EN 12831-1:2017
(Main)Energy performance of buildings - Method for calculation of the design heat load - Part 1: Space heating load, Module M3-3
Energy performance of buildings - Method for calculation of the design heat load - Part 1: Space heating load, Module M3-3
This European Standard covers methods for the calculation of the design heat load for single rooms, building entities and buildings, where the design heat load is defined as the heat supply (power) needed to maintain the required internal design temperature under design external conditions.
Table 1 shows the relative position of this standard within the set of EPB standards in the context of the modular structure as set out in EN ISO 52000 -1.
NOTE 1 In CEN ISO/TR 52000 2 the same table can be found, with, for each module, the numbers of the relevant EPB standards and accompanying technical reports that are published or in preparation.
NOTE 2 The modules represent EPB standards, although one EPB standard may cover more than one module and one module may be covered by more than one EPB standard, for instance a simplified and a detailed method respectively. See also Clause 2 and Tables A.1 and B.1.
(...)
Energetische Bewertung von Gebäuden - Verfahren zur Berechnung der Norm-Heizlast - Teil 1: Raumheizlast, Modul M3-3
Diese Europäische Norm umfasst Verfahren zur Berechnung der Norm-Heizlast für Einzelräume, Gebäudeeinheiten und Gebäude, wobei die Norm-Heizlast als die Wärmezufuhr (Leistung) definiert ist, die benötigt wird, um die geforderte Norm-Innentemperatur unter Norm-Außenbedingungen bereitzustellen.
Tabelle 1 zeigt die relative Position dieser Norm innerhalb des EPBD-Normenpakets im Kontext der modularen Struktur, wie in prEN ISO 52000-1 dargelegt.
ANMERKUNG 1 In prCEN ISO/TR 52000-2 findet sich die gleiche Tabelle mit den Nummern (für jedes Modul) der jeweiligen EPB-Normen und den dazugehörigen technischen Berichten, die bereits veröffentlicht wurden oder sich in der Erstellung befinden.
ANMERKUNG 2 Die Module repräsentieren EPB-Normen, auch wenn eine EPB-Norm mehr als ein Modul abdecken darf und ein Modul von mehr als einer EPB-Norm abgedeckt werden darf, zum Beispiel jeweils ein vereinfachtes und ein detailliertes Verfahren. Siehe auch Abschnitt 2 und Tabellen A.1 und B.1.
(...)
Performance énergétique des bâtiments - Méthode de calcul de la charge thermique nominale - Partie 1 : Charge de chauffage des locaux, module M3-3
La présente Norme européenne traite des méthodes de calcul de la charge thermique nominale pour les pièces seules, les entités de bâtiment et les bâtiments, la charge thermique nominale étant définie comme l’alimentation en chaleur (puissance) nécessaire pour maintenir la température intérieure requise dans les conditions extérieures de base.
Le Tableau 1 indique la position relative de la présente norme dans l’ensemble de normes PEB dans le cadre de la structure modulaire décrite dans l'EN ISO 52000-1.
NOTE 1 Le CEN ISO/TR 52000-2 fournit le même tableau avec, pour chaque module, le numéro des normes PEB pertinentes et les rapports techniques associés qui sont publiés ou en cours d’élaboration.
NOTE 2 Les modules représentent les normes PEB, bien qu’une seule norme PEB puisse couvrir plusieurs modules et qu’un seul module puisse être couvert par plusieurs normes PEB, par exemple une méthode simplifiée et une méthode détaillée respectivement. Voir également l’Article 2 et les Tableaux A.1 et B.1.
(...)
Energijske lastnosti stavb - Metoda za izračun projektnih toplotnih obremenitev - 1. del: Toplotne obremenitve prostora - Modul M3-3
Ta standard zajema metode za izračun toplotne obremenitve oblikovanja za enoposteljne sobe, dele stavbe in stavbe, kjer je toplotna obremenitev oblikovanja določena kot dovod toplote (moč), ki je potreben za ohranjanje zahtevane notranje temperature oblikovanja pod vplivom zunanjih pogojev oblikovanja.
General Information
Relations
Overview
EN 12831-1:2017 (equivalent to EN 12831-1:2017) is the European standard for calculating the design heat load required to maintain specified indoor temperatures under defined external conditions. Titled Energy performance of buildings - Method for calculation of the design heat load - Part 1: Space heating load, Module M3-3, it defines methods for single rooms, building entities and whole buildings to determine space heating load for heating system sizing, energy performance assessment and regulatory compliance.
Key topics and technical requirements
The standard provides a structured, modular method (Module M3-3) and includes both a standard (detailed) method and simplified methods. Major technical topics covered include:
- Calculation procedure for the design heat load and required output data and input data.
- Transmission heat losses of rooms and building elements (including treatment of U‑values and correction factors).
- Ventilation heat loss and air change considerations (air tightness, large openings, minimum air change rates).
- Time constant and thermal storage capacity effects on transient behaviour.
- Additional heating‑up power for intermittently heated spaces and methods to estimate heating-up power.
- Influence of heat emission systems in high rooms (ceiling height considerations).
- Climatic and external design temperatures (use of design outdoor temperature data).
- Thermal bridges, heat loss to ground, and temperature adjustments for adjacent/unheated spaces.
- Annexes with input data and default values, guidance on thermal bridges, ground contact, climatic data and example procedures.
The standard also defines outputs for dimensioning of heat emission systems and heat generators, and includes a compliance check procedure.
