CEN/TR 17345:2019
(Main)Waste - State-of-the-art document - Halogens and sulfur by oxidative pyrohydrolytic combustion followed by ion chromatography detection
Waste - State-of-the-art document - Halogens and sulfur by oxidative pyrohydrolytic combustion followed by ion chromatography detection
In the framework of EU Directive 99/31/EC [1] and EU Directive 2000/76/EC [2] halogens and sulfur need to be determined on waste samples. The implementation of the combustion-IC technique would allow in one single run the combustion of the sample followed by the determination of the halogens and sulfur with ion chromatography. Moreover, this instrument may be provided with a sample carrousel for both solids and liquids, allowing an automation of these type of analyses.
Recent developments of the C-IC technology have made this technique interesting for the determination of halogens and sulfur in waste samples. Therefore, a document on the current progress of the C-IC technology was prepared, including the evaluation of the performance of different commercially available systems and the presentation of analytical results obtained on certified reference materials and waste samples.
Abfall - Dokument zum Stand der Technik - Bestimmung von Halogenen und Schwefel mittels oxidativer pyro-hydrolytischer Verbrennung mit Ionenchromatographie Detektion
Déchets - État de l'art - Halogènes et soufre par combustion pyrohydrolytique oxydative suivie d'une détection par chromatographie ionique
Dans le cadre de la Directive UE 99/31/CE [1] et de la Directive UE 2000/76/CE [2], les halogènes et le soufre doivent être dosés dans des échantillons de déchets. La mise en oeuvre de la technique associant combustion et chromatographie ionique (IC) permet de réaliser en un seul cycle la combustion de l’échantillon puis le dosage des halogènes et du soufre par chromatographie ionique. De plus, cet instrument peut être équipé d’un carrousel pour échantillons solides et liquides permettant d’automatiser ce type d’analyses.
Les récents développements de la technique C-IC l’ont rendue intéressante pour le dosage des halogènes et du soufre dans des échantillons de déchets. Un document sur les progrès actuels de la technique C-IC a donc été élaboré ; il contient l’évaluation des performances de différents systèmes disponibles dans le commerce et la présentation des résultats d’analyse obtenus sur des matériaux de référence certifiés et des échantillons de déchets.
Odpadki - Dokument o stanju tehnike - Določevanje halogenov in žvepla z ionsko kromatografijo po pirohidrolitskem sežigu
To tehnično poročilo zagotavlja dodaten opis tehnike pirohidrolitskega sežiga, ki mu sledi ionska kromatografija za določevanje halogenov in žvepla v vzorcih odpadkov.
General Information
- Status
- Published
- Publication Date
- 12-Feb-2019
- Technical Committee
- CEN/TC 444 - Environmental characterization
- Drafting Committee
- CEN/TC 444/WG 3 - Inorganic analysis
- Current Stage
- 6060 - Definitive text made available (DAV) - Publishing
- Start Date
- 13-Feb-2019
- Due Date
- 12-Mar-2019
- Completion Date
- 13-Feb-2019
- Directive
- 99/31/EC - Landfill of waste
Overview
CEN/TR 17345:2019 is a CEN Technical Report that reviews the state of the art for determining halogens and sulfur in waste by oxidative pyrohydrolytic combustion followed by ion chromatography detection (commonly called combustion‑ion chromatography, C‑IC). Prepared by CEN/TC 444 and published February 2019, the report evaluates commercially‑available C‑IC systems, presents analytical results on certified reference materials (CRMs) and real waste samples, and describes system configuration, strengths and limitations in the context of EU waste‑related Directives (EU 99/31/EC and EU 2000/76/EC).
Key topics
- Technique principle: single‑run thermal pyrolysis/combustion (pyrohydrolysis) converts sulfur to SOx and halogens to hydrogen halides; volatile products are trapped in an aqueous absorber and quantified by ion chromatography (IC).
- System configuration: sample introduction (solids/liquids, automated boat/carousel), furnace/pyrolysis tube (quartz or ceramic), gas absorption unit (oxidation to sulfate; volume control), and IC separation/detection.
