arc tan πD /L
3 3 3 3 3m 3
___________
1)
Rounded up from 59,96.
– 18 – 60096-0-1 © IEC:2012
6.5 Medium between outer conductor and screen
Medium between outer conductor and screen is given in Table 16.
Table 16 – Medium between outer conductor and screen
The outer diameter of the interposed medium is:
D = D + 2 s
5 3 5
6.6 Braided screen
Equations for the calculation of braided screens are given in Table 17.
Table 17 – Braided screen
The outer diameter D and the mean diameter D are to be calculated from the outer diameter of the interposed
6 6m
medium D and the diameter of the braid wires, d :
5 6
D = D + 4,5 d
6 5 6
D = D + 2,25 d
6m 5 6
according to Table 10
d
The filling factor of the braid is:
N ⋅ n ⋅ d ⋅ k
6 6 6 6r
q =
2 ⋅ π ⋅ D
6m
d and D as above
6 6m
k according to Table 9
6r
The coverage and the braid angle of the screen are given by:
B = 2q – q β = arc tan πD /L
6 6 6 6 6m 6
6.7 Sheath diameters
Sheath diameters are given in Table 18.
Table 18 – Sheath diameters
Material Outer diameter of Nominal thickness Minimum thickness
a
screen D s s min.
6 4 4
FEP 0,25 mm 0,15 mm
<2,5
2,5 – 5,9 0,25 mm
PTFE 0,38 mm
6,0 – 9,0 0,30 mm
a
PE <2,5 0,07 D + 0,3 mm
0,9 s – 0,1 mm
a
PVC 0,07 D + 0,5 mm
≥2,5
a
Cables without screen: to be replaced by outer diameter of outer conductor D .
6.8 Weight calculation
.
The approximate total weight of the cable is to be calculated from m = Σ m
x
For the calculation of the individual weights, formulae are given in Table 19:
60096-0-1 © IEC:2012 – 19 –
Table 19 – Weight calculation
π
Solid inner conductor =
m ⋅D ⋅γ
1 1
γ according to Table 4
k according to Table 8
1r
π
Stranded inner conductor m = ⋅ d ⋅ N ⋅ k ⋅ γ
1 1 1r 1
γ according to Table 3
π 2
2 2
Insulation m = ⋅ (D − D )⋅ γ
2 1
4 D according to 6.3
Tubular outer conductor m = π ·(D + s ) · s ·γ γ according to Table 4
3 2 3 3 3 3
π
Braided outer conductor m = ⋅ d ⋅ N ⋅ n ⋅ k ⋅ γ k according to Table 9
3 3r
3 3 3 3r 3
m = π •(D + s )· s ·γ γ dependent on the material used
Interposed medium between outer 5 3 5 5 5 5
conductor and screen
D according to Table 16
γ according to Table 4
π 6
Braided screen m = ⋅ d ⋅ N ⋅ n ⋅ k ⋅ γ
6 6 6 6r 6
k according to Table 9
6r
a
Sheath
m = π · (D + s ) · s · γ γ according to Table 3
4 6 4 4 4 4
a
For cables without screen, D is to be replaced by D .
6 3
7 Calculation of electrical properties
7.1 DC resistance of conductors and screen, per unit length
The values are to be calculated from the formulae in Table 20:
Table 20 – Electrical properties
R =
Solid inner conductor
π ⋅ D ⋅ χ
4 k
1r
Stranded inner conductor R =
N ⋅ π ⋅ d ⋅ χ
1 1 1
χ , χ , χ according to Table 4
R = 1 3 6
Tubular inner conductor
π ⋅ (D − S )⋅ S ⋅ χ
1 1 1
1 k according to Table 8
1r
and k according to Table 9
k
3r 6r
R =
Tubular outer conductor
d and d according to Table 10
π ⋅ (D + s )⋅ S ⋅ χ 3 6
2 3 3 3
4 k
3r
R =
Braided outer conductor
N ⋅ n ⋅ π ⋅ d ⋅ χ
3 3 3 3
4 ⋅k
6r
R =
Braided screen 6
N ⋅ n ⋅ π ⋅ d ⋅ χ
6 6 6 6
– 20 – 60096-0-1 © IEC:2012
7.2 Attenuation
The total attenuation per unit length is to be calculated from:
α = α + α + α
1 2 3
where α , α and α are the attenuation components due to the inner conductor, dielectric
1 2 3
and outer conductor. The attenuation is related to a cable temperature of 20 °C. For
temperatures T ≠ 20 °C, the attenuation shall be calculated by:
α = (α + α ) 1+ 0,00393 (T − 20 °C) + α
T 1 3 2
NOTE α may be temperature-dependent for some dielectric materials.
Formulae for calculation of α , α and α are given in Table 21. These formulae are
1 2 3
applicable for frequencies ≥10 MHz. Formulae for lower frequencies are under consideration.
Table 21 – Factors for calculation of attenuation
4,58 ⋅ k ⋅ k ε ⋅ f
1c 1a 2
α = ⋅
χ
D ⋅ln D /D χ and χ , k and k according to Tables 4 and 5
1e 3e 1e 1 1 3 1c 3c
k and k according to Table 11
1a 3a
α = 9,1⋅ ε ⋅ tan δ f
2 2 2
ε and tan δ according to Table 3
2 2
D and D according to 6.2 and to Table 14 or to 6.4
4,58 ⋅ k ⋅ k ε ⋅ f
1e 3e
3c 3a
α = ⋅
χ
D ⋅lnD /D
3e 3e 1e 3
7.3 Nominal characteristic impedance Z and capacitance C per unit length
o 2
2)
D
3e
z = ln
o
D
ε
1e
2)
ε
C = ⋅10 (pF/m)
3z
o
ε according to Table 3 or as provided by the manufacturer;
D according to Table 14 or to 6.4 or as provided by the manufacturer;
3e
D according to 6.2.
