EN 15265:2007
(Main)Energy performance of buildings - Calculation of energy needs for space heating and cooling using dynamic methods - General criteria and validation procedures
Energy performance of buildings - Calculation of energy needs for space heating and cooling using dynamic methods - General criteria and validation procedures
This European Standard specifies a set of assumptions, requirements and validation tests for procedures used for the calculation of the annual energy needs for space heating and cooling of a room in a building where the calculations are done with a time step of one hour or less.
This European Standard does not impose any specific numerical technique for the calculation of the room heating or cooling need and the internal temperatures of a room.
The purpose of this European Standard is to validate calculation methods used to:
assess the energy performance of each room of a building;
provide energy data to be used as interface with system performance analysis (heating, cooling, ventilating, lighting, domestic hot water etc).
The validation procedure is used to check the energy need for space heating and cooling based on a transient sensible heat balance model, taking into account:
the external surface heat balance;
the conduction through the building envelope;
the thermal capacities of external and internal structures;
the internal surface heat balance;
the air heat balance;
the heat balance solution method.
All other aspects are given either by prescribed boundary conditions or by input data and are not part of the model validation. It is assumed, that for all these other matters e.g. embedded heating and cooling systems, prescriptive models have to be used according to existing European Standards.
The system performance analysis and moisture balance are not within the scope of this European Standard.
Wärmetechnisches Verhalten von Gebäuden - Berechnung des Heiz- und Kühlenergieverbrauchs - Allgemeine Kriterien und Validierungsverfahren
Diese Europäische Norm legt die Annahmen, Anforderungen und Validierungsprüfungen für ein Verfahren zur Berechnung des Jahresheiz und Jahreskühlenergieverbrauchs eines Raums in einem Gebäude fest, wobei die Berechnungen auf Zeitschritten von einer Stunde oder weniger beruhen.
Diese Europäische Norm legt keine spezifische numerische Verfahrensweise für die Berechnung der Raumheiz oder Raumkühlbedarfs und der Rauminnentemperaturen fest.
Der Zweck dieser Europäischen Norm besteht darin, Berechnungsverfahren zu validieren, die für Folgendes angewendet werden:
Beurteilung der Energieeffizienz jedes Raumes eines Gebäudes;
Bereitstellung von Energiedaten, die als Schnittstelle mit der Analyse der Anlagenleistung anzuwenden sind (Heizen, Kühlen, Beleuchtung, Warmwasserbereitung usw.).
Das Validierungsverfahren wird angewendet, um auf der Grundlage eines Modells der Wärmebilanz für die sensible Übergangswärme und unter Berücksichtigung der folgenden Aspekte den Heiz und Kühlenergie¬verbrauch zu überprüfen:
Wärmebilanz für die Außenoberfläche;
Wärmeleitung durch die Gebäudehülle;
Wärmekapazität der Außen- und Innenbauteile;
Wärmebilanz für die Innenoberfläche;
Wärmebilanz für die Luft;
Lösungsverfahren für die Wärmebilanz.
Alle weiteren Aspekte sind in Form von vorgeschriebenen Randbedingungen oder Eingangsdaten angegeben und sind nicht Bestandteil der Modellvalidierung. Es wird vorausgesetzt, dass für alle weiteren Aspekte, z. B. eingebettete Heiz- und Kühlsysteme, vorgeschriebene Modelle in Übereinstimmung mit bestehenden Europäischen Normen anzuwenden sind.
Die Analyse der Anlagenleistung und die Feuchtebilanz sind nicht Gegenstand dieser Europäischen Norm.
Performance thermiques des bâtiments - Calcul des besoins d'énergie pour le chauffage et le refroidissement des locaux - Critères généraux et procédures de validation
La présente Norme européenne définit les hypothèses, exigences et essais de validation des procédures de calcul des besoins énergétiques annuels de chauffage et de refroidissement d’un local, dans un bâtiment où les calculs sont effectués sur des périodes inférieures ou égales à une heure.
La présente Norme européenne n’impose pas de technique numérique spécifique pour le calcul des besoins en chauffage ou en refroidissement et des températures intérieures du local.
L'objet de la présente Norme européenne est de valider les méthodes de calcul utilisées pour :
évaluer les performances énergétiques de chaque local d’un bâtiment ;
fournir les données énergétiques à utiliser comme interface avec l’analyse des performances du système (chauffage, refroidissement, ventilation, éclairage, eau chaude sanitaire, etc).