- Analytical scope: simultaneous measurement of fluorine, chlorine, bromine and sulfur in waste matrices (SRF, post‑shredder residue, WEEE plastics, rubber granulates, sewage sludge, etc.).
- Operational considerations:
- Hydropyrolysis (adding water vapor) often required to mobilize fluorine.
- Choice of quartz vs ceramic tubes (alkali metals can devitrify quartz).
- Control of pyrolysis to avoid soot and ensure complete combustion.
- H2O in absorber can interfere with fluoride detection - mitigated by gradient elution or matrix elimination/preconcentration in IC.
- Evaluation study: comparative tests on two supplier systems (Mitsubishi + Thermo Fisher and Metrohm), analyses of ~9 CRMs and 10 waste samples; results and practical performance discussed.
Applications
- Routine and research laboratories performing waste characterization for regulatory compliance with EU landfill and incineration directives.
- Quality control for refuse‑derived fuel (SRF), WEEE/plastics containing brominated flame retardants, rubber recyclates and post‑shredder residues.
- Laboratories seeking automated, higher‑throughput alternatives to closed‑bomb combustion methods (e.g., EN 14582) for halogen/sulfur analysis.
Who should use it
- Environmental analytical chemists, waste testing labs, national metrology institutes, incinerator operators, and regulatory bodies responsible for monitoring halogen and sulfur content in waste streams.
Related standards
- EN 14582 (closed bomb combustion methods) - comparison to C‑IC workflow.
- Standards referenced/compatible with C‑IC analysis: EN ISO 16994, ISO 11724, various ASTM, JIS and JEITA methods listed in the report.
Keywords: CEN/TR 17345:2019, combustion‑ion chromatography, C‑IC, pyrohydrolytic combustion, halogens and sulfur, waste analysis, ion chromatography detection, automated sample carousel, EU 99/31/EC, EU 2000/76/EC.
Frequently Asked Questions
CEN/TR 17345:2019 is a technical report published by the European Committee for Standardization (CEN). Its full title is "Waste - State-of-the-art document - Halogens and sulfur by oxidative pyrohydrolytic combustion followed by ion chromatography detection". This standard covers: In the framework of EU Directive 99/31/EC [1] and EU Directive 2000/76/EC [2] halogens and sulfur need to be determined on waste samples. The implementation of the combustion-IC technique would allow in one single run the combustion of the sample followed by the determination of the halogens and sulfur with ion chromatography. Moreover, this instrument may be provided with a sample carrousel for both solids and liquids, allowing an automation of these type of analyses. Recent developments of the C-IC technology have made this technique interesting for the determination of halogens and sulfur in waste samples. Therefore, a document on the current progress of the C-IC technology was prepared, including the evaluation of the performance of different commercially available systems and the presentation of analytical results obtained on certified reference materials and waste samples.
In the framework of EU Directive 99/31/EC [1] and EU Directive 2000/76/EC [2] halogens and sulfur need to be determined on waste samples. The implementation of the combustion-IC technique would allow in one single run the combustion of the sample followed by the determination of the halogens and sulfur with ion chromatography. Moreover, this instrument may be provided with a sample carrousel for both solids and liquids, allowing an automation of these type of analyses. Recent developments of the C-IC technology have made this technique interesting for the determination of halogens and sulfur in waste samples. Therefore, a document on the current progress of the C-IC technology was prepared, including the evaluation of the performance of different commercially available systems and the presentation of analytical results obtained on certified reference materials and waste samples.
CEN/TR 17345:2019 is classified under the following ICS (International Classification for Standards) categories: 13.030.40 - Installations and equipment for waste disposal and treatment. The ICS classification helps identify the subject area and facilitates finding related standards.
CEN/TR 17345:2019 is associated with the following European legislation: EU Directives/Regulations: 2000/76/EC, 99/31/EC. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.
You can purchase CEN/TR 17345:2019 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.