1e
7.4 Calculation of power rating
The power rating shall be calculated from the attenuation and the maximum permissible
dissipation power for an ambient temperature of 40 °C.
For most practical purposes, the maximum permissible dissipation power per unit length (P )
d
of the inner conductor, given by the
is dependent on the maximum permissible temperature T
maximum permissible temperature of dielectric (see Table 3).
___________
2)
Rounded up from 59,96 and 2,9979 respectively.
60096-0-1 © IEC:2012 – 21 –
The temperature rise of the inner conductor above that of the stagnant ambient air is:
0,8
P α + 1 / 2 α D D 1 000 P
d 1 2 2 4 d
T − 40 °C = σ ln + σ ln +
1 2 4
2π α D D π D k
1 6 4 4
σ and σ according to Table 3;
2 4
k according to Figure 1.
For cables without screen, D is to be replaced by D .
6 3
The first term of the sum is the temperature rise of inner conductor above sheath surface
(T – T ). The second term is the temperature rise of sheath above ambient air (T – T ).
1 4 4 a
Having found P , the maximum permissible input power is given by:
d
868,6 P 395 P
d d
P = =
2,2 α α
T T
α according to 7.2.
T
The maximum attenuation may be 10 % above the nominal value. Because of the unknown
temperature of the outer conductor, the calculation assumes equality with the temperature of
the inner conductor. The resulting error is negligible.
For ambient temperatures T ≠ 40 °C, the power rating shall be calculated from P by the
a 40
empirical formula:
1,14
T −T
1 a
P = P ⋅
T 40
T − 40 °C
1
7.5 Permissible voltages
7.5.1 Test voltage, dielectric, U
t
The maximum value of voltage gradient is to be found at the surface of the inner conductor. It
is limited by the maximum permissible voltage E of the dielectric. Hence the test voltage U
2 tc
(r.m.s. value) is to be calculated from the formula:
E D ⋅ k D
3e
2 1 2
U = ⋅ ln
tc
2 D
1e
E according to Table 3; or as provided by the manufacturer;
k according to Table 8; or as provided by the manufacturer;
D according to 6.3;
D according to 6.2;
1e
D according to Table 14 or to 6.4; or as provided by the manufacturer.
3e
– 22 – 60096-0-1 © IEC:2012
The value of U shall then be rounded to the nearest 0,2 kV for values below 5 kV and to
tc
the nearest 0,5 kV for values of 5 kV and more. The rounded test voltage is designated U .
t
The rounded test voltage shall be applied for 2 min at a frequency of 40 Hz to 60 Hz.
7.5.2 Discharge test voltage, dielectric, U
d
The discharge test voltage U (r.m.s. value) is given by the formula U = 0,5 U except in the
d d t
case for polytetrafluoroethylene.
U = 0,4 U with a minimum of 1 kV
d t
7.5.3 Maximum permissible operating voltage, U
o
The maximum permissible operating voltage U (r.m.s. value) is derived from the test voltage
o
U
t
U = 0,45 U
oc t
as far as the maximum permissible input power P will not be exceeded.
The condition
U ≤ z ⋅P / 1000
o o 40
has to be met in each case. The value of U shall then be rounded to the nearest 0,2 kV for
oc
values below 5 kV and to the nearest 0,5 kV for values of 5 kV and more. The rounded
maximum permissible operating voltage is designated U .
o
7.5.4 Test voltage, sheath
For PVC sheaths, see Table 22:
Table 22 – Test voltages for PVC sheaths
Nominal thickness of the sheath Test voltage
(s ) kV r.m.s.
mm
Immersion test Spark test
Up to and including 0,5 No test No test
Over 0,5 up to and including 0,8 2 3
Over 0,8 up to and
...
IEC 60096-0-1 ®
Edition 3.1 2017-01
CONSOLIDATED VERSION
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Radio frequency cables –
Part 0-1: Guidelines to the design of detail specifications – Coaxial cables
Câbles pour fréquences radioélectriques –
Partie 0-1: Lignes directrices pour la conception des spécifications particulières ‒
Câbles coaxiaux
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé Fax: +41 22 919 03 00
CH-1211 Geneva 20 info@iec.ch
Switzerland www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
IEC Catalogue - webstore.iec.ch/catalogue Electropedia - www.electropedia.org
The stand-alone application for consulting the entire The world's leading online dictionary of electronic and
bibliographical information on IEC International Standards, electrical terms containing 20 000 terms and definitions in
Technical Specifications, Technical Reports and other English and French, with equivalent terms in 16 additional
documents. Available for PC, Mac OS, Android Tablets and languages. Also known as the International Electrotechnical
iPad. Vocabulary (IEV) online.