La procédure de validation sert à vérifier les besoins énergétiques de chauffage et de refroidissement en se basant sur un modèle de balance thermique dynamique en chaleur sensible, en tenant compte :
de la balance thermique superficielle extérieure ;
de la conduction de l'enveloppe du bâtiment ;
des capacités thermiques des structures extérieure et intérieure ;
de la balance thermique superficielle intérieure ;
de la balance thermique de l'air ;
de la méthode de solution de la balance thermique.
Tous les autres aspects sont indiqués soit par les conditions limites prescrites, soit par les données d'entrées, et ne font pas partie de la validation du modèle. On suppose que pour toutes ces autres questions, par exemple, pour les systèmes de chauffage et de refroidissement intégrés, des modèles normatifs doivent être utilisés d'après les Normes européennes existantes.
L’analyse des performances du système et la balance en terme d’humidité n’entrent pas dans le domaine d’application de la présente Norme européenne.
Energijske značilnosti stavb - Računanje porabljene energije za segrevanje in hlajenje prostora z dinamično metodo - Splošna merila in validacija postopka
General Information
- Status
- Withdrawn
- Publication Date
- 21-Aug-2007
- Withdrawal Date
- 20-Jan-2026
- Technical Committee
- CEN/TC 89 - Thermal performance of buildings and building components
- Current Stage
- 9960 - Withdrawal effective - Withdrawal
- Start Date
- 19-Jul-2017
- Completion Date
- 28-Jan-2026
- Directive
- 89/106/EEC - Construction products
Relations
- Effective Date
- 08-Jun-2022
- Effective Date
- 28-Jan-2026
- Effective Date
- 28-Jan-2026
- Effective Date
- 28-Jan-2026
- Effective Date
- 28-Jan-2026
- Effective Date
- 28-Jan-2026
- Effective Date
- 28-Jan-2026
- Effective Date
- 28-Jan-2026
- Effective Date
- 08-Jun-2022
Get Certified
Connect with accredited certification bodies for this standard

ICC Evaluation Service
Nonprofit organization that performs technical evaluations of building products.

Aboma Certification B.V.
Specialized in construction, metal, and transport sectors.
BBA (British Board of Agrément)
UK construction product certification.
Sponsored listings
Frequently Asked Questions
EN 15265:2007 is a standard published by the European Committee for Standardization (CEN). Its full title is "Energy performance of buildings - Calculation of energy needs for space heating and cooling using dynamic methods - General criteria and validation procedures". This standard covers: This European Standard specifies a set of assumptions, requirements and validation tests for procedures used for the calculation of the annual energy needs for space heating and cooling of a room in a building where the calculations are done with a time step of one hour or less. This European Standard does not impose any specific numerical technique for the calculation of the room heating or cooling need and the internal temperatures of a room. The purpose of this European Standard is to validate calculation methods used to: assess the energy performance of each room of a building; provide energy data to be used as interface with system performance analysis (heating, cooling, ventilating, lighting, domestic hot water etc). The validation procedure is used to check the energy need for space heating and cooling based on a transient sensible heat balance model, taking into account: the external surface heat balance; the conduction through the building envelope; the thermal capacities of external and internal structures; the internal surface heat balance; the air heat balance; the heat balance solution method. All other aspects are given either by prescribed boundary conditions or by input data and are not part of the model validation. It is assumed, that for all these other matters e.g. embedded heating and cooling systems, prescriptive models have to be used according to existing European Standards. The system performance analysis and moisture balance are not within the scope of this European Standard.
This European Standard specifies a set of assumptions, requirements and validation tests for procedures used for the calculation of the annual energy needs for space heating and cooling of a room in a building where the calculations are done with a time step of one hour or less. This European Standard does not impose any specific numerical technique for the calculation of the room heating or cooling need and the internal temperatures of a room. The purpose of this European Standard is to validate calculation methods used to: assess the energy performance of each room of a building; provide energy data to be used as interface with system performance analysis (heating, cooling, ventilating, lighting, domestic hot water etc). The validation procedure is used to check the energy need for space heating and cooling based on a transient sensible heat balance model, taking into account: the external surface heat balance; the conduction through the building envelope; the thermal capacities of external and internal structures; the internal surface heat balance; the air heat balance; the heat balance solution method. All other aspects are given either by prescribed boundary conditions or by input data and are not part of the model validation. It is assumed, that for all these other matters e.g. embedded heating and cooling systems, prescriptive models have to be used according to existing European Standards. The system performance analysis and moisture balance are not within the scope of this European Standard.
