Railway applications - Compatibility between rolling stock and train detection systems

IEC 62427:2024 describes a process to demonstrate compatibility between rolling stock (RST) and train detection systems (TDS). It describes the characterization of train detection systems, rolling stock and traction power supply systems.
It is worth noting that the demonstration of technical compatibility between the rolling stock and infrastructure with respect to physical dimensions is not detailed in this document.
This document is not generally applicable to those combinations of rolling stock, traction power supply and train detection system which were accepted as compatible prior to the publication of this document. However, as far as is reasonably practicable, this document can be applied to modifications of rolling stock, traction power supply or train detection systems which can affect compatibility. The detailed process can be used where no rules and processes for compatibility are established.
This second edition cancels and replaces the first edition published in 2007. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) generic compatibility process, which is broken into a two-stage process depending on whether there are established compatibility limits or not;
b) rules for characterization of train detection systems;
c) rules for characterization of rolling stock;
d) rules for characterization of the power system;
e) informative references are provided in notes to established CENELEC standards for compatibility;
f) terminology is updated.

Applications ferroviaires - Compatibilité entre le matériel roulant et les systèmes de détection des trains

IEC 62427:2024 Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:
a) procédure de compatibilité générale à deux niveaux (selon que les limites de compatibilité établies sont respectées ou non);
b) règles de caractérisation des systèmes de détection de train ;
c) règles de caractérisation du matériel roulant ;
d) règles de caractérisation de l'alimentation de traction ;
e) ajout de références normatives aux normes CENELEC établies dans les notes pour la compatibilité ;
f) mise à jour de la terminologie.
La présente version bilingue (2025-11) correspond à la version anglaise monolingue publiée en 2024-12.
Le présent document décrit une procédure qui permet de démontrer la compatibilité entre le matériel roulant (MR) et les systèmes de détection de train (SDT). Il fournit également des informations sur la caractérisation des systèmes de détection de train, du matériel roulant et des alimentations de traction.
Il est à noter que le présent document ne couvre pas la démonstration de compatibilité technique entre le matériel roulant et l'infrastructure en termes de dimensions physiques.
Le présent document ne s'applique généralement pas aux ensembles matériels roulants, alimentations de traction et systèmes de détection de train qui ont déjà été reconnus compatibles avant la publication du présent document. Toutefois, le présent document peut être appliqué, dans des limites raisonnables, aux modifications du matériel roulant, de l'alimentation de traction et des systèmes de détection de train qui sont susceptibles de compromettre la compatibilité. La procédure décrite dans le présent document peut être utilisée lorsqu'aucune règle ni procédure de compatibilité n'ont été définies.
Cette seconde édition annule et remplace la première édition parue en 2007. Cette édition constitue une révision technique.

General Information

Status
Published
Publication Date
03-Dec-2024
Drafting Committee
MT 62427 - TC 9/MT 62427
Current Stage
PPUB - Publication issued
Start Date
04-Dec-2024
Completion Date
25-Oct-2024

Relations

Effective Date
05-Sep-2023

Overview

IEC 62427:2024 - Railway applications - Compatibility between rolling stock and train detection systems - defines a structured process to demonstrate technical compatibility between rolling stock (RST) and train detection systems (TDS). The standard covers the characterization of train detection systems, rolling stock and traction power supply systems and describes how to build a compatibility argument, perform compatibility analyses and document test results. This second edition (2024) is a technical revision of the 2007 edition and introduces a generic two‑stage compatibility process and updated terminology.

Note: IEC 62427 does not detail compatibility with respect to physical dimensions (clearances) and is not automatically applicable to combinations already accepted as compatible before publication, although it can be used for modifications that may affect compatibility.

Key topics and technical requirements

  • Two‑stage compatibility process: a generic process that adapts depending on whether established compatibility limits exist.
  • Characterization rules for:
    • Train Detection Systems (track circuits, axle counters, wheel detectors, loops) - including susceptibility and transfer functions.
    • Rolling stock (electromagnetic behaviour, bonding, current return paths).
    • Traction power supply systems (DC/AC interactions and interference sources).
  • Compatibility analyses: methods to compare characterized behaviours against compatibility limits or permissible interference, including building a documented compatibility argument.
  • Test plans and reporting: requirements for test organization, configuration, instrumentation, results, comments and archiving.
  • Quality management and route identification processes for introducing new or modified rolling stock or infrastructure.
  • Informative annexes: guidance on susceptibility mechanisms, rolling stock characterization, factors affecting compatibility, DC traction specifics and examples (European loop parameters).
  • References to established CENELEC standards (informative notes) and linkage to EN 50238-1:2019 (basis for this edition).

Practical applications and who uses IEC 62427

IEC 62427 is intended for engineers, system integrators and stakeholders involved in railway signalling and electrification, including:

  • Rolling stock manufacturers and test engineers validating electromagnetic compatibility with trackside detection.
  • Infrastructure managers and signalling engineers assessing fleet introduction or infrastructure changes.
  • Test laboratories preparing test plans and producing compliance test reports.
  • Project managers defining requirements for new lines, refurbishments or modifications where train detection, traction power and rolling stock interact.

Practical use cases:

  • Assessing a new fleet’s impact on track circuits and axle counters.
  • Verifying that traction power supply changes do not degrade detection reliability.
  • Supporting safety cases and interoperability assessments where no prior compatibility rules exist.

Related standards

  • EN 50238-1:2019 (basis for IEC 62427:2024)
  • CENELEC standards referenced in informative notes for compatibility practices
  • Other IEC/ISO railway signalling and EMC documents (see IEC bibliographic references)

Keywords: IEC 62427, railway compatibility, rolling stock, train detection systems, traction power supply, track circuits, axle counters, electromagnetic compatibility, railway testing.

Buy Documents

Standard

IEC 62427:2024 - Railway applications - Compatibility between rolling stock and train detection systems Released:12/4/2024 Isbn:9782832700242

English language (42 pages)
sale 15% off
Preview
sale 15% off
Preview
Standard

IEC 62427:2024 - Applications ferroviaires - Compatibilité entre le matériel roulant et les systèmes de détection des trains Released:12/4/2024 Isbn:9782832707975

French language (39 pages)
sale 15% off
Preview
sale 15% off
Preview
Standard

IEC 62427:2024 - Railway applications - Compatibility between rolling stock and train detection systems Released:12/4/2024 Isbn:9782832707975

English and French language (80 pages)
sale 15% off
Preview
sale 15% off
Preview

Get Certified

Connect with accredited certification bodies for this standard

Bureau Veritas Railway Certification

Railway and transportation certification.

COFRAC France Verified

Deutsch Quality Systems (India) Pvt. Ltd. (DQS India)

Subsidiary of DQS Holding GmbH, founding member of IQNet. CDSCO Notified Body.

NABCB India Verified

Excellence Ireland Quality Association (EIQA)

Irish quality certification organization.

INAB Ireland Verified

Sponsored listings

Frequently Asked Questions

IEC 62427:2024 is a standard published by the International Electrotechnical Commission (IEC). Its full title is "Railway applications - Compatibility between rolling stock and train detection systems". This standard covers: IEC 62427:2024 describes a process to demonstrate compatibility between rolling stock (RST) and train detection systems (TDS). It describes the characterization of train detection systems, rolling stock and traction power supply systems. It is worth noting that the demonstration of technical compatibility between the rolling stock and infrastructure with respect to physical dimensions is not detailed in this document. This document is not generally applicable to those combinations of rolling stock, traction power supply and train detection system which were accepted as compatible prior to the publication of this document. However, as far as is reasonably practicable, this document can be applied to modifications of rolling stock, traction power supply or train detection systems which can affect compatibility. The detailed process can be used where no rules and processes for compatibility are established. This second edition cancels and replaces the first edition published in 2007. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) generic compatibility process, which is broken into a two-stage process depending on whether there are established compatibility limits or not; b) rules for characterization of train detection systems; c) rules for characterization of rolling stock; d) rules for characterization of the power system; e) informative references are provided in notes to established CENELEC standards for compatibility; f) terminology is updated.

IEC 62427:2024 describes a process to demonstrate compatibility between rolling stock (RST) and train detection systems (TDS). It describes the characterization of train detection systems, rolling stock and traction power supply systems. It is worth noting that the demonstration of technical compatibility between the rolling stock and infrastructure with respect to physical dimensions is not detailed in this document. This document is not generally applicable to those combinations of rolling stock, traction power supply and train detection system which were accepted as compatible prior to the publication of this document. However, as far as is reasonably practicable, this document can be applied to modifications of rolling stock, traction power supply or train detection systems which can affect compatibility. The detailed process can be used where no rules and processes for compatibility are established. This second edition cancels and replaces the first edition published in 2007. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) generic compatibility process, which is broken into a two-stage process depending on whether there are established compatibility limits or not; b) rules for characterization of train detection systems; c) rules for characterization of rolling stock; d) rules for characterization of the power system; e) informative references are provided in notes to established CENELEC standards for compatibility; f) terminology is updated.

IEC 62427:2024 is classified under the following ICS (International Classification for Standards) categories: 45.060.01 - Railway rolling stock in general. The ICS classification helps identify the subject area and facilitates finding related standards.

IEC 62427:2024 has the following relationships with other standards: It is inter standard links to IEC 62427:2007. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

IEC 62427:2024 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.

Standards Content (Sample)


IEC 62427 ®
Edition 2.0 2024-12
INTERNATIONAL
STANDARD
Railway applications – Compatibility between rolling stock and train detection
systems
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform IEC Products & Services Portal - products.iec.ch
The advanced search enables to find IEC publications by a Discover our powerful search engine and read freely all the
variety of criteria (reference number, text, technical publications previews, graphical symbols and the glossary.
committee, …). It also gives information on projects, replaced With a subscription you will always have access to up to date
and withdrawn publications. content tailored to your needs.

IEC Just Published - webstore.iec.ch/justpublished
Electropedia - www.electropedia.org
Stay up to date on all new IEC publications. Just Published
The world's leading online dictionary on electrotechnology,
details all new publications released. Available online and once
containing more than 22 500 terminological entries in English
a month by email.
and French, with equivalent terms in 25 additional languages.