IEC publications search - www.iec.ch/searchpub IEC Glossary - std.iec.ch/glossary
The advanced search enables to find IEC publications by a 65 000 electrotechnical terminology entries in English and
variety of criteria (reference number, text, technical French extracted from the Terms and Definitions clause of
committee,…). It also gives information on projects, replaced IEC publications issued since 2002. Some entries have been
and withdrawn publications. collected from earlier publications of IEC TC 37, 77, 86 and
CISPR.
IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published IEC Customer Service Centre - webstore.iec.ch/csc
details all new publications released. Available online and If you wish to give us your feedback on this publication or
also once a month by email. need further assistance, please contact the Customer Service
Centre: csc@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.
A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.
Catalogue IEC - webstore.iec.ch/catalogue Electropedia - www.electropedia.org
Application autonome pour consulter tous les renseignements
Le premier dictionnaire en ligne de termes électroniques et
bibliographiques sur les Normes internationales,
électriques. Il contient 20 000 termes et définitions en anglais
Spécifications techniques, Rapports techniques et autres
et en français, ainsi que les termes équivalents dans 16
documents de l'IEC. Disponible pour PC, Mac OS, tablettes
langues additionnelles. Egalement appelé Vocabulaire
Android et iPad.
Electrotechnique International (IEV) en ligne.
Recherche de publications IEC - www.iec.ch/searchpub
Glossaire IEC - std.iec.ch/glossary
La recherche avancée permet de trouver des publications IEC
65 000 entrées terminologiques électrotechniques, en anglais
en utilisant différents critères (numéro de référence, texte,
et en français, extraites des articles Termes et Définitions des
comité d’études,…). Elle donne aussi des informations sur les
publications IEC parues depuis 2002. Plus certaines entrées
projets et les publications remplacées ou retirées.
antérieures extraites des publications des CE 37, 77, 86 et
CISPR de l'IEC.
IEC Just Published - webstore.iec.ch/justpublished
Restez informé sur les nouvelles publications IEC. Just Service Clients - webstore.iec.ch/csc
Published détaille les nouvelles publications parues. Si vous désirez nous donner des commentaires sur cette
Disponible en ligne et aussi une fois par mois par email. publication ou si vous avez des questions contactez-nous:
csc@iec.ch.
IEC 60096-0-1 ®
Edition 3.1 2017-01
CONSOLIDATED VERSION
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside
Radio frequency cables –
Part 0-1: Guidelines to the design of detail specifications – Coaxial cables
Câbles pour fréquences radioélectriques –
Partie 0-1: Lignes directrices pour la conception des spécifications particulières ‒
Câbles coaxiaux
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 33.120.10 ISBN 978-2-8322-3911-7
IEC 60096-0-1 ®
Edition 3.1 2017-01
CONSOLIDATED VERSION
REDLINE VERSION
VERSION REDLINE
colour
inside
Radio frequency cables –
Part 0-1: Guidelines to the design of detail specifications – Coaxial cables
Câbles pour fréquences radioélectriques –
Partie 0-1: Lignes directrices pour la conception des spécifications particulières ‒
Câbles coaxiaux
– 2 – IEC 60096-0-1:2012+AMD1:2017 CSV
© IEC 2017
CONTENTS
FOREWORD . 4
1 Scope . 6
2 Normative references . 6
3 Symbols and numbering . 6
3.1 Register of symbols used . 6
3.2 Numbering of construction elements . 8
4 Material constants . 9
4.1 Table of material constants relating to dielectric and sheath and their values
for different materials . 9
4.2 Tables of material constants relating to conductors . 11
4.3 Construction constants . 12
4.3.1 Table of construction constants relating to inner conductor . 12
4.3.2 Table of construction constants relating to braided outer conductors
and screens . 12
4.4 Table of braid wire dimensions of outer conductor and screen . 13
4.5 Attenuation factors . 13
4.6 Maximum permissible input power . 14
5 Standard values of characteristic impedance and outer diameter of dielectric . 14
5.1 Nominal characteristic impedance of coaxial cables . 14
5.2 Nominal diameters over dielectric of coaxial cables . 15
6 Cable construction details . 16
6.1 General . 16
6.2 Inner conductor . 17
6.3 Stranded inner conductor . 17
6.4 Braided outer conductors . 17
6.5 Medium between outer conductor and screen . 18
6.6 Braided screen. 18
6.7 Sheath diameters . 18
6.8 Weight calculation . 18
7 Calculation of electrical properties . 19
7.1 DC resistance of conductors and screen, per unit length . 19
7.2 Attenuation . 20
7.3 Nominal characteristic impedance Z and capacitance C per unit length . 20
o 2
7.4 Calculation of Power rating . 20
7.4.1 Average power rating . 20
7.4.2 Peak power rating . 21
7.5 Permissible voltages . 22
7.5.1 Test voltage, dielectric, U . 22
t
7.5.2 Discharge test voltage, dielectric, U . 22
d
7.5.3 Maximum permissible operating voltage, U . 22
o
7.5.4 Test voltage, sheath . 23
7.6 Insulation resistance . 23
7.7 Current carrying capacity of coaxial cables . 23
7.7.1 Principle . 23
7.7.2 Definitions . 23
7.7.3 Requirements . 24
© IEC 2017
Figure 1 – Graph for calculation of maximum permissible input power . 14
Table 1 – Example of use of k factor . 8
x
Table 2 – Example of use of k factor . 8
xy
Table 3 – Material constants relating to dielectric and sheath and their values for
different materials . 9
Table 4 – Conductivity (at 20 °C) and density . 11
a
Table 5 – Coating factor . 11
Table 6 – Tinned copper wire . 11
Table 7 – Copper clad steel wire . 12
Table 8 – Construction constants relating to inner conductor . 12
Table 9 – Construction constants relating to braided outer conductors and screens . 13
Table 10 – Braid wire dimensions of outer conductor and screen . 13
Table 11 – Factor relating to calculation of attenuation – examples . 13
Table 12 – Nominal diameters D over dielectric and the tolerances . 15
Table 13 – Special design features . 16
Table 14 – Special design features . 17
Table 15 – Braided outer conductors . 17
Table 16 – Medium between outer conductor and screen . 18
Table 17 – Braided screen . 18
Table 18 – Sheath diameters . 18
Table 19 – Weight calculation . 19
Table 20 – Electrical properties. 19
Table 21 – Factors for calculation of attenuation . 20
Table 22 – Test voltages for PVC sheaths . 23
– 4 – IEC 60096-0-1:2012+AMD1:2017 CSV
© IEC 2017
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
RADIO FREQUENCY CABLES –
Part 0-1: Guidelines to the design of detail specifications –
Coaxial cables
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
This consolidated version of the official IEC Standard and its amendment has been prepared
for user convenience.