EN 15265:2007 is classified under the following ICS (International Classification for Standards) categories: 91.120.10 - Thermal insulation of buildings; 91.140.99 - Other installations in buildings. The ICS classification helps identify the subject area and facilitates finding related standards.
EN 15265:2007 has the following relationships with other standards: It is inter standard links to EN ISO 52017-1:2017, EN 16798-5-1:2017, EN 16798-7:2017, EN ISO 7345:1995, EN 16798-5-2:2017, EN ISO 14683:2017, EN ISO 10211:2017, EN ISO 13370:2017, EN ISO 52016-1:2017. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
EN 15265:2007 is associated with the following European legislation: EU Directives/Regulations: 305/2011, 89/106/EEC, 92/75/EEC; Standardization Mandates: M/274. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.
EN 15265:2007 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.
Standards Content (Sample)
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Wärmetechnisches Verhalten von Gebäuden - Berechnung des Heiz- und Kühlenergieverbrauchs - Allgemeine Kriterien und ValidierungsverfahrenPerformance thermiques des bâtiments - Calcul des besoins d'énergie pour le chauffage et le refroidissement des locaux - Critères généraux et procédures de validationEnergy performance of buildings - Calculation of energy needs for space heating and cooling using dynamic methods - General criteria and validation procedures91.120.10Toplotna izolacija stavbThermal insulationICS:Ta slovenski standard je istoveten z:EN 15265:2007SIST EN 15265:2007en,de01-december-2007SIST EN 15265:2007SLOVENSKI
STANDARD
EUROPEAN STANDARDNORME EUROPÉENNEEUROPÄISCHE NORMEN 15265August 2007ICS 91.140.99 English VersionEnergy performance of buildings - Calculation of energy needsfor space heating and cooling using dynamic methods - Generalcriteria and validation proceduresPerformance thermique des bâtiments - Calcul des besoinsd'énergie pour le chauffage et le refroidissement des locaux- Critères généraux et procédures de validationWärmetechnisches Verhalten von Gebäuden - Berechnungdes Heiz- und Kühlenergieverbrauchs - AllgemeineKriterien und ValidierungsverfahrenThis European Standard was approved by CEN on 6 July 2007.CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this EuropeanStandard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such nationalstandards may be obtained on application to the CEN Management Centre or to any CEN member.This European Standard exists in three official versions (English, French, German). A version in any other language made by translationunder the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as theofficial versions.CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland,France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.EUROPEAN COMMITTEE FOR STANDARDIZATIONCOMITÉ EUROPÉEN DE NORMALISATIONEUROPÄISCHES KOMITEE FÜR NORMUNGManagement Centre: rue de Stassart, 36
B-1050 Brussels© 2007 CENAll rights of exploitation in any form and by any means reservedworldwide for CEN national Members.Ref. No. EN 15265:2007: E
Climatic data for the validation examples.23 Bibliography.74
Introduction This European Standard defines assumptions, boundary conditions and a procedure for the validation of dynamic calculation methods for the calculation of the annual energy need for space heating and cooling of a building or a part of it. This way, the same dynamic method used for calculating design heating and cooling loads can provide also the cooling and heating needs necessary to estimate annual energy requirements. The series of European Standards, giving general criteria and validation procedures for the building part of energy simulation models for the different calculation subjects, are listed below. European Standard Subject EN ISO 13791 EN ISO 13792 Temperature calculations (air and operative) EN 15255 Load calculations (sensible cooling) EN 15265 Energy need calculations (heating and cooling)
- θ Celsius temperature °C λ thermal conductivity W/(m⋅K) ρ density kg/m3 ρe solar energy reflectance - τe direct solar energy transmittance - Φ heat flow rate W
Subscripts a air ic internal cavity c convection r radiation e external op operative ec external cavity se external surface i internal si internal surface
4 Procedures The hourly heating and cooling needs of the building are calculated for the whole year based on climatic data, building characteristics using applicable standards listed in prEN ISO 13790 and national data for internal heat gains. The validation tests given in Clause 8 are limited to the thermal energy to be delivered to or extracted from the premises for heating and cooling only and therefore exclude the linkage to the energy system parts illustrated in Figure 1.
