CEN/TR 17603-32-24:2022
(Main)Space engineering - Buckling of structures
Space engineering - Buckling of structures
This document recommends engineering practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs and constraints.
The target users of this handbook are engineers involved in design, analysis and verification of launchers and spacecraft in relation to structural stability issues. The current know‐how is documented in this handbook in order to make this expertise available to all European developers of space systems.
It is a guidelines document; therefore it includes advisory information rather than requirements.
Raumfahrttechnik - Handbuch Knicken und Beulen von Strukturen
Ingénierie spatiale - Flambement des structures
Vesoljska tehnika - Upogibanje konstrukcij
Ta dokument priporoča inženirske prakse za evropske programe in projekte. Lahko se navaja v pogodbah in programskih dokumentih kot referenca za smernice glede izpolnjevanja posebnih potreb in omejitev v okviru programa/projekta.
Ciljni uporabniki tega priročnika so inženirji, ki se ukvarjajo z načrtovanjem, analiziranjem in preverjanjem lansirnikov ter vesoljskih plovil v zvezi z vprašanji stabilnosti konstrukcije. Ta priročnik dokumentira dosedanje strokovno znanje, da se dostop do njega omogoči vsem evropskim razvijalcem vesoljskih sistemov.
Ker gre za dokument s smernicami, ne podaja zahtev, temveč vsebuje informacije svetovalne narave.
General Information
Overview
CEN/TR 17603-32-24:2022 - "Space engineering - Buckling of structures" is a European Technical Report that documents current know‑how and recommended engineering practices for assessing structural stability in space systems. Approved in 2022 and produced by CEN/CLC/JTC 5, the handbook provides advisory guidance (not prescriptive requirements) for designers, analysts and verification engineers working on launchers and spacecraft. It may be cited in contracts and programme documents as a reference to meet specific programme/project needs.
What the standard covers
- Fundamental concepts and definitions for instability and buckling behavior of structural elements (columns, beams, plates, shells).
- Behavior of thin‑walled and stiffened shells, including sensitivity to imperfections, boundary conditions and post‑buckling response.
- Design load methodologies for thin isotropic shells (empirical knock‑down factors, numerical imperfection modelling, Southwell method, physics‑based approaches).
- Analysis methods: nonlinear equilibrium, eigenvalue problems, imperfection sensitivity analyses and dynamic stability.
- Material characteristics relevant to stability (elasticity, orthotropic/composite behaviour, viscoelasticity, strength and hygro‑thermal effects).
- Design verification and safety concepts: load cases, margins, knock‑down factors, verification procedures and factors of safety.
- Manufacturing/assembly effects: influence of welds, machining, composite manufacturing, assembly stresses and imperfection databases.
- Modelling aspects including semi‑analytical and numerical approaches for realistic buckling prediction.
Key technical topics and guidance
- Instability types: elastic buckling, lateral‑torsional buckling, plastic buckling, dynamic buckling and post‑buckling phenomena.
- Imperfection modelling: approaches for realistic and worst‑case imperfections and use of imperfection databanks.
- Stiffened and composite structures: imperfection sensitivity and orthotropic modelling strategies.
- Verification practice: selection of dimensioning load cases, design allowable for buckling resistance and recommended analysis workflows.
Note: this report provides advisory practices rather than mandatory requirements.
Practical applications and users
- Primary users: structural engineers, FEA analysts, verification engineers and systems engineers involved in design and qualification of launchers and spacecraft.
- Typical uses: developing buckling‑resistant designs, choosing knock‑down factors, performing imperfection sensitivity studies, preparing verification plans, and supporting contract specifications with recognized guidance.
- Applicable to: thin‑walled tanks, fairings, payload structures, stiffened panels and shell components subjected to axial, external pressure, torsion and dynamic loads.
Related guidance
- This Technical Report complements other CEN, ISO and industry standards on space systems, structural analysis and material testing. It is intended as a practical handbook to support robust stability design and verification in European space programmes.