IEC 60096-0-1 edition 3.1 contains the third edition (2012-10) [documents 46A/1043/FDIS and
46A/1064/RVD] and its amendment 1 (2017-01) [documents 46A/1317/FDIS and 46A/1321/RVD].
In this Redline version, a vertical line in the margin shows where the technical content is
modified by amendment 1. Additions are in green text, deletions are in strikethrough red text.
A separate Final version with all changes accepted is available in this publication.
© IEC 2017
International standard IEC 60096-0-1 has been prepared by subcommittee 46A: Coaxial
cables, of IEC technical committee 46: Cables, wires, waveguides, R.F. connectors, R.F. and
microwave passive components and accessories.
This third edition constitutes a technical revision.
The significant changes with respect to the previous edition are as follows:
– tables of material constants and factors and have been updated, different equations have
been updated and corrected;
– a subclause dealing with the calculation of “Current carrying capacity of coaxial cables”
has been added as Subclause 7.7.
A list of all the parts in the IEC 60096 series, published under the general title Radio
frequency cables, can be found on the IEC website.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
The committee has decided that the contents of the base publication and its amendment will
remain unchanged until the stability date indicated on the IEC web site under
"http://webstore.iec.ch" in the data related to the specific publication. At this date, the
publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.
– 6 – IEC 60096-0-1:2012+AMD1:2017 CSV
© IEC 2017
RADIO FREQUENCY CABLES –
Part 0-1: Guidelines to the design of detail specifications –
Coaxial cables
1 Scope
This part of IEC 60096 provides guidance for the design of radio frequency coaxial cables
with braid, metallic tapes or tubular outer conductors.
2 Normative references
Void.
3 Symbols and numbering
3.1 Register of symbols used
Symbol Designation Unit
α Total attenuation per unit length, 20 °C . dB/100 m
α Total attenuation per unit length, T ≠ 20 °C . dB/100 m
T
α Attenuation due to element x, 20 °C . dB/100 m
x
β Braid angle of element x . ° (degree)
x
γ Density of the material of element x . g/cm
x
δ Loss angle of the material of element x . rad
x
e Relative dielectric permittivity of the material of element x . –
x
χ Conductivity of the material of element x, 20 °C . m/Ωmm
x
σ Thermal resistivity of the material of element x . K⋅m/W
x
B Braid coverage concerning element x. –
x
c Velocity of propagation in free space . m/s
o
C Dielectric diameter mm
C Capacitance of element x, per unit length . pF/m
x
d Diameter of individual wires of element x . mm
x
D Outer diameter of element x . mm
x
D Electrical effective diameter of element x . mm
xe
D Mean diameter of element x . mm
xm
D Sheath diameter mm
D Outer conductor diameter mm
s
d Center conductor diameter mm
E Maximum permissible voltage gradient of dielectric (peak value). kV/mm
ε Surface emissivity (sheathed=0,95, bare=0,35)
f Frequency . MHz
h Coating thickness concerning element x . mm
x
I Current carrying capacity (Amperes)
k , k Calculation factors according to Tables 1 and 2 . –
x xy
L Braid lay length concerning element x . mm
x
© IEC 2017
Symbol Designation Unit
ln Natural logarithm
m Total weight of cable per unit length . g/m
m Weight of element x . g/m
x
N Number of stranded wires of inner conductors . –
N Number of wires to each spindle concerning braid x . –
x
n Number of cables
n Number of spindles in the braid concerning element x . –
x
P Maximum permissible input power, ambient temperature 40 °C . W
P Thermal resistivity of the dielectric material, Typically =
i
13,0 K·m/W for both foam,
disc and air dielectrics
P Thermal resistivity of the sheath material,
j
Typically = 3,5 K·m/W for polyethylene
Typically = 7,0 K·m/W for polyvinylchloride (PVC) sheaths
P Maximum permissible input power, ambient temperature T ≠ 40 °C . W
T
P Maximum permissible dissipation power per unit length . W/m
d
q Filling factor of braid concerning element x . –
x
R DC resistance of conductive element x, per unit length . Ω/m
x
and insulation resistance of insulating element x respectively . MΩ·km
R Inner conductor resistance Ω/m at t
ic a
R Inner conductor resistance at conductor operating temperature (t )
ictc c
R Outer conductor resistance Ω/m at t
oc a
R Outer conductor resistance at conductor operating temperature (t )
octc c
R Increase in R due to effect of outer conductor
eoc ic
R Total thermal resistance of circuit K.m/W
th
R Thermal resistance of dielectric K.m/W
i
R Thermal resistance of sheath K.m/W
j
s Nominal thickness of element x . mm
x
s Minimal thickness of element x . mm
xmin.
