Information technology - Generic cabling systems - Part 1: General requirements

Informationstechnik - Anwendungsneutrale Kommunikationskabelanlagen - Teil 1: Allgemeine Anforderungen

Technologies de l'information - Systèmes de câblage générique - Partie 1: Exigences générales

Informacijska tehnologija - Univerzalni sistemi polaganja kablov - 1. del: Splošne zahteve

Ta evropski standard določa:
a) strukturo in konfiguracijo hrbteničnih podsistemov polaganja kablov v univerzalnih sistemih za polaganje kablov znotraj tipov prostorov, ki so določeni z drugimi standardi serije EN 50173; b) delovne zahteve kanalov v podporo standardom serije EN 50173; c) delovne zahteve zvez v podporo standardom serije EN 50173; d) referenčna izvedba hrbteničnega polaganja kablov v podporo standardom serije EN 150173; e) delovne zahteve komponent v podporo standardom serije EN 50173.Varnostne zahteve (električna varnost in zaščita, optična moč, ogenj itd.) in zahteve elektromagnetne združljivosti (EMC) so zunaj področja tega evropskega standarda in so zajete z drugimi standardi in predpisi. Vendar so lahko informacije, podane v tem evropskem standardu, v pomoč pri izpolnjevanju teh standardov in predpisov.

General Information

Status
Withdrawn
Publication Date
03-Nov-2009
Withdrawal Date
31-Aug-2012
Current Stage
9960 - Withdrawal effective - Withdrawal
Start Date
01-Apr-2014
Completion Date
01-Apr-2014

Relations

Effective Date
29-Jan-2023
Effective Date
29-Jan-2023
Amendment

EN 50173-1:2008/oprAA:2008

English language
39 pages
Preview
Preview
e-Library read for
1 day
Amendment

EN 50173-1:2008/A1:2010

English language
40 pages
Preview
Preview
e-Library read for
1 day

Frequently Asked Questions

EN 50173-1:2007/A1:2009 is a amendment published by CLC. Its full title is "Information technology - Generic cabling systems - Part 1: General requirements". This standard covers: Information technology - Generic cabling systems - Part 1: General requirements

Information technology - Generic cabling systems - Part 1: General requirements

EN 50173-1:2007/A1:2009 is classified under the following ICS (International Classification for Standards) categories: 33.040.50 - Lines, connections and circuits. The ICS classification helps identify the subject area and facilitates finding related standards.

EN 50173-1:2007/A1:2009 has the following relationships with other standards: It is inter standard links to EN 50173-1:2011, EN 50173-1:2007. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

EN 50173-1:2007/A1:2009 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.

Standards Content (Sample)


SLOVENSKI STANDARD
SIST EN 50173-1:2008/oprAA:2008
01-september-2008
Informacijska tehnologija - Univerzalni sistemi pokabljenja - 1. del: Splošne
zahteve
Information technology - Generic cabling systems - Part 1: General requirements
Informationstechnik - Anwendungsneutrale Kommunikationskabelanlagen - Teil 1:
Allgemeine Anforderungen
Technologies de l'information - Systèmes de câblage générique - Partie 1: Exigences
générales
Ta slovenski standard je istoveten z: EN 50173-1:2007/prAA:2008
ICS:
33.040.50 Vodi, zveze in tokokrogi Lines, connections and
circuits
SIST EN 50173-1:2008/oprAA:2008 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

SIST EN 50173-1:2008/oprAA:2008

SIST EN 50173-1:2008/oprAA:2008
DRAFT
EUROPEAN STANDARD
EN 50173-1
prAA
NORME EUROPÉENNE
June 2008
EUROPÄISCHE NORM
ICS 33.040.50
English version
Information technology -
Generic cabling systems -
Part 1: General requirements
Technologies de l'information -  Informationstechnik -
Systèmes de câblage générique - Anwendungsneutrale
Partie 1: Exigences générales Kommunikationskabelanlagen -
Teil 1: Allgemeine Anforderungen

This draft amendment prAA, if approved, will modify the European Standard EN 50173-1:2007; it is submitted to
CENELEC members for CENELEC enquiry.
Deadline for CENELEC: 2008-11-14.

It has been drawn up by CLC/TC 215.

If this draft becomes an amendment, CENELEC members are bound to comply with the CEN/CENELEC Internal
Regulations which stipulate the conditions for giving this amendment the status of a national standard without
any alteration.
This draft amendment was established by CENELEC in three official versions (English, French, German). A
version in any other language made by translation under the responsibility of a CENELEC member into its own
language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Cyprus, the
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain,
Sweden, Switzerland and the United Kingdom.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to
change without notice and shall not be referred to as a European Standard.

CENELEC
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2008 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.
Project: 21257 Ref. No. EN 50173-1:2007/prAA:2008 E

Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 2 -

1 Foreword
2 This draft amendment to the European Standard EN 50173-1:2007 was prepared by the Technical
3 Committee CENELEC TC 215, Electrotechnical aspects of telecommunication equipment. It is submitted to
4 the CENELEC members for CENELEC enquiry.
5 This draft introduces, among others, new channel classes E and F , resulting in an amendment of many
A A
6 tables in Clause 5. For convenience of the reader of this draft, the pertinent tables are reproduced in total,
7 with light grey shading of new rows and (or) lines. Comments are to be addressed to these grey rows and
8 (or) lines only. Furthermore, the draft contains changes resulting from liaison between CLC/TC 215 and
9 CLC/TC 209 regarding residential cabling.
10 Line numbers have been added to ease the commenting during CENELEC enquiry; they will be suppressed
11 in the definitive version of the document.
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
- 3 - EN 50173-1:2007/prAA:2008

12 Introduction
13 Replace Figure 1 by:
EENN 50098- 50098-11:: C Cuussttomeromer pprremiemisseses ENEN 501 50173-73-2:2: I Innffoorrmmatatiioon tn teecchnolhnologyogy::
ccaabblliing fng foorr iinnffoorrmmatatiion ton teecchhnolnologyogy - - GeGenneerriic c cacabblinlingg - - OOffffiicece p prreemisemisess
ISISDDNN b baasic asic acceccessss
EENN 50173- 50173-33:: I Innffoormrmatatiion ton teecchhnnoollooggyy::
EENN 50 50098-098-2:2: C Cuussttoommerer prpreemmiisseess GGenereneriicc c cablabling ing -- IIndusndusttrriiaall pr prememiisseess
EENN 50173- 50173-1:1: I Innffoormrmatatiion ton teecchnohnollooggyy::
ccablabliinng g ffoorr i innffoormatrmatiion ton teecchhnolognologyy --
EENN 50 50173-173-4:4: I Innffoorrmmatation tion teecchnolhnolooggyy:: GGenereneriicc c cablabliinng g -- GGenenereralal r requiequirreementmentss
2048 2048 kkbbiitt//ss IISSDDNN prpriimmararyy a acccceessss and and
GeGenerneriicc c cablabliing -ng - HHomomeses
lleaseaseded l liinne nee nettwwororkk i inntteerrffacacee
EENN 50173 50173--55:: I Innffoormrmatatiion ton teecchhnolnologyogy::
GGenerenericic ccabliabling -ng - DDaatta ca cententrreess
ENEN 501 50174-74-1:1: I Innffoorrmmatatiioon tn teecchnolhnologyogy.
CCablabliing ing innssttaallllaattiion -on - IInsnsttaallllaattiioonn
sspecpeciiffiiccatatiion and on and qualqualiittyy asasssuurrancancee
ENEN 501 50174-74-2:2: I Innffoorrmmatatiioon tn teecchnolhnologyogy. EENN 50310 50310:: Ap Applpliiccatatiion ofon of eequipotquipoteennttiiaall
CCablabliing ing innssttaallllaattiion -on - IInsnsttaallllaattiioonn bbondionding and earng and eartthhiinngg iin buin buillddiingsngs w wiitthh
plplanning aanning and pnd prracacttiicceess i innssiide bde buuiillddiinnggss infinfoorrmmatation tion teecchhnolnolooggyy equiequipmentpment
ENEN 501 50174-74-3:3: I Innffoorrmmatatiioon tn teecchnolhnologyogy.
CCablabliing ing innssttaallllaattiion -on - IInsnsttaallllaattiioonn
plplanning aanning and pnd prracacttiicceess out outssiide bde buuiillddingsings
ENEN 503 50346:46: IInnffoormrmaattiioonn t teecchhnnoollooggyy.
CCablabliing ing innssttaallllaattiion -on -
TTeessttiing ng ofof i innssttalalled cled caablbliinngg
15 NOTE CLC/TC 215 has also produced a Technical Report CLC/TR 50173-99-1 “Cabling guidelines in support of 10 GBASE-T”.
16 Figure 1 – Schematic relationship between the EN 50173 series and other relevant standards
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 4 -

18 Replace Table 1 by:
19 Table 1 – Contextual relationship between EN 50173 series and other relevant standards
Building design Generic cabling Specification phase Installation phase Operation phase
phase design phase
EN 50310 EN 50173 series EN 50174-1 EN 50174-1
except
EN 50173-4
5.2: Common bonding 4: Structure 4 Requirements for 4 Requirements for
network (CBN) within a specifying installations specifying installations
5: Channel
building of information of information
performance
technology cabling technology cabling
6.3: AC distribution
7: Cable requirements
system and bonding of 5: Requirements for
the protective conductor installers of information
8: Connecting hardware
(TN-S) technology cabling
requirements
9: Requirements for
cords and jumpers
Annex A: Link
performance limits
Planning phase
and
EN 50173-4 EN 50174-2 EN 50174-2
4 and 5: Structure 4: Requirements for 5: Requirements for the
planning installations of installation of
6: Channel
information technology information technology
performance
cabling cabling
8: Cable requirements
6: Segregation of 6: Segregation of
metallic information
metallic information
9: Connecting hardware
technology cabling and technology cabling and
requirements
mains power cabling mains power cabling
10: Requirements for
7: Mains power and
cords and jumpers
lightning protection
Annex A: Link
performance limits
and and
EN 50174-3 EN 50174-3
and and
(for equipotential (for equipotential
bonding) bonding)
EN 50310 EN 50310
5.2: Common bonding 5.2: Common bonding
network (CBN) within a network (CBN) within a
building building
6.3: AC distribution 6.3: AC distribution
system and bonding of system and bonding of
the protective conductor the protective conductor
(TN-S) (TN-S)
and
EN 50346
4: General
requirements
5: Test parameters for
balanced cabling
6: Test parameters for
optical fibre cabling
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
- 5 - EN 50173-1:2007/prAA:2008

21 2 Normative references
22 Replace EN 61196-3 by:
23 EN 50117-X, Coaxial cables – Part X
24 Amend EN 60793-2-10 to read:
25 EN 60793-2-10:2007, Optical fibres – Part 2-10: Product specifications – Sectional specification for category
26 A1 multimode fibres (IEC 60793-2-10:2007)
27 Add the following references:
28 ISO/IEC TR 29106, Information technology - Generic cabling - Introduction to the MICE environmental
29 classification
30 CLC/TR 50173-99-1, Cabling guidelines in support of 10 GBASE-T
31 3.1 Definitions
32 Add the following definitions and renumber the existing definitions accordingly:
33 3.1.2
34 alien (exogenous) crosstalk
35 signal coupling from a disturbing pair of a channel to a disturbed pair of another channel
36 NOTE This also applies to the signal coupling from a disturbing pair within a permanent link or component, used to create a channel,
37 to a disturbed pair within a permanent link or component, used to create another channel.
38 3.1.3
39 alien (exogenous) far-end crosstalk loss (AFEXT)
40 signal isolation between a disturbing pair of a channel and a disturbed pair of another channel, measured at
41 the far-end
42 NOTE This also applies to the measurement of the signal isolation between a disturbing pair within a permanent link or component,
43 used to create a channel, and a disturbed pair within a permanent link or component, used to create another channel.
44 3.1.4
45 alien (exogenous) near-end crosstalk loss (ANEXT)
46 signal isolation between a disturbing pair of a channel and a disturbed pair of another channel, measured at
47 the near-end
48 NOTE This also applies to the measurement of signal isolation between a disturbing pair within a permanent link or component, used
49 to create a channel, and a disturbed pair within a permanent link or component, used to create another channel.
50 3.1.6
51 attenuation to alien (exogenous) crosstalk ratio at the far-end (AACR-F)
52 difference, in dB, between the alien far-end crosstalk loss from a disturbing pair of a channel and the
53 insertion loss of a disturbed pair in another channel
54 NOTE This also applies to the calculation using the alien far-end crosstalk loss from a disturbing pair within a permanent link or
55 component, used to create a channel, and the insertion loss of a disturbed pair within a permanent link or component, used to create
56 another channel.
57 3.1.7
58 attenuation to alien (exogenous) crosstalk ratio at the near-end (AACR-N)
59 difference, in dB, between the alien near-end crosstalk loss from a disturbing pair of a channel and the
60 insertion loss of a disturbed pair in another channel
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 6 -