Also known as the International Electrotechnical Vocabulary
IEC Customer Service Centre - webstore.iec.ch/csc
(IEV) online.
If you wish to give us your feedback on this publication or need

further assistance, please contact the Customer Service
Centre: sales@iec.ch.
IEC 62427 ®
Edition 2.0 2024-12
INTERNATIONAL
STANDARD
Railway applications – Compatibility between rolling stock and train detection

systems
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
ICS 45.060.01  ISBN 978-2-8327-0024-2

– 2 – IEC 62427:2024 © IEC 2024
CONTENTS
FOREWORD . 5
INTRODUCTION . 7
1 Scope . 9
2 Normative references . 9
3 Terms, definitions and abbreviated terms . 9
3.1 Terms and definitions . 9
3.2 Abbreviated terms . 10
4 Compatibility process . 10
4.1 Overview. 10
4.2 Detailed compatibility process . 10
4.3 Building the compatibility argument . 11
4.4 Quality management . 12
4.5 Route identification for introduction of RST (new or changed) . 12
4.6 Introduction of infrastructure elements (new or changed) . 12
4.7 Characterization. 13
4.8 Compatibility analyses . 13
4.8.1 General terms . 13
4.8.2 Transfer function . 14
5 Characterization of train detection systems . 15
5.1 Objective of procedure . 15
5.2 Track circuit systems – Standards, regulations and technical specifications . 16
5.3 Axle counter systems – Standards, regulations and technical specifications . 16
5.4 Wheel detectors (treadle applications) . 16
5.4.1 General . 16
5.4.2 Wheel detectors based on inductive technology . 16
5.5 Loops. 17
5.5.1 General aspects . 17
5.5.2 Interfering mechanisms. 17
5.5.3 Characterization . 18
6 Characterization of rolling stock . 18
6.1 Objective . 18
6.2 General procedure . 18
7 Characterization of traction power supply systems . 19
7.1 Objective . 19
7.2 DC traction power supplies . 19
7.3 AC traction power supplies . 19
7.4 Test procedures . 20
8 Test report . 20
8.1 General . 20
8.2 Introduction to the report . 20
8.3 Test organization . 20
8.4 Configuration . 20
8.5 Reference documents . 20
8.6 Application of the test plan . 21
8.7 Test results . 21
8.8 Comments . 21

8.9 Archive of test results . 21
Annex A (informative) Guidelines for the determination of susceptibility of train
detection systems . 22
A.1 Examples of system configurations . 22
A.2 "Normal" configuration . 22
A.3 Interference mechanism with broken signal rail . 22
A.4 Interference mechanism with broken return rail . 23
A.5 Double rail track circuits . 24
A.6 Voltage between axles of rolling stock . 25
A.7 Effect of resistance between coupled vehicles . 26
A.8 Radiated interference . 28
A.9 Sensitive zone of wheel detector . 28
A.10 Factor of safety . 29
A.11 Multiple interference sources . 29
Annex B (informative) General characterization of rolling stock . 30
B.1 Objective of procedure . 30
B.2 Description of rolling stock and factors affecting its characteristics . 30
B.3 Configuration (design status) . 30
B.4 Test plan . 30
B.4.1 General . 30
B.4.2 Test site . 31
B.4.3 Instrumentation . 31
B.4.4 Test procedure . 31
Annex C (informative) Factors affecting rolling stock characteristics and compatibility . 33
Annex D (informative) DC traction power supplies . 36
D.1 General . 36
D.2 Interference currents generated by the rolling stock . 36
D.3 Interference currents generated by the traction power supply system . 36
Annex E (informative) Compatibility parameters for loops (European example) . 39
E.1 General . 39
E.2 Principles of operation – Electrical background . 39
E.3 Vehicle metal construction . 39
Bibliography . 42

Figure 1 – Sources of electromagnetic interference . 7
Figure 2 – The compatibility process . 11
Figure 3 – Relationship between compatibility limits and permissible interference . 15
Figure A.1 – Interference mechanism with rails intact . 22
Figure A.2 – Interference mechanism with self-revealing broken rail . 23
Figure A.3 – Interference mechanism with unrevealed broken rail . 23
Figure A.4 – Double rail track circuit . 24
Figure A.5 – Double rail track circuit with broken rail . 24
Figure A.6 – Interference mechanism due to voltage between axles – Case 1 . 25
Figure A.7 – Interference mechanism due to voltage between axles – Case 2 . 25
Figure A.8 – Effect of inter-vehicle current . 26
Figure A.9 – Equivalent circuit for Figure A.8 . 26
Figure A.10 – Example of radiated interference . 28

– 4 – IEC 62427:2024 © IEC 2024
Figure C.1 – Electrical bonding . 34
Figure D.1 – Rolling stock with DC supply . 37
Figure D.2 – Circulation of interference current generated by rolling stock . 37
Figure D.3 – Circulation of interference current generated by the substation . 38
Figure E.1 – Example of loop installation . 39
Figure E.2 – Vehicle layouts . 40
Figure E.3 – Example longitudinal beams with cross connection in section (a) . 40
Figure E.4 – Example short circuit rings in section (a) . 40

INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
RAILWAY APPLICATIONS –
COMPATIBILITY BETWEEN ROLLING STOCK
AND TRAIN DETECTION SYSTEMS
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 62427 has been prepared by IEC technical committee 9: Electrical equipment and systems
for railways. It is an International Standard.
This document is based on EN 50238-1:2019.
This second edition cancels and replaces the first edition published in 2007. This edition
constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) generic compatibility process, which is broken into a two-stage process depending on
whether there are established compatibility limits or not;
b) rules for characterization of train detection systems;

– 6 – IEC 62427:2024 © IEC 2024
c) rules for characterization of rolling stock;
d) rules for characterization of the power system;
e) informative references are provided in notes to established CENELEC standards for
compatibility;
f) terminology is updated.
The text of this International Standard is based on the following documents:
Draft Report on voting
9/3115/FDIS 9/3142A/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
IMPORTANT – The "colour inside" logo on the cover page of this document indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION
This document defines a process to demonstrate compatibility between rolling stock operating
on an area of use or network and train detection systems installed in this area of use or network.
Currently, general rules for the maximum levels of interference allowed, and maximum
susceptibility levels (or minimum required immunity levels) are not established in every country.
This is due to the great diversity of rolling stock, power supply and return current systems, and
train detection systems installed in each country. This diversity leads to consideration of
compatibility of rolling stock and train detection systems on a "route by route" or "network by
network" basis, to avoid unnecessarily restrictive specifications.
The compatibility process described in this document is generic. The process refers to all types
of train detection systems (TDS), which may be influenced by electromagnetic emissions of
rolling stock or traction power supply systems, (e.g. axle counters, track circuits, wheel
detectors, loops).
Compatibility is determined by both physical and electromagnetic considerations. With regard
to the electromagnetic compatibility, the need is not for general values for maximum levels of
interference permitted, and maximum susceptibility levels (or minimum required immunity levels)
but for convenient methods by which to specify the level of interference allowed for operation
on routes or a network.
Main interference sources are considered to be:
– rail currents and voltage sources;
– electromagnetic fields;
– differential voltage between adjacent axles of the train;
as shown in Figure 1.
Figure 1 – Sources of electromagnetic interference
In practice, the susceptibility of the system is determined by:
– the sensitivity of individual components of the system and the type of interference it is
susceptible to;
– the application of the components, i.e. the configuration of the system.

– 8 – IEC 62427:2024 © IEC 2024
Therefore the problems concerning TDS are considered separately for each type.
• National rules or standards, including agreements among stakeholders, define compatibility
limits for track circuits;
• National rules or standards, including agreements among stakeholders, define compatibility
limits for axle counters and wheel detectors;
• National rules or standards, including agreements among stakeholders, define the testing
method of rolling stock for electromagnetic compatibility with axle counters;
• Compatibility with other types of wheel detectors (mechanical or magnetic) is described in
5.4;
• Compatibility with loops can be established following the guidance in 5.5;
• Compatibility with any other type of TDS not explicitly covered by this document can also
be established following the generic process in this document.
NOTE 1 In Europe, CLC/TS 50238-2, CLC/TS 50238-3 and EN 50592 provide compatibility limits for track circuits,
compatibility limits for axle counters and wheel detectors, and the testing method of rolling stock for electromagnetic
compatibility with axle counters, respectively.
For determining the susceptibility of signalling systems, laboratory/simulation testing methods
and in situ tests on the "real railway" are proposed. Modelling enables worst-case conditions to
be simulated. In addition, particular test sites are selected because, from experience, they are
expected to provide the test evidence required.
Then, taking account of the experience of the railways, it is possible to establish a general
method for determining the susceptibility of train detection systems, described in this document.
NOTE 2 In Europe, general requirements on how to establish immunity have been defined in EN 50617-1 and
EN 50617-2.
Before assessing the electromagnetic emissions of rolling stock, sufficient knowledge of the
electric circuit diagram of the power equipment is important, including switching frequencies of
on-board power converters, type of regulation used for power converters, resonant frequency
of each filter, operating limits under high and low supply voltages, degraded modes of operation.

RAILWAY APPLICATIONS –
COMPATIBILITY BETWEEN ROLLING STOCK
AND TRAIN DETECTION SYSTEMS
1 Scope
This document describes a process to demonstrate compatibility between rolling stock (RST)
and train detection systems (TDS). It describes the characterization of train detection systems,
rolling stock and traction power supply systems.
It is worth noting that the demonstration of technical compatibility between the rolling stock and
infrastructure with respect to physical dimensions is not detailed in this document.
This document is not generally applicable to those combinations of rolling stock, traction power
supply and train detection system which were accepted as compatible prior to the publication
of this document. However, as far as is reasonably practicable, this document can be applied
to modifications of rolling stock, traction power supply or train detection systems which can
affect compatibility. The detailed process can be used where no rules and processes for
compatibility are established.
2 Normative references
There are no normative references in this document.
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
• IEC Electropedia: available at https://www.electropedia.org/
• ISO Online browsing platform: available at https://www.iso.org/obp
3.1.1
competent body
body responsible for the independent evaluation of the compatibility case
Note 1 to entry: This can be an accredited conformity body or an independent safety assessor. This role is not
limited to external parties, unless mandated under the applicable legislation.
3.1.2
compatibility case
set of documents which records the evidence demonstrating the degree of compatibility
between rolling stock, traction power supplies and train detection systems for a specific route
or specific railway network
[SOURCE: IEC 60050-821:2017, 821-03-47]

– 10 – IEC 62427:2024 © IEC 2024
3.1.3
degraded modes, pl
modes of operation in the presence of faults which have been anticipated in the design of the
signalling system or the rolling stock
[SOURCE: IEC 60050-821:2017, 821-01-52]
3.1.4
traction power supply system
part of the overall electricity energy supply system, not extending beyond the dedicated feeder
stations on the rail network
Note 1 to entry: IEC 62313 applies at the interface to the national electricity supply network.
3.1.5
wheel detector
sensor which detects the passage of a wheel
Note 1 to entry: A wheel detector can be used as part of an axle counter or as a treadle.
[SOURCE: IEC 60050-821:2017, 821-03-53]
3.2 Abbreviated terms
For the purposes of this document, the following abbreviated terms apply.
AC Alternating current
DC Direct current
IM Infrastructure manager
MVA Megavoltampere
NTR National technical rule
RINF Register of infrastructure
RST Rolling stock
TDS Train detection system
WSF Wrong side failure
4 Compatibility process
4.1 Overview
The party which introduces a new element or introduces a change of an existing element or
system is responsible for demonstrating compatibility between rolling stock, train detection,
traction power supply systems and neighbouring infrastructure, if applicable. The party is
responsible for initiating the compatibility process. The relevant data shall be made available
to the party responsible for constructing and/or amending the compatibility case. If data are not
available or not sufficient, alternative arrangements can be made by both the responsible party
and the affected party to demonstrate compatibility, for example by carrying out specific
compatibility tests. It is recommended that a competent body evaluates the compatibility case
if the stakeholders consider the modification to be a significant change. In 4.2 to 4.8, the specific
tasks to demonstrate compatibility are listed and explained.
4.2 Detailed compatibility process
The compatibility process is summarized in Figure 2.