Standards Content (Sample)
SLOVENSKI STANDARD
01-julij-2019
Odpadki - Dokument o stanju tehnike - Določevanje halogenov in žvepla z ionsko
kromatografijo po pirohidrolitskem sežigu
Waste - State-of-the-art document - Halogens and sulfur by oxidative pyrohydrolytic
combustion followed by ion chromatography detection
Abfall - Dokument zum Stand der Technik - Bestimmung von Halogenen und Schwefel
mittels oxidativer pyro-hydrolytischer Verbrennung mit Ionenchromatographie Detektion
Caractérisation des déchets - État de l’art - Halogènes et soufre par combustion
pyrohydrolytique oxydative suivie d’une détection par chromatographie ionique
Ta slovenski standard je istoveten z: CEN/TR 17345:2019
ICS:
13.030.01 Odpadki na splošno Wastes in general
71.040.50 Fizikalnokemijske analitske Physicochemical methods of
metode analysis
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
CEN/TR 17345
TECHNICAL REPORT
RAPPORT TECHNIQUE
February 2019
TECHNISCHER BERICHT
ICS 13.030.40
English Version
Waste - State-of-the-art document - Halogens and sulfur by
oxidative pyrohydrolytic combustion followed by ion
chromatography detection
Caractérisation des déchets - État de l'art - Halogènes Abfall - Dokument zum Stand der Technik -
et soufre par combustion pyrohydrolytique oxydative Bestimmung von Halogenen und Schwefel mittels
suivie d'une détection par chromatographie ionique oxidativer pyro-hydrolytischer Verbrennung mit
Ionenchromatographie Detektion
This Technical Report was approved by CEN on 4 February 2019. It has been drawn up by the Technical Committee CEN/TC 444.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. CEN/TR 17345:2019 E
worldwide for CEN national Members.
Contents Page
European foreword . 3
Introduction . 4
1 Scope . 5
2 Normative references . 5
3 Terms and definitions . 5
4 Description of the combustion-IC technique . 5
4.1 Principle . 5
4.2 Configuration of the system . 6
4.2.1 Sample introduction . 6
4.2.2 Combustion system . 6
4.2.3 Gas absorption unit . 6
4.2.4 Ion chromatography system . 6
5 Available standard methods . 7
6 Evaluation study of the C-IC technique . 8
6.1 General . 8
6.2 Description of the samples . 8
6.3 Description of the applied C-IC systems . 9
6.4 Results for certified reference materials (CRM) . 10
6.5 Results of the waste samples . 15
7 Conclusions . 22
Bibliography . 24
European foreword
This document (CEN/TR 17345:2019) has been prepared by Technical Committee CEN/TC 444 “Test
methods for environmental characterization of solid matrices”, the secretariat of which is held by NEN.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
Introduction
The content of sulfur, chlorine, fluorine and/or bromine has to be determined in various waste streams
such as refuse derived fuel, rubber granulates, post-shredder residue and plastics from wastes of
electrical and electronic equipment (WEEE).
At the moment the determination of these elements is performed according to EN 14582. This
European standard specifies a combustion method for the determination of halogen and sulfur contents
in materials by combustion in a closed system containing oxygen (calorimetric bomb), and the
subsequent analysis of the combustion product using different analytical techniques. Because the
combustion has to be conducted for each sample separately and no automation is possible, this method
is time-consuming and labour- intensive compared to combustion ion chromatography (C-IC).
The use of the combustion ion chromatography (C-IC) instrument would allow in one single run the
combustion of the material and the simultaneous determination of fluorine, chlorine, bromine, and
sulfur by ion chromatography. Moreover, the combustion module enables the sample digestion of
different type of samples under pyrolysis and oxidation conditions. The instrument may also be
equipped with automatic sample introduction modules for solids and liquids, which will benefit the
automation and reduce significantly the labour-intensive process. The system is already offered
commercially by different manufacturers.
Many laboratories are using none coupled customized hydropyrolysis systems for different kind of
applications. Offline systems can be used as sample preparation systems for IC measurement, too.
Coupling is no requirement for using the C-IC technique.
This document provides a technical description of the C-IC technique, an overview of available
commercial instruments, the strengths and limitations of this technique, and analytical results for
halogens and sulfur obtained on waste samples.