61 NOTE This also applies to the calculation using the alien near-end crosstalk loss from a disturbing pair within a permanent link or
62 component, used to create a channel, and the insertion loss of a disturbed pair within a permanent link or component, used to create
63 another channel.
64 3.1.8
65 attenuation to crosstalk ratio at the far-end (ACR-F)
66 difference, in dB, between the far-end crosstalk loss from a disturbing pair of a channel and the insertion loss
67 of a disturbed pair of the same channel
68 NOTE This also applies to the calculation using the far-end crosstalk loss from a disturbing pair within a permanent link or
69 component, used to create a channel, and the insertion loss of a disturbed pair within the permanent link or component, of the same
70 channel.
71 3.1.9
72 attenuation to crosstalk ratio at the near-end (ACR-N)
73 difference, in dB, between the near-end crosstalk loss from a disturbing pair of a channel and the insertion
74 loss of a disturbed pair of the same channel
75 NOTE This also applies to the calculation using the near-end crosstalk loss from a disturbing pair within a permanent link or
76 component, used to create a channel, and the insertion loss of a disturbed pair within the permanent link or component, of the same
77 channel.
78 3.1.10
79 average alien (exogenous) near-end crosstalk loss
80 calculated average of the alien near-end crosstalk loss of the pairs of a disturbed channel
81 NOTE This also applies to the calculation using the pairs within a permanent link, used to create a channel.
82 3.1.11
83 average power sum alien (exogenous) near-end crosstalk loss
84 calculated average of the power sum alien near-end crosstalk loss of the pairs of a disturbed channel
85 NOTE This also applies to the calculation using the pairs within a permanent link used to create a channel.
86 3.1.12
87 average power sum attenuation to alien (exogenous) crosstalk ratio far-end
88 calculated average of the power sum attenuation to alien crosstalk ratio at the far-end of the pairs of a
89 disturbed channel
90 NOTE This also applies to the calculation using the pairs within a permanent link used to create a channel.
91 Replace definition 3.1.26 (renumbered 3.1.36) by:
92 3.1.36
93 external network interface
94 termination point providing external network demarcation
95 Add the following definitions and renumber the existing definitions accordingly:
96 3.1.57
97 power sum alien (exogenous) far-end crosstalk loss (PSAFEXT)
98 power sum of the signal isolation between multiple disturbing pairs of one or more channels and a disturbed
99 pair of another channel, measured at the far-end
100 NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components and
101 a disturbed pair within a permanent link or component, used to create another channel.
102 3.1.58
103 power sum alien (exogenous) near-end crosstalk loss (PSANEXT)
104 power sum of the signal isolation between multiple disturbing pairs of one or more channels and a disturbed
105 pair of another channel, measured at the near-end
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
- 7 - EN 50173-1:2007/prAA:2008

106 NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components and
107 a disturbed pair within a permanent link or component, used to create another channel.
108 3.1.59
109 power sum attenuation to alien (exogenous) crosstalk ratio at the far-end (PSAACR-F)
110 difference, in dB, between the power sum alien far-end crosstalk loss from multiple disturbing pairs of one or
111 more channels and the insertion loss of a disturbed pair in another channel
112 NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components and
113 the insertion loss of a disturbed pair within a permanent link or component, used to create another channel.
114 3.1.60
115 power sum attenuation to alien (exogenous) crosstalk ratio at the near-end(PSAACR-N)
116 difference, in dB, between the power sum alien near-end crosstalk loss from multiple disturbing pairs of one
117 or more channels and the insertion loss of a disturbed pair in another channel
118 NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components and
119 the insertion loss of a disturbed pair within a permanent link or component, used to create another channel.
120 3.1.61
121 power sum attenuation to crosstalk ratio at the far-end (PSACR-F)
122 difference, in dB, between the power sum far-end crosstalk loss from multiple disturbing pairs of a channel
123 and the insertion loss of a disturbed pair in the same channel
124 NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components,
125 used to create a channel, and the insertion loss of a disturbed pair within a permanent link or component, of the same channel.
126 3.1.62
127 power sum attenuation to crosstalk ratio at the near-end (PSACR-N)
128 difference, in dB, between the power sum near-end crosstalk loss from multiple disturbing pairs of a channel
129 and the insertion loss of a disturbed pair in the same channel
130 NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components,
131 used to create a channel, and the insertion loss of a disturbed pair within a permanent link or component, of the same channel.
132 3.2 Abbreviations
133 Replace ACR and PSACR by:
ACR-N Attenuation to crosstalk ratio at the near-end
PSACR-N Power sum attenuation to crosstalk ratio at the near-end
134 Delete ELFEXT and PSELFEXT.
135 Add the following abbreviations:
AACR-F Attenuation to alien (exogenous) crosstalk ratio at the far-end
ACR-F Attenuation to crosstalk ratio at the far-end
AFEXT Alien (exogenous) far-end crosstalk loss
ANEXT Alien (exogenous) near-end crosstalk loss
FEXT Far-end crosstalk loss
Insertion loss
α
Average insertion loss
α
avg
PSAACR-F Power sum attenuation to alien (exogenous) crosstalk ratio at the far-end
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 8 -

PSAACR-F Average power sum attenuation to alien (exogenous) crosstalk ratio at the far-end
avg
PSACR-F Power sum attenuation to crosstalk ratio at the far-end
PSAFEXT Power sum alien (exogenous) far-end crosstalk loss
PSAFEXT Normalised power sum alien (exogenous) far-end crosstalk loss
norm
PSANEXT Power sum alien (exogenous) near-end crosstalk loss
PSANEXT Average power sum alien (exogenous) near-end crosstalk loss
avg
136 5.1.2 Environmental classifications
nd
137 Replace in the 2 paragraph “Annex G” by “ISO/IEC TR 29106”.
138 5.2.2.1 General
st nd
139 Replace the 1 and 2 paragraphs by:
140 This standard specifies the following classes for balanced cabling:
141 a) Class A: specified up to 0,1 MHz;
142 b) Class B: specified up to 1 MHz;
143 c) Class C: specified up to 16 MHz;
144 d) Class D: specified up to 100 MHz;
145 e) Class E: specified up to 250 MHz;
146 f) Class E : specified up to 500 MHz;
A
147 g) Class F: specified up to 600 MHz;
148 h) Class F : specified up to 1 000 MHz.
A
149 A Class A channel is specified so that it will provide the minimum transmission performance to support Class
150 A applications. Similarly, Class B, C, D, E, E , F and F channels provide the transmission performance to
A A
151 support Class B, C, D, E, E , F and F applications respectively. Channels of a given class will support all
A A
152 applications of a lower class. Class A is regarded as the lowest class.
153 5.2.2.2 Return loss
st
154 Replace the 1 paragraph by:
155 The variation of the input impedance of a channel is characterised by the return loss. The return loss
156 parameter is applicable to Classes C, D, E, E , F, F and BCT-B only. The return loss for each pair of a
A A
157 channel shall meet the limits computed, to one decimal place, using the formulae of Table 4. The limits
158 shown in Table 5 are derived from the formulae at key frequencies only.
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
- 9 - EN 50173-1:2007/prAA:2008

159 Replace Table 4 and Table 5 by:
160 Table 4 – Formulae for return loss limits for a channel
Class Frequency Minimum return loss
MHz dB
C 1 ≤ f ≤ 16 15,0
17,0
1 ≤ f < 20
D
30−×10 lg f
20 ≤ f ≤ 100
19,0
1 ≤ f < 10
24−×5 lg f
10 ≤ f < 40
E
32−×10 lg f
40 ≤ f ≤ 250
19,0
1 ≤ f < 10
10 ≤ f < 40 24−×5 lg f
E
A
40 ≤ f < 398,1 32−×10 lg f
398,1 ≤ f ≤ 500 6,0
1 ≤ f < 10 19,0
24−×5 lg f
10 ≤ f < 40
F
32−×10 lg f
40 ≤ f < 251,2
8,0
251,2 ≤ f ≤ 600
19,0
1 ≤ f < 10
24−×5 lg f
10 ≤ f < 40
F 32−×10 lg f
A 40 ≤ f < 251,2
8,0
251,2 ≤ f < 631
631 ≤ f ≤ 1 000 36−×10 lg f
4 ≤ f < 10 19,0
24−×5 lg f
10 ≤ f < 100
29−×7,5 lg f
100 ≤ f < 251,2
BCT-B
17,2−×2,6 lg f
251,2 ≤ f < 600
35−×9 lg f
600 ≤ f ≤ 1 000
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 10 -

162 Table 5 – Return loss limits for a channel at key frequencies
Minimum return loss
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class C N/A 15,0 15,0 N/A N/A N/A N/A N/A
Class D N/A 17,0 17,0 10,0 N/A N/A N/A N/A
Class E N/A 19,0 18,0 12,0 8,0 N/A N/A N/A
Class E N/A 19,0 18,0 12,0 8,0 6,0 N/A N/A
A
Class F N/A 19,0 18,0 12,0 8,0 8,0 8,0 N/A
Class F N/A 19,0 18,0 12,0 8,0 8,0 8,0 6,0
A
Class BCT-B N/A 19,0 18,0 14,0 11,0 10,2 10,0 8,0
163 5.2.2.3 Insertion loss
164 Replace Table 6 and Table 7 by:
165 Table 6 – Formulae for insertion loss limits for a channel
Class Frequency Maximum insertion loss
MHz dB
A f = 0,1 16,0
f = 0,1
5,5
B
f = 1 5,8
C 1,05××3,23 f + 4× 0,2
1 ≤ f ≤ 16 ()
D 1,05××1,910 8ff+ 0,022 2×+ 0,2f + 4× 0,04×f , 4,0 min.
1 ≤ f ≤ 100 ()
E 1 ≤ f ≤ 250 1,05××1,82ff+ 0,016 9×+ 0,25f+ 4× 0,02×f , 4,0 min.
()
E 1 ≤ f ≤ 500 1,05××1,82ff+ 0,009 1×+ 0,25f+ 4× 0,02×f , 4,0 min.
A ()
1,05××1,8ff+ 0,01× + 0,2f+ 4× 0,02×f , 4,0 min.
F 1 ≤ f ≤ 600 ()
1,05××1,8ff+ 0,005× + 0,25f+ 4× 0,02×f , 4,0 min.
F 1 ≤ f ≤ 1 000 ()
A
CCCB f = 0,1 4,0
BCT-B-L 1 ≤ f ≤ 1 000 0,139××1,645fff+0,01×+0,25 +2×0,02 2×f ,,0min.
()
BCT-B-M 1 ≤ f ≤ 1 000 0,264××1,645ff+0,01 0,×+25f+2×0,02×f ,2,0min.
()
0,514××1,645 0ff+,01×+0,25f+2 ×0,02×f ,2,0min.
BCT-B-H 1 ≤ f ≤ 1 000 ()
NOTE Classes BCT-B-L, BCT-B-M and BCT-B-H introduce a slope between 47 MHz and 862 MHz of 7,2 dB,
12,8 dB and 24,1 dB respectively. See F.1 for supported applications.
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
- 11 - EN 50173-1:2007/prAA:2008

167 Table 7 – Insertion loss limits for a channel at key frequencies
Maximum insertion loss
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class A 16,0 N/A N/A N/A N/A N/A N/A N/A
Class B 5,5 5,8 N/A N/A N/A N/A N/A N/A
Class C N/A 4,2 14,4 N/A N/A N/A N/A N/A
Class D N/A 4,0 9,1 24,0 N/A N/A N/A N/A
Class E N/A 4,0 8,3 21,7 35,9 N/A N/A N/A
Class E N/A 4,0 8,2 20,9 33,9 49,3 N/A N/A
A
Class F N/A 4,0 8,1 20,8 33,8 49,3 54,6 N/A
Class F N/A 4,0 8,0 20,3 32,5 46,7 51,4 67,6
A
Class CCCB 4,0 N/A N/A N/A N/A N/A N/A N/A
Class BCT-B-L N/A 2,0 2,0 2,8 4,6 6,7 7,4 9,9
Class BCT-B-M N/A 2,0 2,0 5,0 8,2 11,9 13,2 17,6
Class BCT-B-H N/A 2,0 3,7 9,4 15,3 22,4 24,8 33,2
168 5.2.2.4.1 Pair-to-pair NEXT
st
169 Replace the 1 paragraph by:
170 The pair-to-pair NEXT parameter is applicable to Classes A to F . The pair-to-pair NEXT α for each pair
A NEXT
171 combination of a channel shall meet the limits computed, to one decimal place, using the formulae of
172 Table 8. The limits shown in Table 9 are derived from the formulae at key frequencies only.
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 12 -