Keywords: space engineering, buckling, structural stability, launchers, spacecraft, thin‑walled shells, imperfection sensitivity, knock‑down factor, finite element analysis, design verification.
Frequently Asked Questions
CEN/TR 17603-32-24:2022 is a technical report published by the European Committee for Standardization (CEN). Its full title is "Space engineering - Buckling of structures". This standard covers: This document recommends engineering practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs and constraints. The target users of this handbook are engineers involved in design, analysis and verification of launchers and spacecraft in relation to structural stability issues. The current know‐how is documented in this handbook in order to make this expertise available to all European developers of space systems. It is a guidelines document; therefore it includes advisory information rather than requirements.
This document recommends engineering practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs and constraints. The target users of this handbook are engineers involved in design, analysis and verification of launchers and spacecraft in relation to structural stability issues. The current know‐how is documented in this handbook in order to make this expertise available to all European developers of space systems. It is a guidelines document; therefore it includes advisory information rather than requirements.
CEN/TR 17603-32-24:2022 is classified under the following ICS (International Classification for Standards) categories: 49.035 - Components for aerospace construction; 49.140 - Space systems and operations. The ICS classification helps identify the subject area and facilitates finding related standards.
You can purchase CEN/TR 17603-32-24:2022 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2022
Vesoljska tehnika - Upogibanje konstrukcij
Space engineering - Buckling of structures
Raumfahrttechnik - Handbuch Knicken und Beulen von Strukturen
Ingénierie spatiale - Flambement des structures
Ta slovenski standard je istoveten z: CEN/TR 17603-32-24:2022
ICS:
49.140 Vesoljski sistemi in operacije Space systems and
operations
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
TECHNICAL REPORT CEN/TR 17603-32-24
RAPPORT TECHNIQUE
TECHNISCHER BERICHT
June 2022
ICS 49.035; 49.140
English version
Space engineering - Buckling of structures
Ingénierie spatiale - Flambement des structures Raumfahrttechnik - Handbuch Knicken und Beulen von
Strukturen
This Technical Report was approved by CEN on 13 April 2022. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.
CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium,
Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy,
Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia,
Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
CEN-CENELEC Management Centre:
Rue de la Science 23, B-1040 Brussels
© 2022 CEN/CENELEC All rights of exploitation in any form and by any means
Ref. No. CEN/TR 17603-32-24:2022 E
reserved worldwide for CEN national Members and for
CENELEC Members.
Table of contents
European Foreword . 14
Introduction . 15
1 Scope . 17
2 References . 18
3 Terms, definitions and abbreviated terms . 19
3.1 Terms from other documents . 19
3.2 Terms specific to the present document . 20
3.3 Abbreviated terms. 21
Part 1: General . 22
4 Overview . 23
4.1 Instability of structures: concepts and definitions . 23
4.2 Stability of columns, beams and plates . 24