1 Scope
In the framework of EU Directive 99/31/EC [1] and EU Directive 2000/76/EC [2] halogens and sulfur
need to be determined on waste samples. The implementation of the combustion-IC technique would
allow in one single run the combustion of the sample followed by the determination of the halogens and
sulfur with ion chromatography. Moreover, this instrument may be provided with a sample carrousel
for both solids and liquids, allowing an automation of these type of analyses.
Recent developments of the C-IC technology have made this technique interesting for the determination
of halogens and sulfur in waste samples. Therefore, a document on the current progress of the C-IC
technology was prepared, including the evaluation of the performance of different commercially
available systems and the presentation of analytical results obtained on certified reference materials
and waste samples.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
No terms and definitions are listed in this document.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp
4 Description of the combustion-IC technique
4.1 Principle
Samples are introduced in the combustion tube using an automatic boat control device. First samples
are thermally combusted under argon atmosphere, followed by a combustion at 800 °C to 1 100 °C with
oxygen under pyrohydrolytic conditions. Sulfur in the samples converts to SO and halogens to
x
hydrogen halide. These volatile compounds are trapped in an aqueous absorbing solution and
subsequently injected for ion chromatographic analysis. The basic equipment configuration is shown in
Figure 1.
Figure 1 — Basic configuration of a C-IC system
4.2 Configuration of the system
4.2.1 Sample introduction
All the systems have the ability to measure both solids and liquids. Automation is available for boat
trays as well as liquids in vials. Solid analysis is performed by weighing the sample into a sample boat.
Alternative to sampling liquids from vials, they can also be injected into sample boats placed on the boat
tray. In this case there should be no volatile compounds present due to possible losses by evaporation.
The intake will depend on the sample type, density and concentration. Upper limits are approximately
100 mg for solids and 100 µl for liquids. The sample shall be homogeneous with respect to sample
amount.
4.2.2 Combustion system
The furnace is provided with a quartz or ceramic pyrolysis tube. Alkali metals such as sodium, calcium
and magnesium have a tendency to react with SiO . Same effect can be seen when measuring silicium
bearing samples. The reactions cause devitrification of the quartz pyrolysis tube, which will result in
cracking of the tube. This can be overcome by working with a ceramic tube. Using a combustion
improver (e.g. WO , Fe O ), which binds with calcium and magnesium [4] will increase lifetime of glass
4 3 4
parts. Analogously the sample boat consists of quartz or ceramic material.
To achieve complete combustion of the sample and full recovery of analytes, choosing suitable
combustion temperatures, timings of boat movement, addition of water to the combustion gases
(hydropoyrolysis) and possibly addition of combustion improver is required. Special attention is
needed if organic matrices are analysed to prevent soot formation.
Combustion process
The sample boat is introduced under inert gas atmosphere. Samples are pyrolysed following the
temperature gradient at the inlet of the furnace. To prevent soot formation, this pyrolysis shall be
controlled by suitable means to ensure complete transformation of organic matter to CO . After
complete pyrolysis, the inner tube is flushed with oxygen to mobilize remaining analytes.
Hydropyrolysis
To ensure complete mobilization of fluorine during pyrolysis, addition of water to the inert gas is
required. The amount added depends on sample type and analyte concentrations.
4.2.3 Gas absorption unit
The combustion gases are fed into an absorption vessel and passed through an aqueous absorption
solution. Hydrogen halides absorbed as halide anions, SOx is converted to sulfite and sulfate. To unify
analytes for quantification, H O (or a suitable oxidant) is added to the absorption solution to oxidize all
2 2
species to SO . H O also acts as reducing agent if halogens, especially bromine, are combusted to
4 2 2
halogen gas (Br ).
The absorption unit is equipped with measures to quantify total absorption solution volume after
combustion, accounting for water addition by hydropyrolysis. Such measures can be automatic or
manual adjustment to a known volume, calculation of volume changes or addition of an internal
standard.
Sample transfer and loading to ion chromatography sample loop can be fully automatic or manual.
4.2.4 Ion chromatography system
The ion chromatography system uses chromatographic columns based on ion exchange materials to
achieve separation of anionic analytes. To achieve good signal to noise ratio, peak separation and peak
resolution, different setups may be used.