174 Replace Table 8 and Table 9 by:
175 Table 8 – Formulae for NEXT limits for a channel
Class Frequency Minimum NEXT
MHz dB
A f = 0,1 27,0
B 0,1 ≤ f ≤ 1 25−×15 lg f
C 39,1−×16,4 lg f
1 ≤ f ≤ 16
65,3−×15 lg f 83− 20× lg f


−−20 20
D −×20 lg 10 + 2× 10 , 65,0 max.
1 ≤ f ≤ 100


74,3−×15lgff94−20l×g


−−20 20
E 1 ≤ f ≤ 250 −×20 lg 10 + 2× 10 , 65,0 max


74,3−×15 lg f 94− 20× lg f

a, c
−−20 20
E 1 ≤ f ≤ 500 −×20 lg 10 + 2× 10 , 65,0 max
A


102,4−×15 lg f 102,4−×15 lg f


−−20 20
F −×20 lg 10 + 2× 10 , 65,0 max.
1 ≤ f ≤ 600


105,4−×15 lgff116,3− 20× lg

b, c

−−20 20
F 1 ≤ f ≤ 1 000 −×20 lg 10 + 2× 10 , 65,0 max.
A


a
Where the channel insertion loss at 450 MHz is less than 12 dB, the requirement is reduced by
1,4((f – 450)/50) for f ≥ 450 MHz.
b
Where the channel insertion loss at 900 MHz is less than 17 dB, the requirement is reduced by

2,8((f – 900)/100) for f ≥ 900 MHz.
c
The terms in the formulae are not intended to imply component performance.
176 Table 9 – NEXT limits for a channel at key frequencies
Minimum NEXT
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class A 27,0 N/A N/A N/A N/A N/A N/A N/A
Class B 40,0 25,0 N/A N/A N/A N/A N/A N/A
Class C N/A 39,1 19,4 N/A N/A N/A N/A N/A
Class D N/A 63,3 43,6 30,1 N/A N/A N/A N/A
Class E N/A 65,0 53,2 39,9 33,1 N/A N/A N/A
Class E N/A 65,0 53,2 39,9 33,1 27,9 N/A N/A
A
Class F N/A 65,0 65,0 62,9 56,9 52,4 51,2 N/A
Class F N/A 65,0 65,0 65,0 59,1 53,6 52,1 47,9
A
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
- 13 - EN 50173-1:2007/prAA:2008

178 5.2.2.4.2 Power sum NEXT (PSNEXT)
st
179 Replace the 1 paragraph by:
180 The PSNEXT parameter is applicable to Classes D, E, E , F and F only. The PSNEXT α for each pair
A A PSNEXT
181 of a channel shall meet the limits computed, to one decimal place, using the formulae of Table 10. The limits
182 shown in Table 11 are derived from the formulae at key frequencies only.
183 Replace Table 10 and Table 11 by:
184 Table 10 – Formulae for PSNEXT limits for a channel
Class Frequency Minimum PSNEXT
MHz dB
62,3−×15 lgff80− 20×l g

−−20 20
D 1 ≤ f ≤ 100 −×20 lg 10 + 2× 10 , 62,0 max.


72,3−×15 lgff90− 20× lg


−−20 20
E −×20 lg 10 + 2× 10 , 62,0 max
1 ≤ f ≤ 250


72,3−×15 lgff90− 20× lg

a,c

−−20 20
E 1 ≤ f ≤ 500 −×20 lg 10 + 2× 10 , 62,0 max
A


99,4−×15 lgf,99 4−×15 lgf

−−20 20
F −×20 lg 10 + 2× 10 , 62,0 max.
1 ≤ f ≤ 600


102,4−×15 lgff113,3− 20× lg

b,c

−−20 20
F −×20 lg 10 + 2× 10 , 62,0 max.
A 1 ≤ f ≤ 1 000


a
Where the channel insertion loss at 450 MHz is less than 12 dB, the requirement is reduced by
1,4((f – 450)/50) for f ≥ 450 MHz.
b
Where the channel insertion loss at 900 MHz is less than 17 dB, the requirement is reduced by

2,8((f – 900)/100) for f ≥ 900 MHz.
c
The terms in the formulae are not intended to imply component performance.
185 Table 11 – PSNEXT limits for a channel at key frequencies
Minimum PSNEXT
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class D N/A 60,3 40,6 27,1 N/A N/A N/A N/A
Class E N/A 62,0 50,6 37,1 30,2 N/A N/A N/A
Class E N/A 62,0 50,6 37,1 30,2 24,8 N/A N/A
A
Class F N/A 62,0 62,0 59,9 53,9 49,4 48,2 N/A
Class F N/A 62,0 62,0 62,0 56,1 50,6 49,1 44,9
A
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 14 -

187 5.2.2.5 Attenuation to crosstalk loss ratio (ACR)
188 Replace the title by:
189 5.2.2.5 Attenuation to crosstalk ratio at the near-end (ACR-N)
190 Replace “ACR” with “ACR-N” throughout the document.
191 Add the following note:
192 NOTE ACR-N replaces, and is equivalent to, ACR of previous editions of this standard.
193 5.2.2.5.1 Pair-to-pair ACR-N
194 Add after Equation (2):
195 where
196 i is the number of the disturbing pair,
197 k is the number of the disturbed pair,
198 … …
nd
199 Replace the 2 paragraph by:
200 The ACR-N parameter is applicable to Classes D, E, E , F and F only. The ACR-N for each pair
A A
201 combination of a channel shall meet the limits computed according to Equation (2), to one decimal place,
202 using the relevant formulae of Table 6 and Table 8. The limits shown in Table 12 are derived with
203 Equation (2) at key frequencies only.
204 Replace Table 12 by:
205 Table 12 – ACR-N limits for a channel at key frequencies
Minimum ACR-N
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class D N/A 59,3 34,5 6,1 N/A N/A N/A N/A
Class E N/A 61,0 44,9 18,2 -2,8 N/A N/A N/A
Class E N/A 61,0 45,0 19,0 -0,8 -21,4 N/A N/A
A
Class F N/A 61,0 56,9 42,1 23,1 3,1 -3,4 N/A
Class F N/A 61,0 57,0 44,7 23,1 6,9 0,7 -19,6
A
206 5.2.2.5.2 Power sum ACR (PSACR)
207 Replace the title by:
208 5.2.2.5.2 Power sum ACR-N (PSACR-N)
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
- 15 - EN 50173-1:2007/prAA:2008

209 Add after Equation (3):
210 where
211 k is the number of disturbed pair
212 … .
nd
213 Replace the 2 paragraph by:
214 The PSACR-N parameter is applicable to Classes D, E, E , F and F . The PSACR-N for each pair
A A
215 combination of a channel shall meet the limits computed according to Equation (3), to one decimal place,
216 using the relevant formulae of Table 6 and Table 10. The limits shown in Table 13 are derived with
217 Equation (3) at key frequencies only.
218 Replace Table 13 by:
219 Table 13 – PSACR-N limits for a channel at key frequencies
Minimum PSACR-N
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class D N/A 56,3 31,5 3,1 N/A N/A N/A N/A
Class E N/A 58,0 42,3 15,4 -5,8 N/A N/A N/A
Class E N/A 58,0 42,4 16,2 -3,7 -24,5 N/A N/A
A
Class F N/A 58,0 53,9 39,1 20.1 0,1 -6,4 N/A
Class F N/A 58,0 54,0 41,7 23,7 3,9 -2,3 -22,6
A
220 5.2.2.6 Equal level far end crosstalk loss (ELFEXT)
221 Replace the whole subclause as follows and replace “ELFEXT” by “ACR-F” throughout the document.
222 5.2.2.6 Attenuation to crosstalk ratio at the far-end (ACR-F)
223 NOTE ACR-F replaces, and differs from, ELFEXT of previous editions of this standard.
224 5.2.2.6.1 Pair-to-pair ACR-F
225 The ACR-F parameter is applicable to Classes D, E, E , F and F only.
A A
226 ACR-F of pairs i and k, α (i,k), is computed as follows:
i,k ACR-F
227 αα(,ik) = (ik, ) –α(k) [dB] (4)
ACR-F FEXT
228 where
229 i is the number of the disturbing pair;
230 k is the number of the disturbed pair;
231 α (i,k) is the far-end crosstalk loss coupled from disturbing pair i into disturbed pair k. When required, it
FEXT
232 shall be measured according to EN 50346.
233 α(k) is the insertion loss of pair k. When required, it shall be measured according to EN 50346.
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 16 -

234 The ACR-F for each pair combination of a channel shall meet the limits computed, to one decimal place,
235 using the equations of Table 14. The limits shown in Table 15 are derived from the equations at key
236 frequencies.
237 Table 14 – Formulae for ACR-F limits for a channel
Class Frequency Minimum ACR-F
MHz dB
63,8−×20 lgf,75 1−×20 lgf

−−20 20
−×20 lg 10 + 4× 10
D 1 ≤ f ≤ 100


67,8−×20 lgf,83 1−×20 lgf

−−20 20
−×20 lg 10 + 4× 10
E 1 ≤ f ≤ 250


67,8−×20 lgf,83 1−×20 lgf

−−20 20
−×20 lg 10 + 4× 10
E 1 ≤ f ≤ 500
A


94−×20 lg f 90− 15× lg f

−−20 20
−×20 lg 10 + 4× 10 , 65,0 max.
F 1 ≤ f ≤ 600


95,3−×20 lg f 103,9− 20× lg f

−−20 20
−×20 lg 10 + 4× 10 , 65,0 max.
F 1≤ f ≤ 1 000
A


NOTE ACR-F values at frequencies that correspond to measured FEXT values of greater than 70,0 dB
are for information only.
239 Table 15 – ACR-F limits for a channel at key frequencies
Minimum ACR-F
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class D N/A 57,4 33,3 17,4 N/A N/A N/A N/A
Class E N/A 63,3 39,2 23,3 15,3 N/A N/A N/A
Class E N/A 63,3 39,2 23,3 15,3 9,3 N/A N/A
A
Class F N/A 65,0 57,5 44,4 37,8 32,6 31,3 N/A
Class F N/A 65,0 63,3 47,4 39,4 33,4 31,8 27,4
A
240 5.2.2.6.2 Power sum ACR-F (PSACR-F)
241 The PSACR-F parameter is applicable to Classes D, E, E , F and F only.
A A
242 PSACR-F of pair k, α (k), is computed as follows:
PSACR-F
−α (,ik)
 FEXT 
n
 10 
243 αα(kk) =−10×lg 10 − ( ) [dB] (5)

PSACR-F
 
ii=≠1, k
 
244 where
245 i is the number of the disturbing pair;
246 k is the number of the disturbed pair;
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
- 17 - EN 50173-1:2007/prAA:2008

247 n is the total number of pairs;
248 α (i,k) is the far-end crosstalk loss coupled from disturbing pair i into disturbed pair k. When required, it
FEXT
249 shall be measured according to EN 50346.
250 α(k) is the insertion loss of pair k. When required, it shall be measured according to EN 50346.
251 The PSACR-F for each pair of a channel shall meet the limits computed, to one decimal place, using the
252 formulae of Table 16. The limits shown in Table 17 are derived from the formulae at key frequencies.
253 Table 16 – Formulae for PSACR-F limits for a channel
Class Frequency Minimum PSACR-F
MHz dB
60,8−×20 lgf,72 1− 20× lgf