Figure 2 – The compatibility process
4.3 Building the compatibility argument
A compatibility case in compatibility analysis shall be prepared, following the process depicted
in Figure 2, including but not limited to the:
a) definition of the scope of the compatibility case, including:
• new element to be introduced;
• identification of the route or area of use (network) if applicable;
• operational conditions;
b) description of the overall rail system including:
• infrastructure:
– train detection system (frequency-wide immunity limits if available);
– track parameters relevant for the train detection system (e.g. earthing and bonding);
– traction power supply and line parameters;

– 12 – IEC 62427:2024 © IEC 2024
• rolling stock in any configuration, including degraded modes:
– relevant operational conditions e.g. power limitations;
– factors affecting rolling stock characteristics and compatibility as listed in Annex C,
identification of disturbance sources, their behaviour and/or applicable summation
rules;
• adjacent infrastructure and other rolling stock, if applicable;
c) theoretical analysis (e.g. simulation) against requirements of the scope including
assumptions:
• derive the permissible interference per on-board source using the analysis in 4.8;
d) test plan taking account of the results of the theoretical analysis;
e) test reports – see Clause 8;
f) assessment of theoretical analysis and test reports against requirements:
• related compatibility cases;
• check of validity of assumptions;
• check if restrictions may be lifted or relaxed;
g) quality management plan and evidence.
If a competent body is appointed, then it is recommended to involve them at each step of the
compatibility case.
It is recognized that characterization of interference generated and propagated by rolling stock
can be a time consuming process, which may require a significant amount of testing during
service operations in order to refine the characteristics. Therefore, provided that the risks to all
parties can be demonstrated to be acceptable, temporary operational conditions may be
imposed prior to full compatibility being established.
Hereunder specific aspects of the compatibility case will be further outlined.
4.4 Quality management
Quality management systems shall be in place. The importance of configuration management
should be noted.
The configuration state of the relevant infrastructure and rolling stock (including maintenance
processes and schedules) shall be recorded and referenced within the compatibility case. Any
subsequent changes to these configurations shall lead to an examination of the continued
validity of the compatibility case.
4.5 Route identification for introduction of RST (new or changed)
In order to accept a particular rolling stock in respect of a particular route or network, the
different types and applications of train detection systems and traction power supply systems,
if applicable, on the network or on the route and on adjacent routes which can be affected shall
be identified. In addition to the intended operational route(s), alternative route(s), which may
be required in the event of disruption to traffic shall also be considered.
4.6 Introduction of infrastructure elements (new or changed)
In order to accept a particular infrastructure change (e.g. TDS or traction power supply) in
respect of a particular route or network, the different types of RST, TDS and traction power
supply systems on the network or on the route and on adjacent routes, which may be affected,
shall be identified.
4.7 Characterization
The characteristics of the identified systems shall be obtained in accordance with the following
clauses:
For train detection systems: Clause 5;
For rolling stock: Clause 6;
For power supply systems: Clause 7.
4.8 Compatibility analyses
4.8.1 General terms
It shall be demonstrated that the rolling stock characteristics for generated and propagated
interference comply with the train detection system limits, under defined operating conditions,
including degraded modes.
NOTE 1 EN 50617-1, EN 50617-2, EN 50592 are available for operating conditions in Europe.
The relationship between rolling stock and infrastructure is shown in Figure 3. The information
flow may be in either direction depending on which system is to be changed.
NOTE 2 Compatibility is now based on worst-case conditions. This results in very severe requirements for rolling
stock interference limits, while in practice the tolerable interference level is much higher due to overall degradation
of older systems and interference produced by the current collecting system. Despite this situation, the cases with
hazards caused by interference are very rare. It is obvious that a perspective of risk calculation will ease the
interference current requirement by probably a decade.
The safety margin is applicable for safety related tests, where train detection technology implies
WSF. The availability margin is applicable for availability related tests.
NOTE 3 All applicable parameters for compatibility cases of track circuits and axle counters in Europe can be
identified from EN 50617-1 and EN 50617-2 respectively.
The compatibility analysis is mandatory and shall explain the technical principles which ensure
compatibility, including (or giving reference to) all supporting evidence, e.g., calculations, test
plans and results.
The method of analysis of fault modes shall be agreed between the parties listed in 4.3.
The scenario for compatibility including the worst case shall be described with the following
parameters:
– transfer function between interference sources (rolling stock and infrastructure) and
sensitivity level of the used TDS in the specified frequency band;
– characteristics, operating modes and conditions of rolling stock (normal and degraded
modes of RST and maximum torque, speed or other operating conditions);
– characteristics and operating conditions (normal and degraded modes) of traction power
supply, including substation parameters and traction return path;
– safety and/or availability margin taking account of the above modes and conditions. Track
circuit sequencing is considered when safety or availability margins are agreed.
NOTE 4 Testing during operation in service on one vehicle will establish a probability for generated interference,
e.g. a level down to once per 1 000 h during several months of testing. This is only sufficient for the basic level of
generated interference current.
Both on-board systems and/or infra-side systems can be used to monitor the probability of
occurrence of high levels of interference currents, provided they remain compatible with the
various immunity levels of the propagation and detection systems.

– 14 – IEC 62427:2024 © IEC 2024
4.8.2 Transfer function
The "transfer function" expresses the relation between the received interference signal at the
train detection system equipment and the total interference signal generated by rolling stock.
Let the transfer function be denoted by F.
Let the interference signal at the train detection system equipment caused by a single train
and/or multiple trains at the electric section be denoted by I .
TDS
Let the interference signal generated by the rolling stock be denoted by I .
RS
The interference signal is then:
I = F × I
TDS RS
The maximum permissible interference signal at the train detection system equipment I
TDSmax
is determined by the sensitivity of the train detection system equipment. Let the total permissible
interference generated by rolling stock be denoted by I . Then:
RStot
I = I / F
RStot TDSmax
Where multiple sources (rolling stock and substations) may contribute to the total interference
signal, the permissible interference per source shall take this into account.
NOTE 1 Line resonances and phase sensitive receivers can be part of the evaluation of compatibility.
NOTE 2 In Europe, CLC/TS 50238-2 provides possible guidance on the application of the transfer function
considering multiple sources.
Note that the permissible interference signal will have two values determined by the following
criteria:
– the signal which may cause the train detection system to show clear when it is in fact
occupied (a wrong side failure, i.e. a matter of safety);
– the signal which may cause the train detection system to show occupied when it is in fact
clear (a right side failure, i.e. a matter of availability). The effect on interlocking logic shall
however be considered.
The process of application of the summation rules can be applied in both directions as depicted
in Figure 3.
Figure 3 – Relationship between compatibility limits and permissible interference
5 Characterization of train detection systems
5.1 Objective of procedure
To ensure the correct operation of axle counter systems, wheel detectors and track circuit
systems, their physical and electromagnetic properties are defined in the detailed standards
and regulations (see 5.2, 5.3 and 5.4 for details) as well as the measurement methodology and
how to report the compatibility with these standards.

– 16 – IEC 62427:2024 © IEC 2024
For other train detection systems not covered by standards, their relevant properties shall be
defined by the infrastructure manager in collaboration with the manufacturers. Relevant
information shall be described by the manufacturers in the product documentation.
5.2 Track circuit systems – Standards, regulations and technical specifications
Parameters for track circuits are provided by national rules or standards, including agreements
among stakeholders. All requirements to be fulfilled by a track circuit system are listed and
defined there in detail.
NOTE 1 In Europe, EN 50617-1 directly includes the requirements for physical and electrical aspects (e.g. axle
resistance, ballast resistance, broken rail behaviour) as well as the electromagnetic parameters (e.g. behaviour to
interferences and immunity limits), the measurements to be executed and the reporting to show the compatibility with
this document.
NOTE 2 The methodology defined in Europe in EN 50617-1 can be used where practically applicable.
NOTE 3 Guidance to establish compatibility limits is contained in Annex A. Some known track circuit compatibility
limits in Europe are published in CLC/TS 50238-2.
5.3 Axle counter systems – Standards, regulations and technical specifications
An axle counter system is the whole system including the axle counter detector with its sensor,
and the evaluation unit.
If the characterization is to be performed on the axle counter (wheel detector) alone, rather than
on the axle counter system, refer to 5.4.
Parameters for axle counter systems are provided by national rules or standards, including
agreements among stakeholders. All requirements to be fulfilled by an axle counter system are
listed and defined there in detail.
NOTE 1 In Europe, EN 50617-2 directly includes the requirements in accordance with physical and electrical
aspects (e.g. axle distances, fastenings to the rail, environmental conditions) as well as the electromagnetic
parameters (e.g. behaviour to interferences and immunity limits), the measurements to be executed and the reporting
to show the compatibility with this document.
NOTE 2 The methodology defined in Europe in EN 50617-2 can be used where practically applicable.
NOTE 3 Some known axle counter compatibility limits are published in Europe in CLC/TS 50238-3.
5.4 Wheel detectors (treadle applications)
5.4.1 General
Treadle applications are mainly switch on/off functionalities, direction detection or speed
measurement.
NOTE Requirements for wheel detectors applied as treadles in Europe are not explicitly described in EN 50617-2
because they are not used for axle counter systems.
5.4.2 Wheel detectors based on inductive technology
Owing to the principle of discrete detection of wheels passing a wheel detector, transient and
continuous interference limits may be considered as equivalent to the limits defined for axle
counter detectors or axle counter sensors.
NOTE 1 In Europe, EN 50617-2 can be taken into account where applicable for wheel detectors based on inductive
technology with respect to the physical, electromechanical and electromagnetic interface.
Owing to the inherent difficulties of designing a sufficiently complete electrical equivalent circuit
for an inductive wheel detector, field testing or alternatively laboratory tests injecting
interference currents into the rail and applying external electromagnetic fields shall be used for
measuring the susceptibility of wheel detectors.