T Temperature of element x . °C
x
T Ambient temperature. °C
a
t Conductor operating temperature °C
c
t Ambient temperature °C
a
t Cable surface temperature °C
s
U Test voltage (40 Hz - 60 Hz), rounded r.m.s. value . kV
t
U Test voltage (40 Hz - 60 Hz), rounded r.m.s. value . kV
tc
U Discharge test voltage, r.m.s. value . kV
d
U Maximum permissible operating voltage, rounded r.m.s. value . kV
o
U Maximum permissible operating voltage, calculated r.m.s. value . kV
oc
ν Velocity ratio . –
r
z Characteristic impedance, nominal value . Ω
o
– 8 – IEC 60096-0-1:2012+AMD1:2017 CSV
© IEC 2017
3.2 Numbering of construction elements
Numbering of construction elements in the following tables are as follows:
1 Inner conductor
2 Dielectric
3 Outer conductor
4 Sheath
5 Medium between outer conductor and screen
6 Screen
7 Medium between first and second screen
8 Second screen
etc.
Examples of use of k factor are given in Table 1.
x
Table 1 – Example of use of k factor
x
Symbol Designation Unit
Factor dependent on inner conductor concerning the
k –
voltage gradient in the dielectric
2 1,25
k Thermal dissipation constant of sheath surface in air W/m K
Examples of use of k factor are given in Table 2.
xy
Table 2 – Example of use of k factor
xy
Construction element
concerned
Factor
1 3 6 8
Coating factor k k
1c 3c
Stranding or braiding factor:
– concerning attenuation k k
1a 3a
– concerning d.c. resistance and weight k k k k
1r 3r 6r 8r
Ratio between overall diameter and diameter of
k
1d
individual wires
Effective diameter factor concerning characteristic
k
1z
impedance
© IEC 2017
4 Material constants
4.1 Table of material constants relating to dielectric and sheath and their values for different materials
Material constants relating to dielectric and sheath and their values for different materials are given in Table 3.
Table 3 – Material constants relating to dielectric and sheath and their values for different materials
a
Symbol Designation Unit Value for
b b
Solid PE Semi-air- Cellular PE PTFE FEP Cellular ETFE PFA PVC
spaced PE FEP
Permittivity of dielectric – 2,28 1,4 1,3 1,5 1,7 2,1 2,1 1,5 2,6 2,1
e
c f e e
–4 –4 –4 –4 –4 –3
tan δ Dissipation factor – 2,5 × 10 2,5 × 10 4 × 10 6 × 10 6 × 10 1,2 × 10
of dielectric
e e
E Maximum permissible kV/mm 11 2 2 2 2 11 2
voltage gradient
of dielectric
3 b
Density of dielectric g/cm 0,93 0,36 0,28 0,44 0,58 2,2 2,2 0,90 1,7 2,2 1,4
γ , γ
2 4
and sheath
e e
σ , σ Thermal resistivity K • m/W 3,5 15 9 6 4,4 5,0 4,4 4,5 7,0
2 4
of dielectric and sheath
d d g g g g
T Maximum permissible °C 85/80 85/80 70 70 70 250 200 200 150 200 70
operating temperature
– 10 – IEC 60096-0-1:2012+AMD1:2017 CSV
© IEC 2017
Table 3 (continued)
a PE = polyethylene
PTFE = polytetrafluoroethylene
FEP = fluorinated ethylene propylene
ETFE = ethylenetetrafluoroethylene
PFA = perfluoroalcoxylalkane
PVC = polyvinylchloride
b Typical value(s).
c
Frequency tan δ2
MHz
–4
1 1×10
–4
1,5×10
–4
2,5×10
103 –4
4,3×10
104 –4
2×10
d 85 °C: high density material.
80 °C: other density material.
e Under consideration
f
Frequency
tan δ2
MHz
–4
4×10
–4
4×10
–4
8×10
–4
10×10
–4
2×103
10×10
104 –4
7×10
g In the case of silvered inner and outer conductors only.
© IEC 2017
4.2 Tables of material constants relating to conductors
Material constants relating to conductors are given in Tables 4 to 7.