−−20 20
−×20 lg 10 + 4× 10
D 1 ≤ f ≤ 100


64,8−×20 lgf,80 1−×20 lgf

−−20 20
−×20 lg 10 + 4× 10
E 1 ≤ f ≤ 250


64,8−×20 lgf,80 1−×20 lgf

−−20 20
−×20 lg 10 + 4× 10
E 1 ≤ f ≤ 500
A


91−×20 lg f 87− 15× lg f

−−20 20
−×20 lg 10 + 4× 10 , 62,0 max.
F 1 ≤ f ≤ 600


92,3−×20 lg f 100,9− 20× lg f

−−20 20
−×20 lg 10 + 4× 10 62,0 max.
F 1≤ f ≤ 1 000
A


NOTE PSACR-F values at frequencies that correspond to measured FEXT values of greater than
70,0 dB are for information only.
255 Table 17 – PSACR-F limits for a channel at key frequencies
Minimum PSACR-F
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class D N/A 54,4 30,3 14,4 N/A N/A N/A N/A
Class E N/A 60,3 36,2 20,3 12,3 N/A N/A N/A
Class E N/A 60,3 36,2 20,3 12,3 6,3 N/A N/A
A
Class F N/A 62,0 54,5 41,4 34,8 29,6 28,3 N/A
Class F N/A 62,0 60,3 44,4 36,4 30,4 28,8 24,4
A
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 18 -

257 5.2.2.7 Direct current (d.c.) loop resistance
258 Replace Table 18 by:
259 Table 18 – d.c. loop resistance limits for a channel
Class
Maximum d.c. loop resistance

A 560,0
B 170,0
C 40,0
D 25,0
E 25,0
E 25,0
A
F 25,0
F 25,0
A
a
CCCB 8,0
a
Applications that only deliver power over the channel may allow up to 10 Ω.
261 5.2.2.8 Direct current (d.c.) resistance unbalance
262 Replace Table 19 by:
263 Table 19 – d.c. loop resistance unbalance limits for a channel
Class
Maximum d.c. resistance unbalance
A 3,0 %, 200 mΩ min.
B
3,0 %, 200 mΩ min.
C 3,0 %, 200 mΩ min.
D
3,0 %, 200 mΩ min.
E 3,0 %, 200 mΩ min.
E
A 3,0 %, 200 mΩ min.
F 3,0 %, 200 mΩ min.
F
A 3,0 %, 200 mΩ min.
a
CCCB
3,0 %, 200 mΩ min.
BCT-B
3,0 %, 200 mΩ min.
a
Where channels are required to provide power feeding this value shall be reduced to 1,5 %, subject
to a minimum of XXX mΩ.
264 5.2.2.9 Direct current (d.c.) power feeding
st
265 Replace the 1 paragraph by:
266 Channels of Classes D, E, E , F and F shall be designed to support a current of DC 0,175 A per conductor
A A
267 for all temperatures at which the cabling is intended to be used.
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
- 19 - EN 50173-1:2007/prAA:2008

268 5.2.2.10 Operating voltage
269 Replace the whole subclause as follows:
270 5.2.2.10 Dielectric withstand
271 The channels of Classes D, E, E , F, F and CCCB shall have a minimum dielectric withstand of DC 1 000 V
A A
272 conductor-to-conductor and DC 1 000 V conductor-to-screen or conductor to earth, if a screen is not present.
273 This requirement shall be met by design.
274 5.2.2.11 Propagation Delay
st
275 Replace the 1 sentence by:
276 The propagation delay parameter is applicable to Classes A to F , CCCB and BCT-B.
A
277 Replace Table 20 and Table 21 by:
278 Table 20 – Formulae for propagation delay limits for a channel
Class Frequency Maximum propagation delay
MHz µs
A f = 0,1 20,000
B 0,1 ≤ f ≤ 1 5,000
C 1 ≤ f ≤ 16 0,534++0,036 f 4× 0,002 5
D 1 ≤ f ≤ 100 0,534++0,036 f 4× 0,002 5
0,534++0,036 f 4× 0,002 5
E 1 ≤ f ≤ 250
E 0,534++0,036 f 4× 0,002 5
A 1 ≤ f ≤ 500
F 1 ≤ f ≤ 600 0,534++0,036 f 4× 0,002 5
F 1 ≤ f ≤ 1 000 0,534++0,036 f 4× 0,002 5
A
CCCB f = 0,1 1,000
0,534++0,036 f 4× 0,002 5
BCT-B 1 ≤ f ≤ 600
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 20 -

279 Table 21 – Propagation delay limits for a channel at key frequencies
Maximum propagation delay
µs
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class A 20,000 N/A N/A N/A N/A N/A N/A N/A
Class B 5,000 5,000 N/A N/A N/A N/A N/A N/A
Class C N/A 0,580 0,553 N/A N/A N/A N/A N/A
Class D N/A 0,580 0,553 0,548 N/A N/A N/A N/A
Class E N/A 0,580 0,553 0,548 0,546 N/A N/A N/A
Class E N/A 0,580 0,553 0,548 0,546 0,546 N/A N/A
A
Class F N/A 0,580 0,553 0,548 0,546 0,546 0,545 N/A
Class F N/A 0,580 0,553 0,548 0,546 0,546 0,545 0,545
A
Class CCCB 1,000 N/A N/A N/A N/A N/A N/A N/A
Class BCT-B N/A 0,580 0,553 0,548 0,546 0,546 0,545 0,545
280 5.2.2.12 Delay skew
st
281 Replace the 1 sentence by:
282 The delay skew parameter is applicable to Classes D, E, E , F and F only.
A A
283 Replace Table 22 by:
284 Table 22 – Delay skew limits for a channel
Class Maximum delay skew
µs
a, c
D 0,050
a, c
E 0,050
a, c
E 0,050
A
b, c
F 0,030
b, c
F 0,030
A
a
Calculation is based upon 0,045 + 4 × 0,001 25.
b
Calculation is based upon 0,025 + 4 × 0,001 25.
c
Delay skew of any given installed cabling channel shall not vary
by more than 0,010 µs within this requirement, due to effects
such as the daily temperature variation.
285 5.2.2.13 Transverse conversion loss (TCL)
st
286 Replace the 1 paragraph by:
287 The TCL parameter is applicable to Classes A to F and BCT-B.
A
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
- 21 - EN 50173-1:2007/prAA:2008

288 Replace Table 23 and Table 24 by:
289 Table 23 – Formulae for TCL limits for an unscreened cabling channel
Class Frequency MICE classification (electromagnetic)
MHz
E E E
1 2 3
Minimum TCL
dB
A 0,1 30 30 30
f = 0,1
45 45 45
B
f = 1
20 20 20
C
1 ≤ f ≤ 16 30−×5 lg f 30−×5 lg f 30−×5 lg f
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
D
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 100
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
E
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 250
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
E
A
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 500
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
F
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 600
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
F
A
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 1 000
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
BCT-B
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 600
NOTE Values above 100 MHz are for information only.
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 22 -

291 Table 24 – TCL limits for an unscreened cabling channel at key frequencies
Minimum TCL
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
E 30,0 N/A N/A N/A N/A N/A N/A N/A
Class A E 30,0 N/A N/A N/A N/A N/A N/A N/A
E 30,0 N/A N/A N/A N/A N/A N/A N/A
E 45,0 20,0 N/A N/A N/A N/A N/A N/A
Class B E 45,0 20,0 N/A N/A N/A N/A N/A N/A
E 45,0 20,0 N/A N/A N/A N/A N/A N/A
E N/A 30,0 24,0 N/A N/A N/A N/A N/A
Class C E N/A 30,0 24,0 N/A N/A N/A N/A N/A
E N/A 30,0 24,0 N/A N/A N/A N/A N/A
E N/A 40,0 34,9 20,3 N/A N/A N/A N/A
Class D E N/A 40,0 40,0 30,3 N/A N/A N/A N/A
E3 N/A 40,0 40,0 40,0 N/A N/A N/A N/A
E N/A 40,0 34,9 20,3 12,3 N/A N/A N/A
Class E E N/A 40,0 40,0 30,3 22,3 N/A N/A N/A
E N/A 40,0 40,0 40,0 32,3 N/A N/A N/A
E N/A 40,0 34,9 20,3 12,3 6,4 N/A N/A
Class E E N/A 40,0 40,0 30,3 22,3 16,4 N/A N/A
A 2
E N/A 40,0 40,0 40,0 32,3 26,4 N/A N/A
E N/A 40,0 34,9 20,3 12,3 6,4 4,7 N/A
Class F E N/A 40,0 40,0 30,3 22,3 16,4 14,7 N/A
E N/A 40,0 40,0 40,0 32,3 26,4 24,7 N/A
E N/A 40,0 34,9 20,3 12,3 6,4 4,7 0,3
Class F E N/A 40,0 40,0 30,3 22,3 16,4 14,7 10,3
A 2
E N/A 40,0 40,0 40,0 32,3 26,4 24,7 20,3
E N/A 40,0 34,9 20,3 12,3 6,4 4,7 0,3
Class BCT-B E N/A 40,0 40,0 30,3 22,3 16,4 14,7 10,3
E N/A 40,0 40,0 40,0 32,3 26,4 24,7 20,3
NOTE Values above 100 MHz are for information only.
292 5.2.2.14 Equal level transverse conversion transfer loss (ELTCTL)
st
293 Replace the 1 paragraph by:
294 The ELTCTL parameter is applicable to Classes D, E, E , F, F and BCT-B only.
A A
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
- 23 - EN 50173-1:2007/prAA:2008

295 Replace Table 25 and Table 26 by:
296 Table 25 – Formulae for ELTCTL limits for an unscreened cabling channel
Class Frequency MICE classification (electromagnetic)
MHz
E E E
1 2 3
Minimum ELTCTL
dB
D, E and F 1 ≤ f ≤ 30 30−×20 lg f 40−×20 lg f 50−×20 lg f , 40 max.
30−×20 lg f 40−×20 lg f 50−×20 lg f , 40 max.
E 1 ≤ f ≤ 30
A
30−×20 lg f 40−×20 lg f 50−×20 lg f , 40 max.
F 1 ≤ f ≤ 30
A
BCT-B
1 ≤ f ≤ 30 30−×20 lg f 40−×20 lg f 50−×20 lg f , 40 max.
298 Table 26 – ELTCTL limits for an unscreened cabling channel at key frequencies
Minimum ELTCTL
dB
Frequency 1,0 16,0 30,0
MHz
E 30,0 5,9 0,5
Class D E 40,0 15,9 10,5
E 40,0 25,9 20,5
E 30,0 5,9 0,5
Class E E 40,0 15,9 10,5
E 40,0 25,9 20,5
E 30,0 5,9 0,5
Class E E 40,0 15,9 10,5
A 2
E 40,0 25,9 20,5
E 30,0 5,9 0,5
Class F E 40,0 15,9 10,5
E 40,0 25,9 20,5
E 30,0 5,9 0,5
Class F E 40,0 15,9 10,5
A 2
E 40,0 25,9 20,5
E 30,0 5,9 0,5
Class BCT-B E 40,0 15,9 10,5
E 40,0 25,9 20,5
299 5.2.2.15 Coupling attenuation
st
300 Replace the 1 paragraph by:
301 The coupling attenuation parameter is applicable to Classes D, E, E , F, F and BCT-B only.
A A
Draft for Enquiry
SIST EN 50173-1:2008/oprAA:2008
EN 50173-1:2007/prAA:2008 - 24 -

302 Replace Table 27 and Table 28 by:
303 Table 27 – Formulae for coupling attenuation limits for a screened cabling channel
Class Frequency MICE classification (electromagnetic)
MHz
E E E
1 2 3
Minimum coupling attenuation
dB
D 30 ≤ f ≤ 100 40 50 60
E
30 ≤ f ≤ 250 80−×20 lg f , 40 max. 90−×20 lg f , 50 max. 100−×20 lg f , 60 max.
E 30 ≤ f ≤ 500 80−×20 lg f , 40 max. 90−×20 lg f , 50 max. 100−×20 lg f , 60 max.
A
F 30 ≤ f ≤ 600 80−×20 lg f , 40 max. 90−×20 lg f , 50 max. 100−×20 lg f , 60 max.
80−×20 lg f , 40 max. 90−×20 lg f , 50 max. 100−×20 lg f , 60 max.
F 30 ≤ f ≤ 1 000
A
BCT-B
30 ≤ f ≤ 1 000 80−×20 lg f , 40 max. 90−×20 lg f , 50 max. 100−×20 lg f , 60 max.
NOTE Coupling attenuation applies to maximum frequency of Class, and beyond that to 1 GHz for general EMC information.
305 Table 28 – Coupling attenuation limits for a screened cabling channel at key frequencies
Minimum coupling attenuation
dB
Frequency 30,0 100,0 250,0 500,0 600,0 1 000,0
MHz
E 40,0 40,0 N/A N/A N/A N/A
Class D E 50,0 50,0 N/A N/A N/A N/A
E 60,0 60,0 N/A N/A N/A N/A
E 40,0 40,0 32,0 N/A N/A N/A
Class E E 50,0 50,0 42,0 N/A N/A N/A
E 60,0 60,0 52,0 N/A N/A N/A
E 40,0 40,0 32,0 26,0 N/A N/A
Class E E 50,0 50,0 42,0 36,0 N/A N/A
A 2
E 60,0 60,0 52,0 46,0 N/A N/A
E 40,0 40,0 32,0 26,0 24,4 N/A
Class F E 50,0 50,0 42,0 36,0 34,4 N/A
E 60,0 60,0 52,0 46,0 44,4 N/A
E 40,0 40,0 32,0 26,0 24,4 20,0
Class F E 50,0 50,0 42,0 36,0 34,4 30,0
A 2
E 60,0 60,0 52,0 46,0 44,4 40,0
E 40,0 40,0 32,0 26,0 24,4 20,0
Class BCT-B E2 50,0 50,0 42,0 36,0 34,4 30,0
E 60,0 60,0 52,0 46,0 44,4 40,0
Draft for Enquiry
...