4.2.1 Buckling of beams . 24
4.2.2 Lateral torsional buckling. 24
4.2.3 Buckling of plates . 25
4.3 History of shell buckling . 25
4.3.1 Overview . 25
4.3.2 Boundary conditions and nonlinear pre-buckling behaviour . 27
4.3.3 Postbuckling of the perfect shell . 27
4.3.4 Buckling and postbuckling behaviour of imperfect shells . 29
4.4 Design load for thin-walled isotropic shells . 31
4.4.1 Overview . 31
4.4.2 Empirical knock-down factors . 31
4.4.3 The Southwell method . 32
4.4.4 Numerical analysis with realistic geometrical imperfections . 33
4.4.5 Numerical analysis with worst geometrical imperfection . 33
4.4.6 Numerical analysis with stimulating imperfections . 34
4.4.7 Physics based design load . 34
4.4.8 Overview of different approaches for modelling imperfections . 36
4.5 Influence of non-traditional imperfections . 37
4.6 External pressure and torsion on cylindrical shells . 38
4.7 Dynamic buckling. 38
4.8 Stiffened shells . 39
4.8.1 Overview . 39
4.8.2 Imperfection sensitivity . 40
4.8.3 Orthotropic shell approach . 41
4.8.4 Eccentricity of stringers . 42
4.8.5 Boundary conditions . 42
4.8.6 Load cases . 42
4.8.7 Optimization . 43
4.9 Plastic buckling . 43
4.10 Composite shells . 44
4.11 References . 47
4.12 Abbreviated Symbols . 62
5 Types of instability and failure behaviour of typical structural elements . 63
5.1 Introduction . 63
5.2 Elastic buckling of columns . 63
5.2.1 Overview . 63
5.2.2 Buckling of columns with compound cross-sections . 65
5.3 Buckling of thin plates . 68
5.3.1 Overview . 68
5.3.2 Buckling behaviour of stiffened panels . 71
5.3.3 Buckling behaviour of sandwich plates . 72
5.4 Instability of axially compressed cylindrical panels . 74
5.5 Structural behaviour of thin shells . 76
5.5.1 Overview . 76
5.5.2 Buckling of cylindrical shells . 76
5.5.3 Buckling of Shells of Revolution . 78
5.6 References . 84
6 Analysis Methods . 86
6.1 Introduction . 86
6.2 Static equilibrium and stability . 86
6.2.1 Overview . 86
6.2.2 Turning points and failure points . 87
6.2.3 Types of loadings . 88
6.2.4 Distinction between equilibrium and stability equations . 89
6.2.5 Static stability in the sense of Hadamard and Euler. 89
6.2.6 The non linear eigenvalue problem for Euler stability . 90
6.3 Static equilibrium and stability of conservative systems . 90
6.4 Solution of nonlinear equilibrium equations . 91
6.5 Finding critical points of the equilibrium path. 95
6.6 Stability at the critical points of a discrete conservative system. 96
6.7 Imperfection analysis . 100
6.8 Dynamic stability analysis . 103
6.9 References . 111
7 Material characteristics . 112
7.1 Overview . 112
7.2 Linear elasticity and elastic properties . 112
7.2.1 Overview . 112
7.2.2 Orthotropic elasticity . 113
7.2.3 Transversely-isotropic elasticity of UD materials . 114
7.2.4 Isotropic elasticity . 115
7.2.5 Viscoelasticity . 115
7.3 Strength properties and hygro-thermal properties . 115
7.3.1 Strength properties. 115
7.3.2 Hygro-thermal properties. 116
7.4 Elastic and inelastic material behaviour . 117
7.4.1 Overview . 117
7.4.2 Stress-strain curve of isotropic materials . 118
7.4.3 Special aspects with composites . 119
7.4.4 Mapping of a stress-strain curve . 120
7.4.5 Cyclic hardening behaviour . 120
7.5 Plasticity and damage . 121
7.6 Material testing methods, test data, and evaluation . 121
7.6.1 Overview . 121
7.6.2 Determination of a design allowable . 123
7.6.3 Sources for finding property data . 123