To allow for uncertainties in the accuracy of measurements and simulations, the susceptibility
of the train detection system as determined above shall be increased by a factor of safety
(margin). The uncertainties shall be estimated and the factor of safety shall be sufficient to
allow for them.
It is possible that it will be necessary to take into account interference due to DC substation
ripple (e.g. harmonics of the substation voltage source) in the factor of safety.
NOTE 2 Wheel detectors based on other technology (e.g. mechanical or optical) are not described in detail in this
document.
5.5 Loops
5.5.1 General aspects
Loops are mainly used for level crossing applications, to command the lowering or raising of
barriers. A loop application based on the principle of continuous detection of a large metal mass
has a different influencing mechanism compared to axle counter sensors and track circuits
which shall be taken into account.
Loops have a greater area to be influenced by trains than wheel sensors, on the other hand the
sensitivity of a loop against rail currents is not directly linked because the loops are not
connected to the rails. Because of this, induction is the main interference mechanism. Loops
for communication tasks and/or automatic train protection applications are not within the scope
of this document.
For reliable train detection with loops, the definition of compatibility requirements with the train
shall be taken into account as shown in the example in Annex E, for a specific type of loops.
Loops are usually used as o
...


IEC 62427 ®
Edition 2.0 2024-12
NORME
INTERNATIONALE
Applications ferroviaires - Compatibilité entre le matériel roulant et les systèmes
de détection des trains
ICS 45.060.01  ISBN 978-2-8327-0797-5

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -  IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.

Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
– 42 – IEC 62427:2024 © IEC 2024
SOMMAIRE
AVANT-PROPOS . 45
INTRODUCTION . 47
1 Domaine d’application. 49
2 Références normatives . 49
3 Termes, définitions et abréviations . 49
3.1 Termes et définitions . 49
3.2 Abréviations . 50
4 Processus de compatibilité . 50
4.1 Vue d'ensemble . 50
4.2 Procédure de compatibilité détaillée . 50
4.3 Construction du dossier de compatibilité . 51
4.4 Management de la qualité . 52
4.5 Identification de l'itinéraire pour l'introduction d'un MR (nouveau ou modifié) . 52
4.6 Introduction d'éléments d'infrastructure (nouveaux ou modifiés) . 53
4.7 Caractérisation . 53
4.8 Analyses de compatibilité . 53
4.8.1 Généralités . 53
4.8.2 Fonction de transfert . 54
5 Caractérisation des systèmes de détection de train . 55
5.1 Objectifs de la procédure . 55
5.2 Circuits de voie – Normes, réglementations et spécifications techniques . 56
5.3 Systèmes compteurs d'essieux – Normes, réglementations et spécifications
techniques . 56
5.4 Détecteurs de roues (pédales) . 56
5.4.1 Généralités . 56
5.4.2 Détecteurs de roues inductifs . 56
5.5 Boucles . 57
5.5.1 Aspects généraux . 57
5.5.2 Mécanismes d'interférence . 57
5.5.3 Caractérisation . 58
6 Caractérisation du matériel roulant . 58
6.1 Objectif . 58
6.2 Procédure générale . 58
7 Caractérisation des alimentations de traction . 59
7.1 Objectif . 59
7.2 Alimentations de traction en courant continu . 59
7.3 Alimentations de traction en courant alternatif . 60
7.4 Procédures d'essai . 60
8 Rapport d'essai . 60
8.1 Généralités . 60
8.2 Introduction du rapport . 60
8.3 Organisme chargé des essais . 60
8.4 Configuration . 60
8.5 Documents de référence . 61
8.6 Application du programme d'essai . 61
8.7 Résultats des essais . 61

8.8 Commentaires . 61
8.9 Archivage des résultats d'essai . 61
Annexe A (informative) Recommandations pour la détermination de la susceptibilité
des systèmes de détection de train . 62
A.1 Exemples de configurations . 62
A.2 Configuration « normale » . 62
A.3 Interférence avec rail isolé cassé . 62
A.4 Interférence avec rail de retour cassé . 63
A.5 Circuits de voie à deux rails . 64
A.6 Tension entre essieux d'un matériel roulant . 65
A.7 Effet de la résistance entre véhicules accrochés . 66
A.8 Interférences rayonnées . 67
A.9 Zone sensible d'un détecteur de roues . 67
A.10 Coefficient de sécurité . 68
A.11 Sources multiples d'interférences . 68
Annexe B (informative) Caractérisation générale du matériel roulant . 69
B.1 Objectifs de la procédure . 69
B.2 Description du matériel roulant et des éléments affectant ses caractéristiques . 69
B.3 Configuration (état de conception) . 69
B.4 Programme d'essai . 70
B.4.1 Généralités . 70
B.4.2 Site d'essai . 70
B.4.3 Matériel de mesure . 70
B.4.4 Procédure d'essai . 70
Annexe C (informative) Éléments affectant les caractéristiques et la compatibilité du
matériel roulant . 72
Annexe D (informative) Alimentations de traction en courant continu . 75
D.1 Généralités . 75
D.2 Courants perturbateurs générés par le matériel roulant . 75
D.3 Courants perturbateurs générés par l'alimentation de traction . 75
Annexe E (informative) Paramètres de compatibilité relatifs aux boucles (exemple
européen) . 77
E.1 Généralités . 77
E.2 Principes de fonctionnement – Circuit électrique . 77
E.3 Construction métallique du véhicule . 77
Bibliographie . 80

Figure 1 – Sources d'interférences électromagnétiques . 47
Figure 2 – Procédure de compatibilité . 51
Figure 3 – Relation entre les limites de compatibilité et le niveau d'interférence
autorisé . 55
Figure A.1 – Interférence avec rails intacts . 62
Figure A.2 – Interférence avec rail cassé autodétecté . 63
Figure A.3 – Interférence avec rail cassé non détecté . 63
Figure A.4 – Circuit de voie à deux rails . 64

– 44 – IEC 62427:2024 © IEC 2024
Figure A.5 – Circuit de voie à deux rails avec rail cassé. 64
Figure A.6 – Interférence due à la tension entre essieux – Cas n° 1 . 65
Figure A.7 – Interférence due à la tension entre essieux – Cas n° 2 . 65
Figure A.8 – Effet d'un courant intervéhicule . 66
Figure A.9 – Circuit équivalent à la Figure A.8 . 66
Figure A.10 – Exemples d'interférences rayonnées . 67
Figure C.1 – Mise au potentiel électrique . 73
Figure D.1 – Matériel roulant et sous-station en courant continu . 76
Figure D.2 – Circulation des courants perturbateurs générés par le matériel roulant . 76
Figure D.3 – Circulation des courants perturbateurs générés par la sous-station . 76
Figure E.1 – Exemple d'installation de boucle . 77
Figure E.2 – Constitution du véhicule . 78
Figure E.3 – Exemple de barres de châssis longitudinales avec interconnexion dans la
section (a) . 78
Figure E.4 – Exemple d’anneaux de court-circuit dans la section (a) . 78

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
APPLICATIONS FERROVIAIRES –
COMPATIBILITÉ ENTRE LE MATÉRIEL ROULANT ET LES SYSTÈMES DE
DÉTECTION DES TRAINS
AVANT-PROPOS
1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée
de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de
favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de
l'électricité et de l'électronique. À cet effet, l'IEC – entre autres activités – publie des Normes internationales,
des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des
Guides (ci-après dénommés « Publication(s) de l'IEC »). Leur élaboration est confiée à des comités d'études,
aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations
internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux
travaux. L’IEC collabore étroitement avec l'Organisation internationale de normalisation (ISO) selon des
conditions déterminées par accord entre les deux organisations.
2) Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du
possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés
sont représentés dans chaque comité d'études.
3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC
s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de
l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales
et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou
régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) L'IEC elle-même ne fournit aucune attestation de conformité. L'IEC n'est responsable d'aucun des services
effectués par les organismes de certification indépendants. L'IEC n'est pas responsable des services fournis par
des organismes de certification indépendants.
6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires,
y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC,
pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque
nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses
découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC,
ou au crédit qui lui est accordé.
8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
9) L’IEC attire l’attention sur le fait que la mise en application du présent document peut entraîner l’utilisation d’un
ou de plusieurs brevets. L’IEC ne prend pas position quant à la preuve, à la validité et à l’applicabilité de tout
droit de brevet revendiqué à cet égard. À la date de publication du présent document, l’IEC n'avait pas reçu
notification qu’un ou plusieurs brevets pouvaient être nécessaires à sa mise en application. Toutefois, il y a lieu
d’avertir les responsables de la mise en application du présent document que des informations plus récentes
sont susceptibles de figurer dans la base de données de brevets, disponible à l'adresse https://patents.iec.ch.
L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et averti de leur
existence.
L'IEC 62427 a été établie par le comité d'études 9 de l'IEC : Matériels et systèmes électriques
ferroviaires. Il s’agit d’une Norme internationale.
Le présent document est basé sur l'EN 50238-1:2019.
Cette seconde édition annule et remplace la première édition parue en 2007. Cette édition
constitue une révision technique.

– 46 – IEC 62427:2024 © IEC 2024
Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition
précédente:
a) procédure de compatibilité générale à deux niveaux (selon que les limites de compatibilité
établies sont respectées ou non) ;
b) règles de caractérisation des systèmes de détection de train ;
c) règles de caractérisation du matériel roulant ;
d) règles de caractérisation de l'alimentation de traction ;
e) ajout de références normatives aux normes CENELEC établies dans les notes pour la
compatibilité ;
f) mise à jour de la terminologie.
La présente version bilingue (2025-11) correspond à la version anglaise monolingue publiée en
2024-12.
La version française de cette norme n'a pas été soumise au vote.
Le présent document a été rédigé selon les Directives ISO/IEC, Partie 2, et élaboré selon les
Directives ISO/IEC, Partie 1 et aux Directives ISO/IEC, Supplément IEC, disponibles à l'adresse
suivante : www.iec.ch/members_experts/refdocs. Les principaux types de documents élaborés
par l'IEC sont décrits plus en détail sur le site internet : www.iec.ch/publications.
Le comité a décidé que le contenu du présent document ne sera pas modifié avant la date de
maintenance indiquée sur le site internet de l’IEC à l'adresse suivante : webstore.iec.ch, dans
les données relatives au document spécifique. À cette date, le document sera :
• reconduit,
• supprimé, ou
• révisé.
IMPORTANT – Le logo « colour inside » qui se trouve sur la page de couverture de cette
publication indique qu'elle contient des couleurs qui sont considérées comme utiles à
une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent,
imprimer cette publication en utilisant une imprimante couleur.