SLOVENSKI STANDARD
01-marec-2010
Informacijska tehnologija - Univerzalni sistemi polaganja kablov - 1. del: Splošne
zahteve
Information technology - Generic cabling systems -- Part 1: General requirements
Informationstechnik - Anwendungsneutrale Kommunikationskabelanlagen -- Teil 1:
Allgemeine Anforderungen
Technologies de l'information - Systèmes de câblage générique -- Partie 1: Exigences
générales
Ta slovenski standard je istoveten z: EN 50173-1:2007/A1:2009
ICS:
33.040.50 Vodi, zveze in tokokrogi Lines, connections and
circuits
35.110 Omreževanje Networking
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EUROPEAN STANDARD
EN 50173-1/A1
NORME EUROPÉENNE
November 2009
EUROPÄISCHE NORM
ICS 33.040.50
English version
Information technology -
Generic cabling systems -
Part 1: General requirements
Technologies de l'information -  Informationstechnik -
Systèmes de câblage générique - Anwendungsneutrale
Partie 1: Exigences générales Kommunikationskabelanlagen -
Teil 1: Allgemeine Anforderungen

This amendment A1 modifies the European Standard EN 50173-1:2007; it was approved by CENELEC on
2009-09-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which
stipulate the conditions for giving this amendment the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the Central Secretariat or to any CENELEC member.

This amendment exists in three official versions (English, French, German). A version in any other language
made by translation under the responsibility of a CENELEC member into its own language and notified to the
Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Cyprus, the
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain,
Sweden, Switzerland and the United Kingdom.

CENELEC
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: Avenue Marnix 17, B - 1000 Brussels

© 2009 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.
Ref. No. EN 50173-1:2007/A1:2009 E

Foreword
This amendment was prepared by the Technical Committee CENELEC TC 215, Electrotechnical aspects of
telecommunication equipment.
The text of the draft was submitted to the formal vote and was approved by CENELEC as amendment A1 to
EN 50173-1:2007 on 2009-09-01.
The following dates were fixed:
– latest date by which the amendment has to be implemented
at national level by publication of an identical
national standard or by endorsement (dop) 2010-09-01
– latest date by which the national standards conflicting
with the amendment have to be withdrawn (dow) 2012-09-01
This amendment introduces, among others, new Class E and F channels, resulting in an amendment of
A A
many tables in Clause 5. Furthermore some specifications for BCT applications for residential cabling have
been modified.
__________
- 3 - EN 50173-1:2007/A1:2009
Introduction
Replace Figure 1 by:
EENN 50098-50098-1:1: C Cuussttoommerer p prreemmiisseess EENN 501 50173-73-2:2: I Innffoormrmaattiioonn t teecchnolhnologogyy::
ccablabliinng fg foorr i innffoormrmatatiion ton teecchhnonollogyogy - - GGenereneriicc c cablabliing -ng - OOffffiiccee prpreemmiisseess
IISSDDNN b baassiicc a acceccessss
EENN 5017 50173-3-3:3: I Innffoorrmmatatiion ton teecchhnnoollogyogy::
EENN 50 50098-098-2:2: C Cuussttoommeerr pr preemmiisseses GGeenerneriicc c cablabliinng -g - IIndusndusttrriiaall pr prememiisseess
EENN 50173 50173--11:: IInnffoorrmmatatiion ton teecchhnnoollogyogy::
ccablabliing ng ffoorr i innffoorrmmatatiion ton teecchhnolnologyogy - -
EENN 50173- 50173-4:4: I Innffoorrmmatatiion ton teecchnolhnologyogy:: GGeenerneriicc c cablabliinngg - - GGeenerneralal r requiequirreemmententss
2048 2048 kkbbiitt//ss IISSDDNN p prriimmararyy a acccceessss and and
GGeneenerriicc c cablabliing ng -- HHomomeses
lleeasased led liine nne neettwwoorrkk i inntteerrffacacee
EENN 5 50173-0173-5:5: I Innffoorrmmatatiion ton teecchnolhnologogyy::
GGenereneriicc c cablabliing -ng - DDaatta ca cententrreess
EENN 5017 50174-4-11:: I Innffoorrmmatatiion ton teecchhnnoollooggyy – – EENN 50310 50310:: A Applppliiccatatiion ofon of e equiquipotpotententiiaall
bbondionding and eng and eaarrtthhiingng iinn b buuiillddiingsngs w wiitthh
CCablabliing ing innssttalalllaattiion –on – IInsnsttaallllaattiioonn
iinnffoorrmmatatiion ton teecchhnolnologogyy equiequipmpmentent
ssppececiiffiiccatatiion anon and qd qualualiittyy as asssuurrancancee
EENN 501 50174-74-2:2: I Innffoormrmaattiioonn t teecchnolhnologogyy - -
CCablabliing ing innssttalalllaattiionon - - IInnssttaallllaattiion on
plplananniningng and pr and pracacttiicceess i innssiide bde buuiilldidinnggss
EENN 501 50174-74-3:3: I Innffoormrmaattiioonn t teecchnolhnologogyy - -
CCablabliing ing innssttalalllaattiionon - - IInnssttaallllaattiion on
plplananniningng and pr and pracacttiicceess out outssiide bde buuiillddiingsngs
EENN 50 50346:346: I Innffoorrmmatatiion ton teecchhnolnologogyy --
CCaabblliing ing innssttalalllaattiionon - -
TTeessttiing ng ofof i innssttalallled ced cablabliinngg

NOTE CLC/TC 215 has also produced a Technical Report CLC/TR 50173-99-1 “Cabling guidelines in support of 10 GBASE-T”.
Figure 1 – Schematic relationship between the EN 50173 series and other relevant standards

Replace Table 1 by:
Table 1 – Contextual relationship between EN 50173 series and other relevant standards
Building design phase Generic cabling Specification phase Installation phase Operation phase
design phase
EN 50310 EN 50173 series EN 50174-1 EN 50174-1
except
EN 50173-4
5.2: Common bonding 4: Structure 4: Requirements for 4: Requirements for
network (CBN) within a specifying installations specifying installations
5: Channel performance
building of information of information
technology cabling technology cabling
7: Cable requirements
6.3: AC distribution
system and bonding of 5: Requirements for
8: Connecting hardware
the protective conductor installers of information
requirements
(TN-S) technology cabling
9: Requirements for
cords and jumpers
A: Link performance
limits
Planning phase
and
EN 50173-4 EN 50174-2 EN 50174-2
4 and 5: Structure 4: Requirements for 5: Requirements for the
planning installations of installation of
6: Channel performance
information technology information technology
cabling cabling
8: Cable requirements
6: Segregation of 6: Segregation of
9: Connecting hardware
metallic information metallic information
requirements
technology cabling and technology cabling and
10: Requirements for mains power cabling mains power cabling
cords and jumpers
7: Electricity distribution
A: Link performance
systems and lightning
limits
protection
and and
EN 50174-3 EN 50174-3
and and
(for equipotential (for equipotential
bonding) bonding)
EN 50310 EN 50310
5.2: Common bonding 5.2: Common bonding
network (CBN) within a network (CBN) within a
building building
6.3: AC distribution 6.3: AC distribution
system and bonding of system and bonding of
the protective conductor the protective conductor
(TN-S) (TN-S)
and
EN 50346
4: General requirements
5: Test parameters for
balanced cabling
6: Test parameters for
optical fibre cabling
- 5 - EN 50173-1:2007/A1:2009
2 Normative references
Replace EN 61196-3 by:
EN 50117-4-1, Coaxial cables – Part 4-1: Sectional specification for cables for BCT cabling in accordance
with EN 50173 – Indoor drop cables for systems operating at 5 MHz - 3 000 MHz
Amend EN 60793-2-10 to read:
EN 60793-2-10:2007, Optical fibres – Part 2-10: Product specifications – Sectional specification for category
A1 multimode fibres (IEC 60793-2-10:2007)
Add the following reference:
CLC/TR 50173-99-1, Cabling guidelines in support of 10 GBASE-T
3.1 Definitions
Add the following definitions and renumber the existing definitions accordingly:
3.1.2
alien (exogenous) crosstalk
signal coupling from a disturbing pair of a channel to a disturbed pair of another channel
NOTE This also applies to the signal coupling from a disturbing pair within a permanent link or component, used to create a channel,
to a disturbed pair within a permanent link or component, used to create another channel.
3.1.3
alien (exogenous) far-end crosstalk loss (AFEXT)
signal isolation between a disturbing pair of a channel and a disturbed pair of another channel, measured at
the far-end
NOTE This also applies to the measurement of the signal isolation between a disturbing pair within a permanent link or component,
used to create a channel, and a disturbed pair within a permanent link or component, used to create another channel.
3.1.4
alien (exogenous) near-end crosstalk loss (ANEXT)
signal isolation between a disturbing pair of a channel and a disturbed pair of another channel, measured at
the near-end
NOTE This also applies to the measurement of the signal isolation between a disturbing pair within a permanent link or component,
used to create a channel, and a disturbed pair within a permanent link or component, used to create another channel.
Renumber existing definition 3.1.2 into 3.1.5.
3.1.6
attenuation to alien (exogenous) crosstalk ratio at the far-end (AACR-F)
difference, in dB, between the alien far-end crosstalk loss from a disturbing pair of a channel and the
insertion loss of a disturbed pair in another channel
NOTE This also applies to the calculation using the alien far-end crosstalk loss from a disturbing pair within a permanent link or
component, used to create a channel, and the insertion loss of a disturbed pair within a permanent link or component, used to create
another channel.
3.1.7
attenuation to alien (exogenous) crosstalk ratio at the near-end (AACR-N)
difference, in dB, between the alien near-end crosstalk loss from a disturbing pair of a channel and the
insertion loss of a disturbed pair in another channel
NOTE This also applies to the calculation using the alien near-end crosstalk loss from a disturbing pair within a permanent link or
component, used to create a channel, and the insertion loss of a disturbed pair within a permanent link or component, used to create
another channel.
3.1.8
attenuation to crosstalk ratio at the far-end (ACR-F)
difference, in dB, between the far-end crosstalk loss from a disturbing pair of a channel and the insertion loss
of a disturbed pair of the same channel
NOTE This also applies to the calculation using the far-end crosstalk loss from a disturbing pair within a permanent link or
component, used to create a channel, and the insertion loss of a disturbed pair within the permanent link or component, of the same
channel.
3.1.9
attenuation to crosstalk ratio at the near-end (ACR-N)
difference, in dB, between the near-end crosstalk loss from a disturbing pair of a channel and the insertion
loss of a disturbed pair of the same channel
NOTE This also applies to the calculation using the near-end crosstalk loss from a disturbing pair within a permanent link or
component, used to create a channel, and the insertion loss of a disturbed pair within the permanent link or component, of the same
channel.
3.1.10
average alien (exogenous) near-end crosstalk loss
calculated average of the alien near-end crosstalk loss of the pairs of a disturbed channel
NOTE This also applies to the calculation using the pairs within a permanent link, used to create a channel.
3.1.11
average power sum alien (exogenous) near-end crosstalk loss
calculated average of the power sum alien near-end crosstalk loss of the pairs of a disturbed channel
NOTE This also applies to the calculation using the pairs within a permanent link used to create a channel.
3.1.12
average power sum attenuation to alien (exogenous) crosstalk ratio far-end
calculated average of the power sum attenuation to alien crosstalk ratio at the far-end of the pairs of a
disturbed channel
NOTE This also applies to the calculation using the pairs within a permanent link used to create a channel.
Renumber existing definitions 3.1.3 to 3.1.46 into 3.1.13 to 3.1.56.
Replace definition 3.1.7 (renumbered 3.1.17) by:
3.1.17
building entrance facility
space that provides all necessary mechanical and electrical services for the entry of cables into a building
Replace definition 3.1.26 (renumbered 3.1.36) by:
3.1.36
external network interface
termination point providing external network demarcation
Add the following definitions and renumber the existing definitions 3.1.47 to 3.1.56 into 3.1.63 to 3.1.72 :
3.1.57
power sum alien (exogenous) far-end crosstalk loss (PSAFEXT)
power sum of the signal isolation between multiple disturbing pairs of one or more channels and a disturbed
pair of another channel, measured at the far-end
NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components and
a disturbed pair within a permanent link or component, used to create another channel.