Elution from the column may be performed by isocratic or gradient elution. As H O is creating an
2 2
interference with fluoride detection, additional measures are necessary if very low contents of fluorine
are analysed. Suitable measures may be gradient elution to achieve better separation or physical
separation of H O by a matrix elimination/preconcentration column.
2 2
5 Available standard methods
A range of standard methods are available describing the determination of halogens and sulfur in a
variety of matrices. In Table 1 a non-limited list is given of relevant standard methods containing a
particular section on C-IC. For each standard method information on the analysed matrix, the element
determined and the measuring range, if available, is presented. Table 2 shows a non-limited list of
relevant standard methods allowing analysis by C-IC without a particular section on this technique.
Table 1 — Non-limited list of standard methods containing a particular section on C-IC
Elements and measuring range
Standard method Matrix mg/kg Ref.
Fluorine Chlorine Bromine Sulfur
EN 62321-3-2 Polymers and electronics - - 96 to 976 - 11
ASTM D 7359–14 Aromatics hydrocarbons 0,1 to 10 0,1 −10 - 0,1 −10 12
ASTM D 7994–17 Liquified petroleum gases 1 to 300 5 to 300 - 1 - 300 13
ASTM D 8150 Crude oil (naphta fraction) - 1 to 50 - - 14
ASTM UOP 991-13 Liquid organics 0,1 to 100 0,1 to 100 0.2 to 100 - 15
ASTM UOP 1001-14 Liquified petroleum gases 1 to 1 500 1 to 1 500 - - 16
JIS K 7392 Waste plastic - - 100 to 20 000 - 17
Halogen free soldering
JEITA ET-7304A < 1 000 < 1 000 < 1 000 - 18
material
KS M01080-2009 Electronic equipment X X X - 19
Table 2 — Non-limited list of standard methods allowing analysis by C-IC without a particular
section on C-IC
Elements and measuring range
Standard method Matrix mg/kg Ref.
Fluorine Chlorine Bromine Sulfur
60 to 90 to
EN ISO 16994 Solid biofuels - - 20
2 000 1 200
ISO 11724 Coal, cole and fly ash X - - - 21
Elements and measuring range
Standard method Matrix mg/kg Ref.
Fluorine Chlorine Bromine Sulfur
ISO 17947 Nitride X X X X 22
ASTM D 5987–07 Coal and coke 20 to 500 - - - 23
DIN 51723 Solid fuels X - - - 24
DIN 51724 Coal and coke - - - X 25
JIS R 1616 Silicon carbide X - - - 26
JIS R 9301–3-11 Alumina powder X - - - 27
JIS Z 7302–6/7 Refuse derived fuel - X - X 28
6 Evaluation study of the C-IC technique
6.1 General
A study was conducted by the Flemish Institute for Technological Research (VITO, Flanders, Belgium) in
commission of the Public Waste Agency of Flanders (OVAM, Belgium) to evaluate the C-IC technique for
the determination of halogens and sulfur in waste samples [3]. The main results of this study are
incorporated in this document.
The evaluation of the C-IC technique was performed by conducting comparative tests on C-IC systems
from 2 suppliers (Mitsubishi Chemical, Japan in combination with ion chromatography from Thermo
Fisher Scientific, USA and Metrohm, Belgium). These two different C-IC units were used to analyse
about 9 certified reference materials, as well as 10 waste samples. The analyses on the Mitsubishi
system were performed by Mitsubishi itself, while the analyses on the Metrohm C-IC system were
performed by VITO in the application laboratory of Metrohm in Antwerp, Belgium.
6.2 Description of the samples
For this study, the reference samples considered were oil, clay, coal, fly ash, polymer, phosphate rock.
Table 3 lists the certified values for these reference materials.