INTRODUCTION
Le présent document définit un processus pour démontrer la compatibilité entre un matériel
roulant circulant sur une zone d'exploitation ou sur un réseau donné et les systèmes de
détection de train installés dans la même zone d'exploitation ou le même réseau.
Actuellement, tous les pays n'ont pas établi de règles générales pour les niveaux d'interférence
maximaux autorisés et les seuils de susceptibilité maximaux (ou les niveaux d'immunité
minimum exigés). Cela est dû à la grande diversité des matériels roulants, des alimentations
de traction et des systèmes de retour de courant, ainsi que des systèmes de détection de train
actuellement en service dans chaque pays. Du fait de cette diversité, la compatibilité entre le
matériel roulant et les systèmes de détection de train ne peut être étudiée que « itinéraire par
itinéraire » ou « réseau par réseau » afin d'éviter des spécifications restrictives non
indispensables.
La procédure de compatibilité décrite dans le présent document est une procédure générale.
Elle s'applique à tous les types de systèmes de détection de train (SDT) pouvant être influencés
par les émissions électromagnétiques du matériel roulant ou des alimentations de traction
(compteurs d'essieux, circuits de voie, détecteurs de roues, boucles, par exemple).
La compatibilité est déterminée par des considérations d'ordre physique et électromagnétique.
En ce qui concerne la compatibilité électromagnétique, l'objectif n'est pas de fournir des valeurs
générales pour les niveaux d'interférence maximaux autorisés et les seuils de susceptibilité
maximaux (ou les niveaux d'immunité minimum exigés), mais plutôt de suggérer des méthodes
pratiques pour spécifier ces niveaux afin d'autoriser l'exploitation sur des itinéraires ou un
réseau donné.
Les principales sources d'interférences considérées sont :
– les courants présents dans les rails et les sources de tension ;
– les champs électromagnétiques ;
– les différences de potentiel entre les essieux adjacents du train,
comme illustré à la Figure 1.
Figure 1 – Sources d'interférences électromagnétiques
En pratique, la susceptibilité du système est déterminée par :
– la sensibilité des composants du système et le type d'interférence auquel il est sensible ;
– l'application de ces composants, c'est-à-dire la configuration du système.

– 48 – IEC 62427:2024 © IEC 2024
Par conséquent, chaque type de problème relatif aux SDT est étudié séparément.
• Les règles nationales ou les normes, y compris les conventions entre les parties prenantes,
définissent les limites de compatibilité pour les circuits de voie.
• Les règles nationales ou les normes, y compris les conventions entre les parties prenantes,
définissent les limites de compatibilité pour les compteurs d'essieux et les détecteurs de
roues.
• Les règles nationales ou les normes, y compris les conventions entre les parties prenantes,
définissent la procédure d'essai de compatibilité électromagnétique du matériel roulant avec
les compteurs d'essieux.
• La compatibilité avec les autres types de détecteurs de roues (mécaniques ou magnétiques)
est décrite en 5.4.
• La compatibilité avec les boucles peut être établie sur la base des recommandations
données en 5.5.
• La compatibilité avec tout autre type de SDT qui n'est pas couvert explicitement par le
présent document peut également être établie sur la base de la procédure générale décrite
dans le présent document.
NOTE 1 En Europe, la CLC/TS 50238-2, la CLC/TS 50238-3 et l'EN 50592 définissent les limites de compatibilité
pour les circuits de voie, les limites de compatibilité pour les compteurs d'essieux et les détecteurs de roues, ainsi
que la procédure d'essai de compatibilité électromagnétique du matériel roulant avec les compteurs d'essieux,
respectivement.
Pour caractériser la susceptibilité des systèmes de signalisation, des procédures d'essai en
laboratoire ou des simulations ainsi que des essais in situ sur « sites réels » sont suggérés. La
modélisation permet de simuler les conditions les plus défavorables. Par ailleurs, on utilise
également des sites d'essai particuliers qui par expérience sont connus pour réunir les
conditions d'essai requises.
Puis, tout en tenant compte de l'expérience des réseaux ferroviaires, il est alors possible
d'établir une méthode générale pour déterminer la susceptibilité des systèmes de détection de
train ; cette méthode est décrite dans le présent document.
NOTE 2 En Europe, les exigences générales permettant d'établir l'immunité ont été définies dans l'EN 50617-1 et
dans l'EN 50617-2.
Avant d'évaluer les émissions électromagnétiques du matériel roulant, il est important de réunir
suffisamment d'informations sur le schéma électrique des équipements de puissance, à savoir :
les fréquences de commutation des convertisseurs de puissance embarqués, les types de
régulations employés pour les convertisseurs de puissance, les fréquences de résonance de
chaque filtre, les limites de fonctionnement à haute et basse tensions, les modes dégradés de
fonctionnement, etc.
APPLICATIONS FERROVIAIRES –
COMPATIBILITÉ ENTRE LE MATÉRIEL ROULANT
ET LES SYSTÈMES DE DÉTECTION DES TRAINS

1 Domaine d’application
Le présent document décrit une procédure qui permet de démontrer la compatibilité entre le
matériel roulant (MR) et les systèmes de détection de train (SDT). Il fournit également des
informations sur la caractérisation des systèmes de détection de train, du matériel roulant et
des alimentations de traction.
Il est à noter que le présent document ne couvre pas la démonstration de compatibilité
technique entre le matériel roulant et l'infrastructure en termes de dimensions physiques.
Le présent document ne s'applique généralement pas aux ensembles matériels roulants,
alimentations de traction et systèmes de détection de train qui ont déjà été reconnus
compatibles avant la publication du présent document. Toutefois, le présent document peut être
appliqué, dans des limites raisonnables, aux modifications du matériel roulant, de l'alimentation
de traction et des systèmes de détection de train qui sont susceptibles de compromettre la
compatibilité. La procédure décrite dans le présent document peut être utilisée lorsqu'aucune
règle ni procédure de compatibilité n'ont été définies.
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes, définitions et abréviations
3.1 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées
en normalisation, consultables aux adresses suivantes :
• IEC Electropedia : disponible à l'adresse https://www.electropedia.org/
• ISO Online browsing platform : disponible à l’adresse https://www.iso.org/obp
3.1.1
organisme compétent
organisme responsable de l'évaluation indépendante du dossier de compatibilité
Note 1 à l’article: Il peut s'agir d'un organisme d'évaluation de la conformité accrédité ou d'un expert en contrôle
de sécurité indépendant. Ce rôle n'est pas réservé à des tierces parties, sauf obligation contraire selon la législation
applicable.
3.1.2
dossier de compatibilité
ensemble de documents attestant de la démonstration du degré de compatibilité entre le
matériel roulant, les alimentations de traction et les systèmes de détection de train pour un
itinéraire donné ou pour un réseau ferroviaire donné
[SOURCE : IEC 60050-821:2017, 821-03-47]

– 50 – IEC 62427:2024 © IEC 2024
3.1.3
modes dégradés, pl
modes de fonctionnement en présence de défauts ayant été prévus lors de la conception du
système de signalisation ou du matériel roulant
[SOURCE : IEC 60050-821:2017, 821-01-52]
3.1.4
alimentation de traction
partie du réseau électrique général, délimitée par les sous-stations spécifiques au réseau
ferroviaire
Note 1 à l’article: L'IEC 62313 s'applique à la jonction avec le réseau électrique national.
3.1.5
détecteur de roues
capteur détectant le passage d'une roue
Note 1 à l’article: Un détecteur de roues peut être utilisé comme constituant d'un compteur d'essieux ou comme
une pédale.
[SOURCE : IEC 60050-821:2017, 821-03-53]
3.2 Abréviations
Pour les besoins du présent document, les abréviations suivantes s’appliquent.
CA Courant alternatif
CC Courant continu
IM (Infrastructure manager) Gestionnaire d’infrastructure
MVA MégaVolt-Ampère
RTN Règle technique nationale
RINF Registre d'infrastructure
MR Matériel roulant
SDT Système de détection de train
WSF (Wrong Side Failure) Défaut contraire à la sécurité
4 Processus de compatibilité
4.1 Vue d'ensemble
L'entité qui introduit un nouvel élément ou un changement à un élément ou système existant a
la responsabilité de démontrer la compatibilité entre le matériel roulant, les systèmes de
détection de train, les alimentations de traction et l'infrastructure adjacente, s'il y a lieu. Il
incombe à cette entité d'engager la procédure de compatibilité. Les données pertinentes
doivent être mises à disposition de l'entité responsable de la constitution et/ou modification du
dossier de compatibilité. Si ces données ne sont pas disponibles ou suffisantes, l'entité
responsable et l'entité concernée peuvent prendre d'autres dispositions afin de démontrer la
compatibilité (en effectuant des essais de compatibilité spécifiques, par exemple). Il est
recommandé de faire évaluer le dossier de compatibilité par un organisme compétent si les
parties prenantes jugent que la modification est substantielle. Les paragraphes 4.2 à 4.8
présentent et expliquent les tâches spécifiques à la démonstration de la compatibilité.
4.2 Procédure de compatibilité détaillée
La Figure 2 suivante représente la procédure de compatibilité.