- 7 - EN 50173-1:2007/A1:2009
3.1.58
power sum alien (exogenous) near-end crosstalk loss (PSANEXT)
power sum of the signal isolation between multiple disturbing pairs of one or more channels and a disturbed
pair of another channel, measured at the near-end
NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components and
a disturbed pair within a permanent link or component, used to create another channel.
3.1.59
power sum attenuation to alien (exogenous) crosstalk ratio at the far-end (PSAACR-F)
difference, in dB, between the power sum alien far-end crosstalk loss from multiple disturbing pairs of one or
more channels and the insertion loss of a disturbed pair in another channel
NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components and
the insertion loss of a disturbed pair within a permanent link or component, used to create another channel.
3.1.60
power sum attenuation to alien (exogenous) crosstalk ratio at the near-end (PSAACR-N)
difference, in dB, between the power sum alien near-end crosstalk loss from multiple disturbing pairs of one
or more channels and the insertion loss of a disturbed pair in another channel
NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components and
the insertion loss of a disturbed pair within a permanent link or component, used to create another channel.
3.1.61
power sum attenuation to crosstalk ratio at the far-end (PSACR-F)
difference, in dB, between the power sum far-end crosstalk loss from multiple disturbing pairs of a channel
and the insertion loss of a disturbed pair in the same channel
NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components,
used to create a channel, and the insertion loss of a disturbed pair within a permanent link or component, of the same channel.
3.1.62
power sum attenuation to crosstalk ratio at the near-end (PSACR-N)
difference, in dB, between the power sum near-end crosstalk loss from multiple disturbing pairs of a channel
and the insertion loss of a disturbed pair in the same channel
NOTE This also applies to the calculation using the multiple disturbing pairs within one or more permanent links or components,
used to create a channel, and the insertion loss of a disturbed pair within a permanent link or component, of the same channel.
3.2 Abbreviations
Replace ACR and PSACR by:
ACR-N Attenuation to crosstalk ratio at the near-end
PSACR-N Power sum attenuation to crosstalk ratio at the near-end
Delete ELFEXT and PSELFEXT.
Add the following abbreviations:
AACR-F Attenuation to alien (exogenous) crosstalk ratio at the far-end
ACR-F Attenuation to crosstalk ratio at the far-end
AFEXT Alien (exogenous) far-end crosstalk loss
ANEXT Alien (exogenous) near-end crosstalk loss
FEXT Far-end crosstalk loss
Insertion loss
α
Average insertion loss
α
avg
PSAACR-F Power sum attenuation to alien (exogenous) crosstalk ratio at the far-end
PSAACR-F Average power sum attenuation to alien (exogenous) crosstalk ratio at the far-end
avg
PSACR-F Power sum attenuation to crosstalk ratio at the far-end
PSAFEXT Power sum alien (exogenous) far-end crosstalk loss
PSAFEXT Normalised power sum alien (exogenous) far-end crosstalk loss
norm
PSANEXT Power sum alien (exogenous) near-end crosstalk loss
PSANEXT Average power sum alien (exogenous) near-end crosstalk loss
avg
5.2.2.1 General
st nd
Replace the 1 and 2 paragraphs by:
This standard specifies the following classes for balanced cabling:
a) Class A: specified up to 0,1 MHz;
b) Class B: specified up to 1 MHz;
c) Class C: specified up to 16 MHz;
d) Class D: specified up to 100 MHz;
e) Class E: specified up to 250 MHz;
f) Class E : specified up to 500 MHz;
A
g) Class F: specified up to 600 MHz;
h) Class F : specified up to 1 000 MHz.
A
A Class A channel is specified so that it will provide the minimum transmission performance to support
Class A applications. Similarly, Class B, C, D, E, E , F and F channels provide the transmission
A A
performance to support Class B, C, D, E, E , F and F applications respectively. Channels of a given class
A A
will support all applications of a lower class. Class A is regarded as the lowest class.
5.2.2.2 Return loss
st
Replace the 1 paragraph by:
The variation of the input impedance of a channel is characterised by the return loss. The return loss
parameter is applicable to Classes C, D, E, E , F, F and BCT-B only. The return loss for each pair of a
A A
channel shall meet the limits computed, to one decimal place, using the formulae of Table 4. The limits
shown in Table 5 are derived from the formulae at key frequencies only.

- 9 - EN 50173-1:2007/A1:2009
Replace Table 4 and Table 5 by:
Table 4 – Formulae for return loss limits for a channel
Class Frequency Minimum return loss
MHz dB
C 1 ≤ f ≤16 15,0
1 ≤ f < 20 17,0
D
30−×10 lg f
20 ≤ f ≤ 100
19,0
1 ≤ f < 10
24−×5 lg f
10 ≤ f < 40
E
32−×10 lg f
40 ≤ f ≤ 250
19,0
1 ≤ f < 10
24−×5 lg f
10 ≤ f < 40
E
A
32−×10 lg f
40 ≤ f < 398,1
398,1 ≤ f ≤ 500 6,0
1 ≤ f < 10 19,0
24−×5 lg f
10 ≤ f < 40
F
32−×10 lg f
40 ≤ f < 251,2
251,2 ≤ f ≤ 600 8,0
19,0
1 ≤ f < 10
24−×5 lg f
10 ≤ f < 40
32−×10 lg f
F 40 ≤ f < 251,2
A
8,0
251,2 ≤ f < 631
36−×10 lg f
631 ≤ f ≤ 1 000
19,0
4 ≤ f < 10
10 ≤ f < 100 24−×5 lg f
100 ≤ f < 251,2 29−×7,5 lg f
BCT-B
251,2 ≤ f < 600 17,2−×2,6 lg f
600 ≤ f ≤ 1 000 35−×9 lg f
Table 5 – Return loss limits for a channel at key frequencies
Minimum return loss
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class C N/A 15,0 15,0 N/A N/A N/A N/A N/A
Class D N/A 17,0 17,0 10,0 N/A N/A N/A N/A
Class E N/A 19,0 18,0 12,0 8,0 N/A N/A N/A
Class E N/A 19,0 18,0 12,0 8,0 6,0 N/A N/A
A
Class F N/A 19,0 18,0 12,0 8,0 8,0 8,0 N/A
Class F N/A 19,0 18,0 12,0 8,0 8,0 8,0 6,0
A
Class BCT-B N/A 19,0 18,0 14,0 11,0 10,2 10,0 8,0
5.2.2.3 Insertion loss
Replace Table 6 and Table 7 by:
Table 6 – Formulae for insertion loss limits for a channel
Class Frequency Maximum insertion loss
MHz dB
A f = 0,1 16,0
f = 0,1
5,5
B
f = 1 5,8
C 1,05××3,23 f + 4× 0,2
1 ≤ f ≤ 16 ()
D 1,05××1,910 8ff+ 0,022 2×+ 0,2f + 4× 0,04×f , 4,0 min.
1 ≤ f ≤ 100 ()
E 1 ≤ f ≤ 250 1,05××1,82ff+ 0,016 9×+ 0,25f+ 4× 0,02×f , 4,0 min.
()
E 1 ≤ f ≤ 500 1,05××1,82ff+ 0,009 1×+ 0,25f+ 4× 0,02×f , 4,0 min.
A ()
1,05××1,8ff+ 0,01× + 0,2f+ 4× 0,02×f , 4,0 min.
F 1 ≤ f ≤ 600 ()
1,05××1,8ff+ 0,005× + 0,25f+ 4× 0,02×f , 4,0 min.
F 1 ≤ f ≤ 1 000 ()
A
CCCB f = 0,1 4,0
BCT-B-L 1 ≤ f ≤ 1 000 0,132××1,645ff+0,01×+0,25f+2×0,02 2,×f ,0min.
()
BCT-B-M 1 ≤ f ≤ 1 000 0,264××1,645ff+0,01 0,×+25f+2×0,02×f ,2,0min.
()
0,514××1,645 0ff+,01×+0,25f+2 ×0,02×f ,2,0min.
BCT-B-H 1 ≤ f ≤ 1 000 ()
NOTE The slope (difference in attenuation) between 47 MHz and 862 MHz is critical for BCT- B applications.
See F.1 for additional information regarding supported applications.

- 11 - EN 50173-1:2007/A1:2009

Table 7 – Insertion loss limits for a channel at key frequencies
Maximum insertion loss
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class A 16,0 N/A N/A N/A N/A N/A N/A N/A
Class B 5,5 5,8 N/A N/A N/A N/A N/A N/A
Class C N/A 4,2 14,4 N/A N/A N/A N/A N/A
Class D N/A 4,0 9,1 24,0 N/A N/A N/A N/A
Class E N/A 4,0 8,3 21,7 35,9 N/A N/A N/A
Class E N/A 4,0 8,2 20,9 33,9 49,3 N/A N/A
A
Class F N/A 4,0 8,1 20,8 33,8 49,3 54,6 N/A
Class F N/A 4,0 8,0 20,3 32,5 46,7 51,4 67,6
A
Class CCCB 4,0 N/A N/A N/A N/A N/A N/A N/A
Class BCT-B-L N/A 2,0 2,0 2,7 4,4 6,4 7,1 9,5
Class BCT-B-M N/A 2,0 2,0 5,0 8,2 11,9 13,2 17,6
Class BCT-B-H N/A 2,0 3,7 9,4 15,3 22,4 24,8 33,2
5.2.2.4.1 Pair-to-pair NEXT
st
Replace the 1 paragraph by:
The pair-to-pair NEXT parameter is applicable to Classes A to F . The pair-to-pair NEXT α for each pair
A NEXT
combination of a channel shall meet the limits computed, to one decimal place, using the formulae of
Table 8. The limits shown in Table 9 are derived from the formulae at key frequencies only.

Replace Table 8 and Table 9 by:
Table 8 – Formulae for NEXT limits for a channel
Class Frequency Minimum NEXT
MHz dB
A f = 0,1 27,0
B 0,1 ≤ f ≤ 1 25−×15 lg f
C 39,1−×16,4 lg f
1 ≤ f ≤ 16
65,3−×15 lg f 83− 20× lg f


−−20 20
D −×20 lg 10 + 2× 10 , 65,0 max.
1 ≤ f ≤ 100


74,3−×15lgff94−20l×g


−−20 20
E 1 ≤ f ≤ 250 −×20 lg 10 + 2× 10 , 65,0 max


74,3−×15 lg f 94− 20× lg f

a, c
−−20 20
E −×20 lg 10 + 2× 10 , 65,0 max
A 1 ≤ f ≤ 500


102,4−×15 lg f 102,4−×15 lg f


−−20 20
F −×20 lg 10 + 2× 10 , 65,0 max.
1 ≤ f ≤ 600


105,4−×15 lgff116,3− 20× lg

b, c

−−20 20
F 1 ≤ f ≤ 1 000 −×20 lg 10 + 2× 10 , 65,0 max.
A


a
Where the channel insertion loss at 450 MHz is less than 12 dB, the requirement is reduced by
1,4((f – 450)/50) for f ≥ 450 MHz.
b
Where the channel insertion loss at 900 MHz is less than 17 dB, the requirement is reduced by

2,8((f – 900)/100) for f ≥ 900 MHz.
c
The terms in the formulae are not intended to imply component performance.
Table 9 – NEXT limits for a channel at key frequencies
Minimum NEXT
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class A 27,0 N/A N/A N/A N/A N/A N/A N/A
Class B 40,0 25,0 N/A N/A N/A N/A N/A N/A
Class C N/A 39,1 19,4 N/A N/A N/A N/A N/A
Class D N/A 63,3 43,6 30,1 N/A N/A N/A N/A
Class E N/A 65,0 53,2 39,9 33,1 N/A N/A N/A
Class E N/A 65,0 53,2 39,9 33,1 27,9 N/A N/A
A
Class F N/A 65,0 65,0 62,9 56,9 52,4 51,2 N/A
Class F N/A 65,0 65,0 65,0 59,1 53,6 52,1 47,9
A
- 13 - EN 50173-1:2007/A1:2009

5.2.2.4.2 Power sum NEXT (PSNEXT)
st
Replace the 1 paragraph by:
The PSNEXT parameter is applicable to Classes D, E, E , F and F only. The PSNEXT α for each pair
A A PSNEXT
of a channel shall meet the limits computed, to one decimal place, using the formulae of Table 10. The limits
shown in Table 11 are derived from the formulae at key frequencies only.
Replace Table 10 and Table 11 by:
Table 10 – Formulae for PSNEXT limits for a channel
Class Frequency Minimum PSNEXT
MHz dB
62,3−×15 lgff80− 20×l g

−−20 20
D 1 ≤ f ≤ 100 −×20 lg 10 + 2× 10 , 62,0 max.


