IEC 62282-6-100:2010/COR1:2011
(Corrigendum)Corrigendum 1 - Fuel cell technologies - Part 6-100: Micro fuel cell power systems - Safety
Corrigendum 1 - Fuel cell technologies - Part 6-100: Micro fuel cell power systems - Safety
General Information
Relations
Standards Content (Sample)
IEC 62282-6-100
(First edition – 2010)
Fuel cell technologies –
Part 6-100: Micro fuel cell power systems –
Safety
CORRIGENDUM 1
Figure A.6 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss
test flow chart for 68 kPa low external pressure test
Replace the mass loss rate of “0,18 g/h” in the two decision diamond boxes and in the note
with ”0,018 g/h”.
Figure A.7 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss
test flow chart for 11,6 kPa low external pressure test
Replace the mass loss rate of “23,0 g/h” in the top decision diamond box and in the note with
“0,018 g/h”.
Replace the mass loss rate of “0,18 g/h” in the bottom decision diamond box with “0,018 g/h”.
A.7.3.1.4.1 Micro fuel cell power system or micro fuel cell power unit 68 kPa low external
pressure test
Replace, in the
...
This May Also Interest You
IEC 62282-8-201:2024 is available as IEC 62282-8-201:2024 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 62282-8-201:2024 defines the evaluation methods of typical performances for electric energy storage systems using hydrogen. It is applicable to the systems that use electrochemical reaction devices for both power charge and discharge. This document applies to systems that are designed and used for service and operation in stationary locations (indoor and outdoor). It specifies performance evaluation methods for electric energy storage systems using hydrogen that employ electrochemical reactions both for water and steam electrolysis and electric power generation. This document is intended for power-to-power systems which typically employ a set of electrolyser and fuel cell, or a reversible cell for devices of electric charge and discharge. This second edition cancels and replaces the first edition published in 2020.
This edition includes the following significant technical changes with respect to the previous edition:
a) consideration of systems connected to hydrogen supply infrastructure (hydrogen grids, vessels, caverns or pipelines);
b) hydrogen input and output rate is added in the system parameters (5.10);
c) electric energy storage capacity test is revised (6.2);
d) roundtrip electrical efficiency test is revised (6.5);
e) hydrogen input and output rate test is added (6.6.6).
- Standard116 pagesEnglish languagesale 15% off
- Standard75 pagesEnglish and French languagesale 15% off
IEC 62282-6-107:2024 covers micro fuel cell power systems, micro fuel cell power units and fuel cartridges using hydrogen produced from water-reactive (UN Division 4.3) compounds as fuel. These systems and units use proton exchange membrane (PEM) fuel cell technologies. The designs can include fuel processing subsystems to derive hydrogen gas from the water-reactive fuel formulation.
This document only applies to water-reactive (UN Division 4.3) solid compounds which solely evolve hydrogen gas upon contact with water (or non-hazardous aqueous solutions). This document does not apply to compounds with a subsidiary hazard risk, or which are not permitted to be transported by air according to the International Civil Aviation Organization (ICAO) Technical Instructions.
- Standard25 pagesEnglish and French languagesale 15% off
IEC 62282-6-101:2024 covers micro fuel cell power systems and fuel cartridges that are wearable or easily carried by hand, providing direct current outputs that do not exceed 60 V DC and power outputs that do not exceed 240 VA. Portable fuel cell power systems that provide output levels that exceed these electrical limits are covered by IEC 62282-5-100. This document covers micro fuel cell power systems and fuel cartridges. This document establishes the requirements for micro fuel cell power systems and fuel cartridges to ensure a reasonable degree of safety for normal use, reasonably foreseeable misuse, and cargo and consumer transportation and storage of such items. . Fuel cartridges refilled by the manufacturer or by trained technicians are covered by this document. The fuel cartridges covered by this document are not intended to be refilled by the consumer.
This first edition, together with the other parts of the IEC 62282-6-1XX series, cancels and replaces IEC 62282-6-100:2010 and IEC 62282-6-100:2010/AMD1:2012. This edition includes the following significant technical changes with respect to IEC 62282‑6‑100:2010 and IEC 62282-6-100:2010/AMD1:2012:
a) A new structure has been set up: IEC 62282-6-101 covers the general safety requirements common to all fuel types whereas IEC 62282-6-102 and subsequent parts of the IEC 62282‑6-1XX series cover particular requirements for specific fuel types based on the requirements given in IEC 62282-6-101.
- Standard118 pagesEnglish and French languagesale 15% off
IEC 62282-6-106:2024 covers micro fuel cell power systems, micro fuel cell power units and fuel cartridges using hydrogen produced from UN Class 8 (corrosive) borohydride formulations as fuel. These systems and units use proton exchange membrane (PEM) fuel cell technologies. The designs include fuel processing subsystems to derive hydrogen gas from the corrosive fuel formulation.
This first edition, together with the other parts of the IEC 62282-6-1XX series, cancels and replaces IEC 62282-6-100:2010 and IEC 62282-6-100:2010/AMD1:2012.This edition includes the following significant technical changes with respect to IEC 62282‑6‑100:2010 and IEC 62282-6-100:2010/AMD1:2012:
a) A new structure has been set up: IEC 62282-6-101 covers the general safety requirements common to all fuel types whereas IEC 62282-6-102 and subsequent parts of the IEC 62282-6-1XX series cover particular requirements for individual fuel types.