Practical applications
EN 12831-1 is used to:
- Calculate the design heat load for radiator, underfloor heating and HVAC sizing.
- Support energy performance assessments and compliance with building regulations.
- Generate inputs for HVAC system design, boiler selection and control strategy decisions.
- Provide a consistent method for manufacturers, consultants and authorities to compare heating loads across projects and countries.
Who should use this standard
- HVAC and building services engineers
- Energy assessors and auditors
- Architects and building designers
- Heating system manufacturers and installers
- Regulators and certification bodies working on energy performance of buildings
Related standards
- EN 12831 supersedes EN 12831:2003 and fits into the EPB modular framework (see EN ISO 52000‑1 and CEN ISO/TR 52000‑2) for energy performance calculation. Use in combination with national annexes and complementary EPB standards for complete regulatory or certification workflows.
Keywords: EN 12831-1, EN 12831-1:2017, design heat load, space heating load, energy performance of buildings, Module M3-3, heat loss calculation, HVAC sizing, thermal bridges.
Standards Content (Sample)
SLOVENSKI STANDARD
01-maj-2018
1DGRPHãþD
SIST EN 12831:2004
(QHUJLMVNHODVWQRVWLVWDYE0HWRGD]DL]UDþXQSURMHNWQLKWRSORWQLKREUHPHQLWHY
GHO7RSORWQHREUHPHQLWYHSURVWRUD0RGXO0
Energy performance of buildings - Method for calculation of the design heat load - Part 1:
Space heating load, Module M3-3
Energetische Bewertung von Gebäuden - Verfahren zur Berechnung der Norm-Heizlast -
Teil 1: Raumheizlast, Modul M3-3
Performance énergétique des bâtiments - Méthode de calcul de la charge thermique
nominale - Partie 1 : Charge de chauffage des locaux, module M3-3
Ta slovenski standard je istoveten z: EN 12831-1:2017
ICS:
91.120.10 Toplotna izolacija stavb Thermal insulation of
buildings
91.140.10 Sistemi centralnega Central heating systems
ogrevanja
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN 12831-1
EUROPEAN STANDARD
NORME EUROPÉENNE
July 2017
EUROPÄISCHE NORM
ICS 91.140.10 Supersedes EN 12831:2003
English Version
Energy performance of buildings - Method for calculation
of the design heat load - Part 1: Space heating load, Module
M3-3
Performance énergétique des bâtiments - Méthode de Energetische Bewertung von Gebäuden - Verfahren zur
calcul de la charge thermique nominale - Partie 1 : Berechnung der Norm-Heizlast - Teil 1: Raumheizlast,
Charge de chauffage des locaux, module M3-3 Modul M3-3
This European Standard was approved by CEN on 27 February 2017.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels
© 2017 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 12831-1:2017 E
worldwide for CEN national Members.
Contents Page
European foreword . 5
Introduction . 6
1 Scope . 8
2 Normative references . 12
3 Terms and definitions . 12
4 Symbols and abbreviations . 15
4.1 Symbols . 15
4.2 Subscripts . 16
5 Description of the methods . 19
6 Standard method – Heat load of rooms, building entities and buildings . 20
6.1 Output data . 20
6.2 Input data . 21
6.3 Calculation procedure . 27
6.3.1 Design heat load . 27
6.3.2 Design transmission heat losses of a heated space (i) . 29
6.3.3 Design ventilation heat loss . 33
6.3.4 Additional heating-up power in intermittently heated spaces . 41
6.3.5 Time constant . 42
6.3.6 Heat transfer coefficients without temperature adjustment . 43
6.3.7 External design temperature (climatic data) . 44
6.3.8 Influence of the heat emission system in high rooms (ceiling height ≥ 4 m) . 46
7 Simplified method for the calculation of the design heat load of a heated space (single
rooms) . 48
7.1 Output data . 48
7.2 Input data . 48
7.3 Calculation procedure . 49
7.3.1 Design heat load of a heated space . 49
7.3.2 Design transmission heat loss of a heated space . 50
7.3.3 Design ventilation heat loss of a heated space . 50
8 Simplified method for the calculation of the building design heat load . 51
8.1 Output data . 51
8.2 Input data . 51
8.3 Calculation procedure . 52
8.3.1 Building design heat load . 52
8.3.2 Building design transmission heat loss. 53
8.3.3 Design ventilation heat loss of a building . 53
9 Compliance check. 54
9.1 General . 54
9.2 Dimensioning of heat emission systems . 54
9.3 Dimensioning of heat generators . 54
Annex A (normative) Input data, structure for default values . 55
A.1 General . 55
A.2 Input data for the standard method (6) . 55
A.2.1 Consideration of thermal bridges . 55
A.2.2 Correction of U-values for the influence of building element properties and
meteorological conditions . 55
A.2.3 Heat loss through the ground . 55
A.2.4 Temperature adjustment for heat loss to unheated spaces . 56
A.2.5 Internal temperatures of adjacent building entities . 56
A.2.6 Influence of the heat emission system in high rooms . 56
A.2.7 Specific thermal storage capacity c . 57
eff
A.2.8 Specific properties of air . 57
A.2.9 Volume flow ratio between room (i) and zone (z) . 58
A.2.10 Air tightness . 58
A.2.11 Minimum air change rate . 58
A.2.12 Coefficient for the volume flow ratio f . 59
qv,z
A.2.13 Estimation of design data of external ATDs. 59
A.2.14 Pressure exponent for leakages . 59
A.2.15 Adjustment factor for the orientation of the zone (orientation factor) . 59
A.2.16 Adjustment factor for the number of exposed facades . 60
A.2.17 Air volume flow through large openings . 60
A.2.18 Additional heating-up power in intermittently heated spaces ϕ . 60
hu
A.2.19 Heat gains Φ . 60
gain
A.3 Input data for the simplified methods (7, 8) . 60
A.3.1 Ratio between external and internal surface areas . 60
A.3.2 Thermal bridges . 61
A.3.3 Temperature correction factor f . 61
x
A.3.4 Air change rate . 61