72,3−×15 lgff90− 20× lg


−−20 20
E −×20 lg 10 + 2× 10 , 62,0 max
1 ≤ f ≤ 250


72,3−×15 lgff90− 20× lg

a, c

−−20 20
E −×20 lg 10 + 2× 10 , 62,0 max
A 1 ≤ f ≤ 500


99,4−×15 lgf,99 4−×15 lgf

−−20 20
F −×20 lg 10 + 2× 10 , 62,0 max.
1 ≤ f ≤ 600


102,4−×15 lgff113,3− 20× lg

b, c

−−20 20
F −×20 lg 10 + 2× 10 , 62,0 max.
A 1 ≤ f ≤ 1 000


a
Where the channel insertion loss at 450 MHz is less than 12 dB, the requirement is reduced by
1,4((f – 450)/50) for f ≥ 450 MHz.
b
Where the channel insertion loss at 900 MHz is less than 17 dB, the requirement is reduced by

2,8((f – 900)/100) for f ≥ 900 MHz.
c
The terms in the formulae are not intended to imply component performance.
Table 11 – PSNEXT limits for a channel at key frequencies
Minimum PSNEXT
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class D N/A 60,3 40,6 27,1 N/A N/A N/A N/A
Class E N/A 62,0 50,6 37,1 30,2 N/A N/A N/A
Class E N/A 62,0 50,6 37,1 30,2 24,8 N/A N/A
A
Class F N/A 62,0 62,0 59,9 53,9 49,4 48,2 N/A
Class F N/A 62,0 62,0 62,0 56,1 50,6 49,1 44,9
A
5.2.2.5 Attenuation to crosstalk loss ratio (ACR)
Replace the title by:
5.2.2.5 Attenuation to crosstalk ratio at the near-end (ACR-N)
Replace “ACR” with “ACR-N” throughout the document.
Add the following note:
NOTE ACR-N replaces, and is equivalent to, ACR of previous editions of this standard.
5.2.2.5.1 Pair-to-pair ACR-N
Add after Equation (2):
where
i is the number of the disturbing pair,
k is the number of the disturbed pair,
… …
nd
Replace the 2 paragraph by:
The ACR-N parameter is applicable to Classes D, E, E , F and F only. The ACR-N for each pair
A A
combination of a channel shall meet the limits computed according to Equation (2), to one decimal place,
using the relevant formulae of Table 6 and Table 8. The limits shown in Table 12 are derived with
Equation (2) at key frequencies only.
Replace Table 12 by:
Table 12 – ACR-N limits for a channel at key frequencies
Minimum ACR-N
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class D N/A 59,3 34,5 6,1 N/A N/A N/A N/A
Class E N/A 61,0 44,9 18,2 -2,8 N/A N/A N/A
Class E N/A 61,0 45,0 19,0 -0,8 -21,4 N/A N/A
A
Class F N/A 61,0 56,9 42,1 23,1 3,1 -3,4 N/A
Class F N/A 61,0 57,0 44,7 23,1 6,9 0,7 -19,6
A
5.2.2.5.2 Power sum ACR (PSACR)
Replace the title by:
5.2.2.5.2 Power sum ACR-N (PSACR-N)

- 15 - EN 50173-1:2007/A1:2009

Add after Equation (3):
where
k is the number of disturbed pair
… .
nd
Replace the 2 paragraph by:
The PSACR-N parameter is applicable to Classes D, E, E , F and F . The PSACR-N for each pair of a
A A
channel shall meet the limits computed according to Equation (3), to one decimal place, using the relevant
formulae of Table 6 and Table 10. The limits shown in Table 13 are derived with Equation (3) at key
frequencies only.
Replace Table 13 by:
Table 13 – PSACR-N limits for a channel at key frequencies
Minimum PSACR-N
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class D N/A 56,3 31,5 3,1 N/A N/A N/A N/A
Class E N/A 58,0 42,3 15,4 -5,8 N/A N/A N/A
Class E N/A 58,0 42,4 16,2 -3,7 -24,5 N/A N/A
A
Class F N/A 58,0 53,9 39,1 20.1 0,1 -6,4 N/A
Class F N/A 58,0 54,0 41,7 23,7 3,9 -2,3 -22,6
A
5.2.2.6 Equal level far end crosstalk loss (ELFEXT)
Replace the whole subclause as follows and replace “ELFEXT” by “ACR-F” throughout the document.
5.2.2.6 Attenuation to crosstalk ratio at the far-end (ACR-F)
NOTE ACR-F replaces, and differs from, ELFEXT of previous editions of this standard.
5.2.2.6.1 Pair-to-pair ACR-F
The ACR-F parameter is applicable to Classes D, E, E , F and F only.
A A
ACR-F of pairs i and k, α (i,k), is computed as follows:
i,k ACR-F
αα(,ik) = (ik, ) –α(k) [dB] (4)
ACR-F FEXT
where
i is the number of the disturbing pair;
k is the number of the disturbed pair;
α (i,k) is the far-end crosstalk loss coupled from disturbing pair i into disturbed pair k. When required, it
FEXT
shall be measured according to EN 50346.
α(k) is the insertion loss of pair k. When required, it shall be measured according to EN 50346.

The ACR-F for each pair combination of a channel shall meet the limits computed, to one decimal place,
using the equations of Table 14. The limits shown in Table 15 are derived from the equations at key
frequencies.
Table 14 – Formulae for ACR-F limits for a channel
Class Frequency Minimum ACR-F
MHz dB
63,8−×20 lgf,75 1−×20 lgf

−−20 20
−×20 lg 10 + 4× 10
D 1 ≤ f ≤ 100


67,8−×20 lgf,83 1−×20 lgf

−−20 20
−×20 lg 10 + 4× 10
E 1 ≤ f ≤ 250


67,8−×20 lgf,83 1−×20 lgf

−−20 20
−×20 lg 10 + 4× 10
E 1 ≤ f ≤ 500
A


94−×20 lg f 90− 15× lg f

−−20 20
−×20 lg 10 + 4× 10 , 65,0 max.
F 1 ≤ f ≤ 600


95,3−×20 lg f 103,9− 20× lg f

−−20 20
−×20 lg 10 + 4× 10 , 65,0 max.
F 1 ≤ f ≤ 1 000
A


NOTE ACR-F values at frequencies that correspond to measured FEXT values of greater than 70,0 dB
are for information only.
Table 15 – ACR-F limits for a channel at key frequencies
Minimum ACR-F
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class D N/A 57,4 33,3 17,4 N/A N/A N/A N/A
Class E N/A 63,3 39,2 23,3 15,3 N/A N/A N/A
Class E N/A 63,3 39,2 23,3 15,3 9,3 N/A N/A
A
Class F N/A 65,0 57,5 44,4 37,8 32,6 31,3 N/A
Class F N/A 65,0 63,3 47,4 39,4 33,4 31,8 27,4
A
5.2.2.6.2 Power sum ACR-F (PSACR-F)
The PSACR-F parameter is applicable to Classes D, E, E , F and F only.
A A
PSACR-F of pair k, α (k), is computed as follows:
PSACR-F
- 17 - EN 50173-1:2007/A1:2009

−α (,ik)
 FEXT 
n
 
αα(kk) =−10×lg 10 − ( ) [dB] (5)

PSACR-F
 
ii=≠1, k
 
where
i is the number of the disturbing pair;
k is the number of the disturbed pair;
n is the total number of pairs;
α (i,k) is the far-end crosstalk loss coupled from disturbing pair i into disturbed pair k. When required, it
FEXT
shall be measured according to EN 50346.
α(k) is the insertion loss of pair k. When required, it shall be measured according to EN 50346.
The PSACR-F for each pair of a channel shall meet the limits computed, to one decimal place, using the
formulae of Table 16. The limits shown in Table 17 are derived from the formulae at key frequencies.
Table 16 – Formulae for PSACR-F limits for a channel
Class Frequency Minimum PSACR-F
MHz dB
60,8−×20 lgf,72 1− 20× lgf

−−20 20
−×20 lg 10 + 4× 10
D 1 ≤ f ≤ 100


64,8−×20 lgf,80 1−×20 lgf

−−20 20
−×20 lg 10 + 4× 10
E 1 ≤ f ≤ 250


64,8−×20 lgf,80 1−×20 lgf

−−20 20
−×20 lg 10 + 4× 10
E 1 ≤ f ≤ 500
A


91−×20 lg f 87− 15× lg f

−−20 20
−×20 lg 10 + 4× 10 , 62,0 max.
F 1 ≤ f ≤ 600


92,3−×20 lg f 100,9− 20× lg f

−−20 20
−×20 lg 10 + 4× 10 62,0 max.
F 1 ≤ f ≤ 1 000
A


NOTE PSACR-F values at frequencies that correspond to measured FEXT values of greater than
70,0 dB are for information only.

Table 17 – PSACR-F limits for a channel at key frequencies
Minimum PSACR-F
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class D N/A 54,4 30,3 14,4 N/A N/A N/A N/A
Class E N/A 60,3 36,2 20,3 12,3 N/A N/A N/A
Class E N/A 60,3 36,2 20,3 12,3 6,3 N/A N/A
A
Class F N/A 62,0 54,5 41,4 34,8 29,6 28,3 N/A
Class F N/A 62,0 60,3 44,4 36,4 30,4 28,8 24,4
A
5.2.2.7 Direct current (d.c.) loop resistance
Replace Table 18 by:
Table 18 – d.c. loop resistance limits for a channel
Class
Maximum d.c. loop resistance

A 560,0
B 170,0
C 40,0
D 25,0
E 25,0
E 25,0
A
F 25,0
F 25,0
A
a
CCCB 8,0
a
Applications that only deliver power over the channel may allow up to 10 Ω.

5.2.2.8 Direct current (d.c.) resistance unbalance
Replace Table 19 by:
Table 19 – d.c. loop resistance unbalance limits for a channel
Class
Maximum d.c. resistance unbalance
A 3,0 %, 200 mΩ min.
B
3,0 %, 200 mΩ min.
C 3,0 %, 200 mΩ min.
D
3,0 %, 200 mΩ min.
E 3,0 %, 200 mΩ min.
E
A 3,0 %, 200 mΩ min.
F 3,0 %, 200 mΩ min.
F
A 3,0 %, 200 mΩ min.
a
CCCB
3,0 %, 200 mΩ min.
BCT-B
3,0 %, 200 mΩ min.
a
Where channels are required to provide power feeding this value shall be reduced to 1,5 %, subject
to a minimum value which is ffs.
5.2.2.9 Direct current (d.c.) power feeding
st
Replace the 1 paragraph by:
Channels of Classes D, E, E , F and F shall be designed to support a current of DC 0,175 A per conductor
A A
for all temperatures at which the cabling is intended to be used.