7.7 Some practical aspects for stability analyses . 123
7.7.1 Effect of yielding and damage on stiffness . 123
7.7.2 Effect of temperature and moisture on property values . 125
7.7.3 Visco-plasticity, strain rate and impact . 125
7.7.4 Miscellaneous . 125
7.8 References . 127
8 Design to stability and its verification by analysis . 129
8.1 Introduction . 129
8.2 Design development process . 129
8.3 Analysis pre-work and load input data . 130
8.3.1 Overview . 130
8.3.2 Load analysis, limit load, and design limit load . 131
8.4 Safety concept - Factors of safety (FoS) . 131
8.5 Dimensioning load cases selection . 133
8.5.1 Margin policy and design loads . 133
8.5.2 Design loads combinations relevant for buckling . 134
8.5.3 Dimensioning load cases . 135
8.6 Remaining input data . 135
8.6.1 Overview . 135
8.6.2 Influences from manufacturing and manufacturing signatures . 135
8.6.3 Boundary conditions . 136
8.6.4 Application of properties . 136
8.6.5 Specific definitions and notions . 136
8.7 Stability design allowable and knock-down-factor (KDF) . 137
8.7.1 Stability design allowable (design allowable of the buckling
resistance) . 137
8.7.2 Knock-Down-Factor . 137
8.8 Analyses, modelling, and design aspects . 137
8.8.1 General . 137
8.8.2 Optimization and robust design . 138
8.8.3 Idealisation of geometry and modelling . 138
8.8.4 Analysis solution types . 139
8.8.5 Imperfection sensitivity analysis (nonlinear) . 139
8.8.6 Choice of calculation method . 140
8.9 Procedure of design verification . 141
8.9.1 Overview . 141
8.9.2 Verification policy . 142
8.9.3 Assessment of the structure . 143
8.10 References . 143
8.11 Abbreviated Terms and Symbols . 144
9 Influence of manufacturing and assembly processes on the buckling
load . 145
9.1 Overview . 145
9.2 Metallic Structures – Integral Machined Curved Panels . 145
9.3 Metallic Structures – Deformations due to Welding . 146
9.4 Composite Structures . 146
9.5 Assembly Stresses and Deformations . 146
9.6 The Imperfection Data Bank, a Means to Obtain a Realistic Buckling Load . 147
9.6.1 Overview . 147
9.6.2 Imperfection surveys on large or full scale shells . 148
9.6.3 Comparison of the measured initial imperfections . 158
9.6.4 Characteristic imperfection distributions . 162
9.6.5 Probabilistic stability analysis . 162
9.6.6 Conclusions . 165
9.7 References . 166
10 Modelling aspects of numerical analysis . 167
10.1 Introduction . 167
10.2 Semi-analytical models - shooting method and finite difference method . 167
10.2.1 Overview . 167
10.2.2 Description of the numerical methods . 168
10.2.3 Capabilities and scope of the programs . 168
10.3 Finite Element Model . 169
10.3.1 Finite Element Model Generation . 169
10.3.2 Finite Element Model Element Mesh . 169
10.3.3 Selection of Finite Elements . 169
10.3.4 Finite Element Model Boundary Conditions . 170
10.3.5 Finite Element Model Load applications . 170
10.3.6 Implementation of discontinuities in the finite element model . 171
10.3.7 Finite Element Model Check . 171
10.4 Thermo-Mechanical Loading . 172
10.5 Recommended Numerical Procedures . 172
10.5.1 Overview . 172
10.5.2 Load Application . 172
10.5.3 Iteration Schemes . 173
10.5.4 Convergence Criteria . 175
10.5.5 Estimation of Bifurcation Points . 175
10.5.6 Post-Buckling Analysis . 176
10.6 Allowable Buckling Load . 176
10.7 Finite Element Programmes with Buckling Analysis Capabilities . 177
10.7.1 Overview . 177
10.7.2 ABAQUS/Standard. 178
10.7.3 ANSYS . 178
10.7.4 MSC.Marc/MSC.Nastran . 178