A.4 Input data for the standard method and the simplified methods . 61
A.4.1 Climatic data . 61
A.4.2 Internal design temperature . 64
A.4.3 Simplified determination of U-Values . 64
Annex B (informative) Input data, default values . 65
B.1 General . 65
B.2 Input data for the standard method (6) . 65
B.2.1 Consideration of thermal bridges . 65
B.2.2 Correction of U-values for the influence of building element properties and
meteorological conditions . 65
B.2.3 Heat loss through the ground . 65
B.2.4 Temperature adjustment for heat loss to unheated spaces . 66
B.2.5 Internal temperatures of adjacent building entities . 66
B.2.6 Influence of the heat emission system in high rooms . 66
B.2.7 Specific thermal storage capacity c . 67
eff
B.2.8 Specific properties of air . 68
B.2.9 Volume flow ratio between room (i) and zone (z) . 68
B.2.10 Air tightness . 68
B.2.11 Coefficient for the volume flow ratio f . 69
qv,z
B.2.12 Estimation of design data of external ATDs. 70
B.2.13 Pressure exponent for leakages . 71
B.2.14 Adjustment factor for the orientation of the zone (orientation factor) . 71
B.2.15 Adjustment factor for the number of exposed facades . 71
B.2.16 Air volume flow through large openings . 71
B.2.17 Additional heating-up power in intermittently heated spaces ϕhu . 71
B.2.18 Heat gains Φgain. 71
B.3 Input data for the simplified methods (7, 8) . 71
B.3.1 Ratio between external and internal surface areas . 71
B.3.2 Thermal bridges . 72
B.3.3 Temperature correction factor f . 72
x
B.3.4 Air change rate . 72
B.4 Input data for the standard method and the simplified methods . 72
B.4.1 Climatic data . 72
B.4.2 Internal design temperature . 73
B.4.3 Simplified determination of U-Values . 74
Annex C (informative) Detailed consideration of thermal bridges . 77
Annex D (informative) Internal temperatures θ of adjacent building entities or adjacent
u
unheated spaces within the same building . 78
Annex E (informative) Equivalent thermal transmittance of building elements against ground. 81
Annex F (informative) Estimation of heating-up power in intermittently heated spaces (6.3.4) . 84
F.1 General . 84
F.2 Determination of the specific heating-up power φ based on the time of disuse. 86
hu,i
F.3 Determination of the specific heating-up power φ based on the internal temperature
hu,i
drop during setback . 87
Annex G (informative) External air volume flow through large openings . 89
Bibliography . 94
European foreword
This document (EN 12831-1:2017) has been prepared by Technical Committee CEN/TC 228 “Heating
systems and water based cooling systems in buildings”, the secretariat of which is held by DIN.
This European Standard shall be given the status of a national standard, either by publication of an identical
text or by endorsement, at the latest by January 2018, and conflicting national standards shall be withdrawn
at the latest by January 2018.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes EN 12831:2003.
This document has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association.
EN 12831, Energy performance of buildings — Method for the calculation of the design heat load, is composed
with the following parts:
— Part 1: Space heating load, Module M3-3;
— Part 2: Explanation and justification of EN 12831-1, Module M3-3 [CEN/TR];
— Part 3: Domestic hot water systems heat load and characterisation of needs, Module M8-2, M8-3;
— Part 4: Explanation and justification of EN 12831-3, Module M8-2, M8-3 [CEN/TR].
According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following
countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus,
Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland,
Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
Introduction
This European Standard is part of a series of standards aiming at international harmonization of the
methodology for the assessment of the energy performance of buildings, called “set of EPB standards”.
All EPB standards follow specific rules to ensure overall consistency, unambiguity and transparency.
All EPB standards provide a certain flexibility with regard to the methods, the required input data and
references to other EPB standards, by the introduction of a normative template in Annex A and Annex B
with informative default choices.
For the correct use of this standard a normative template is given in Annex A to specify these choices.
Informative default choices are provided in Annex B.
The EPB set of standards deals with energy performance calculation and other related aspects (like system
sizing) to provide the building services considered in the EPBD.
The subjects covered by CEN/TC 228 are the following:
— design of heating systems (water based, electrical, etc.);
— installation of heating systems;
— commissioning of heating systems;
— instructions for operation, maintenance and use of heating systems;
— methods for calculation of the design heat loss and heat loads;
— methods for calculation of the energy performance of heating systems.
Heating systems also include the effect of attached systems such as hot water production systems.
All these standards are systems standards, i.e. they are based on requirements addressed to the system as a
whole and not dealing with requirements to the products within the system.
Where possible, reference is made to other European or International Standards, a. o. product standards.
However, use of products complying with relevant product standards is no guarantee of compliance with the
system requirements.
The requirements are mainly expressed as functional requirements, i.e. requirements dealing with the
function of the system and not specifying shape, material, dimensions or the like.