Table 4 – Conductivity (at 20 °C) and density
Conductor Symbols Unit Value Symbols Unit Value
2 3
Copper χ , χ , χ m/Ωmm 58 γ , γ , γ g/cm 8,9
1 3 6 1 3 6
Aluminium 35 2,7
Tin 8,3 7,3
Silver 61 10,5
a
Copper clad steel 30 % 17,4 8,15
a
Copper clad steel 40 % 23,2 8,20
a
For calculation of d.c. resistance only.
a
Table 5 – Coating factor
Conductor Symbol Value
Bare copper wire 1
Silvered copper wire 1
k and k
1c 3c
Tinned copper wire Table 6
Copper clad steel wire Table 7
a
RF resistance of coated wire in relation to bare
copper wire, dependent on frequency and coating
thickness
Table 6 – Tinned copper wire
k or k
h f or h f 1c 3c
1 3
0,01 1,01
0,02 1,03
0,03 1,06
0,04 1,11
0,06 1,25
0,08 1,44
0,10 1,67
0,12 1,91
0,15 2,24
0,18 2,46
0,20 2,60
2,70
≥0,25
– 12 – IEC 60096-0-1:2012+AMD1:2017 CSV
© IEC 2017
Table 7 – Copper clad steel wire
a
k
h
f 1c
0,005 11,04
0,010 6,06
0,015 4,16
0,020 3,17
0,025 2,57
0,030 2,16
0,035 1,87
0,040 1,65
0,050 1,35
0,060 1,16
0,070 1,04
0,080 1,00
a
Assumptions relating to steel:
χ = 8 m/Ωmm .
Relative permeability, µ = 200.
r
4.3 Construction constants
4.3.1 Table of construction constants relating to inner conductor
Construction constants relating to inner conductor are given in Table 8.
Table 8 – Construction constants relating to inner conductor
Value versus number of strands
N
Symbol Designation
1 7 12 19
Stranding factor for d.c. resistance and
k 1,00 1,03 1,03 1,03
1r
weight
k Standing factor for attenuation 1,00 1,25 1,25 1,25
1a
k Effective diameter factor 1,00 0,94 0,96 0,98
1z
Ratio between overall diameter
k 1,00 3,02 4,16 5,00
1d
and diameter of individual wires
k Voltage gradient factor 1,00 0,90 0,90 0,90
4.3.2 Table of construction constants relating to braided outer conductors
and screens
Construction constants relating to braided outer conductors and screens are given in Table 9.
© IEC 2017
Table 9 – Construction constants relating to braided outer conductors
and screens
L L
3 6
k ; k
Braid angle β ; β ;
3r 6r
3 6
D D
3m 6m
20° 8,63 1,06
25° 6,74 1,10
30° 5,44 1,15
35° 4,49 1,22
40° 3,74 1,30
45° 3,14 1,41
Definitions: k = 1 + (π ⋅ D /L ) =
3r 3m 3
cosβ
k = 1 + (π ⋅ D /L ) =
6r 6m 6
cosβ
4.4 Table of braid wire dimensions of outer conductor and screen
Braid wire dimensions of outer conductor and screen are given in Table 10.
Table 10 – Braid wire dimensions of outer conductor and screen
Nominal diameter of braid wire (d , d )
3 6
Nominal outer diameter
mm
of dielectric (D )
mm
Single braid Double braid
0,87 and 1,5 0,09–0,11 –
2,95, 3,7, 4,8 and 6,4 0,13–0,15 0,13–0,15
7,25, 9,8 and 11,5 0,18–0,20 0,16–0,18
17,3 0,24–0,26 0,18–0,20
4.5 Attenuation factors
Examples of attenuation factors for the calculation of attenuation are given in Table 11.
Table 11 – Factor relating to calculation of attenuation – examples
Symbol Designation Feature Value
Solid wire 1,0
k
1a
Stranded wire 1,25
Attenuation due to
inner conductor
Tinned copper wires See Table 6
k
1c
Copper clad steel wire See Table 7
Tubular outer conductor 1,0
k
3a
a
Attenuation due to
Braided outer conductor 2,0
outer conductor
k Braid wires tinned copper See Table 6
3c
a
Rough approximation (in absence of a reliable theory).
– 14 – IEC 60096-0-1:2012+AMD1:2017 CSV
© IEC 2017
4.6 Maximum permissible input power
For the calculation of maximum permissible input power with respect to thermal dissipation
constant for surface in air, see Figure 1.
4 8 12 16 20 24
Outside diameter of cable D (mm)
IEC 2123/12
Figure 1 – Graph for calculation of maximum permissible input power
A more detailed description for the maximum permissible dissipation power related to ambient
temperature is given in 7.4.
5 Standard values of characteristic impedance and outer diameter of dielectric
5.1 Nominal characteristic impedance of coaxial cables
All impedances specified in this clause are defined at a frequency of 200 MHz and at the
reference temperature of 20 °C.
Standard values of nominal characteristic impedance are:
a) 50 Ω;
b) 93 Ω;
c) 75 Ω.
Thermal dissipation constant for surface in air K (W/m K)
© IEC 2017
5.2 Nominal diameters over dielectric of coaxial cables
Nominal diameters D over dielectric and the tolerances are given in Table 12.
Table 12 – Nominal diameters D over dielectric and the tolerances
Dielectric Impedance Diameter over dielectric
a
Millimetres Inches
Ω
Rated Tolerance Rated Tolerance Rated Tolerance
value ± value ± value ±
1,50 0,10 0,060 0,004
2,95 0,13 0,116 0,005
2,0 3,70 0,15 0,146 0,006
4,80 0,20 0,189 0,008
50 6,40 0,20 0,252 0,008
7,25 0,25 0,285 0,010
b
1,0 7,25 0,15 0,285 0,006
11,50 0,30 0,453 0,012
Solid
2,0 17,30 0,40 0,680 0,016
polyethylene
23,70 0,30 0,933 0,012
1,50 0,10 0,060 0,004
3,0 2,95 0,13 0,116 0,005
3,70 0,13 0,146 0,005
b
1,5 3,70 0,10 0,146 0,004
75 3,0 4,80 0,20 0,189 0,008
7,25 0,25 0,285 0,010
b
1,5 7,25 0,15 0,285 0,006
3,0 17,30 0,40 0,680 0,016
23,70 0,30 0,933 0,012
1,50 0,10 0,060 0,004
5,0 2,30 0,10 0,090 0,004
2,95 0,13 0,116 0,005
50 4,80 0,20 0,189 0,008
5,85 0,20 0,230 0,008
Cellular
4,0 6,25 0,20 0,246 0,008
polyethylene
7,25 0,25 0,285 0,010
3,70 0,15 0,146 0,005
75 5,0 4,80 0,20 0,189 0,008
7,25 0,25 0,285 0,010
a
For information only.
b
Close tolerance cables.