10.7.5 ABAQUS/EXPLICIT . 179
10.8 Guidelines to select a solution scheme and solution procedure . 179
10.8.1 Guidelines to select a solution scheme . 179
10.8.2 Guidelines for the solution procedure . 181
10.9 References . 181
11 Strategy for hierarchical high fidelity analysis applied to stability
analysis . 183
11.1 Introduction . 183
11.2 Hierarchical high fidelity analysis . 184
11.3 Flow chart . 185
11.4 Description and General Guidance . 186
11.4.1 Overview . 186
11.4.2 Definition of the Problem . 186
11.4.3 A Priori Determination of Possible Failure Modes . 186
11.4.4 Definition of the Strategy and Mathematical Model. 186
11.4.5 Analytical Solution, Semi-Analytical Solution, and Finite Element
Solution of Idealized Structure . 186
11.4.6 Finite Element Analysis of the Real Structure . 188
11.4.7 Test . 191
11.4.8 Assessment of the Structure . 191
11.5 Hierarchical High Fidelity Stability Analysis of Anisotropic Cylinders . 192
11.5.1 Overview . 192
11.5.2 Level-1 Perfect Shell Buckling Analysis . 193
11.5.3 Level-2 Perfect Shell Buckling Analysis . 195
11.5.4 Level-3 Perfect Shell Buckling Analysis . 198
11.5.5 Imperfection Sensitivity Study . 200
11.5.6 Single Axisymmetric Imperfection . 200
11.5.7 Single Asymmetric Imperfection . 205
11.5.8 Measured Initial Imperfections. 209
11.5.9 Discussion of the Results . 213
11.5.10 Conclusions . 213
11.6 References . 214
12 Buckling experimental methods and design verification by tests . 217
12.1 Generalities of buckling tests . 217
12.2 Design output . 219
12.3 Objectives of the test . 219
12.4 Test plan . 220
12.5 Test procedures . 221
12.6 Test facility. 223
12.6.1 Overview . 223
12.6.2 Mounting system . 223
12.6.3 Loading procedure . 223
12.6.4 Data acquisition . 224
12.7 Documentation of the test . 225
12.8 References . 226
13 Instrumentation . 227
13.1 Introduction . 227
13.2 Measurements . 227
13.2.1 Classification of measurement techniques . 227
13.2.2 Measurements before the tests . 228
13.2.3 Measurements during the tests . 228
13.2.4 Measurements after the tests . 228
13.3 Measurements system . 229
13.3.1 Introduction . 229
13.3.2 Measurement of strain . 229
13.3.3 Displacement sensors . 232
13.3.4 Optical methods . 234
13.3.5 Force transducers . 237
13.3.6 Pressure transducers . 237
13.3.7 Temperature measurements . 237
13.3.8 Accelerometers and vibration measurements . 238
13.3.9 Acoustic and thermal emission sensors . 238
13.3.10 Non destructive testing (NDT) . 238
13.4 References . 240
Part 2: Structural elements with examples . 242
14 Implementation of Stability Methods . 243
14.1 Overview . 243
14.2 Static versus kinetic approach . 243
14.3 Problems requiring nonlinear analysis . 249
14.4 Approximate Solutions of Bifurcation Problems . 250
14.4.1 Overview . 250
14.4.2 The Rayleigh-Ritz Method . 251
14.4.3 Galerkin’s Method . 251
14.4.4 Finite Element Formulation of Bifurcation Problems . 253
14.5 Computational Tools for Bifurcation Problems . 254
14.6 References . 255
15 Columns, Beams, Arches and Rings . 257
15.1 Introduction . 257
15.2 Columns . 257
15.2.1 Overview . 257
15.2.2 Long Column (elastic buckling) . 259
15.2.3 Inelastic flexural instability . 261
15.2.4 Compression crippling . 266
15.2.5 Combined flexural and local instability. 270
15.2.6 Torsional instability. 271
15.3 Lateral buckling of beams . 274
15.4 The beam-column . 276
15.4.1 Overview . 276
15.4.2 The "complete" differential equation of the beam-column . 276