The guidelines describe ways to meet the requirements, but other ways to fulfil the functional requirements
might be used if fulfilment can be proved.
Heating systems differ among the member countries due to climate, traditions and national regulations. In
some cases requirements are given as classes so national or individual needs may be accommodated.
In cases where the standards contradict with national regulations, the latter should be followed.
Use by or for regulators: In case the standard is used in the context of national or regional legal
requirements, mandatory choices may be given at national or regional level for such specific applications.
These choices (either the informative default choices from Annex B or choices adapted to national / regional
needs, but in any case following the template of this Annex A) can be made available as national annex or as
separate (e.g. legal) document (national data sheet).
NOTE So in this case:
— the regulators will specify the choices;
— the individual user will apply the standard to assess the energy performance of a building, and thereby use the
choices made by the regulators.
Topics addressed in this standard can be subject to public regulation. Public regulation on the same topics
can override the default values in Annex B of this standard. Public regulation on the same topics can even,
for certain applications, override the use of this standard. Legal requirements and choices are in general not
published in standards but in legal documents. In order to avoid double publications and difficult updating
of double documents, a national annex may refer to the legal texts where national choices have been made
by public authorities. Different national annexes or national data sheets are possible, for different
applications.
It is expected, if the default values, choices and references to other EPB standards in Annex B are not
followed due to national regulations, policy or traditions, that:
— national or regional authorities prepare data sheets containing the choices and national or regional
values, according to the model in Annex A. In this case the national annex (e.g. NA) refers to this text;
— or, by default, the national standards body will consider the possibility to add or include a national
annex in agreement with the template of Annex A, in accordance to the legal documents that give
national or regional values and choices.
Further target groups are parties wanting to motivate their assumptions by classifying the building energy
performance for a dedicated building stock.
More information is provided in the Technical Report accompanying this standard (CEN/TR 12831-2).
1 Scope
This European Standard covers methods for the calculation of the design heat load for single rooms, building
entities and buildings, where the design heat load is defined as the heat supply (power) needed to maintain
the required internal design temperature under design external conditions.
Table 1 shows the relative position of this standard within the set of EPB standards in the context of the
modular structure as set out in EN ISO 52000-1.
NOTE 1 In CEN ISO/TR 52000-2 the same table can be found, with, for each module, the numbers of the relevant
EPB standards and accompanying technical reports that are published or in preparation.
NOTE 2 The modules represent EPB standards, although one EPB standard may cover more than one module and
one module may be covered by more than one EPB standard, for instance a simplified and a detailed method
respectively. See also Clause 2 and Tables A.1 and B.1.
Table 1 — Position of this standard, within the modular structure of the set of EPB standards
Building
Overarching Technical Building Systems
(as such)
Building
Humidifi Dehumid Domestic Electricity
Sub module Descriptions Descriptions Descriptions Heating Cooling Ventilation Lighting automation
cation ification Hot water production
and control
sub1 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
15316–
1 General General General 15316–1
Common
terms and
Building
2 definitions; Needs 12831–3
Energy Needs
symbols, units
and subscripts
(Free) Indoor
Maximum
Conditions 12831–
3 Applications Load and 12831–3
without 1
Power
Systems
Ways to Ways to Ways to
Express Express Express 15316–
4 15316–1
Energy Energy Energy 1
Performance Performance Performance
Building
Heat Transfer
categories and Emission and 15316–
5 by 15316–2
Building control 2
Transmission
Boundaries
Building Heat Transfer
Occupancy by Infiltration Distribution 15316–
6 15316–3 15316–3
and Operating and and control 3
Conditions Ventilation
Building
Overarching Technical Building Systems
(as such)
Building
Humidifi Dehumid Domestic Electricity
Sub module Descriptions Descriptions Descriptions Heating Cooling Ventilation Lighting automation
cation ification Hot water production
and control
sub1 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
Aggregation of
Energy 15316–5
Internal Storage and 15316–
7 Services and 15316–4–
Heat Gains control 5
Energy 3
Carriers
Building Solar
8 Generation
zoning Heat Gains
Combustion 15316– 15316–4–
8–1
boilers 4–1 1
15316– 15316– 15316–4–
8–2 Heat pumps
4–2 4–2 2
Thermal solar
15316– 15316–4–
8–3 15316–4–3
4–3 3
Photovoltaics
On-site 15316– 15316–4–
8–4 15316–4–4
cogeneration 4–4 4
District
15316– 15316–
8–5 heating and 15316–4–5
4–5 4–5
cooling
Direct
15316– 15316–4–
8–6 electrical
4–8 8
heater
8–7 Wind turbines 15316–4–10
Radiant
15316–
8–8 heating,
4–8
stoves
Building
Overarching Technical Building Systems
(as such)
Building
Humidifi Dehumid Domestic Electricity
Sub module Descriptions Descriptions Descriptions Heating Cooling Ventilation Lighting automation
cation ification Hot water production
and control
sub1 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
Building Load
Calculated
Dynamics dispatching
9 Energy
(thermal and operating
Performance
mass) conditions
Measured Measured Measured
15378–
10 Energy Energy Energy 15378–3
Performance Performance Performance
15378–
11 Inspection Inspection Inspection 15378–1
Ways to
Express
12 – BMS
Indoor
Comfort
External
13 Environment
Conditions
Economic
14 15459–1
Calculation
NOTE The shaded modules are not applicable.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
EN ISO 6946, Building components and building elements — Thermal resistance and thermal transmittance —
Calculation method (ISO 6946)
EN ISO 7345, Thermal insulation — Physical quantities and definitions (ISO 7345)
EN ISO 9972, Thermal performance of buildings — Determination of air permeability of buildings — Fan
pressurization method (ISO 9972)
EN ISO 10077-1, Thermal performance of windows, doors and shutters — Calculation of thermal
transmittance — Part 1: General (ISO 10077-1)
EN ISO 13370, Thermal performance of buildings — Heat transfer via the ground — Calculation methods
(ISO 13370)
EN ISO 13789, Thermal performance of buildings — Transmission and ventilation heat transfer coefficients —
Calculation method (ISO 13789)
EN ISO 52000-1, Energy performance of buildings — Overarching EPB assessment — Part 1: General
framework and procedures (ISO 52000-1)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in EN ISO 7345 and EN ISO 52000-1, and
the following apply.