Figure 1 — Energy flows
5 Basic assumptions The following basic assumptions shall be considered as minimum requirements for dynamic calculation methods being validated according to this European Standard: the room is considered a closed space delimited by enclosure elements; the air temperature is uniform throughout the room; the thermophysical properties of all materials are constant and isotropic; the convective heat transfer coefficients are fixed; the heat conduction through each room element is one-dimensional and their surfaces are considered isothermal; thermal bridges are represented either as linear heat loss elements with no thermal inertia according to prEN ISO 14683 or as equivalent one-dimensional building elements with thermal mass and thermal characteristics derived by steady state calculations according to prEN ISO 10211; the distribution of the solar radiation on the internal surfaces of the components of the zone is fixed; the distribution of the radiative part of heat flow to or from internal sources is uniform over the inside surfaces of the room elements; the long-wave radiative and the convective heat transfers at the internal surface of each component are treated separately; the angular dependence of solar transmission properties of glazing is accounted for based on manufacturers information, or alternatively a constant reduction factor of 0,9 has to be used; movable shading and external shading are taken into account according to prEN ISO 13790; the heat transfer through the ground floor (including floor-wall connections) shall be treated according to the dynamic calculation procedure given in prEN ISO 13370. NOTE This list is not necessarily exhaustive, depending on the building features and applications. 6 Data requirement 6.1 General For evaluating the energy needs of the building, the following information is required: the hourly climatic data of the location for a complete reference year; the descriptors of the building envelope components including thermal bridges (area and geometry, orientation, exposure, boundary conditions, thermophysical parameters, solar optical properties of windows systems and external shading according to prEN ISO 13790); the hourly profiles of the internal temperature set-point; the hourly profiles of the ventilation and infiltration rate;
hc,e = 17,5 W/(m2⋅K); internal surface of no-heating or no-cooling component
hc,i = 2,5 W/(m2⋅K); internal surface of cooling or heating component: vertical:
hc,i = 2,5 W/(m2⋅K); horizontal (heat flow upwards)
hc,i = 5,0 W/(m2⋅K); horizontal (heat flow downwards)
hc,i = 0,7 W/(m2⋅K); b) long-wave radiative heat transfer coefficients (to sky and surroundings): internal surface
hlr,i = 5,5 W/(m2⋅K); external surface
hlr,e = 5,5 W/(m2⋅K). NOTE Given values are typical for high emissivity ε = 0,9 and Tm = 300 K. For low emissivity surfaces, guidance can be found in Annex A of prEN ISO 6946.
Af
is the floor area; Awa is the sum of all vertical wall areas except windows; Ac
is the ceiling area; At
is the total area except window; At = Af + Awa + Ac. 6.5 Air ventilation and air infiltration 6.5.1 General External air in the form of infiltration and ventilation provides a special type of load which is imposed on the conditioned space or the system. Ventilation is supplied to meet air purity and odour standards, while infiltration arises from controlled or uncontrolled leakage around doors and windows or through walls. 6.5.2 Infiltration Infiltration is caused by a greater air pressure on the exterior of the building than on the interior. The quantity of the infiltrated air depends on the pressure difference; the number, the length and the width of the perimeter gaps of windows and doors; and the nature of the flow in the cracks or gaps.
the heat flow is provided to or removed from the space by the surface of the device by convection and radiation. In this case the heating or cooling load is the total heat flow rate to be provided or removed by the surface of the heated or cooled element (comprising heat exchange with adjacent internal and external environments and stored heat variation) in order to maintain the prescribed internal conditions. The room load, positive for heating and negative for cooling, is then given by: isr,ic,ilr,bLΦΦΦΦΦ+++= (2) where Φb is the heat flow rate backwards (it can be by conduction if the emitter is directly connected with the envelope, or by convection and long-wave radiation if the heating or cooling element is a suspended surface); Φlr,i is the heat flow rate by long-wave radiation; Φc,i is the heat flow rate by convection to the internal air; Φsr,i is the heat flow rate due to the short-wave radiation absorbed by the surface. 7 Report of the calculation 7.1 General The calculation report shall include the input data and the result of the calculation. 7.2 Input data For evaluating hourly energy requirements of the building with a room by room calculation, the following information is required: a) the hourly climatic data of the location over a complete reference year; b) the descriptors of the envelope elements (area, exposure, boundary conditions, thermophysical parameters, solar factor); c) the schedule of the internal temperature set-point (air or operative temperature); d) the hourly profile of the ventilation and infiltration rates; e) the scheduled values of the convective and radiative heat flows due to lighting, occupants, internal equipment, appliances; f) the characteristics of the thermal system (convective and/or radiative) and maximum heating and cooling capacity.