Figure 2 – Procédure de compatibilité
4.3 Construction du dossier de compatibilité
Lors de l'analyse de compatibilité, un dossier de compatibilité doit être constitué conformément
au processus décrit à la Figure 2. Il doit inclure, sans forcément s’y limiter :
a) une définition du domaine d'application du dossier de compatibilité, et notamment :
• les nouveaux éléments à introduire ;
• une identification de l'itinéraire ou de la zone d'exploitation (réseau), selon le cas ;
• les conditions de fonctionnement ;
b) une description du système ferroviaire global, et notamment :
• l'infrastructure :
– le système de détection de train (limites d'immunité sur l'ensemble des fréquences,
si disponibles) ;
– les paramètres de voie pertinents pour le système de détection de train (mise à la
terre et liaisons équipotentielles, par exemple) ;
– les paramètres de l'alimentation de traction et de la ligne ;

– 52 – IEC 62427:2024 © IEC 2024
• le matériel roulant, quelle que soit sa configuration, y compris les modes dégradés :
– les conditions de fonctionnement pertinentes (limitations de puissance, par
exemple) ;
– les éléments affectant les caractéristiques et la compatibilité du matériel roulant (voir
Annexe C), identification des sources de perturbations, de leur comportement et/ou
les lois de sommation applicables ;
• l'infrastructure adjacente et les autres matériels roulants, le cas échéant ;
c) une analyse théorique (simulation, par exemple) par rapport aux exigences du domaine
d'application, avec formulation des hypothèses :
• détermination du niveau d'interférence autorisé par source embarquée en procédant à
l'analyse du 4.8 ;
d) le programme d'essai ajusté en fonction des résultats de l'analyse théorique ;
e) les rapports d'essai (voir Article 8) ;
f) une évaluation de l'analyse théorique et des rapports d'essai, sur la base des exigences
établies :
• dossiers de compatibilité associés ;
• vérification de la validité des hypothèses formulées ;
• vérification que les restrictions peuvent être levées ou assouplies ;
g) le plan de management de la qualité et les documents justificatifs.
Si un organisme compétent a été désigné, il est recommandé de l'impliquer à chaque étape du
dossier de compatibilité.
Il est reconnu que la caractérisation des interférences générées et propagées par le matériel
roulant peut être un processus long susceptible de nécessiter un nombre important d'essais en
service afin d'affiner les caractéristiques. Des conditions de fonctionnement temporaires
peuvent être imposées avant d'établir la totale compatibilité, sous réserve que les risques vis-
à-vis de l'ensemble des entités aient été jugés acceptables.
Les aspects spécifiques du dossier de compatibilité sont décrits de manière détaillée ci-après.
4.4 Management de la qualité
Des systèmes de management de la qualité doivent être mis en place. Il convient de souligner
l'importance de la gestion des configurations.
Les configurations de l'infrastructure et du matériel roulant considérés (y compris les
procédures et plans de maintenance associés) doivent être consignées et référencées dans le
dossier de compatibilité. La validité du dossier de compatibilité devra être réexaminée après
toute modification ultérieure de ces configurations.
4.5 Identification de l'itinéraire pour l'introduction d'un MR (nouveau ou modifié)
Afin de procéder à l'acceptation d'un matériel roulant donné par rapport à un itinéraire ou un
réseau donné, on doit identifier tous les types et toutes les applications de SDT et
d'alimentations de traction, le cas échéant, présents sur l'itinéraire ou le réseau considéré, ainsi
que sur les itinéraires adjacents susceptibles d'être affectés. En plus de l'itinéraire ou des
itinéraires prévus, un ou plusieurs itinéraires de substitution peuvent également être envisagés
en cas de perturbation du trafic.

4.6 Introduction d'éléments d'infrastructure (nouveaux ou modifiés)
Afin de procéder à l'acceptation d'un changement d'infrastructure donné (SDT ou alimentation
de traction, par exemple) par rapport à un itinéraire ou un réseau donné, on doit identifier tous
les types de MR, de SDT et d'alimentations de traction présents sur l'itinéraire ou le réseau
considéré, ainsi que sur les itinéraires adjacents susceptibles d'être affectés.
4.7 Caractérisation
Les caractéristiques des systèmes identifiés doivent être établies, comme indiqué dans les
articles suivants :
pour les systèmes de détection de train : Paragraphe 5 ;
pour le matériel roulant : Paragraphe 6 ;
pour l'alimentation de traction : Paragraphe 7.
4.8 Analyses de compatibilité
4.8.1 Généralités
Il doit être démontré que les caractéristiques du matériel roulant, en ce qui concerne les
interférences générées et propagées, respectent les limites du système de détection de train
considéré dans les conditions d'exploitation définies, y compris en modes dégradés.
NOTE 1 L'EN 50617-1, l'EN 50617-2, l'EN 50592 sont les normes applicables pour les conditions d'exploitation en
Europe.
Les relations entre le matériel roulant et l'infrastructure sont représentées à la Figure 3. Le flux
d'information peut s'effectuer dans un sens ou l'autre, selon le système qui doit être modifié.
NOTE 2 La compatibilité est désormais établie sur la base des conditions les plus défavorables. Le matériel roulant
est donc soumis à des limites d'interférence très rigoureuses, alors que les niveaux d'interférence tolérables sont
nettement supérieurs dans la pratique en raison de la dégradation généralisée des anciens systèmes et des
interférences dues au système de captage actuel. Malgré cette situation, les dangers dus aux interférences sont très
rares. Un calcul de risque devrait certainement permettre d'assouplir l'exigence de courant perturbateur d'ici une
dizaine d'années.
La marge de sécurité s'applique aux essais de sécurité, où la technologie de détection de train
concerne les WSF. La marge de disponibilité s'applique aux essais de disponibilité.
NOTE 3 Pour les paramètres applicables aux dossiers de compatibilité des circuits de voie et des compteurs
d'essieux en Europe, il est possible de se reporter à l'EN 50617-1 et l'EN 50617-2 respectivement.
L'analyse de compatibilité est obligatoire et doit expliquer les principes techniques qui assurent
cette compatibilité, en incluant (ou en référençant) notamment tout document probant, par
exemple : notes de calcul, programmes et résultats d'essai.
La méthode d'analyse des modes de défaillance doit faire l'objet d'un accord entre les entités
répertoriées en 4.3.
Le scénario de compatibilité avec le cas le plus défavorable doit être décrit à l'aide des
paramètres suivants :
– fonction de transfert entre les sources d'interférences (matériel roulant et infrastructure) et
niveau de sensibilité du SDT utilisé dans la bande de fréquences spécifiée ;
– caractéristiques, modes d'exploitation et conditions du matériel roulant (mode normal et
modes dégradés du MR et couple maximal, vitesse ou autres conditions d'exploitation) ;
– caractéristiques et conditions d'exploitation (mode normal et modes dégradés) de
l'alimentation de traction, y compris les paramètres de la sous-station et le circuit de retour
de traction ;
– 54 – IEC 62427:2024 © IEC 2024
– marge de sécurité et/ou de disponibilité tout en tenant compte des modes et conditions
mentionnés ci-dessus. Le séquençage des circuits de voie est pris en compte lorsque des
marges de sécurité ou de disponibilité ont été fixées.
NOTE 4 Il est possible d'estimer les interférences générées en réalisant des essais sur un véhicule en service, par
exemple toutes les 1 000 h sur une période de plusieurs mois. Ce type d'essai est pertinent pour évaluer le niveau
de base des courants perturbateurs générés.
Il est possible d'utiliser des systèmes embarqués et/ou au sol pour étudier la probabilité
d'occurrence de courants perturbateurs élevés, à condition qu'ils soient compatibles avec les
différents niveaux d'immunité des systèmes de propagation et de détection.
4.8.2 Fonction de transfert
La « fonction de transfert » exprime la relation entre le signal d'interférence reçu par
l'équipement de détection et le signal d'interférence total généré par le matériel roulant.
Soit F la fonction de transfert.
Soit I le signal d'interférence reçu par l'équipement de détection, causé par la présence d'un
TDS
et/ou de plusieurs trains au niveau du tronçon électrique.
le signal d'interférence généré par le matériel roulant.
Soit I
RS
Le signal d'interférence est alors donné par :
I = F × I
TDS RS
La valeur maximale autorisée pour le signal d'interférence reçu par l'équipement de détection,
I , est déterminée par la sensibilité de cet équipement. Soit I la valeur maximale
TDSmax RStot
autorisée pour le signal d'interférence généré par le matériel roulant. Alors :
I = I / F
RStot TDSmax
Lorsque plusieurs sources (matériel roulant et sous-stations) peuvent contribuer à la génération
du signal d'interférence total, le niveau d'interférence autorisé par source doit en tenir compte.
NOTE 1 Les résonances de la ligne et les récepteurs sensibles à la phase peuvent être soumis à l'évaluation de
compatibilité.
NOTE 2 En Europe, la CLC/TS 50238-2 fournit les recommandations possibles pour l'application de la fonction de
transfert lorsque plusieurs sources sont présentes.
Le niveau d'interférence autorisé a deux valeurs déterminées par les critères suivants :
– le signal peut provoquer une libération du système de détection de train alors que celui-ci
est occupé en réalité (défaut contraire à la sécurité, c'est-à-dire problème de sécurité) ;
– le signal peut provoquer une occupation du système de détection de train alors que celui-ci
est libre en réalité (défaut non contraire à la sécurité, c'est-à-dire problème de disponibilité).
La conséquence sur la logique du mécanisme d'enclenchement doit toutefois être prise en
considération.
Le processus d'application des lois de sommation peut être appliqué dans les deux sens (voir
Figure 3).
Figure 3 – Relation entre les limites de compatibilité et le niveau d'interférence autorisé
5 Caractérisation des systèmes de détection de train
5.1 Objectifs de la procédure
Pour assurer le fonctionnement correct des systèmes compteurs d'essieux, des détecteurs de
roues et des circuits de voie, leurs caractéristiques physiques et électromagnétiques sont
définies dans les normes et réglementations référencées (voir 5.2, 5.3 et 5.4), ainsi que la
méthodologie de mesure à employer et la procédure à suivre pour démontrer la compatibilité
avec ces normes.
– 56 – IEC 62427:2024 © IEC 2024
Pour les autres systèmes de détection de train non couverts par les normes, le gestionnaire
d'infrastructure doit définir leurs propriétés en collaboration avec les fabricants des systèmes.
Les informations pertinentes doivent être décrites par les fabricants dans la documentation du
produit.
5.2 Circuits de voie – Normes, réglementations et spécifications techniques
Les paramètres des circuits de voie sont fournis par les règles nationales ou les normes, y
compris les conventions entre les parties prenantes. Le présent document répertorie et définit
en détail l'ensemble des exigences applicables aux circuits de voie.
NOTE 1 En Europe, l'EN 50617-1 définit les exigences concernant les aspects physiques et électriques (résistance
essieu, résistance ballast, comportement en cas de rail cassé, par exemple) et les paramètres électromagnétiques
(comportement en cas d'interférence et limites d'immunité, par exemple), ainsi que les mesures à réaliser et la
procédure à suivre pour démontrer la compatibilité avec le présent document.
NOTE 2 La méthodologie applicable en Europe définie dans l'EN 50617-1 peut être utilisée lorsque cela est
possible.
NOTE 3 L'Annexe A comprend des recommandations pour établir les limites de compatibilité. La CLC/TS 50238-2
définit les limites de compatibilité pour les circuit
...


IEC 62427 ®
Edition 2.0 2024-12
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Railway applications - Compatibility between rolling stock and train detection
systems
Applications ferroviaires - Compatibilité entre le matériel roulant et les systèmes
de détection des trains
ICS 45.060.01  ISBN 978-2-8327-0797-5

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.

replaced and withdrawn publications.
Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished The world's leading online dictionary on electrotechnology,
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
Also known as the International Electrotechnical Vocabulary
once a month by email.
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -  IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.

Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
– 2 – IEC 62427:2024 © IEC 2024
CONTENTS
FOREWORD . 5
INTRODUCTION . 7
1 Scope . 9
2 Normative references. 9
3 Terms, definitions and abbreviated terms . 9
3.1 Terms and definitions . 9
3.2 Abbreviated terms . 10
4 Compatibility process . 10
4.1 Overview. 10
4.2 Detailed compatibility process . 10
4.3 Building the compatibility argument . 11
4.4 Quality management . 12
4.5 Route identification for introduction of RST (new or changed) . 12
4.6 Introduction of infrastructure elements (new or changed) . 12
4.7 Characterization . 13
4.8 Compatibility analyses . 13
4.8.1 General terms . 13
4.8.2 Transfer function . 14
5 Characterization of train detection systems . 15
5.1 Objective of procedure . 15
5.2 Track circuit systems – Standards, regulations and technical specifications . 16
5.3 Axle counter systems – Standards, regulations and technical specifications . 16
5.4 Wheel detectors (treadle applications) . 16
5.4.1 General . 16
5.4.2 Wheel detectors based on inductive technology . 16
5.5 Loops . 17
5.5.1 General aspects . 17
5.5.2 Interfering mechanisms . 17
5.5.3 Characterization . 18
6 Characterization of rolling stock . 18
6.1 Objective . 18
6.2 General procedure . 18
7 Characterization of traction power supply systems . 19
7.1 Objective . 19
7.2 DC traction power supplies . 19
7.3 AC traction power supplies . 19
7.4 Test procedures . 20
8 Test report. 20
8.1 General . 20
8.2 Introduction to the report . 20
8.3 Test organization . 20
8.4 Configuration . 20
8.5 Reference documents . 20
8.6 Application of the test plan . 21
8.7 Test results . 21
8.8 Comments . 21

8.9 Archive of test results . 21
Annex A (informative) Guidelines for the determination of susceptibility of train
detection systems . 22
A.1 Examples of system configurations . 22
A.2 "Normal" configuration . 22
A.3 Interference mechanism with broken signal rail . 22
A.4 Interference mechanism with broken return rail . 23
A.5 Double rail track circuits . 24
A.6 Voltage between axles of rolling stock . 25
A.7 Effect of resistance between coupled vehicles . 26
A.8 Radiated interference . 28
A.9 Sensitive zone of wheel detector . 28
A.10 Factor of safety . 29
A.11 Multiple interference sources . 29
Annex B (informative) General characterization of rolling stock . 30
B.1 Objective of procedure . 30
B.2 Description of rolling stock and factors affecting its characteristics . 30
B.3 Configuration (design status) . 30
B.4 Test plan . 30
B.4.1 General . 30
B.4.2 Test site . 31
B.4.3 Instrumentation . 31
B.4.4 Test procedure . 31
Annex C (informative) Factors affecting rolling stock characteristics and compatibility . 33
Annex D (informative) DC traction power supplies . 36
D.1 General . 36
D.2 Interference currents generated by the rolling stock . 36
D.3 Interference currents generated by the traction power supply system . 36
Annex E (informative) Compatibility parameters for loops (European example) . 38
E.1 General . 38
E.2 Principles of operation – Electrical background . 38
E.3 Vehicle metal construction . 38
Bibliography . 41

Figure 1 – Sources of electromagnetic interference . 7
Figure 2 – The compatibility process . 11
Figure 3 – Relationship between compatibility limits and permissible interference . 15
Figure A.1 – Interference mechanism with rails intact . 22
Figure A.2 – Interference mechanism with self-revealing broken rail . 23
Figure A.3 – Interference mechanism with unrevealed broken rail . 23
Figure A.4 – Double rail track circuit . 24
Figure A.5 – Double rail track circuit with broken rail . 24
Figure A.6 – Interference mechanism due to voltage between axles – Case 1 . 25
Figure A.7 – Interference mechanism due to voltage between axles – Case 2 . 25
Figure A.8 – Effect of inter-vehicle current . 26
Figure A.9 – Equivalent circuit for Figure A.8 . 26
Figure A.10 – Example of radiated interference . 28

– 4 – IEC 62427:2024 © IEC 2024
Figure C.1 – Electrical bonding . 34
Figure D.1 – Rolling stock with DC supply . 37
Figure D.2 – Circulation of interference current generated by rolling stock . 37
Figure D.3 – Circulation of interference current generated by the substation . 37
Figure E.1 – Example of loop installation . 38
Figure E.2 – Vehicle layouts . 39
Figure E.3 – Example longitudinal beams with cross connection in section (a) . 39
Figure E.4 – Example short circuit rings in section (a) . 39

INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
RAILWAY APPLICATIONS –
COMPATIBILITY BETWEEN ROLLING STOCK
AND TRAIN DETECTION SYSTEMS
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 62427 has been prepared by IEC technical committee 9: Electrical equipment and systems
for railways. It is an International Standard.
This document is based on EN 50238-1:2019.
This second edition cancels and replaces the first edition published in 2007. This edition
constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) generic compatibility process, which is broken into a two-stage process depending on
whether there are established compatibility limits or not;
b) rules for characterization of train detection systems;

– 6 – IEC 62427:2024 © IEC 2024
c) rules for characterization of rolling stock;
d) rules for characterization of the power system;
e) informative references are provided in notes to established CENELEC standards for
compatibility;
f) terminology is updated.
The text of this International Standard is based on the following documents:
Draft Report on voting
9/3115/FDIS 9/3142A/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
IMPORTANT – The "colour inside" logo on the cover page of this document indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION
This document defines a process to demonstrate compatibility between rolling stock operating
on an area of use or network and train detection systems installed in this area of use or network.
Currently, general rules for the maximum levels of interference allowed, and maximum
susceptibility levels (or minimum required immunity levels) are not established in every country.
This is due to the great diversity of rolling stock, power supply and return current systems, and
train detection systems installed in each country. This diversity leads to consideration of
compatibility of rolling stock and train detection systems on a "route by route" or "network by
network" basis, to avoid unnecessarily restrictive specifications.
The compatibility process described in this document is generic. The process refers to all types
of train detection systems (TDS), which may be influenced by electromagnetic emissions of
rolling stock or traction power supply systems, (e.g. axle counters, track circuits, wheel
detectors, loops).
Compatibility is determined by both physical and electromagnetic considerations. With regard
to the electromagnetic compatibility, the need is not for general values for maximum levels of
interference permitted, and maximum susceptibility levels (or minimum required immunity levels)
but for convenient methods by which to specify the level of interference allowed for operation
on routes or a network.
Main interference sources are considered to be:
– rail currents and voltage sources;
– electromagnetic fields;
– differential voltage between adjacent axles of the train;
as shown in Figure 1.
Figure 1 – Sources of electromagnetic interference
In practice, the susceptibility of the system is determined by:
– the sensitivity of individual components of the system and the type of interference it is
susceptible to;
– the application of the components, i.e. the configuration of the system.

– 8 – IEC 62427:2024 © IEC 2024
Therefore the problems concerning TDS are considered separately for each type.
• National rules or standards, including agreements among stakeholders, define compatibility
limits for track circuits;
• National rules or standards, including agreements among stakeholders, define compatibility
limits for axle counters and wheel detectors;
• National rules or standards, including agreements among stakeholders, define the testing
method of rolling stock for electromagnetic compatibility with axle counters;
• Compatibility with other types of wheel detectors (mechanical or magnetic) is described in
5.4;
• Compatibility with loops can be established following the guidance in 5.5;
• Compatibility with any other type of TDS not explicitly covered by this document can also
be established following the generic process in this document.
NOTE 1 In Europe, CLC/TS 50238-2, CLC/TS 50238-3 and EN 50592 provide compatibility limits for track circuits,
compatibility limits for axle counters and wheel detectors, and the testing method of rolling stock for electromagnetic
compatibility with axle counters, respectively.
For determining the susceptibility of signalling systems, laboratory/simulation testing methods
and in situ tests on the "real railway" are proposed. Modelling enables worst-case conditions to
be simulated. In addition, particular test sites are selected because, from experience, they are
expected to provide the test evidence required.
Then, taking account of the experience of the railways, it is possible to establish a general
method for determining the susceptibility of train detection systems, described in this document.
NOTE 2 In Europe, general requirements on how to establish immunity have been defined in EN 50617-1 and
EN 50617-2.
Before assessing the electromagnetic emissions of rolling stock, sufficient knowledge of the
electric circuit diagram of the power equipment is important, including switching frequencies of
on-board power converters, type of regulation used for power converters, resonant frequency
of each filter, operating limits under high and low supply voltages, degraded modes of operation.

RAILWAY APPLICATIONS –
COMPATIBILITY BETWEEN ROLLING STOCK
AND TRAIN DETECTION SYSTEMS
1 Scope
This document describes a process to demonstrate compatibility between rolling stock (RST)
and train detection systems (TDS). It describes the characterization of train detection systems,
rolling stock and traction power supply systems.
It is worth noting that the demonstration of technical compatibility between the rolling stock and
infrastructure with respect to physical dimensions is not detailed in this document.
This document is not generally applicable to those combinations of rolling stock, traction power
supply and train detection system which were accepted as compatible prior to the publication
of this document. However, as far as is reasonably practicable, this document can be applied
to modifications of rolling stock, traction power supply or train detection systems which can
affect compatibility. The detailed process can be used where no rules and processes for
compatibility are established.
2 Normative references
There are no normative references in this document.
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
• IEC Electropedia: available at https://www.electropedia.org/
• ISO Online browsing platform: available at https://www.iso.org/obp
3.1.1
competent body
body responsible for the independent evaluation of the compatibility case
Note 1 to entry: This can be an accredited conformity body or an independent safety assessor. This role is not
limited to external parties, unless mandated under the applicable legislation.
3.1.2
compatibility case
set of documents which records the evidence demonstrating the degree of compatibility
between rolling stock, traction power supplies and train detection systems for a specific route
or specific railway network
[SOURCE: IEC 60050-821:2017, 821-03-47]

– 10 – IEC 62427:2024 © IEC 2024
3.1.3
degraded modes, pl
modes of operation in the presence of faults which have been anticipated in the design of the
signalling system or the rolling stock
[SOURCE: IEC 60050-821:2017, 821-01-52]
3.1.4
traction power supply system
part of the overall electricity energy supply system, not extending beyond the dedicated feeder
stations on the rail network
Note 1 to entry: IEC 62313 applies at the interface to the national electricity supply network.
3.1.5
wheel detector
sensor which detects the passage of a wheel
Note 1 to entry: A wheel detector can be used as part of an axle counter or as a treadle.
[SOURCE: IEC 60050-821:2017, 821-03-53]
3.2 Abbreviated terms
For the purposes of this document, the following abbreviated terms apply.
AC Alternating current
DC Direct current
IM Infrastructure manager
MVA Megavoltampere
NTR National technical rule
RINF Register of infrastructure
RST Rolling stock
TDS Train detection system
WSF Wrong side failure
4 Compatibility process
4.1 Overview
The party which introduces a new element or introduces a change of an existing element or
system is responsible for demonstrating compatibility between rolling stock, train detection,
traction power supply systems and neighbouring infrastructure, if applicable. The party is
responsible for initiating the compatibility process. The relevant data shall be made available
to the party responsible for constructing and/or amending the compatibility case. If data are not
available or not sufficient, alternative arrangements can be made by both the responsible party
and the affected party to demonstrate compatibility, for example by carrying out specific
compatibility tests. It is recommended that a competent body evaluates the compatibility case
if the stakeholders consider the modification to be a significant change. In 4.2 to 4.8, the specific
tasks to demonstrate compatibility are listed and explained.
4.2 Detailed compatibility process
The compatibility process is summarized in Figure 2.