15.4.3 Stability under axial load . 281
15.5 In-plane buckling of rings and arches. 283
15.5.1 Overview . 283
15.5.2 The thin circular ring . 284
15.5.3 High circular arch . 287
15.6 References . 288
16 Flat and curved panels . 289
16.1 Overview . 289
16.2 Flat Plates . 289
16.2.1 Introduction . 289
16.2.2 Basic Equations for Isotropic Plates . 289
16.2.3 Applications for the Stability Equations . 291
16.2.4 Stability Equations for Orthotropic Plates . 299
16.2.5 Stability Equations for Sandwich Plates . 302
16.2.6 Failure of Plates . 307
16.3 Curved Panels . 309
16.3.1 Introduction . 309
16.3.2 Compression loading . 310
16.3.3 Curved Panels under Shear . 313
16.3.4 Curved Panels under Combined Loading . 314
16.4 References . 315
17 Closed shells . 317
17.1 Introduction . 317
17.2 Circular cylindrical shells. 317
17.2.1 Level-1 solutions for isotropic shells . 319
17.2.2 Level-1 solutions for orthotropic shells . 330
17.3 References . 338
Part 3: Structures . 340
18 Buckling design, analysis and testing of large structures . 341
18.1 Design . 341
18.1.1 General . 341
18.1.2 Design aspects . 341
18.1.3 Sub-structuring of large structures . 342
18.2 Analysis and testing . 343
18.2.1 Introduction . 343
18.2.2 Loading processing . 343
18.2.3 Flow chart for analysis and testing (logic) . 344
18.3 Examples to illustrate the use of the Flow Chart . 346
18.3.1 Overview . 346
18.3.2 Vulcain 2 Nozzle . 346
18.3.3 ARIANE 5 –Main Cylindrical Structure . 349
18.4 Validation of the Mathematical Model . 350
18.5 Overview of Buckling Analysis Performed on the ARIANE Launchers . 352
18.6 Abbreviated Terms . 354
19 LH2-Tank ARIANE 5. 355
19.1 Overview . 355
19.2 Presentation of the structure . 355
19.3 Sizing rules . 356
19.4 Upper skirt . 357
19.4.1 Model used for the analysis . 357
19.4.2 Boundary conditions . 358
19.4.3 Expected failure mode . 358
19.4.4 Analysis method . 358
19.4.5 Dimensioning load cases . 359
19.4.6 Results . 360
19.5 Y-rings . 360
19.5.1 Model used for the analysis . 360
19.5.2 Boundary conditions . 360
19.5.3 Expected failure modes . 360
19.5.4 Analysis method for the buckling . 361
19.5.5 Dimensioning load cases . 361
19.5.6 Results . 361
19.6 Cylinder . 362
19.6.1 Overview . 362
19.6.2 Buckling analysis of the pressurized cylinder using the NASA SP-
8007 . 362
19.6.3 Axisymmetric FEM analysis . 363
19.7 Elongated lower skirt (ELS) . 364
19.7.1 Overview . 364
19.7.2 Linear analysis applying a KDF approach . 365
19.7.3 Nonlinear collapse analysis with imperfection sensitivity study . 366
19.8 Test Campaign . 373
19.8.1 Qualification test plan . 373
19.8.2 Test results . 374
19.9 Conclusion . 377
19.10 References . 377
19.11 Abbreviated Terms . 377
20 Buckling of the Inner Dome of the ARIANE 5 Upper Stage ESC-A. 378
20.1 Overview . 378
20.1.1 General . 378
20.1.2 Buckling Modes: . 380
20.2 Buckling investigation levels . 381
20.2.1 Level-1 investigations . 381
20.2.2 Level-2 investigations . 387
20.2.3 Level-3 investigation . 390
20.3 Conclusion . 394
20.4 References . 394
21 Non-Linear Stability Analysis of ARIANE 5 Front Skirt (JAVE) . 395
21.1 Overview . 395
21.2 Description of the Structure . 396
21.3 Mathematical Model . 399
21.3.1 Launcher Coordinate System and Sign Convention . 399
21.3.2 Geometry . 399
21.3.3 Material Definition . 400
21.3.4 Loading . 401
21.3.5 Geometric Boundary Conditions . 403
21.3.6 Imperfections . 403
21.4 Finite Element Analysis . 404
21.4.1 Solution Method . 404
21.4.2 Amend
...