External wall Window glazing Internal wall left Internal wall right Internal wall back Floor Ceiling Area (m²) 3,08 7,0 15,4 15,4 10,08 19,8 19,8
The solar parameters (considered here as independent of the solar angle) of the glazing component are given in Table 3: Table 3 — Solar parameters of the window glazing components Component Transmittance Reflectance Absorptance Shading 0,20 0,50 0,30 Pane 0,84 0,08 0,08
For opaque components the following values are taken: solar absorptance of all wall surfaces
αsr = 0,6; solar absorptance of the roof
αsr = 0,9.
Key 1 shading device 2 external pane 3 internal pane Figure 2 — Double pane window glazing with external shading Thermal resistances including convection and long wave radiation: external surface Rse = 0,043 5 m2⋅K/W; cavity between external blind and external pane Rec = 0,080 m2⋅K/W; cavity between external pane and internal pane Ric = 0,173 m2⋅K/W; internal surface Rsi = 0,125 m2⋅K/W. Thermal transmittance of the glazing system Ug = 2,37 W/(m2⋅K). Total solar energy transmittance of the glazing system g = 0,20; b) DP - Double pane glass without external shading device (Figure 3): thermal resistances: external surface Rse = 0,043 5 m2 K/W; cavity between external pane and internal pane Ric = 0,173 m2 K/W; internal surface Rsi = 0,125 m2 K/W. Thermal transmittance of the glazing system Ug = 2,93 W/(m2K).
Key 2 external pane 3 internal pane Figure 3 — Double pane window glazing without shading device The thermophysical characteristics of the walls, ceiling and floor are given in Table 4.
d m λλλλ W/(m⋅K) ρρρρ kg/m³ cp kJ/(kg⋅K) Type 1 (external wall)
outer layer 0,115 0,99 1 800 0,85 insulating layer 0,06 0,04 30 0,85 masonry 0,175 0,79 1 600 0,85 internal plastering 0,015 0,70 1 400 0,85 Type 2 (internal wall)
gypsum plaster 0,012 0,21 900 0,85 mineral wool 0,10 0,04 30 0,85 gypsum plaster 0,012 0,21 900 0,85 Type 3c (ceiling)
plastic covering 0,004 0,23 1 500 1,5 cement floor 0,06 1,40 2 000 0,85 mineral wool 0,04 0,04 50 0,85 concrete 0,18 2,10 2 400 0,85 (to be continued)
d m λλλλ W/(m⋅K) ρρρρ kg/m³ cp kJ/(kg⋅K) Type 3f (floor)
concrete 0,18 2,10 2 400 0,85 mineral wool 0,04 0,04 50 0,85 cement floor 0,06 1,40 2 000 0,85 plastic covering 0,004 0,23 1 500 1,5 Type 4c (ceiling/roof)
plastic covering 0,004 0,23 1 500 1,5 cement floor 0,06 1,40 2 000 0,85 mineral wool 0,04 0,04 50 0,85 concrete 0,18 2,10 2 400 0,85 mineral wool 0,10 0,04 50 0,85 acoustic board 0,02 0,06 400 0,84 Type 4f (floor)
acoustic board 0,02 0,06 400 0,84 mineral wool 0,10 0,04 50 0,85 concrete 0,18 2,10 2 400 0,85 mineral wool 0,04 0,04 50 0,85 cement floor 0,06 1,40 2 000 0,85 plastic covering 0,004 0,23 1 500 1,5 Type 5 (roof)
rain protection 0,004 0,23 1 500 1,3 insulating 0,08 0,04 50 0,85 concrete 0,20 2,1 2 400 0,85
The hourly mean values of climatic data are given in Annex A, starting on 1 January and ending on 31 December. The values of the solar radiation correspond to solar power calculated at each hour, for solar distribution a solar to air factor fsa = 0.1 and a solar loss factor flf
= 0 is used. The latitude is 49° and the values are given in solar time. Ventilation is by external air. The first day of the year is a Monday. The initial temperatures of all structural elements (at the beginning of the calculation on Monday 1 January, 00:00 h solar time) are set to 18 °C.