Table 3 — Overview certified values of the reference materials
Identification Matrix x x x x
ass ass ass ass
Fluorine Chlorine Bromine Sulfur
mg/kg mg/kg mg/kg mg/kg
AOD 1.11 Oil - 9 500 ±50 - 6 500 ±40
AOD 1.12 Oil 4 300 ±40 - 9 500 ±50 -
BCR 461 Clay 568 ±10 119 ±25 - -
BCR 460 Coal 225 59 - -
BCR 182 Coal - 3 700 ±70 36,5 -
Identification Matrix x x x x
ass ass ass ass
Fluorine Chlorine Bromine Sulfur
mg/kg mg/kg mg/kg mg/kg
BCR 038 Fly ash 538 ±13 323 ±22 - -
N1633b Fly ash - - 2,9 2 075 ±11
BCR 681 Polymer - 93 ±2,8 98 ±2,8 78 ±17
BCR 032 PO rock 40 400 ±600 - - 7 360 ±320
Where
x is the assigned value
ass
italic: indicative values
In consultation with OVAM, a number of waste samples were selected for analysis with C-IC as
presented in Table 4. All waste samples were dried at 105 °C and fine grinded down to < 0,5 mm using
an universal cutting mill.
Table 4 — Overview of analysed waste samples
Sample number Type of sample
CIC1 Fine shredder
CIC2 SRF fraction(industrial waste)
CIC3 SRF fraction (household waste)
CIC4 Sewage sludge
CIC5 Post shredder residue (electrical equipment)-SRF
CIC6 Post shredder residue (electrical equipment)
CIC7 Post shredder residue (electrical equipment)-fluff
shredder
CIC8 Rubber granulates
CIC9 Plastics from WEEE (containing bromine)
CIC10 Rubber fraction
6.3 Description of the applied C-IC systems
The C-IC unit 1 (C-IC 1) is a double furnace system which was equipped with a ceramic pyrolysis tube
and ceramic boats. Furnace 1 was set at 900 °C and furnace 2 at 1 000 °C for organic samples and at
1 100 °C for both furnaces for inorganic samples and mixtures. The samples were pyrolysed under
humidified inert atmosphere and combusted in oxidising atmosphere. The resultant vapors were
absorbed in an aqueous solution (H O added), gas lines were washed, the absorption volume adjusted
2 2
to a defined volume by liquid level sensor and afterwards injected directly into the IC system for
2-
analysis. H O was added into the absorbing solution to oxidize SO to form SO .
2 2 2 4
In some cases, especially for the determination of sulfur, a combustion improver (WO ) was added. The
IC measurements were conducted using a separation column at 35 °C and 2,7 mM Na CO and
2 3
0,3 mM NaHCO as eluent with a flow rate of 1 ml/min. The ion chromatograph was calibrated for
fluorine, chlorine and sulfate (for this study the element bromine was not calibrated, although it is
feasible). There was no need for usage of a pre-concentration column or variable injection volumes for
the IC.
The C-IC unit 2 (C-IC 2) consists of a combustion module including a flame sensor to control the speed
at which the boat sample holder is introduced into the furnace. Quartz boat sample holders and a quartz
pyrolysis tube were used for the measurements. The combustion takes place at 1 100 °C. Argon gas
(100 ml/min) is initially supplied to prevent excessive combustion. Afterwards O gas is supplied to
achieve complete post- combustion (no more soot present). In the incinerator the sample is incinerated
for 600 s. The resultant vapors are absorbed in an aqueous solution, and introduced directly into the IC
system for analysis. Some experiments were conducted using a pre-concentration column to remove
the excess of H O required for the oxidation of all the sulfur compounds to SO . The ion chromatograph
2 2 4
has a separation column at 30 °C. As eluent 3,2 mmol/l Na CO , 1,0 mmol/l NaHCO was used with a
2 3 3
flow rate of 0,7 ml/min. The ion chromatograph was calibrated for fluorine, chlorine, bromine and
sulfate, where fo
...