3.1
ATD, air terminal device
air out-/inlets allowing air transfer between external and internal air (external ATD) or between separate
rooms (internal ATD)
Note 1 to entry: In the field, the term ATD is used for a broad variety of air out- and inlets. Within this standard, the
term refers only to passive devices allowing air flow through a building element (walls, etc.) in a defined manner. It
does not include air out-/inlets of fan-assisted ventilation system.
Note 2 to entry: Within this standard, it is assumed that external ATDs are only applied in unbalanced ventilation.
3.2
annual mean external temperature
mean value of the external temperature during the year
3.3
balanced ventilation
fan-assisted ventilation where the sum of all supply air volume flows equals the sum of all exhausted air
volume flows in quantity and over the course of time
3.4
building element
internal or external component of the building structure and/or thermal envelope or a portion thereof with
uniform thermal conditions on each side of the element
EXAMPLE Wall between two rooms of the same or different temperatures.
3.5
building entity
certain portion of a building (one or more rooms) used as one unit by one party/occupant, such as:
— one apartment / flat;
— one office unit…
where the heat supply to that unit can be controlled individually by the occupant (usually by means of room
temperature control devices)
Note 1 to entry: For the definition of building entities within application of this standard, it is not relevant if the heat
supplied to building entities is generated centralized per building or separately in each building entity.
3.6
design heat load
heat flow (power) required to achieve the specified internal design temperature under external design
conditions
Note 1 to entry: The design heat load covers transmission and ventilation heat losses and, if any, an additional
heating-up power.
3.7
design heat loss
heat loss (power) leaving the building to the external environment under specified design conditions
3.8
design transmission heat loss
heat loss to the exterior and between heated and other heated or unheated spaces inside a building as a
result of thermal conduction through the surrounding surfaces
Note 1 to entry: The design transmission heat loss is a portion of the design heat loss.
3.9
design ventilation heat loss
heat loss to the exterior by ventilation and infiltration through the building envelope and the heat
transferred by ventilation from one heated space to another heated or unheated space
Note 1 to entry: The design ventilation heat loss is a portion of the design heat loss.
3.10
external design temperature
(minimal) external air temperature which is used for the calculation of the design heat losses
3.11
heated space
space which, per design, is heated to the specified internal design temperature and separated from other
spaces by building elements such as walls, etc.
Note 1 to entry: Usually each single (heated) room is considered a heated space.
3.12
internal air temperature
temperature of the air inside the considered heated space
3.13
internal design temperature
temperature-value required for the intended use of a heated space and that is used to calculate the design
heat loss
Note 1 to entry: The internal design temperature is an operative temperature and, therefore, depends, among other
parameters, on the air temperature and the radiant temperature – usually defined in a simplified manner as arithmetic
average between both.
Note 2 to entry: Default values for the internal design temperature are subject to national regulations.
3.14
large openings
openings of the enveloping surface of a room/building that are kept open for significant periods over the
day on a regular basis; usually, but not necessarily, (large) doors or gates
EXAMPLE Gates in logistics and industrial halls.
3.15
mean internal air temperature
mean air temperature of a heated space
Note 1 to entry: With low room heights (h < 4 m), the mean internal air temperature can be assumed to equal the
internal design temperature; with larger room heights, the mean internal air temperature is calculated based on the
internal design temperature, specifically for the heating system to be used.
3.16
mean internal surface temperature
mean temperature of a building element’s inner surface
Note 1 to entry: With low room heights (h < 4 m), the mean internal surface temperature can be assumed to equal the
internal design temperature; with larger room heights, the mean internal surface temperature is calculated based on the
internal design temperature, specifically for the heating system to be used.
3.17
minimum air change rate
number of air changes per hour that needs to be ensured in order to maintain an appropriate level of air
hygiene (reduction of air pollutants, CO , moisture, etc.), which depends on type of the room (use); subject to
national regulation
3.18
regularly unheated space
space that, by design, is unheated; e.g. unheated attic, unheated corridor, unheated winter garden, etc.
Note 1 to entry: Within this standard, adjacent building entities (neighbouring apartment, etc.) are, for calculational
purposes, assumed to be unheated – these, however, do not belong to regularly unheated spaces.
3.19
unbalanced ventilation
fan-assisted ventilation where the sums of all supply air volume flows and all exhausted air volume flows
differ significantly in quantity or over the course of time
3.20
ventilation
entirety of all processes transporting air, including fan-assisted ventilation by ventilation systems, natural
ventilation (“airing”), infiltration through leakages, etc.