Test External opaque wall Glazing systemAdiabatic
internal vertical wall Adiabatic ceiling Adiabatic floor1 Type 1 Shaded DP Type 2 Type 4c Type 4f
internal gains
20 W/m²
convective; per floor area, from 8,00 h to 18,00 h during weekdays; ventilation
1 air change per hour from 08:00 to 18:00 during weekdays; infiltration
0; system
air temperature control; continuous operation all days of the week;
set point for heating : 20 °C with no dead band (d.b. = 0);
set point for cooling : 26 °C with no dead band (d.b. = 0); glazing system : with external shade (Shaded DP); thermal bridges neglected. The time schedules for this and all other tests are given in legal time, which is 2 h ahead of solar time in summer (hour 1 996 to hour 7 032) and 1 h ahead of solar time in winter. Test 2: as test 1 + change inertia Test External opaque wall Glazing systemAdiabatic
internal vertical wall Adiabatic ceiling Adiabatic floor2 Type 1 Shaded DP Type 2 Type 3c Type 3f
Test 3:
as test 1 + no internal gains. Test 4:
as test 1 + no solar protection Test External opaque wall Glazing systemAdiabatic
internal vertical wall Adiabatic ceiling Adiabatic floor4 Type 1 DP Type 2 Type 4c Type 4f
Test 10: as test 6 + external roof Test External opaque wall Glazing systemAdiabatic internal vertical wall Roof Adiabatic floor10 Type 1 Shaded DP Type 2 Type 4c Type 3f
Test 11: as test 7 + external roof Test External opaque wall Glazing systemAdiabatic internal vertical wall Roof Adiabatic floor11 Type 1 Shaded DP Type 2 Type 5 Type 4f
Test 12: as test 8 + external roof Test nr External opaque wall Glazing systemAdiabatic internal vertical wall Roof Adiabatic floor12 Type 1 DP Type 2 Type 5 Type 4f
:
rQH ≤ 0,05
and rQC ≤ 0,05; Level B
: rQH ≤ 0,10
and rQC ≤ 0,10; Level C
: rQH ≤ 0,15
and rQC ≤ 0,15. The reference results are given in Tables 5 and 6. Table 5 — Reference results for tests 1 to 4 (informative) Test
QH,ref kWh QC,ref kWh Qtot,ref kWh 1 748,0 233,8 981,8 2 722,7 200,5 923,2 3 1 368,5 43,0 1 411,6 4 567,4 1 530,9 2 098,3
Table 6 — Reference results for tests 5 to 12 (normative) Test