- Standard26 pagesEnglish and French languagesale 15% off
- Standard1 pageEnglish and French languagesale 15% off
IEC 62282-4-202:2023 covers performance test methods of fuel cell power systems intended to be used to power unmanned aircrafts, including general requirements, start-up, shutdown, power output, continuous running time, electric efficiency, data transmission, warning and monitoring, environmental compatibility, etc.
The scope of this document is limited to electrically powered unmanned aircrafts with a maximum take-off mass not exceeding 150 kg (i.e. level 5 or lower unmanned aircrafts (UAs)).
This document applies to fuel cell power systems with a rated output voltage not exceeding 220 V DC for outdoor use.
This document applies only to compressed gaseous hydrogen-fuelled fuel cell power systems.
- Standard41 pagesEnglish and French languagesale 15% off
IEC 62282-8-301:2023 specifies performance test methods of power-to-methane systems based on solid oxide cells (SOCs). Water, CO2, and electricity are supplied to the system to produce methane and oxygen.
This document is not intended to be applied to solid oxide fuel cell (SOFC) cell/stack assembly units for power generation purposes only, since these are covered in IEC 62282-7-2. In addition, the test methods for SOC cell/stack assembly units including reversible operation (without any methanation reactor) are already described in IEC 62282-8-101.
This document is intended to be used for data exchanges in commercial transactions between the system manufacturers and customers. Users of this document can selectively execute test items suitable for their purposes from those described in this document.
- Standard99 pagesEnglish and French languagesale 15% off
IEC 62282-4-102:2022 is available as IEC 62282-4-102:2022 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 62282-4-102:2022 specifies the performance test methods of fuel cell power systems for propulsion and auxiliary power units (APU). This document covers fuel cell power systems for propulsion other than those for road vehicles. This document applies to gaseous hydrogen-fuelled fuel cell power systems and direct methanol fuel cell power systems for electrically powered industrial trucks. The following fuels are considered within the scope of this document:
- gaseous hydrogen, and
- methanol.
This document covers the fuel cell power system as defined in 3.7 and Figure 1. This document applies to DC type fuel cell power systems, with a rated output voltage not exceeding DC 150 V for indoor and outdoor use. This document covers fuel cell power systems whose fuel source container is permanently attached to either the industrial truck or the fuel cell power system.
This second edition cancels and replaces the first edition published in 2017. This edition includes the following significant technical changes with respect to the previous edition:
a. alignment of the Scope with the second edition of IEC 62282-4-101:2022;
b. deletion of terms and definitions (previous entries 3.5, 3.10, and 3.15);
c. addition of new terms in Clause 3: "delivered power" (3.13) and "regenerated power" (3.14);
d. revision of symbols and their meanings in alignment with those of IEC 62282-3-201;
e. replacement of "reference conditions" with "standard conditions" as seen in Clause 5;
f. revision of the test method for the accessory load voltage spike test (13.3.2);
g. addition of clarifications in Clause 14 (Power stability under operation);
h. addition of a checklist for performance criteria dealt with in this document (Annex C).
- Standard118 pagesEnglish languagesale 15% off
- Standard76 pagesEnglish and French languagesale 15% off
IEC 62282-4-600:2022 covers the requirements for the performance test methods of fuel cell/battery hybrid systems intended to be used for electrically powered applications for excavators. For this purpose, this document covers electrical performance and vibration tests for the fuel cell/battery hybrid system. This document also covers performance test methods which focus on vibration and other characteristics for balance of plant (BOP) installed in heavy-duty applications with fuel cell/battery hybrid system.
This document applies to both gaseous hydrogen-fuelled fuel cell power, liquid hydrogen-fuelled fuel cell power, direct methanol fuel cell power and battery hybrid power pack systems.
- Standard83 pagesEnglish and French languagesale 15% off
IEC 62282-4-101:2022 is available as IEC 62282-4-101:2022 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 62282-4-101:2022 deals with safety of fuel cell power systems for propulsion other than road vehicles and auxiliary power units (APU). This part of IEC 62282 covers safety requirements for fuel cell power systems intended to be used in electrically powered industrial trucks as defined in ISO 5053-1.except for: rough-terrain trucks; non-stacking low-lift straddle carriers; stacking high-lift straddle carriers; rough-terrain variable-reach trucks; slewing rough-terrain variable-reach trucks; variable-reach container handlers; pedestrian propelled trucks. This document applies to gaseous hydrogen-fueled fuel cell power systems and direct methanol fuel cell power systems for electrically powered industrial trucks. This document applies to DC type fuel cell power systems, with a rated output voltage not exceeding 150 V DC for indoor and outdoor use.This second edition cancels and replaces the first edition published in 2014.This edition includes the following significant technical changes with respect to the previous edition:
- revision of the title of this document;
- revision of reference standards;
- addition of new subclauses (4.3, 4.14.5, 4.15.3, 4.15.4, 4.16, 5.6, and 5.23);
- previous 4.15 was revised as “4.16 Risk assessment and risk reduction”;
- revision of 4.6 3), access to the manual shutoff valve;
- revision of requirements for battery terminals that are threaded (4.14.10.1);
- revision of requirements for double layer capacitors (4.14.10.2);
- revision of external leakage test (5.5) and ultimate strength test (5.7);
- revision of temperature limits on capacitors depending on the temperature rating of the material (Table 3);
- revision of markings that are not relevant (Clause 7);
- added “Significant hazards, hazardous situations and events dealt with in this document” as a new informative annex
- Standard163 pagesEnglish languagesale 15% off
- Standard104 pagesEnglish and French languagesale 15% off
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.