3.21
zone (ventilation zone)
group of rooms that are air-connected by design, either directly or indirectly (through other rooms there
between); e.g. through internally mounted air transfer devices / shortened door leafs, etc.
Note 1 to entry: By design, there is no air transfer between ventilation zones. Usually, each building entity is
considered a separate zone.
4 Symbols and abbreviations
4.1 Symbols
For the purposes of this document, the symbols given in EN ISO 52000-1 and the specific symbols listed in
Table 2 apply.
Table 2 — Symbols and units
Symbol Name Unit
Φ Heat power (heat loss, heat load) W
H Heat transfer coefficient W/K
θ Temperature on the Celsius scale °C
U Thermal transmittance, U-value W/(m ∙K)
f Adjustment/correction factor or term -
Δ… Delta/difference -
A Area m
a, b, c Calculation parameters -
B’ Geometric parameter of the floor slab m
z Depth of the floor slab below ground level m
P Exposed periphery of the floor slab m
n Calculation parameters (exponent) -
1…3
Symbol Name Unit
−1
n Air change rate 1/h, h
ρ Density (of air) kg/m
c Specific heat capacity of air (constant pressure) Wh/(kg∙K)
p
q Air volume flow m /h
(v)
3 2
q Specific air permeability of the building envelope m /(m ∙h)
V Volume m
v Pressure exponent for leakages -
a ATD authority -
(ATD…)
ϕ Specific heat power W/m
τ Building time constant h
C Thermal storage capacity Wh/K
c Volume-specific thermal storage capacity Wh/(m ∙K)
G Temperature gradient over height K/m
k Calculation parameter (factor) -
h Height
d Thickness m
λ Thermal conductivity
R Heat transmission resistance m K/W
G Ground water correction factor —
w
l Length (of a linear thermal bridge) m
T Thermodynamic temperature on the Kelvin scale K
v Wind velocity m/s
η efficiency -
Ψ Thermal transmittance of a linear thermal bridge W/(m∙K)
4.2 Subscripts
For the purposes of this document, the subscripts given in EN ISO 52000-1, any TC LEVEL GENERAL
DEFINITIONS STANDARD and the specific subscripts listed in Table 3 apply.
Table 3 — Indices
Index Meaning/Use
50 Referring to a pressure difference of 50 Pa
a Air
ann Annual
Index Meaning/Use
ATD Air transfer device; refers to externally mounted air transfer devices unless otherwise
specified
BE a
Numbering index for building entities
bottom Referring to the underneath of the building or a portion hereof
build Building
comb Combustion
D Discharge (coefficient)
design Referring to a design condition or technical property
dir Direction, orientation
du Disuse
e External air, exterior; usually refers to an external design condition
e,m (Annual) mean external
eff Effective
env Envelope
equiv Equivalent (U-value)
exh Exhaust
f Frame (of a window)
fac Facade; vertical external walls
floor Floor
g Ground
g Relative to ground level
g Glazing (of a window)
gain Heat gains
GW Groundwater
HL Heat load
hu Heating-up
i, j a
Numbering indices for heated spaces; where (i) is normally used for heated spaces in
consideration and (j) for other heated space interrelating to (i), such as a neighbouring
room, etc.
ia From the considered space (i) to an adjacent (heated) space (a)
iaBE From the considered space (i) to an adjacent Building entity (aBE)
iae From the considered space (i) to the exterior through an adjacent unheated space (ae)
ie From the considered space (i) to the exterior (e)
ig From the considered space (i) to the ground (g)
Index Meaning/Use
inf Infiltration
inf-add Additional infiltration
inner Inner/internal, Referring to internal dimensions
int Internal; often refers to an internal design condition
ix From the considered space (i) to another space; x being a placeholder for e, a, g, etc.
ju From a space (j) to a space (u) that is looked upon as being unheated, although, design-
wise, (u) may be heated or containing heated spaces
k a
Numbering index for building elements (walls, windows, ceilings, etc.)
l a
Numbering index for linear thermal bridges
leak Leakage(s)
m a
Numbering index for punctiform thermal bridges
max Maximum, upper limit
measure Measured or obtained on the basis of a measurement
min Minimum, lower limit
occup Occupied; referring to the occupied zone as the height level that internal design conditions
shall be achieved for
open Openings (e.g. open gates)
p Constant pressure
rad Radiant
rec Heat recovery
Ref Reference site
sb Setback
shield Shielding
si, se Internal and external heat transmission (e.g.: internal air to building element, building
element to external air)
small_open Small openings
sup Supply air
surf Surface
T (Heat) Transmission
TB Thermal bridge
techn Technical, technically required or caused
th Thermally induced
total Total, overall
transfer Referring to air volume flows between rooms
Index Meaning/Use
u Referring to a space (u) that is looked upon as being unheated although, design-wise, (u)
may be a heated space or an entity containing heated spaces
U Referring to a quality or condition regarding the thermal transmittance (U-value)
ue From a space (u) that is looked upon as being unheated to the exterior (e)
v Volume or volume flow
V Ventilation
w Wind-induced
z Numbering index for (ventilation) zones
n
a
Note that, within this standard, the ranges of numbering indices (k, i, j, etc.) are not defined explicitly (e.g. x
∑ i
i =1
with n = …). They shall be defined depending on context, e.g.:
— All building elements (k) that are walls to the exterior;
— all building elements (k) that belong to the room (i);
— all rooms (i) that are part of the building entity (BE);
and so on.
...