QH,ref kWh QC,ref kWh Qtot,ref kWh 5 463,1 201,7 664,8 6 509,8 185,1 694,9 7 1 067,4 19,5 1 086,9 8 313,2 1 133,2 1 446,4 9 747,1 158,3 905,4 10 574,2 192,4 766,6 11 1 395,1 14,1 1 409,3 12 533,5 928,3 1 461,8
Climatic data for the validation examples Data Time: Hour of the year starting 1 January θa,e External air temperature in °C DirN Direct normal solar radiation in W/m2
DifH Diffuse horizontal solar radiation in W/m2 GWest Global solar radiation on a vertical, west facing wall in W/m2 Filename Annex A.prn Location Trappes, France (49°N, 2°E)
Time
θa,e DirN
DifH GWest
h
°C
W/m2
W/m2
W/m2
4.7
0.0
0.0
0.0
4.6
0.0
0.0
0.0
4.5
0.0
0.0
0.0
4.5
0.0
0.0
0.0
4.2
0.0
0.0
0.0
3.6
0.0
0.0
0.0
3.5
0.0
0.0
0.0
3.4
0.0
0.0
0.0
3.0
5.6
21.8
13.1
2.9
0.5
16.6
10.0
3.2
3.1
57.5
34.6
3.6
7.1
97.8
58.9
4.0
2.1
54.9
33.3
4.2
5.1
73.7
46.1
4.6
5.6
54.5
36.0
5.0
1.4
11.0
7.6
4.9
0.0
0.0
0.0
4.6
0.0
0.0
0.0
4.4
0.0
0.0
0.0
4.2
0.0
0.0
0.0
4.1
0.0
0.0
0.0
4.1
0.0
0.0
0.0
4.0
0.0
0.0
0.0
3.9
0.0
0.0
0.0
3.7
0.0
0.0
0.0
3.6
0.0
0.0
0.0
3.5
0.0
0.0
0.0
3.2
0.0
0.0
0.0
3.2
0.0
0.0
0.0
2.6
0.0
0.0
0.0
2.2
0.0
0.0
0.0
2.7
0.0
0.0
0.0
2.9
1.4
11.0
6.6
3.0
3.1
41.1
24.7
3.3
3.0
57.5
34.6
3.4
0.5
27.6
16.6
3.2
3.2
68.5
41.6
3.2
2.5
52.1
32.2
2.9
5.6
54.5
35.9
2.5
1.4
11.0
7.6
2.2
0.0
0.0
0.0
2.3
0.0
0.0
0.0
2.4
0.0
0.0
0.0
2.6
0.0
0.0
0.0
2.9
0.0
0.0
0.0
3.0
0.0
0.0
0.0
3.2
0.0
0.0
0.0
3.3
0.0
0.0
0.0
3.4
0.0
0.0
0.0
3.4
0.0
0.0
0.0
3.4
0.0
0.0
0.0
3.3
0.0
0.0
0.0
3.1
0.0
0.0
0.0
3.3
0.0
0.0
0.0
3.3
0.0
0.0
0.0
2.6
0.0
0.0
0.0
1.8
23.2
31.5
19.1
1.7
1.1
24.8
14.9
1.6
3.3
60.2
36.2
1.4
0.5
27.6
16.6
1.6
3.7
73.8
44.9
1.8
1.2
35.8
21.9
1.8
0.3
13.8
8.5
1.7
1.3
11.0
7.6
1.8
0.0
0.0
0.0
1.9
0.0
0.0
0.0
1.6
0.0
0.0
0.0
1.4
0.0
0.0
0.0
1.3
0.0
0.0
0.0
1.2
0.0
0.0
0.0
1.2
0.0
0.0
0.0
1.2
0.0
0.0
0.0
1.2
0.0
0.0
0.0
1.2
0.0
0.0
0.0
1.2
0.0
0.0
0.0
1.0
0.0
0.0
0.0
1.2
0.0
0.0
0.0
1.5
0.0
0.0
0.0
1.7
0.0
0.0
0.0
2.3
0.0
0.0
0.0
2.8
1.3
11.0
6.6
3.0
0.5
16.6
10.0
3.1
6.6
84.3
50.8
3.8
31.0 132.0
80.2
4.2
1.0
38.6
23.3
3.5
0.4
22.1
13.4
2.6
0.3
13.8
8.5
1.6
9.1
27.1
23.0
0.7
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.3
0.0
0.0
0.0
0.3
0.0
0.0
0.0
0.5
0.0
0.0
0.0
1.1
0.0
0.0
0.0
1.5
0.0
0.0
0.0
1.5
0.0
0.0
0.0
1.3
0.0
0.0
0.0
1.1
0.0
0.0
0.0
0.9
0.0
0.0
0.0
0.9
0.0
0.0
0.0
0.6
0.0
0.0
0.0