- 19 - EN 50173-1:2007/A1:2009

5.2.2.10 Operating voltage
Replace the whole subclause as follows:
5.2.2.10 Dielectric withstand
The channels of Classes D, E, E , F, F and CCCB shall have a minimum dielectric withstand of DC 1 000 V
A A
conductor-to-conductor and DC 1 000 V conductor-to-screen or conductor to earth, if a screen is not present.
This requirement shall be met by design.
5.2.2.11 Propagation Delay
st
Replace the 1 sentence by:
The propagation delay parameter is applicable to Classes A to F , CCCB and BCT-B.
A
Replace Table 20 and Table 21 by:
Table 20 – Formulae for propagation delay limits for a channel
Class Frequency Maximum propagation delay
MHz µs
A f = 0,1 20,000
B 0,1 ≤ f ≤ 1 5,000
C 1 ≤ f ≤ 16 0,534++0,036 f 4× 0,002 5
D 1 ≤ f ≤ 100 0,534++0,036 f 4× 0,002 5
0,534++0,036 f 4× 0,002 5
E 1 ≤ f ≤ 250
E 0,534++0,036 f 4× 0,002 5
A 1 ≤ f ≤ 500
F 1 ≤ f ≤ 600 0,534++0,036 f 4× 0,002 5
F 1 ≤ f ≤ 1 000 0,534++0,036 f 4× 0,002 5
A
CCCB f = 0,1 1,000
0,534++0,036 f 4× 0,002 5
BCT-B 1 ≤ f ≤ 1 000
Table 21 – Propagation delay limits for a channel at key frequencies
Maximum propagation delay
µs
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
Class A 20,000 N/A N/A N/A N/A N/A N/A N/A
Class B 5,000 5,000 N/A N/A N/A N/A N/A N/A
Class C N/A 0,580 0,553 N/A N/A N/A N/A N/A
Class D N/A 0,580 0,553 0,548 N/A N/A N/A N/A
Class E N/A 0,580 0,553 0,548 0,546 N/A N/A N/A
Class E N/A 0,580 0,553 0,548 0,546 0,546 N/A N/A
A
Class F N/A 0,580 0,553 0,548 0,546 0,546 0,545 N/A
Class F N/A 0,580 0,553 0,548 0,546 0,546 0,545 0,545
A
Class CCCB 1,000 N/A N/A N/A N/A N/A N/A N/A
Class BCT-B N/A 0,580 0,553 0,548 0,546 0,546 0,545 0,545
5.2.2.12 Delay skew
st
the 1 sentence by:
Replace
The delay skew parameter is applicable to Classes D, E, E , F and F only.
A A
Replace Table 22 by:
Table 22 – Delay skew limits for a channel
Class Maximum delay skew
µs
a, c
D 0,050
a, c
E 0,050
a, c
E 0,050
A
b, c
F 0,030
b, c
F 0,030
A
a
Calculation is based upon 0,045 + 4 × 0,001 25.
b
Calculation is based upon 0,025 + 4 × 0,001 25.
c
Delay skew of any given installed cabling channel shall not vary
by more than 0,010 µs within this requirement, due to effects
such as the daily temperature variation.
5.2.2.13 Transverse conversion loss (TCL)
st
Replace the 1 paragraph by:
The TCL parameter is applicable to Classes A to F and BCT-B.
A
- 21 - EN 50173-1:2007/A1:2009

Replace Table 23 and Table 24 by:
Table 23 – Formulae for TCL limits for an unscreened cabling channel
Class Frequency MICE classification (electromagnetic)
MHz
E E E
1 2 3
Minimum TCL
dB
A 0,1 30 30 30
f = 0,1
45 45 45
B
f = 1
20 20 20
C
1 ≤ f ≤ 16 30−×5 lg f 30−×5 lg f 30−×5 lg f
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
D
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 100
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
E
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 250
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
E
A
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 500
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
F
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 600
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
F
A
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 1 000
53−×15 lg f , 40 max. 63−×15 lg f , 40 max. 73−×15 lg f , 40 max.
1 ≤ f < 30
BCT-B
60,3−×20 lg f 70,3−×20 lg f , 40 max. 80,3−×20 lg f , 40 max.
30 ≤ f ≤ 1 000
NOTE Values above 100 MHz are for information only.

Table 24 – TCL limits for an unscreened cabling channel at key frequencies
Minimum TCL
dB
Frequency 0,1 1,0 16,0 100,0 250,0 500,0 600,0 1 000,0
MHz
E 30,0 N/A N/A N/A N/A N/A N/A N/A
Class A E 30,0 N/A N/A N/A N/A N/A N/A N/A
E 30,0 N/A N/A N/A N/A N/A N/A N/A
E 45,0 20,0 N/A N/A N/A N/A N/A N/A
Class B E 45,0 20,0 N/A N/A N/A N/A N/A N/A
E 45,0 20,0 N/A N/A N/A N/A N/A N/A
E N/A 30,0 24,0 N/A N/A N/A N/A N/A
Class C E N/A 30,0 24,0 N/A N/A N/A N/A N/A
E N/A 30,0 24,0 N/A N/A N/A N/A N/A
E N/A 40,0 34,9 20,3 N/A N/A N/A N/A
Class D E N/A 40,0 40,0 30,3 N/A N/A N/A N/A
E3 N/A 40,0 40,0 40,0 N/A N/A N/A N/A
E N/A 40,0 34,9 20,3 12,3 N/A N/A N/A
Class E E N/A 40,0 40,0 30,3 22,3 N/A N/A N/A
E N/A 40,0 40,0 40,0 32,3 N/A N/A N/A
E N/A 40,0 34,9 20,3 12,3 6,4 N/A N/A
Class E E N/A 40,0 40,0 30,3 22,3 16,4 N/A N/A
A 2
E N/A 40,0 40,0 40,0 32,3 26,4 N/A N/A
E N/A 40,0 34,9 20,3 12,3 6,4 4,7 N/A
Class F E N/A 40,0 40,0 30,3 22,3 16,4 14,7 N/A
E N/A 40,0 40,0 40,0 32,3 26,4 24,7 N/A
E N/A 40,0 34,9 20,3 12,3 6,4 4,7 0,3
Class F E N/A 40,0 40,0 30,3 22,3 16,4 14,7 10,3
A 2
E N/A 40,0 40,0 40,0 32,3 26,4 24,7 20,3
E N/A 40,0 34,9 20,3 12,3 6,4 4,7 0,3
Class BCT-B E N/A 40,0 40,0 30,3 22,3 16,4 14,7 10,3
E N/A 40,0 40,0 40,0 32,3 26,4 24,7 20,3
NOTE Values above 100 MHz are for information only.
5.2.2.14 Equal level transverse conversion transfer loss (ELTCTL)
st
Replace the 1 paragraph by:
The ELTCTL parameter is applicable to Classes D, E, E , F, F and BCT-B only.
A A
- 23 - EN 50173-1:2007/A1:2009

Replace Table 25 and Table 26 by:
Table 25 – Formulae for ELTCTL limits for an unscreened cabling channel
Class Frequency MICE classification (electromagnetic)
MHz
E E E
1 2 3
Minimum ELTCTL
dB
D, E and F 1 ≤ f ≤ 30 30−×20 lg f 40−×20 lg f 50−×20 lg f , 40 max.
30−×20 lg f 40−×20 lg f 50−×20 lg f , 40 max.
E 1 ≤ f ≤ 30
A
30−×20 lg f 40−×20 lg f 50−×20 lg f , 40 max.
F 1 ≤ f ≤ 30
A
BCT-B
1 ≤ f ≤ 30 30−×20 lg f 40−×20 lg f 50−×20 lg f , 40 max.

Table 26 – ELTCTL limits for an unscreened cabling channel at key frequencies
Minimum ELTCTL
dB
Frequency 1,0 16,0 30,0
MHz
E 30,0 5,9 0,5
Class D E 40,0 15,9 10,5
E 40,0 25,9 20,5
E 30,0 5,9 0,5
Class E E 40,0 15,9 10,5
E 40,0 25,9 20,5
E 30,0 5,9 0,5
Class E E 40,0 15,9 10,5
A 2
E 40,0 25,9 20,5
E 30,0 5,9 0,5
Class F E 40,0 15,9 10,5
E 40,0 25,9 20,5
E 30,0 5,9 0,5
Class F E 40,0 15,9 10,5
A 2
E 40,0 25,9 20,5
E 30,0 5,9 0,5
Class BCT-B E 40,0 15,9 10,5
E 40,0 25,9 20,5
5.2.2.15 Coupling attenuation
st
Replace the 1 paragraph by:
The coupling attenuation parameter is applicable to Classes D, E, E , F, F and BCT-B only.
A A
Replace Table 27 and Table 28 by:
Table 27 – Formulae for coupling attenuation limits for a screened cabling channel
Class Frequency MICE classification (electromagnetic)
MHz
E E E
1 2 3
Minimum coupling attenuation
dB
D 30 ≤ f ≤ 100 40 50 60
E
30 ≤ f ≤ 250 80−×20 lg f , 40 max. 90−×20 lg f , 50 max. 100−×20 lg f , 60 max.
E 30 ≤ f ≤ 500 80−×20 lg f , 40 max. 90−×20 lg f , 50 max. 100−×20 lg f , 60 max.
A
F 30 ≤ f ≤ 600 80−×20 lg f , 40 max. 90−×20 lg f , 50 max. 100−×20 lg f , 60 max.
80−×20 lg f , 40 max. 90−×20 lg f , 50 max. 100−×20 lg f , 60 max.
F 30 ≤ f ≤ 1 000
A
BCT-B
30 ≤ f ≤ 1 000 80−×20 lg f , 40 max. 90−×20 lg f , 50 max. 100−×20 lg f , 60 max.

Table 28 – Coupling attenuation limits for a screened cabling channel at key frequencies
Minimum coupling attenuation
dB
Frequency 30,0 100,0 250,0 500,0 600,0 1 000,0
MHz
E 40,0 40,0 N/A N/A N/A N/A
Class D E2 50,0 50,0 N/A N/A N/A N/A
E 60,0 60,0 N/A N/A N/A N/A
E 40,0 40,0 32,0 N/A N/A N/A
Class E E 50,0 50,0 42,0 N/A N/A N/A
E 60,0 60,0 52,0 N/A N/A N/A
E 40,0 40,0 32,0 26,0 N/A N/A
Class E E 50,0 50,0 42,0 36,0 N/A N/A
A 2
E 60,0 60,0 52,0 46,0 N/A N/A
E 40,0 40,0 32,0 26,0 24,4 N/A
Class F E 50,0 50,0 42,0 36,0 34,4 N/A
E 60,0 60,0 52,0 46,0 44,4 N/A
E 40,0 40,0 32,0 26,0 24,4 20,0
Class F E 50,0 50,0 42,0 36,0 34,4 30,0
A 2
E 60,0 60,0 52,0 46,0 44,4 40,0
E 40,0 40,0 32,0 26,0 24,4 20,0
Class BCT-B E 50,0 50,0 42,0 36,0 34,4 30,0
E 60,0 60,0 52,0 46,0 44,4 40,0
- 25 - EN 50173-1:2007/A1:2009

Add new Subclauses 5.2.2.16 and 5.2.2.17, renumber existing 5.2.2.16 into 5.2.2.18 and renumber the
tables from existing Table 29 as well as the equations from Equation (6) onwards accordingly.
5.2.2.16 Alien NEXT (ANEXT)
5.2.2.16.1 Power sum alien NEXT (PSANEXT)
The PSANEXT parameter is applicable to Classes E , F and F only.
A A
NOTE For information on PSANEXT performance of Class E systems, see CLC/TR 50173-99-1.
The PSANEXT of pair k, α (k), is computed as follows:
PSANEXT
−α (,li,k)
 ANEXT 
Nn
 10 
α (k)=−10× lg 10 [dB] (6)
∑∑
PSANEXT
 
li==11
 
where
k is the number of the disturbed pair in the disturbed channel;
i is the number of the disturbing pair in the disturbing channel l;
l is the number of the disturbing channel;
N is the number of disturbing channels;
n is the number of disturbing pairs in disturbing channel l;
α (l,i,k) is the ANEXT between pair i of disturbing channel l and pair k of the disturbed channel.
ANEXT
The PSANEXT of each pair of a channel shall meet the limits computed, to one decimal place, using the
formulae of Table 29. The limits shown in Table 30 are derived from the formulae at key frequencies only.
When required, the ANEXT shall be measured according to EN 50346.
The PSANEXT requirements shall be met at both ends of the cabling.
PSANEXT of Class E and F channels is met by design if the coupling attenuation is at least 10 dB better
A
than the minimum requirements specified in Table 27 (electromagnetic environmental classification E ).
PSANEXT of Class F channels is met b
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...