– 16 – IEC 60096-0-1:2012+AMD1:2017 CSV
© IEC 2017
Table 12 (continued)
Dielectric Impedance Diameter over dielectric
a
Millimetres Inches
Ω
Rated Tolerance Rated Tolerance Rated Tolerance
value ± value ± value ±
50 2,5 7,25 0,25 0,285 0,010
Semi-air-spaced
2,50 0,15 0,098 0,006
polyethylene
93 5,5 3,70 0,13 0,146 0,005
3,5 0,87 0,07 0,034 0,003
1,50 0,10 0,060 0,004
50 2,5 2,95 0,13 0,116 0,005
2,0 7,25 0,15 0,285 0,006
Polytetrafluoro-ethylene
11,50 0,30 0,453 0,012
5,0 1,50 0,10 0,060 0,004
75 3,0 3,70 0,13 0,146 0,005
7,25 0,25 0,285 0,010
93 5,5 2,60 0,13 0,102 0,005
50 2,5 2,40 0,08 0,095 0,003
Cellular fluorinated 3,40 0,13 0,135 0,005
ethylene-
75 3,5 4,30 0,08 0,170 0,003
propylene
7,25 0,25 0,285 0,010
93 5,5 3,70 0,13 0,146 0,005
NOTE This table is a reference guide to some cable sizes but does not limit the manufacture of smaller or
larger designs.
a
For information only.
6 Cable construction details
6.1 General
The starting point is to determine:
(according to 5.1);
a) the nominal characteristic impedance, z
o
b) the outer diameter of dielectric, D (according to 5.2);
NOTE Other diameters outside the scope of this document can be calculated using the formula provided in 6.3.
c) the permittivity of dielectric, e (Table 3).
Calculate the effective diameter of outer conductor, D .
3e
Special design features are given in Table 13.
Table 13 – Special design features
Outer conductor Diameter D
3e
Tubular D = D
3e 2
Braided D > D (see 6.4)
3e 2
© IEC 2017
6.2 Inner conductor
The electrical effective diameter D of the inner conductor follows from:
1e
e 1)
D = D ⋅ exp( −Z ⋅ )
1e 1e 0
Special design features are given in Table 14.
Table 14 – Special design features
Solid inner conductor Diameter D as calculated
Stranded inner conductor Diameter D > D (see 6.3)
1 1e
6.3 Stranded inner conductor
The diameter D is to be calculated from the effective diameter D :
1 1e
D = D / k
1 1e 1z
The wire diameter d is to be calculated from D :
1 1
d = D / k
1 1 1d
k and k according to Table 8.
1d 1z
6.4 Braided outer conductors
Equations for the calculation of braided outer conductors are given in Table 15.
Table 15 – Braided outer conductors
The effective diameter D
3e
outer diameter D
mean diameter D
3m
are to be calculated from the outer diameter D and the diameter of the braid wires d :
2 3
D = D + 1,5 · d
3e 2 3
D = D + 4,5 · d
3 2 3
D = D + 2,25 · d d according to Table 10
3m 2 3 3
The filling factor of the braid is:
N ⋅ n ⋅ d ⋅ k
3 3 3 3r
q =
2 ⋅ π ⋅ D
3m
d and D as above
3 3m
k according to Table 9
3r
The coverage and the braid angle of the outer conductor are given by:
B = 2q – q β = arc tan πD /L
3 3 3 3 3m 3
___________
1)
Rounded up from 59,96.
– 18 – IEC 60096-0-1:2012+AMD1:2017 CSV
© IEC 2017
6.5 Medium between outer conductor and screen
Medium between outer conductor and screen is given in Table 16.
Table 16 – Medium between outer conductor and screen
The outer diameter of the interposed medium is:
D = D + 2 s
5 3 5
6.6 Braided screen
Equations for the calculation of braided screens are given in Table 17.
Table 17 – Braided screen
The outer diameter D and the mean diameter D are to be calculated from the outer diameter of the interposed
6 6m
medium D and the diameter of the braid wires, d :
5 6
D = D + 4,5 d
6 5 6
D = D + 2,25 d
6m 5 6
d according to Table 10
The filling factor of the braid is:
N ⋅ n ⋅ d ⋅ k
6 6 6 6r
q =
2 ⋅ π ⋅ D
6m
d and D as above
6 6m
k according to Table 9
6r
The coverage and the braid angle of the screen are given by:
B = 2q – q β = arc tan πD /L
6 6 6 6 6m 6
6.7 Sheath diameters
Sheath diameters are given in Table 18.
Table 18 – Sheath diameters
Material Outer diameter of Nominal thickness Minimum thickness
a
screen D s s min.