0.3
0.0
0.0
0.0
0.7
0.0
0.0
0.0
1.0
0.0
0.0
0.0
1.6
1.9
13.7
8.3
2.1
1.6
30.3
18.2
2.7
3.5
62.9
37.9
3.5 549.3 105.9
80.7
4.1
33.2 134.1
85.5
4.2
20.3 108.4
72.8
4.3
98.5
92.1 112.5
4.6
0.3
5.5
3.5
4.4
0.0
0.0
0.0
3.9
0.0
0.0
0.0
3.4
0.0
0.0
0.0
3.2
0.0
0.0
0.0
3.0
0.0
0.0
0.0
2.8
0.0
0.0
0.0
2.4
0.0
0.0
0.0
2.0
0.0
0.0
0.0
1.8
0.0
0.0
0.0
1.7
0.0
0.0
0.0
1.6
0.0
0.0
0.0
1.6
0.0
0.0
0.0
1.7
0.0
0.0
0.0
1.4
0.0
0.0
0.0
1.2
0.0
0.0
0.0
1.2
0.0
0.0
0.0
0.8
1.2
11.0
6.6
0.7
4.7
51.9
31.2
1.0
2.9
57.5
34.6
1.4
0.5
27.6
16.6
1.8
5.1
87.3
53.1
1.9
0.4
22.1
13.4
2.0
1.3
27.5
17.3
2.2
3.5
19.2
14.1
2.3
0.0
0.0
0.0
2.2
0.0
0.0
0.0
2.1
0.0
0.0
0.0
2.0
0.0
0.0
0.0
2.2
0.0
0.0
0.0
2.5
0.0
0.0
0.0
2.8
0.0
0.0
0.0
3.0
0.0
0.0
0.0
3.2
0.0
0.0
0.0
3.4
0.0
0.0
0.0
3.6
0.0
0.0
0.0
3.5
0.0
0.0
0.0
3.6
0.0
0.0
0.0
3.8
0.0
0.0
0.0
4.1
0.0
0.0
0.0
4.1
0.0
0.0
0.0
3.7
0.3
5.5
3.3
3.8
5.6
57.2
34.4
3.9
1.7
44.0
26.4
4.1
1.8
52.2
31.4
4.7
0.5
27.6
16.6
5.1
0.4
22.1
13.4
5.3
3.7
46.5
30.0
5.3
2.5
16.5
11.7
5.3
0.0
0.0
0.0
5.4
0.0
0.0
0.0
5.4
0.0
0.0
0.0
5.3
0.0
0.0
0.0
5.1
0.0
0.0
0.0
4.9
0.0
0.0
0.0
4.7
0.0
0.0
0.0
4.6
0.0
0.0
0.0
4.4
0.0
0.0
0.0
4.2
0.0
0.0
0.0
4.1
0.0
0.0
0.0
3.8
0.0
0.0
0.0
3.5
0.0
0.0
0.0
4.4
0.0
0.0
0.0
5.5
0.0
0.0
0.0
5.8
0.0
0.0
0.0
6.1
4.2
21.9
13.2
6.0 146.5
95.9
60.4
5.7 117.8 133.9
83.6
6.0
5.2
90.0
54.2
6.2
0.5
27.6
16.6
6.1
4.6
73.7
46.0
6.5
33.2
85.1
70.4
6.6
0.3
5.5
3.5
6.7
0.0
0.0
0.0
6.8
0.0
0.0
0.0
6.9
0.0
0.0
0.0
7.2
0.0
0.0
0.0
7.1
0.0
0.0
0.0
6.6
0.0
0.0
0.0
6.1
0.0
0.0
0.0
5.8
0.0
0.0
0.0
5.7
0.0
0.0
0.0
5.5
0.0
0.0
0.0
5.3
0.0
0.0
0.0
5.2
0.0
0.0
0.0
4.6
0.0
0.0
0.0
3.3
0.0
0.0
0.0
2.7
0.0
0.0
0.0
2.7
0.0
0.0
0.0
2.4
2.3
16.5
9.9
2.0
1.0
24.8
14.9
2.0
8.7
94.8
57.1
2.0
0.5
27.6
16.6
2.0
21.5 129.2
80.8
2.0
6.5
87.1
54.7
1.9
2.7
41.1
26.3
1.8
3.1
19.2
13.8
1.7
0.0
0.0
0.0
1.7
0.0
0.0
0.0
1.7
0.0
0.0
0.0
1.6
0.0
0.0
0.0
1.7
0.0
0.0
0.0
1.7
0.0
0.0
0.0
1.6
0.0
0.0
0.0
1.5
0.0
0.0
0.0
1.4
0.0
0.0
0.0
1.3
0.0
0.0
0.0
1.2
0.0
0.0
0.0
1.0
0.0
0.0
0.0
1.3
0.0
0.0
0.0
1.9
0.0
0.0
0.0
2.3
0.0
0.0
0.0
2.9
0.0
0.0
0.0
3.0
1.5
13.8
8.3
3.5
6.4
62.6
37.7
4.5
0.5
24.9
14.9
5.2
0.5
27.6
16.6
5.
...




Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...