Frequently Asked Questions
EN 12831-1:2017 is a standard published by the European Committee for Standardization (CEN). Its full title is "Energy performance of buildings - Method for calculation of the design heat load - Part 1: Space heating load, Module M3-3". This standard covers: This European Standard covers methods for the calculation of the design heat load for single rooms, building entities and buildings, where the design heat load is defined as the heat supply (power) needed to maintain the required internal design temperature under design external conditions. Table 1 shows the relative position of this standard within the set of EPB standards in the context of the modular structure as set out in EN ISO 52000 -1. NOTE 1 In CEN ISO/TR 52000 2 the same table can be found, with, for each module, the numbers of the relevant EPB standards and accompanying technical reports that are published or in preparation. NOTE 2 The modules represent EPB standards, although one EPB standard may cover more than one module and one module may be covered by more than one EPB standard, for instance a simplified and a detailed method respectively. See also Clause 2 and Tables A.1 and B.1. (...)
This European Standard covers methods for the calculation of the design heat load for single rooms, building entities and buildings, where the design heat load is defined as the heat supply (power) needed to maintain the required internal design temperature under design external conditions. Table 1 shows the relative position of this standard within the set of EPB standards in the context of the modular structure as set out in EN ISO 52000 -1. NOTE 1 In CEN ISO/TR 52000 2 the same table can be found, with, for each module, the numbers of the relevant EPB standards and accompanying technical reports that are published or in preparation. NOTE 2 The modules represent EPB standards, although one EPB standard may cover more than one module and one module may be covered by more than one EPB standard, for instance a simplified and a detailed method respectively. See also Clause 2 and Tables A.1 and B.1. (...)
EN 12831-1:2017 is classified under the following ICS (International Classification for Standards) categories: 91.140.10 - Central heating systems. The ICS classification helps identify the subject area and facilitates finding related standards.
EN 12831-1:2017 has the following relationships with other standards: It is inter standard links to EN 12831:2003, prEN 12831-1. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
EN 12831-1:2017 is associated with the following European legislation: EU Directives/Regulations: 2010/31/EU; Standardization Mandates: M/480. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.
You can purchase EN 12831-1:2017 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.
La norme EN 12831-1:2017, intitulée "Performance énergétique des bâtiments - Méthode de calcul de la charge thermique de conception - Partie 1 : Charge de chauffage des espaces", présente un cadre essentiel pour la détermination de la charge thermique nécessaire au chauffage de divers espaces. Son champ d'application est clairement défini, ciblant spécifiquement le calcul de la charge thermique de conception pour des pièces uniques, des entités de bâtiments et des bâtiments en entier. Cela permet une approche standardisée et rigoureuse qui est cruciale pour assurer le confort intérieur et l'efficacité énergétique. Parmi les points forts de cette norme, on note la précision des méthodes de calcul, qui garantissent que la chaleur fournie est adéquate pour maintenir la température interne requise, même dans des conditions externes défavorables. Cette précision est primordiale pour les concepteurs et les ingénieurs, car elle leur permet de dimensionner correctement les systèmes de chauffage, contribuant ainsi à une performance énergétique optimale des bâtiments. En outre, la normalisation inclut une référence précieuse à sa position par rapport aux autres normes de performance énergétique des bâtiments (EPB), comme indiqué dans le tableau 1 du document. Cette mise en contexte dans la structure modulaire définie par la norme EN ISO 52000-1 souligne son importance et sa pertinence au sein d'un ensemble plus large de normes. Cela facilite non seulement l'adhésion à des pratiques uniformes, mais encourage également l'harmonisation à l'échelle européenne dans le domaine de l'énergie des bâtiments. La norme EN 12831-1:2017 est donc non seulement pertinente pour les professionnels du secteur, mais elle est aussi essentielle pour le développement de bâtiments répondant aux exigences modernes de durabilité et d'efficacité énergétique. Son approche méthodique et sa compatibilité avec d'autres normes renforcent son statut d'outil incontournable pour quiconque s'engage dans l'optimisation des performances énergétiques des bâtiments.
The standard EN 12831-1:2017 encompasses a comprehensive framework for calculating the design heat load required for space heating across various building types, including single rooms and entire buildings. The scope of this European Standard is significant as it establishes a systematic approach to determining the necessary heat supply needed to maintain the desired internal climate under pre-defined external conditions. This is particularly relevant in the context of energy performance of buildings (EPB), where precise calculations are crucial for optimizing heating efficiency and ensuring compliance with energy regulations. One of the strengths of EN 12831-1:2017 is its integration within the larger modular structure defined by EN ISO 52000-1, which delineates the relationship of this standard to other EPB standards. This relationship enables practitioners to navigate between various methodologies and technical reports, enhancing their ability to select appropriate calculation methods that align with project requirements. The standard effectively clarifies that while one EPB standard may encompass multiple modules, distinct standards may equally cover a single module through simplified or detailed methods, offering users flexibility based on project complexity. The inclusion of notes referencing CEN ISO/TR 52000-2 and the tables detailing the modular connections within the EPB standards provides further context and usability for practitioners relying on these methodologies. This relational clarity aids in ensuring that users not only understand how to calculate the design heat load but also how this fits within the broader framework of energy performance expectations for buildings. In conclusion, EN 12831-1:2017 is an essential standard that serves the vital purpose of guiding building professionals in the accurate assessment of heating loads. Its structured approach, defined scope, and integration with other EPB standards underscore its relevance and strength within the field of energy performance measurement and management.