Der Standard CEN/TR 17345:2019 bietet eine umfassende Übersicht über die fortschrittliche Technik zur Bestimmung von Halogenen und Schwefel in Abfällen durch oxidative Pyrolyse-Hydrolyse-Verbrennung, gefolgt von der Ionenchromatographie. Der Rahmen dieses Dokuments ist eng gekoppelt an die EU-Richtlinien 99/31/EC und 2000/76/EC, welche die Notwendigkeit der Analyse dieser Stoffe in Abfallproben zur Gewährleistung der Umwelt- und Abfallmanagementstandards festlegen. Ein herausragendes Merkmal des Standards ist die Integration der Verbrennung-IC-Technologie, die eine effiziente Durchführung der Analyse in einem einzigen Arbeitsgang ermöglicht. Diese Methode vereinheitlicht den Prozess der Probenverbrennung und der anschließenden Bestimmung der Halogene und des Schwefels, was nicht nur die Genauigkeit erhöht, sondern auch den Zeitaufwand erheblich reduziert. Die Möglichkeit, das Gerät mit einem Probenkarussell für feste und flüssige Abfälle auszustatten, trägt zur Automatisierung dieser Analysen bei, was eine bedeutende Verbesserung in der Handhabung und Effizienz der Laborabläufe darstellt. Ein weiterer Vorteil des CEN/TR 17345:2019 Standards ist die Berücksichtigung der neuesten Entwicklungen der C-IC-Technologie. Das Dokument umfasst eine detaillierte Bewertung der Leistungsfähigkeit verschiedener kommerziell erhältlicher Systeme und präsentiert analytische Ergebnisse, die an zertifizierten Referenzmaterialien und Abfallproben gewonnen wurden. Dies stellt sicher, dass die Methode nicht nur theoretisch fundiert ist, sondern auch in der praktischen Anwendung zuverlässig funktioniert, was die Relevanz des Standards im Bereich der Abfallanalytik unterstreicht. Insgesamt zeigt der Standard CEN/TR 17345:2019 einen signifikanten Fortschritt in der Analyse von Halogenen und Schwefel in Abfällen auf und bietet eine wertvolle Ressource für Fachleute, die mit den Herausforderungen und Anforderungen im Abfallmanagement konfrontiert sind. Seine Stärken in der Automatisierung, Effizienz und Präzision machen ihn zu einem unverzichtbaren Werkzeug in der Abfallanalytik.
Le document de normalisation CEN/TR 17345:2019 traite de l'analyse des halogènes et du soufre dans les échantillons de déchets par combustion pyrohydrolytique oxydative suivie de la détection par chromatographie ionique. Cette norme s'inscrit dans le cadre des directives européennes 99/31/CE et 2000/76/CE, qui exigent la détermination des halogènes et du soufre dans les déchets. L'un des principaux atouts de cette norme est l'introduction de la technique de combustion-IC, permettant l'analyse des halogènes et du soufre en une seule opération. Cette approche optimise le processus analytique, offrant une efficacité accrue par rapport aux méthodes traditionnelles. De plus, la possibilité d'intégrer un carrousel d'échantillons pour solides et liquides favorise l'automatisation des analyses, ce qui est particulièrement pertinent pour les laboratoires traitant un grand volume d'échantillons. Les développements récents de la technologie C-IC sont également mis en avant, rendant cette méthode particulièrement pertinente pour l'évaluation des halogènes et du soufre dans les échantillons de déchets. Le document présente en outre une évaluation des performances de différents systèmes commercialement disponibles, ainsi que des résultats analytiques obtenus sur des matériaux de référence certifiés et des échantillons de déchets. Cela renforce la crédibilité de la technique et son adaptabilité aux exigences diverses des laboratoires. En somme, la norme CEN/TR 17345:2019 constitue un référentiel essentiel pour les laboratoires souhaitant mettre en œuvre une méthode d'analyse efficace et automatisée pour la détermination des halogènes et du soufre dans les déchets, répondant ainsi aux exigences réglementaires de l'Union européenne.