Figure 2 – The compatibility process
4.3 Building the compatibility argument
A compatibility case in compatibility analysis shall be prepared, following the process depicted
in Figure 2, including but not limited to the:
a) definition of the scope of the compatibility case, including:
• new element to be introduced;
• identification of the route or area of use (network) if applicable;
• operational conditions;
b) description of the overall rail system including:
• infrastructure:
– train detection system (frequency-wide immunity limits if available);
– track parameters relevant for the train detection system (e.g. earthing and bonding);
– traction power supply and line parameters;

– 12 – IEC 62427:2024 © IEC 2024
• rolling stock in any configuration, including degraded modes:
– relevant operational conditions e.g. power limitations;
– factors affecting rolling stock characteristics and compatibility as listed in Annex C,
identification of disturbance sources, their behaviour and/or applicable summation
rules;
• adjacent infrastructure and other rolling stock, if applicable;
c) theoretical analysis (e.g. simulation) against requirements of the scope including
assumptions:
• derive the permissible interference per on-board source using the analysis in 4.8;
d) test plan taking account of the results of the theoretical analysis;
e) test reports – see Clause 8;
f) assessment of theoretical analysis and test reports against requirements:
• related compatibility cases;
• check of validity of assumptions;
• check if restrictions may be lifted or relaxed;
g) quality management plan and evidence.
If a competent body is appointed, then it is recommended to involve them at each step of the
compatibility case.
It is recognized that characterization of interference generated and propagated by rolling stock
can be a time consuming process, which may require a significant amount of testing during
service operations in order to refine the characteristics. Therefore, provided that the risks to all
parties can be demonstrated to be acceptable, temporary operational conditions may be
imposed prior to full compatibility being established.
Hereunder specific aspects of the compatibility case will be further outlined.
4.4 Quality management
Quality management systems shall be in place. The importance of configuration management
should be noted.
The configuration state of the relevant infrastructure and rolling stock (including maintenance
processes and schedules) shall be recorded and referenced within the compatibility case. Any
subsequent changes to these configurations shall lead to an examination of the continued
validity of the compatibility case.
4.5 Route identification for introduction of RST (new or changed)
In order to accept a particular rolling stock in respect of a particular route or network, the
different types and applications of train detection systems and traction power supply systems,
if applicable, on the network or on the route and on adjacent routes which can be affected shall
be identified. In addition to the intended operational route(s), alternative route(s), which may
be required in the event of disruption to traffic shall also be considered.
4.6 Introduction of infrastructure elements (new or changed)
In order to accept a particular infrastructure change (e.g. TDS or traction power supply) in
respect of a particular route or network, the different types of RST, TDS and traction power
supply systems on the network or on the route and on adjacent routes, which may be affected,
shall be identified.
4.7 Characterization
The characteristics of the identified systems shall be obtained in accordance with the following
clauses:
For train detection systems: Clause 5;
For rolling stock: Clause 6;
For power supply systems: Clause 7.
4.8 Compatibility analyses
4.8.1 General terms
It shall be demonstrated that the rolling stock characteristics for generated and propagated
interference comply with the train detection system limits, under defined operating conditions,
including degraded modes.
NOTE 1 EN 50617-1, EN 50617-2, EN 50592 are available for operating conditions in Europe.
The relationship between rolling stock and infrastructure is shown in Figure 3. The information
flow may be in either direction depending on which system is to be changed.
NOTE 2 Compatibility is now based on worst-case conditions. This results in very severe requirements for rolling
stock interference limits, while in practice the tolerable interference level is much higher due to overall degradation
of older systems and interference produced by the current collecting system. Despite this situation, the cases with
hazards caused by interference are very rare. It is obvious that a perspective of risk calculation will ease the
interference current requirement by probably a decade.
The safety margin is applicable for safety related tests, where train detection technology implies
WSF. The availability margin is applicable for availability related tests.
NOTE 3 All applicable parameters for compatibility cases of track circuits and axle counters in Europe can be
identified from EN 50617-1 and EN 50617-2 respectively.
The compatibility analysis is mandatory and shall explain the technical principles which ensure
compatibility, including (or giving reference to) all supporting evidence, e.g., calculations, test
plans and results.
The method of analysis of fault modes shall be agreed between the parties listed in 4.3.
The scenario for compatibility including the worst case shall be described with the following
parameters:
– transfer function between interference sources (rolling stock and infrastructure) and
sensitivity level of the used TDS in the specified frequency band;
– characteristics, operating modes and conditions of rolling stock (normal and degraded
modes of RST and maximum torque, speed or other operating conditions);
– characteristics and operating conditions (normal and degraded modes) of traction power
supply, including substation parameters and traction return path;
– safety and/or availability margin taking account of the above modes and conditions. Track
circuit sequencing is considered when safety or availability margins are agreed.
NOTE 4 Testing during operation in service on one vehicle will establish a probability for generated interference,
e.g. a level down to once per 1 000 h during several months of testing. This is only sufficient for the basic level of
generated interference current.
Both on-board systems and/or infra-side systems can be used to monitor the probability of
occurrence of high levels of interference currents, provided they remain compatible with the
various immunity levels of the propagation and detection systems.

– 14 – IEC 62427:2024 © IEC 2024
4.8.2 Transfer function
The "transfer function" expresses the relation between the received interference signal at the
train detection system equipment and the total interference signal generated by rolling stock.
Let the transfer function be denoted by F.
Let the interference signal at the train detection system equipment caused by a single train
and/or multiple trains at the electric section be denoted by I .
TDS
Let the interference signal generated by the rolling stock be denoted by I .
RS
The interference signal is then:
I = F × I
TDS RS
The maximum permissible interference signal at the train detection system equipment I
TDSmax
is determined by the sensitivity of the train detection system equipment. Let the total permissible
interference generated by rolling stock be denoted by I . Then:
RStot
I = I / F
RStot TDSmax
Where multiple sources (rolling stock and substations) may contribute to the total interference
signal, the permissible interference per source shall take this into account.
NOTE 1 Line resonances and phase sensitive receivers can be part of the evaluation of compatibility.
NOTE 2 In Europe, CLC/TS 50238-2 provides possible guidance on the application of the transfer function
considering multiple sources.
Note that the permissible interference signal will have two values determined by the following
criteria:
– the signal which may cause the train detection system to show clear when it is in fact
occupied (a wrong side failure, i.e. a matter of safety);
– the signal which may cause the train detection system to show occupied when it is in fact
clear (a right side failure, i.e. a matter of availability). The effect on interlocking logic shall
however be considered.
The process of application of the summation rules can be applied in both directions as depicted
in Figure 3.
Figure 3 – Relationship between compatibility limits and permissible interference
5 Characterization of train detection systems
5.1 Objective of procedure
To ensure the correct operation of axle counter systems, wheel detectors and track circuit
systems, their physical and electromagnetic properties are defined in the detailed standards
and regulations (see 5.2, 5.3 and 5.4 for details) as well as the measurement methodology and
how to report the compatibility with these standards.

– 16 – IEC 62427:2024 © IEC 2024
For other train detection systems not covered by standards, their relevant properties shall be
defined by the infrastructure manager in collaboration with the manufacturers. Relevant
information shall be described by the manufacturers in the product documentation.
5.2 Track circuit systems – Standards, regulations and technical specifications
Parameters for track circuits are provided by national rules or standards, including agreements
among stakeholders. All requirements to be fulfilled by a track circuit system are listed and
defined there in detail.
NOTE 1 In Europe, EN 50617-1 directly includes the requirements for physical and electrical aspects (e.g. axle
resistance, ballast resistance, broken rail behaviour) as well as the electromagnetic parameters (e.g. behaviour to
interferences and immunity limits), the measurements to be executed and the reporting to show the compatibility with
this document.
NOTE 2 The methodology defined in Europe in EN 50617-1 can be used where practically applicable.
NOTE 3 Guidance to establish compatibility limits is contained in Annex A. Some known track circuit compatibility
limits in Europe are published in CLC/TS 50238-2.
5.3 Axle counter systems – Standards, regulations and technical specifications
An axle counter system is the whole system including the axle counter detector with its sensor,
and the evaluation unit.
If the characterization is to be performed on the axle counter (wheel detector) alone, rather than
on the axle counter system, refer to 5.4.
Parameters for axle counter systems are provided by national rules or standards, including
agreements among stakeholders. All requirements to be fulfilled by an axle counter system are
listed and defined there in detail.
NOTE 1 In Europe, EN 50617-2 directly includes the requirements in accordance with physical and electrical
aspects (e.g. axle distances, fastenings to the rail, environmental conditions) as well as the electromagnetic
parameters (e.g. behaviour to interferences and immunity limits), the measurements to be executed and the reporting
to show the compatibility with this document.
NOTE 2 The methodology defined in Europe in EN 50617-2 can be used where practically applicable.
NOTE 3 Some known axle counter compatibility limits are published in Europe in CLC/TS 50238-3.
5.4 Wheel detectors (treadle applications)
5.4.1 General
Treadle applications are mainly switch on/off functionalities, direction detection or speed
measurement.
NOTE Requirements for wheel detectors applied as treadles in Europe are not explicitly described in EN 50617-2
because they are not used for axle counter systems.
5.4.2 Wheel detectors based on inductive technology
Owing to the principle of discrete detection of wheels passing a wheel detector, transient and
continuous interference limits may be considered as equivalent to the limits defined for axle
counter detectors or axle counter sensors.
NOTE 1 In Europe, EN 50617-2 can be taken into account where applicable for wheel detectors based on inductive
technology with respect to the physical, electromechanical and electromagnetic interface.
Owing to the inherent difficulties of designing a suffici
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...