6 4 4
FEP 0,25 mm 0,15 mm
<2,5
2,5 – 5,9 0,25 mm
PTFE 0,38 mm
6,0 – 9,0 0,30 mm
a
PE <2,5 0,07 D + 0,3 mm
0,9 s – 0,1 mm
a
PVC 0,07 D + 0,5 mm
≥2,5
a
Cables without screen: to be replaced by outer diameter of outer conductor D .
6.8 Weight calculation
The approximate total weight of the cable is to be calculated from m = Σ m .
x
For the calculation of the individual weights, formulae are given in Table 19:
© IEC 2017
Table 19 – Weight calculation
π
Solid inner conductor m = ⋅D ⋅γ
γ according to Table 4
k according to Table 8
1r
π
Stranded inner conductor m = ⋅ d ⋅ N ⋅ k ⋅ γ
1 1 1r 1
γ according to Table 3
π 2
2 2
Insulation = ( )
m ⋅ D − D ⋅ γ
2 2
2 1
4 D according to 6.3
Tubular outer conductor m = π ·(D + s ) · s ·γ γ according to Table 4
3 2 3 3 3 3
π
Braided outer conductor m = ⋅ d ⋅ N ⋅ n ⋅ k ⋅ γ k according to Table 9
3 3r
3 3 3 3r 3
m = π •(D + s )· s ·γ γ dependent on the material used
Interposed medium between outer 5 3 5 5 5 5
conductor and screen
D according to Table 16
γ according to Table 4
π 6
Braided screen m = ⋅ d ⋅ N ⋅ n ⋅ k ⋅ γ
6 6 6 6r 6
k according to Table 9
6r
a
Sheath
m = π · (D + s ) · s · γ γ according to Table 3
4 6 4 4 4 4
a
For cables without screen, D is to be replaced by D .
6 3
7 Calculation of electrical properties
7.1 DC resistance of conductors and screen, per unit length
The values are to be calculated from the formulae in Table 20:
Table 20 – Electrical properties
R =
Solid inner conductor
π ⋅ D ⋅ χ
4 k
1r
Stranded inner conductor R =
N ⋅ π ⋅ d ⋅ χ
1 1 1
χ , χ , χ according to Table 4
1 3 6
R =
Tubular inner conductor
π ⋅ (D − S )⋅ S ⋅ χ
1 1 1
k according to Table 8
1r
k and k according to Table 9
3r 6r
R =
Tubular outer conductor
d and d according to Table 10
π ⋅ (D + s )⋅ S ⋅ χ 3 6
2 3 3 3
4 k
3r
R =
Braided outer conductor
N ⋅ n ⋅ π ⋅ d ⋅ χ
3 3 3 3
4 ⋅k
6r
R =
Braided screen 6
N ⋅ n ⋅ π ⋅ d ⋅ χ
6 6 6 6
– 20 – IEC 60096-0-1:2012+AMD1:2017 CSV
© IEC 2017
7.2 Attenuation
The total attenuation per unit length is to be calculated from:
α = α + α + α
1 2 3
where α , α and α are the attenuation components due to the inner conductor, dielectric
1 2 3
and outer conductor. The attenuation is related to a cable temperature of 20 °C. For
temperatures T ≠ 20 °C, the attenuation shall be calculated by:
α = (α + α ) 1+ 0,00393 (T − 20 °C) + α
T 1 3 2
NOTE α may be temperature-dependent for some dielectric materials.
Formulae for calculation of α , α and α are given in Table 21. These formulae are
1 2 3
applicable for frequencies ≥10 MHz. Formulae for lower frequencies are under consideration.
Table 21 – Factors for calculation of attenuation
4,58 ⋅ k ⋅ k e ⋅ f
1c 1a
α = ⋅
χ
D ⋅ln D /D χ and χ , k and k according to Tables 4 and 5
1e 3e 1e 1 1 3 1c 3c
k and k according to Table 11
1a 3a
α = 9,1⋅ e ⋅ tan δ f
2 2 2
e and tan δ according to Table 3
2 2
D and D according to 6.2 and to Table 14 or to 6.4
4,58 ⋅ k ⋅ k ε ⋅ f
1e 3e
3c 3a
α = ⋅
χ
D ⋅lnD /D
3e 3e 1e 3
7.3 Nominal characteristic impedance Z and capacitance C per unit length
o 2
2)
60 D
3e
z = ln
o
D
e
1e
2)
ε
C = ⋅10 (pF/m)
3z
o
e according to Table 3 or as provided by the manufacturer;
D according to Table 14 or to 6.4 or as provided by the manufacturer;
3e
D according to 6.2.
1e
7.4 Calculation of Power rating
7.4.1 Average power rating
The average power rating shall be calculated from the attenuation and the maximum
permissible dissipation power for an ambient temperature of 40 °C.
For most practical purposes, the maximum permissible dissipation power per unit length (P )
d
is dependent on the maximum permissible temperature T of the inner conductor, given by the
maximum permissible temperature of dielectric (see Table 3).
___________
2)
Rounded up from 59,96 and 2,9979 respectively.
© IEC 2017
The temperature rise of the inner conductor above that of the stagnant ambient air is:
0,8
P 1 000 P
α + 1 / 2 α D D
d 1 2 2 4 d
T − 40 °C = σ ln + σ ln +
1 2
...










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...