CEN/TR 17345:2019は、廃棄物に含まれるハロゲンおよび硫黄の分析に関する最先端の技術文書であり、EU指令99/31/ECおよび2000/76/ECの枠組みに基づいています。この標準の主要な範囲は、廃棄物サンプルからハロゲンと硫黄を迅速かつ効率的に測定することができる、酸化ピロハイドロリシス燃焼とイオンクロマトグラフィー(IC)を組み合わせた技術の導入にあります。 この標準の強みは、複数のサンプルを一度の実行で処理できる点にあります。 combustion-IC技術は、固体および液体の両方の試料について、自動サンプルカロッセルを使って自動化された分析を可能にします。この自動化により、分析精度が向上し、効率的な運用が実現します。 さらに、最近のC-IC技術の発展により、この手法は廃棄物サンプルのハロゲンおよび硫黄の測定に対して非常に有用であるとされています。この文書では、市販の異なるシステムの性能評価や、認定参照材料および廃棄物サンプルから得られた分析結果も紹介されています。これにより、研究者や技術者が最新の技術に基づいて効果的な分析を行えるよう支援しています。 CEN/TR 17345:2019は、廃棄物中の有害成分を特定する上での重要な道具であり、環境保護及び廃棄物管理の分野における基準としての役割を果たしています。この標準は、持続可能な開発の観点からも極めて重要であり、今後の廃棄物処理と分析において必要不可欠なリファレンスとなるでしょう。
CEN/TR 17345:2019 표준은 폐기물 샘플에서 할로겐 및 황을 측정하기 위한 최신 기술을 다루고 있으며, 유럽연합 지침 99/31/EC 및 2000/76/EC의 요구사항을 충족하는 데 필수적입니다. 이 표준은 산화성 열수분해 연소(oxidative pyrohydrolytic combustion) 후 이온 크로마토그래피 탐지(ion chromatography detection) 기술을 활용하여 단일 분석에서 할로겐과 황을 동시에 측정할 수 있는 방법을 제시합니다. 특히, 고체 및 액체 샘플 모두를 처리할 수 있는 샘플 회전 장치(sample carousel)를 장착할 수 있어 분석의 자동화도 가능하다는 점에서 강점을 가지고 있습니다. 최근의 C-IC 기술 발전은 폐기물 샘플에서 할로겐 및 황 분석의 효율성을 높이는 데 매우 유용합니다. 이 표준 문서는 다양한 상업적 시스템의 성능 평가와 공인 참조 물질 및 폐기물 샘플에서 얻은 분석 결과를 포함한 최신 기술 동향을 체계적으로 정리하고 있습니다. 이러한 정보는 연구자와 산업계 종사자뿐만 아니라 규제 기관에서도 매우 유용한 자료로 활용될 수 있습니다. CEN/TR 17345:2019 표준은 할로겐과 황의 정확한 측정을 통해 폐기물 관리 및 규제 준수를 위한 강력한 도구를 제공하며, 폐기물 분석의 신뢰성을 높이고 발생 가능한 환경 문제를 사전에 예방하는 데 중요한 역할을 합니다. 이 문서는 기술적 진전을 반영하고 있으며, 폐기물 샘플의 분석 효율성을 극대화하도록 설계되었습니다.
The CEN/TR 17345:2019 standard presents a comprehensive overview of the state-of-the-art techniques for determining halogens and sulfur in waste samples through oxidative pyrohydrolytic combustion followed by ion chromatography detection. Its scope aligns with the requirements set forth by EU Directive 99/31/EC and EU Directive 2000/76/EC, which mandate the assessment of these critical substances in waste materials. One of the strengths of this standard is its focus on the integration of the combustion-IC technique, which offers a streamlined process for analyzing waste samples. The ability to conduct combustion and subsequent analysis in a single run significantly enhances efficiency, making this methodology an attractive option for laboratories engaged in waste characterization. The inclusion of a sample carousel for both solids and liquids further underscores the versatility and automation potential of the C-IC technology, which is pivotal in improving throughput and reducing operational costs. Additionally, the document provides valuable insight into recent advancements in C-IC technology, scrutinizing the performance of various commercially available systems. This evaluation is crucial for practitioners looking to adopt effective analytical solutions for halogen and sulfur determination. By incorporating analytical results obtained on certified reference materials alongside waste samples, the standard ensures a robust framework for precision and reliability in measurements. Overall, CEN/TR 17345:2019 stands out as a relevant and timely addition to the body of standards addressing waste analysis. It not only encapsulates the latest technological developments but also addresses the legislative context, making it an essential resource for professionals in environmental monitoring and waste management sectors.










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...