Die Norm EN 12831-1:2017 behandelt die energetische Leistung von Gebäuden und stellt einen methodischen Standard für die Berechnung der erforderlichen Heizlast bereit. Sie richtet sich sowohl an Einzelräume als auch an gesamte Gebäude, und definiert die Heizlast als die Energiezufuhr, die notwendig ist, um die geforderte Innenraummtemperatur unter den festgelegten externen Bedingungen aufrechtzuerhalten. Ein herausragendes Merkmal dieser Norm ist ihre umfangreiche Anwendungspalette, die es ermöglicht, präzise Berechnungen für verschiedene Gebäudetypen durchzuführen. Dies ist besonders relevant im Kontext der EU-Vorgaben zur Energieeffizienz, da eine korrekte Ermittlung der Heizlast entscheidend für die energetische Planung und die nachfolgenden Maßnahmen zur Energieeinsparung ist. Die Norm integriert sich klar in die modulare Struktur der EPB-Normen, wie sie in EN ISO 52000-1 dargelegt ist. Für Fachleute im Gebäude- und Heizungsbau bietet sie eine wertvolle Grundlage, um die Heizlast effizient zu bestimmen und damit die energetische Optimierung von Gebäuden zu fördern. Ihre Verknüpfung mit anderen normativen Dokumenten und technischen Berichten im Rahmen des CEN ISO/TR 52000 2 unterstreicht die Relevanz der EN 12831-1:2017 innerhalb des gesamten Normenspektrums. Zusammengefasst stellt die Norm EN 12831-1:2017 ein essentielles Werkzeug dar, das nicht nur die technischen Anforderungen an die Heizlastberechnung gerecht wird, sondern auch zur Förderung nachhaltiger Gebäude und zur Einhaltung von Energieeffizienzstandards beiträgt. Der strukturierte Ansatz, die klare Definition der Heizlast und die Integration in bestehende Normen machen diese Norm zu einem unverzichtbaren Bestandteil für Fachkräfte im Bereich der energetischen Bewertung von Gebäuden.
SIST EN 12831-1:2018은 건물의 에너지 성능을 평가하기 위한 방법론으로, 설계 열 부하 계산에 대한 유럽 표준 중 하나입니다. 이 표준은 단일 방, 건물 단위 및 전체 건물의 설계 열 부하 계산 방법을 포함하고 있으며, 설계 열 부하는 설계 외부 조건에서 요구되는 내부 설계 온도를 유지하기 위해 필요한 열 공급 (전력)의 양으로 정의됩니다. 이 표준의 강점 중 하나는 명확한 방법론을 제공하여, 다양한 건축 환경에서의 에너지 효율성을 평가할 수 있도록 돕는다는 점입니다. 시스템이 어떻게 작동하는지에 대한 체계적인 접근 방식을 제공하며, 이는 설계 엔지니어들이 효율적인 에너지 사용자 설계를 개발하는 데 중요한 역할을 합니다. 특히, EN ISO 52000-1에 명시된 모듈 구조 내에서 이 표준의 위치를 명확히 함으로써, EPB(에너지 성능 건물) 표준 범위에서의 연관성을 강화하고 있습니다. SIST EN 12831-1:2018의 적용 범위는 다양한 건축물에 대한 설계 열 부하의 계산을 포함하고 있어, 일정한 기후 조건과 다양한 사용자의 요구 사항을 고려할 수 있는 유연성을 제공합니다. 이 표준은 에너지 효율성을 강화하고, 설계 과정에서의 일관성을 보장하기 위해 필수적인 가이드라인을 제시합니다. 결론적으로, SIST EN 12831-1:2018은 건축 분야에서 에너지 성능 및 설계 열 부하 계산에 없어서는 안 될 중요한 표준으로, 건물의 에너지 효율성을 극대화하는 데 기여할 수 있는 강력한 도구입니다. 이를 통해 건축물의 에너지 요구 사항을 효과적으로 관리할 수 있습니다.
SIST EN 12831-1:2018の標準は、建物のエネルギー性能を評価する上で極めて重要な役割を果たしています。この標準は、設計熱負荷の算出方法に関して体系的なアプローチを提供し、特にスペース加熱負荷に焦点を当てています。設計熱負荷とは、外部の設計条件の下で、求められる内部設計温度を維持するために必要な熱供給(出力)を定義しており、この定義は建物のエネルギー効率を評価する上で基本的な要素です。 この標準の強みは、その網羅性にあります。単一の部屋や建物全体、建物単位に対して適用可能であり、多様な建物条件に対応した設計熱負荷の計算手法を提供しています。これにより、建物のエネルギー性能の正確な評価が可能となり、エネルギー効率の向上に寄与します。 また、EN ISO 52000-1のモジュラー構造の中での位置付けも重要です。この標準は、EPBスタンダードセットの中で、他の関連する技術報告とともに利用されることが想定されており、さまざまなモジュールが相互に関連する形で設計されています。このようなフレームワークは、異なる方法でのアプローチを柔軟に採用できるため、利用者にとって非常に有益です。 さらに、設計熱負荷の算出が可能であるため、エネルギーモデルの作成や、持続可能な建築法への道筋をつけることができます。建築業界におけるエネルギー効率の向上を目指す上で、このSIST EN 12831-1:2018は不可欠な指針となるでしょう。全体として、この標準は、建物のエネルギー性能向上へ向けた計算の基盤を形成し、エネルギー管理の効率化に貢献するものです。








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...