The article discusses a document titled CEN/TR 17603-32-24:2022 - Space Engineering - Buckling of Structures. This document provides recommendations for European programs and projects in the field of engineering. It can be referred to in contracts and program documents as a source of guidance for meeting specific program and project needs and limitations. The target audience for this handbook is engineers who are involved in the design, analysis, and verification of launchers and spacecraft, particularly in relation to structural stability issues. The purpose of this handbook is to document the current knowledge and expertise in order to make it accessible to all European developers of space systems. It is important to note that this document is a guidelines document and provides advisory information rather than enforceable requirements.
기사 제목: CEN/TR 17603-32-24:2022 - 우주 공학 - 구조물의 휨 변형 기사 내용: 이 문서는 유럽 프로그램과 프로젝트를 위한 공학적인 관행을 추천한다. 특정 프로그램/프로젝트의 요구와 제약을 충족하기 위한 지침으로서 계약서와 프로그램 문서에서 참고 자료로 인용될 수 있다. 본 핸드북의 목표 사용자는 구조 안정성 이슈와 관련하여 발사체와 우주선의 설계, 분석 및 검증에 참여하는 엔지니어이다. 현재의 노하우는 유럽의 우주 시스템 개발자들에게 이 전문성을 제공하기 위해 이 핸드북에 기록되어 있다. 이는 지침 문서이기 때문에 요구사항보다는 조언성 정보를 포함한다.
기사 제목: CEN/TR 17603-32-24:2022 - 우주 공학 - 구조물의 휨 변형 기사 내용: 이 문서는 유럽 프로그램 및 프로젝트에 대한 공학 관행을 권장합니다. 특정 프로그램/프로젝트의 요구사항과 제약조건을 충족하기 위한 지침으로 계약 및 프로그램 문서에서도 참조할 수 있습니다. 이 가이드북의 대상 사용자는 구조 안정성 문제와 관련하여 우주선 및 발사체의 설계, 분석, 검증에 참여하는 엔지니어입니다. 현재의 노하우를 이 가이드북에 문서화하여 모든 유럽 우주 시스템 개발자들에게 제공하고자 합니다. 이 문서는 지침 문서이므로 요구 사항이 아닌 조언적인 정보를 포함하고 있습니다.
記事のタイトル:CEN/TR 17603-32-24:2022 - 宇宙工学-構造のたわみ 記事の内容:この文書は、ヨーロッパのプログラムとプロジェクトのためのエンジニアリングの実践を推奨しています。特定のプログラムやプロジェクトのニーズと制約を満たすためのガイドとして契約書やプログラム文書で参照される可能性があります。 このハンドブックの対象ユーザーは、構造安定性の問題に関連するランチャーや宇宙船の設計、分析、検証に関与するエンジニアです。現在のノウハウは、ヨーロッパの宇宙システム開発者全員にこの専門知識を提供するために、このハンドブックに文書化されています。 これはガイドラインの文書であり、要件ではなくアドバイザリー情報を含んでいます。
記事のタイトル:CEN/TR 17603-32-24:2022 - 宇宙工学 - 構造のたわみ 記事の内容:本文書は、ヨーロッパのプログラムやプロジェクトに対してエンジニアリングの実践を推奨しています。特定のプログラムやプロジェクトのニーズや制約を満たすためのガイダンスとして、契約書やプログラム文書で参照すべきものとされています。 本ガイドブックの対象ユーザーは、構造の安定性の問題に関連するランチャーや宇宙船の設計、解析、検証に関与するエンジニアです。現在のノウハウは、このガイドブックに文書化され、すべてのヨーロッパの宇宙システム開発者に利用可能になるようにされています。 この文書は、ガイドラインの文書であり、必要条件ではなく助言的な情報を提供しています。
The article discusses a document called CEN/TR 17603-32-24:2022, which provides recommendations for engineering practices for European space programs and projects. The document can be used as a reference in contracts and program documents to guide engineers in meeting specific program and project needs. It is intended for engineers involved in the design, analysis, and verification of launchers and spacecraft with regard to structural stability. The document contains advisory information rather than requirements. Its purpose is to share the current knowledge and expertise available for European developers of space systems.








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...